1
|
Ji J, Ding Y, Kong Y, Fang M, Yu X, Lai X, Gu Q. Triple‑negative breast cancer cells that survive ionizing radiation exhibit an Axl‑dependent aggressive radioresistant phenotype. Exp Ther Med 2023; 26:448. [PMID: 37614420 PMCID: PMC10443063 DOI: 10.3892/etm.2023.12147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
This study aimed to investigate the aggressive behavior of triple-negative breast cancer (TNBC) cells that had survived ionizing radiation and explore the potential targets of TNBC combination treatment. Consistent with the previous literature, Axl was highly expressed in TNBC and closely associated with the degree of malignancy based on immunohistochemical staining. Using a gradient irradiation method, the ionizing radiation-resistant mouse TNBC cell line 4T-1/IRR was established. It was found that Axl expression was upregulated in 4T-1/IRR cells. After irradiation by X-ray, the cell viability and colony formation ability of 4T-1/IRR cells were significantly increased when compared with the 4T-1 cells. Combined radiotherapy with Axl inhibition by treatment with R428 and small interfering RNA lentivirus targeting Axl infection significantly reduced cell viability, colony formation ability, DNA double-stranded break repair, and the invasive and migratory ability of 4T-1/IRR cells. In vivo, the small animal radiation research platform was applied to precisely administer radiotherapy of the tumor-bearing mice. R428 treatment combined with 6 Gy X-ray significantly inhibited the growth of 4T-1/IRR cells-derived xenograft tumors in the BALB/c mouse. The results of western blotting showed that the critical molecular mechanism involved in the radioresistance of TNBC cells was the PI3K/Akt/mTOR signaling pathway induced by Axl activation. Thus, it is hypothesized that targeted Axl therapy combined with radiotherapy may have significant potential for the treatment of TNBC.
Collapse
Affiliation(s)
- Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Yuqin Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Yue Kong
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Min Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaofu Yu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaojing Lai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Qing Gu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
2
|
Ahmadi-Dehlaghi F, Mohammadi P, Valipour E, Pournaghi P, Kiani S, Mansouri K. Autophagy: A challengeable paradox in cancer treatment. Cancer Med 2023. [PMID: 36760166 DOI: 10.1002/cam4.5577] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE Autophagy is an intracellular degradation pathway conserved in all eukaryotes from yeast to humans. This process plays a quality-control role by destroying harmful cellular components under normal conditions, maintaining cell survival, and establishing cellular adaptation under stressful conditions. Hence, there are various studies indicating dysfunctional autophagy as a factor involved in the development and progression of various human diseases, including cancer. In addition, the importance of autophagy in the development of cancer has been highlighted by paradoxical roles, as a cytoprotective and cytotoxic mechanism. Despite extensive research in the field of cancer, there are many questions and challenges about the roles and effects suggested for autophagy in cancer treatment. The aim of this study was to provide an overview of the paradoxical roles of autophagy in different tumors and related cancer treatment options. METHODS In this study, to find articles, a search was made in PubMed and Google scholar databases with the keywords Autophagy, Autophagy in Cancer Management, and Drug Design. RESULTS According to the investigation, some studies suggest that several advanced cancers are dependent on autophagy for cell survival, so when cancer cells are exposed to therapy, autophagy is induced and suppresses the anti-cancer effects of therapeutic agents and also results in cell resistance. However, enhanced autophagy from using anti-cancer drugs causes autophagy-mediated cell death in several cancers. Because autophagy also plays roles in both tumor suppression and promotion further research is needed to determine the precise mechanism of this process in cancer treatment. CONCLUSION We concluded in this article, autophagy manipulation may either promote or hinder the growth and development of cancer according to the origin of the cancer cells, the type of cancer, and the behavior of the cancer cells exposed to treatment. Thus, before starting treatment it is necessary to determine the basal levels of autophagy in various cancers.
Collapse
Affiliation(s)
- Farnaz Ahmadi-Dehlaghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Biology, Payame Noor University, Tehran, Iran
| | - Parisa Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elahe Valipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sarah Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Grzmil M, Wiesmann F, Schibli R, Behe M. Targeting mTORC1 Activity to Improve Efficacy of Radioligand Therapy in Cancer. Cancers (Basel) 2022; 15:cancers15010017. [PMID: 36612012 PMCID: PMC9817840 DOI: 10.3390/cancers15010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Radioligand therapy (RLT) represents an effective strategy to treat malignancy by cancer-selective delivery of radioactivity following systemic application. Despite recent therapeutic successes, cancer radioresistance and insufficient delivery of the radioactive ligands, as well as cytotoxicity to healthy organs, significantly impairs clinical efficacy. To improve disease management while minimizing toxicity, in recent years, the combination of RLT with molecular targeted therapies against cancer signaling networks showed encouraging outcomes. Characterization of the key deregulated oncogenic signaling pathways revealed their convergence to activate the mammalian target of rapamycin (mTOR), in which signaling plays an essential role in the regulation of cancer growth and survival. Therapeutic interference with hyperactivated mTOR pathways was extensively studied and led to the development of mTOR inhibitors for clinical applications. In this review, we outline the regulation and oncogenic role of mTOR signaling, as well as recapitulate and discuss mTOR complex 1 (mTORC1) inhibition to improve the efficacy of RLT in cancer.
Collapse
Affiliation(s)
- Michal Grzmil
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Correspondence:
| | - Fabius Wiesmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
4
|
Evaluation of the Efficacy of a Combined Treatment Using the mTOR-Inhibitor Everolimus and [177Lu]Lu-DOTA-TATE in Nude CD1 Mice with SSTR-Expressing Pancreatic AR42J Xenograft Tumors. Biomedicines 2022; 10:biomedicines10123102. [PMID: 36551858 PMCID: PMC9775670 DOI: 10.3390/biomedicines10123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Therapy options for advanced pancreatic neuroendocrine tumors (pNETs) include the mTOR inhibitor everolimus and peptide receptor radionuclide therapy (PRRT) with [177Lu]Lu-DOTA-TATE, however further optimization in the therapeutic landscape is required as response rates are still low. In this study, we investigated the synergistic and potentially enhanced efficacy of a combined treatment with everolimus and [177Lu]Lu-DOTA-TATE in a mouse model. Baseline [68Ga]Ga-DOTA-TATE PET scans were obtained five days after athymic CD1 mice were inoculated with AR42J tumor cells, before separating the animals into four groups. Group 1 received a placebo, group 2 everolimus, group 3 a placebo and PRRT, and group 4 everolimus and PRRT. The treatment response was monitored by manually measuring the tumor volumes (manual tumor volume, MTV) and conducting sequential [68Ga]Ga-DOTA-TATE PET scans at one, two, and four weeks after treatment induction. The biological tumor volume (BTV) was derived from PET scans using threshold-based volume of interest (VOI) measurements. Tracer uptake was measured semi-quantitatively as a tumor to background ratio (TBR). Mice were euthanized due to excessive tumor growth according to the ethics protocol; blood samples were drawn for the preparation of full blood counts and kidneys were obtained for histological analysis. For the histological assessment, a standardized score (renal damage score, RDS) was used. Full blood counts showed significantly increased numbers of neutrophils and lymphocytes in the groups receiving PRRT. All other parameters did not differ relevantly. In the histological analysis, groups receiving PRRT had a significantly higher RDS, whereas everolimus only tended to cause an increase in the RDS. Mice in groups 1 and 2 had to be euthanized due to excessive tumor growth two weeks after the start of the therapy, whereas follow-up in groups 3 and 4 comprised four weeks. PRRT significantly inhibited tumor growth; the administration of everolimus did not induce an additional effect. A good correlation existed between MTV and BTV. PRRT significantly reduced the TBR. [68Ga]Ga-DOTA-TATE PET is suitable for monitoring tumor growth in the applied model. The high efficacy of [177Lu]Lu-DOTA-TATE is not enhanced by the combination with everolimus.
Collapse
|
5
|
Amar-Schwartz A, Ben Hur V, Jbara A, Cohen Y, Barnabas GD, Arbib E, Siegfried Z, Mashahreh B, Hassouna F, Shilo A, Abu-Odeh M, Berger M, Wiener R, Aqeilan R, Geiger T, Karni R. S6K1 phosphorylates Cdk1 and MSH6 to regulate DNA repair. eLife 2022; 11:79128. [PMID: 36189922 PMCID: PMC9529248 DOI: 10.7554/elife.79128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
The mTORC1 substrate, S6 Kinase 1 (S6K1), is involved in the regulation of cell growth, ribosome biogenesis, glucose homeostasis, and adipogenesis. Accumulating evidence has suggested a role for mTORC1 signaling in the DNA damage response. This is mostly based on the findings that mTORC1 inhibitors sensitized cells to DNA damage. However, a direct role of the mTORC1-S6K1 signaling pathway in DNA repair and the mechanism by which this signaling pathway regulates DNA repair is unknown. In this study, we discovered a novel role for S6K1 in regulating DNA repair through the coordinated regulation of the cell cycle, homologous recombination (HR) DNA repair (HRR) and mismatch DNA repair (MMR) mechanisms. Here, we show that S6K1 orchestrates DNA repair by phosphorylation of Cdk1 at serine 39, causing G2/M cell cycle arrest enabling homologous recombination and by phosphorylation of MSH6 at serine 309, enhancing MMR. Moreover, breast cancer cells harboring RPS6KB1 gene amplification show increased resistance to several DNA damaging agents and S6K1 expression is associated with poor survival of breast cancer patients treated with chemotherapy. Our findings reveal an unexpected function of S6K1 in the DNA repair pathway, serving as a tumorigenic barrier by safeguarding genomic stability. Damage to the DNA in our cells can cause harmful changes that, if unchecked, can lead to the development of cancer. To help prevent this, cellular mechanisms are in place to repair defects in the DNA. A particular process, known as the mTORC1-S6K1 pathway is suspected to be important for repair because when this pathway is blocked, cells become more sensitive to DNA damage. It is still unknown how the various proteins involved in the mTORC1-S6K1 pathway contribute to repairing DNA. One of these proteins, S6K1, is an enzyme involved in coordinating cell growth and survival. The tumor cells in some forms of breast cancer produce more of this protein than normal, suggesting that S6K1 benefits these cells’ survival. However, it is unclear exactly how the enzyme does this. Amar-Schwartz, Ben-Hur, Jbara et al. studied the role of S6K1 using genetically manipulated mouse cells and human cancer cells. These experiments showed that the protein interacts with two other proteins involved in DNA repair and activates them, regulating two different repair mechanisms and protecting cells against damage. These results might explain why some breast cancer tumors are resistant to radiotherapy and chemotherapy treatments, which aim to kill tumor cells by damaging their DNA. If this is the case, these findings could help clinicians choose more effective treatment options for people with cancers that produce additional S6K1. In the future, drugs that block the activity of the enzyme could make cancer cells more susceptible to chemotherapy.
Collapse
Affiliation(s)
- Adi Amar-Schwartz
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Vered Ben Hur
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amina Jbara
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eliran Arbib
- Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Bayan Mashahreh
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Fouad Hassouna
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Asaf Shilo
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mohammad Abu-Odeh
- Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael Berger
- Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
6
|
Lv L, Yang S, Zhu Y, Zhai X, Li S, Tao X, Dong D. Relationship between metabolic reprogramming and drug resistance in breast cancer. Front Oncol 2022; 12:942064. [PMID: 36059650 PMCID: PMC9434120 DOI: 10.3389/fonc.2022.942064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the leading cause of cancer death in women. At present, chemotherapy is the main method to treat breast cancer in addition to surgery and radiotherapy, but the process of chemotherapy is often accompanied by the development of drug resistance, which leads to a reduction in drug efficacy. Furthermore, mounting evidence indicates that drug resistance is caused by dysregulated cellular metabolism, and metabolic reprogramming, including enhanced glucose metabolism, fatty acid synthesis and glutamine metabolic rates, is one of the hallmarks of cancer. Changes in metabolism have been considered one of the most important causes of resistance to treatment, and knowledge of the mechanisms involved will help in identifying potential treatment deficiencies. To improve women's survival outcomes, it is vital to elucidate the relationship between metabolic reprogramming and drug resistance in breast cancer. This review analyzes and investigates the reprogramming of metabolism and resistance to breast cancer therapy, and the results offer promise for novel targeted and cell-based therapies.
Collapse
Affiliation(s)
- Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Castro‐Guarda M, Arancibia Y, Chipón C, Matamala C, Oyarzo P, Vargas G, Reyes A, Salas M, Morera FJ, Zambrano A. Metabolic changes induced by DNA damage in Ramos cells: exploring the role of mTORC1 complex. FEBS Open Bio 2022; 12:1509-1522. [PMID: 35538662 PMCID: PMC9340868 DOI: 10.1002/2211-5463.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/26/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
DNA damage induces the activation of many different signals associated with repair or cell death, but it is also connected with physiological events, such as adult neurogenesis and B-cell differentiation. DNA damage induces different signaling pathways, some of them linked to important metabolic changes. The mTORC1 pathway has a central role in the regulation of growth processes and cell division in response to environmental changes and also controls protein synthesis, lipid biogenesis, nucleotide synthesis, and expression of glycolytic genes. Here, we report that double-strand breaks induced with etoposide affect the expression of genes encoding different enzymes associated with specific metabolic pathways in Ramos cells. We also analyzed the role of mTOR signaling, demonstrating that double-strand breaks induce downregulation of mTOR signaling. Specific inhibition of mTORC1 using rapamycin also induced changes in the expression of metabolic genes. Finally, we demonstrated that DNA damage and rapamycin can regulate glucose uptake. In summary, our findings show that etoposide and rapamycin affect the expression of metabolic genes as well as apoptotic and proliferation markers in Ramos cells, increasing our understanding of cancer metabolism.
Collapse
Affiliation(s)
- Marcos Castro‐Guarda
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Yennyfer Arancibia
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Carina Chipón
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Christofer Matamala
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Paola Oyarzo
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Gabriela Vargas
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Alejandro Reyes
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
- Universidad Austral de ChileCoyhaiqueChile
| | - Mónica Salas
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Francisco J. Morera
- Facultad de Ciencias VeterinariasInstituto de Farmacología y MorfofisiologíaUniversidad Austral de ChileValdiviaChile
| | - Angara Zambrano
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
- Center for Interdisciplinary Studies on the Nervous System (CISNe)Universidad Austral de ChileValdiviaChile
| |
Collapse
|
8
|
Song L, Liu S, Zhao S. Everolimus (RAD001) combined with programmed death-1 (PD-1) blockade enhances radiosensitivity of cervical cancer and programmed death-ligand 1 (PD-L1) expression by blocking the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) pathway. Bioengineered 2022; 13:11240-11257. [PMID: 35485300 PMCID: PMC9208494 DOI: 10.1080/21655979.2022.2064205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) is the 4th most prevalent malignancy in females. This study explored the mechanism of everolimus (RAD001) combined with programmed death-1 (PD-1) blockade on radiosensitivity by phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and autophagy in CC cells. Low-radiosensitive CaSki cells were selected as study objects. After RAD001 treatment, PI3K/AKT/mTOR pathway activation, autophagy, migration and invasion abilities, autophagy-related proteins (LC3-I, LC3-II, and p62), and PD-L1 expression in CC cells were detected. After triple treatment of radiotherapy (RT), RAD001, and PD-1 blockade to the CC mouse models, tumor weight and volume were recorded. Ki67 expression, the number of CD8 + T cells, and the ability to produce IFN-γ and TNF-α in tumor tissues were determined. RAD001 promoted autophagy by repressing PI3K/AKT/mTOR pathway, augmented RT-induced apoptosis, and weakened migration and invasion, thereby increasing CC cell radiosensitivity. RAD001 elevated RT-induced PD-L1 level. RT combined with RAD001 and PD-1 blockade intensified the inhibitory effect of RT on tumor growth, reduced the amount of Ki67-positive cells, enhanced radiosensitivity of CC mice, and increased the quantity and killing ability of CD8 + T cells. Briefly, RAD001 combined with PD-1 blockade increases radiosensitivity of CC by impeding the PI3K/AKT/mTOR pathway and potentiating cell autophagy.
Collapse
Affiliation(s)
- Lili Song
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sufen Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Lamprou I, Kakouratos C, Tsolou A, Pavlidis P, Xanthopoulou ET, Nanos C, Tsaroucha A, Sivridis E, Giatromanolaki A, Koukourakis MI. Lipophagy-related protein perilipin-3 (PLIN3) and resistance of prostate cancer to radiotherapy. Int J Radiat Oncol Biol Phys 2022; 113:401-414. [PMID: 35121129 DOI: 10.1016/j.ijrobp.2022.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Radiotherapy is a principal treatment modality for localized and locally advanced prostate cancer (PCa). Metabolic alterations, including lipid metabolism, may reduce treatment efficacy resulting in tumor relapse and poor therapeutic outcome. In the current study, we investigated the role of the lipophagy-related protein perilipin-3 (PLIN3) and the lysosomal acid lipase (LAL) in PCa response to radiotherapy. METHODS AND MATERIALS We explored the in vitro and xenograft (in NOD.SCID and R2G2 mice) response to radiation of either PLIN3-depleted or LAL-depleted hormone-refractory (DU145, PC3), and hormone-responsive 22Rv1 PCa cell lines. Moreover, we evaluated the clinical role of PLIN3 and LAL protein expression in a series of PCa tissue specimens from patients treated with radical radiotherapy. RESULTS In vitro and in vivo experiments showed reduced proliferation and strong radiosensitization of all studied PCa cell lines upon PLIN3 depletion. In vivo experiments demonstrated the significantly augmented radiotherapy efficacy upon PLIN3 depletion, resulting in extensive tissue necrosis. PLIN3 overexpression in tissue specimens was correlated with increased MIB1 proliferation index, increased autophagy flux, reduced response to radiotherapy and poor prognosis. The impact of LAL depletion on radiotherapy was of lesser importance. CONCLUSIONS Assessment of PLIN3 expression may identify subgroups of PCa patients less responsive to radiotherapy, and at high risk of relapse post irradiation. Whether radiotherapy efficacy may be enhanced by concurrent autophagy or PLIN3 inhibition in this sub-group of patients demands clinical evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Efthimios Sivridis
- Department of Pathology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | |
Collapse
|
10
|
Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 2022; 19:114-131. [PMID: 34819622 PMCID: PMC9004227 DOI: 10.1038/s41571-021-00579-w] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Oxadiazol-based mTOR inhibitors with potent antiproliferative activities: synthetic and computational modeling. Mol Divers 2022; 26:3357-3364. [PMID: 34985718 DOI: 10.1007/s11030-021-10367-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Series of N-aryl-1,3,4-oxadiazole-2-amines and 3-aryl-1,2,4-oxadiazole-5-carboxamides derivatives were synthesized as novel chemotherapeutic agents. Synthesized compounds were evaluated for their anticancer activities against several cancer cell lines. Many analogues of 1,3,4-oxadiazole scaffold showed potent antiproliferative activities against breast cancer cell lines, with higher activities toward the metastatic breast cancer cell line (MDA-MB-231). Active analogues were profiled using in-house pharmacophore database in search for molecular target. Active analogues (2j and 2k) were found to fit the pharmacophoric map of ATP-competitive inhibitors of mTOR. The mTOR inhibitory activities of the most active compounds were confirmed with IC50 values in nanomolar range. The N-aryl-1,3,4-oxadiazole-2-amines linked to a basic head is a novel ATP-competitive inhibitors of mTOR with potential activities for treatment of different types of cancer.
Collapse
|
12
|
Selvarajoo N, Stanslas J, Islam MK, Sagineedu SR, Lian HK, Lim JCW. Pharmacological Modulation of Apoptosis and Autophagy in Pancreatic Cancer Treatment. Mini Rev Med Chem 2022; 22:2581-2595. [PMID: 35331093 DOI: 10.2174/1389557522666220324123605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pancreatic cancer is a fatal malignant neoplasm with infrequent signs and symptoms until a progressive stage. In 2020, GLOBOCAN reported that pancreatic cancer accounts for 4.7% of all cancer deaths. Despite the availability of standard chemotherapy regimens for treatment, the survival benefits are not guaranteed because tumor cells become chemoresistant even due to the development of chemoresistance in tumor cells even with a short treatment course, where apoptosis and autophagy play critical roles. OBJECTIVE This review compiled essential information on the regulatory mechanisms and roles of apoptosis and autophagy in pancreatic cancer, as well as drug-like molecules that target different pathways in pancreatic cancer eradication, with an aim to provide ideas to the scientific communities in discovering novel and specific drugs to treat pancreatic cancer, specifically PDAC. METHOD Electronic databases that were searched for research articles for this review were Scopus, Science Direct, PubMed, Springer Link, and Google Scholar. The published studies were identified and retrieved using selected keywords. DISCUSSION/CONCLUSION Many small-molecule anticancer agents have been developed to regulate autophagy and apoptosis associated with pancreatic cancer treatment, where most of them target apoptosis directly through EGFR/Ras/Raf/MAPK and PI3K/Akt/mTOR pathways. The cancer drugs that regulate autophagy in treating cancer can be categorized into three groups: i) direct autophagy inducers (e.g., rapamycin), ii) indirect autophagy inducers (e.g., resveratrol), and iii) autophagy inhibitors. Resveratrol persuades both apoptosis and autophagy with a cytoprotective effect, while autophagy inhibitors (e.g., 3-methyladenine, chloroquine) can turn off the protective autophagic effect for therapeutic benefits. Several studies showed that autophagy inhibition resulted in a synergistic effect with chemotherapy (e.g., a combination of metformin with gemcitabine/ 5FU). Such drugs possess a unique clinical value in treating pancreatic cancer as well as other autophagy-dependent carcinomas.
Collapse
Affiliation(s)
- Nityaa Selvarajoo
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Kaisarul Islam
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sreenivasa Rao Sagineedu
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Ho Kok Lian
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Tamaddondoust RN, Wang Y, Jafarnejad SM, Graber TE, Alain T. The highs and lows of ionizing radiation and its effects on protein synthesis. Cell Signal 2021; 89:110169. [PMID: 34662715 DOI: 10.1016/j.cellsig.2021.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 10/06/2021] [Indexed: 11/03/2022]
Abstract
Ionizing radiation (IR) is a constant feature of our environment and one that can dramatically affect organismal health and development. Although the impacts of high-doses of IR on mammalian cells and systems have been broadly explored, there are still challenges in accurately quantifying biological responses to IR, especially in the low-dose range to which most individuals are exposed in their lifetime. The resulting uncertainty has led to the entrenchment of conservative radioprotection policies around the world. Thus, uncovering long-sought molecular mechanisms and tissue responses that are targeted by IR could lead to more informed policymaking and propose new therapeutic avenues for a variety of pathologies. One often overlooked target of IR is mRNA translation, a highly regulated cellular process that consumes more than 40% of the cell's energy. In response to environmental stimuli, regulation of mRNA translation allows for precise and rapid changes to the cellular proteome, and unsurprisingly high-dose of IR was shown to trigger a severe reprogramming of global protein synthesis allowing the cell to conserve energy by preventing the synthesis of unneeded proteins. Nonetheless, under these conditions, certain mRNAs encoding specific proteins are translationally favoured to produce the factors essential to repair the cell or send it down the path of no return through programmed cell death. Understanding the mechanisms controlling protein synthesis in response to varying doses of IR could provide novel insights into how this stress-mediated cellular adaptation is regulated and potentially uncover novel targets for radiosensitization or radioprotection. Here, we review the current literature on the effects of IR at both high- and low-dose on the mRNA translation machinery.
Collapse
Affiliation(s)
- Rosette Niloufar Tamaddondoust
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada.
| | - Yi Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Tyson E Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
15
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacology-Based Dissection of the Comprehensive Molecular Mechanisms of the Herbal Prescription FDY003 Against Estrogen Receptor-Positive Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211044377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen receptor-positive breast cancer (ERPBC) is the commonest subtype of breast cancer, with a high prevalence, incidence, and mortality. Herbal drugs are increasingly being used to treat ERPBC, although their mechanisms of action are not fully understood. Therefore, in this study, we aimed to analyze the therapeutic properties of FDY003, a herbal anti-ERPBC prescription, using a network pharmacology approach. FDY003 decreased the viability of human ERPBC cells and sensitized them to tamoxifen, an endocrine drug that is widely used in the treatment of ERPBC. The network pharmacology analysis revealed 18 pharmacologically active components in FDY003 that may interact with and regulate 66 therapeutic targets. The enriched gene ontology terms for the FDY003 targets were associated with the modulation of cell survival and death, cell proliferation and growth arrest, and estrogen-associated cellular processes. Analysis of the pathway enrichment of the targets showed that FDY003 may target a variety of ERPBC-associated pathways, including the PIK3-Akt, focal adhesion, MAPK, and estrogen pathways. Overall, these data provide a comprehensive mechanistic insight into the anti-ERPBC activity of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | | | | | | | - Minho Jung
- Forest Hospital, Seoul, Republic of Korea
| | | | | | - Dae-Yeon Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| |
Collapse
|
16
|
Lei F, Lei T, Huang Y, Yang M, Liao M, Huang W. Radio-Susceptibility of Nasopharyngeal Carcinoma: Focus on Epstein- Barr Virus, MicroRNAs, Long Non-Coding RNAs and Circular RNAs. Curr Mol Pharmacol 2021; 13:192-205. [PMID: 31880267 DOI: 10.2174/1874467213666191227104646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/22/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. As a neoplastic disorder, NPC is a highly malignant squamous cell carcinoma that is derived from the nasopharyngeal epithelium. NPC is radiosensitive; radiotherapy or radiotherapy combining with chemotherapy are the main treatment strategies. However, both modalities are usually accompanied by complications and acquired resistance to radiotherapy is a significant impediment to effective NPC therapy. Therefore, there is an urgent need to discover effective radio-sensitization and radio-resistance biomarkers for NPC. Recent studies have shown that Epstein-Barr virus (EBV)-encoded products, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which share several common signaling pathways, can function in radio-related NPC cells or tissues. Understanding these interconnected regulatory networks will reveal the details of NPC radiation sensitivity and resistance. In this review, we discuss and summarize the specific molecular mechanisms of NPC radio-sensitization and radio-resistance, focusing on EBV-encoded products, miRNAs, lncRNAs and circRNAs. This will provide a foundation for the discovery of more accurate, effective and specific markers related to NPC radiotherapy. EBVencoded products, miRNAs, lncRNAs and circRNAs have emerged as crucial molecules mediating the radio-susceptibility of NPC. This understanding will improve the clinical application of markers and inform the development of novel therapeutics for NPC.
Collapse
Affiliation(s)
- Fanghong Lei
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Tongda Lei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Mingxiu Yang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Mingchu Liao
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| |
Collapse
|
17
|
Li L, Liu WL, Su L, Lu ZC, He XS. The Role of Autophagy in Cancer Radiotherapy. Curr Mol Pharmacol 2021; 13:31-40. [PMID: 31400274 DOI: 10.2174/1874467212666190809154518] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Autophagy, a pathway for lysosomal-mediated cellular degradation, is a catabolic process that recycles intracellular components to maintain metabolism and survival. It is classified into three major types: macroautophagy, microautophagy, and the chaperone-mediated autophagy (CMA). Autophagy is a dynamic and multistep process that includes four stages: nucleation, elongation, autophagosome formation, and fusion. Interestingly, the influence of autophagy in cancer development is complex and paradoxical, suppressive, or promotive in different contexts. Autophagy in cancer has been demonstrated to serve as both a tumour suppressor and promoter. Radiotherapy is a powerful and common strategy for many different types of cancer and can induce autophagy, which has been shown to modulate sensitivity of cancer to radiotherapy. However, the role of autophagy in radiation treatment is controversial. Some reports showed that the upregulation of autophagy was cytoprotective for cancer cells. Others, in contrast, showed that the induction of autophagy was advantageous. Here, we reviewed recent studies and attempted to discuss the various aspects of autophagy in response to radiotherapy of cancer. Thus, we could decrease the viability of cancer cell and increase the sensibility of cancer cells to radiation, providing a new basis for the application of autophagy in clinical tumor radiotherapy.
Collapse
Affiliation(s)
- Lei Li
- Cancer Research Institute, Hengyang Medical College of University of South China, No. 28, West Changsheng Road, Hengyang City, Hunan Province, China
| | - Wen-Ling Liu
- Cancer Research Institute, Hengyang Medical College of University of South China, No. 28, West Changsheng Road, Hengyang City, Hunan Province, China
| | - Lei Su
- Cancer Research Institute, Hengyang Medical College of University of South China, No. 28, West Changsheng Road, Hengyang City, Hunan Province, China
| | - Zhou-Cheng Lu
- Second Affiliated Hospital of South China University, Hengyang City, Hunan Province, China
| | - Xiu-Sheng He
- Cancer Research Institute, Hengyang Medical College of University of South China, No. 28, West Changsheng Road, Hengyang City, Hunan Province, China
| |
Collapse
|
18
|
Talukdar S, Das SK, Emdad L, Fisher PB. Autophagy and senescence: Insights from normal and cancer stem cells. Adv Cancer Res 2021; 150:147-208. [PMID: 33858596 DOI: 10.1016/bs.acr.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
19
|
Lee HS, Lee IH, Kang K, Park SI, Moon SJ, Lee CH, Lee DY. A Network Pharmacology Study on the Molecular Mechanisms of FDY003 for Breast Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3919143. [PMID: 33628298 PMCID: PMC7881938 DOI: 10.1155/2021/3919143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Herbal medicines have drawn considerable attention with regard to their potential applications in breast cancer (BC) treatment, a frequently diagnosed malignant disease, considering their anticancer efficacy with relatively less adverse effects. However, their mechanisms of systemic action have not been understood comprehensively. Based on network pharmacology approaches, we attempted to unveil the mechanisms of FDY003, an herbal drug comprised of Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris, against BC at a systemic level. We found that FDY003 exhibited pharmacological effects on human BC cells. Subsequently, detailed data regarding the biochemical components contained in FDY003 were obtained from comprehensive herbal medicine-related databases, including TCMSP and CancerHSP. By evaluating their pharmacokinetic properties, 18 chemical compounds in FDY003 were shown to be potentially active constituents interacting with 140 BC-associated therapeutic targets to produce the pharmacological activity. Gene ontology enrichment analysis using g:Profiler indicated that the FDY003 targets were involved in the modulation of cellular processes, involving the cell proliferation, cell cycle process, and cell apoptosis. Based on a KEGG pathway enrichment analysis, we further revealed that a variety of oncogenic pathways that play key roles in the pathology of BC were significantly enriched with the therapeutic targets of FDY003; these included PI3K-Akt, MAPK, focal adhesion, FoxO, TNF, and estrogen signaling pathways. Here, we present a network-perspective of the molecular mechanisms via which herbal drugs treat BC.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Seung-Joon Moon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Chol Hee Lee
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
20
|
Pesch AM, Pierce LJ, Speers CW. Modulating the Radiation Response for Improved Outcomes in Breast Cancer. JCO Precis Oncol 2021; 5:PO.20.00297. [PMID: 34250414 DOI: 10.1200/po.20.00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Andrea M Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Department of Pharmacology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
21
|
Johnson J, Chow Z, Napier D, Lee E, Weiss HL, Evers BM, Rychahou P. Targeting PI3K and AMPKα Signaling Alone or in Combination to Enhance Radiosensitivity of Triple Negative Breast Cancer. Cells 2020; 9:cells9051253. [PMID: 32438621 PMCID: PMC7291172 DOI: 10.3390/cells9051253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is characterized by poor survival. Radiotherapy plays an important role in treating TNBC. The purpose of this study was to determine whether inhibiting the AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K) pathways alone or in combination potentiates radiotherapy in TNBC. AMPKα1 and AMPKα2 knockdown diminished cyclin D1 expression and induced G1 cell cycle arrest but did not induce apoptosis alone or in combination with radiotherapy. Next, we analyzed the role of PI3K p85α, p85β, p110α, p110β, Akt1, and Akt2 proteins on TNBC cell cycle progression and apoptosis induction. Akt1 and p110α knockdown diminished cyclin D1 expression and induced apoptosis. Silencing Akt1 promoted synergistic apoptosis induction during radiotherapy and further reduced survival after radiation. Treatment with the Akt inhibitor, MK-2206 48 h after radiotherapy decreased Akt1 levels and potentiated radiation-induced apoptosis. Together, our results demonstrate that AMPKα, p110α, and Akt1 promote TNBC proliferation and that Akt1 is a key regulator of radiosensitivity in TNBC. Importantly, combining radiotherapy with the pharmacological inhibition of Akt1 expression is a potentially promising approach for the treatment of TNBC.
Collapse
Affiliation(s)
- Jeremy Johnson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Zeta Chow
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Dana Napier
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
| | - Eun Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-85-9-323-9285
| |
Collapse
|
22
|
Zellmer J, Yen HY, Kaiser L, Mille E, Gildehaus FJ, Böning G, Steiger K, Hacker M, Bartenstein P, Todica A, Haug AR, Ilhan H. Toxicity of a combined therapy using the mTOR-inhibitor everolimus and PRRT with [ 177Lu]Lu-DOTA-TATE in Lewis rats. EJNMMI Res 2020; 10:41. [PMID: 32335736 PMCID: PMC7183514 DOI: 10.1186/s13550-020-00628-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Peptide receptor radionuclide therapy (PRRT) with [177Lu]Lu-DOTA0,TYR3-octreotate ([177Lu]Lu-DOTA-TATE) and the mechanistic target of rapamycin (mTOR) inhibitor everolimus are both approved for the treatment of neuroendocrine tumours (NET). However, tumour progression is still frequent, and treatment strategies need further improvement. One possible approach could be to combine different therapy options. In this study, we investigated the toxicity of a combined treatment with everolimus and [177Lu]Lu-DOTA-TATE in female Lewis rats. METHODS Animals received 200 MBq of [177Lu]Lu-DOTA-TATE once and/or 5 mg/kg body weight everolimus or placebo weekly for 16 weeks and were divided into four groups (group 1, placebo; group 2, everolimus; group 3, placebo + [177Lu]Lu-DOTA-TATE; group 4, everolimus + [177Lu]Lu-DOTA-TATE). Blood levels of creatinine and blood urea nitrogen (BUN) were assessed weekly to monitor nephrotoxicity, and a full blood count was performed at the time of euthanasia to monitor myelotoxicity. Additionally, renal function was analysed by sequential [99mTc]Tc-mercaptoacetyltriglycine ([99mTc]Tc-MAG3) scintigraphies. Histopathological examination was performed in all the kidneys using a standardized renal damage score (RDS). RESULTS Rats receiving everolimus showed a significantly lower increase in creatinine levels than those receiving placebo. Everolimus therapy reduced white blood count significantly, which was not observed for [177Lu]Lu-DOTA-TATE. Functional renal scintigraphies using [99mTc]Tc-MAG3 showed a compromised initial tracer uptake after PRRT and slower but still preserved excretion after everolimus. Histology showed no significant RDS differences between groups. CONCLUSION Renal scintigraphy is a highly sensitive tool for the detection of renal function impairment after a combination of everolimus and PRRT. Additional treatment with everolimus does not increase renal and haematological toxicity of PRRT with [177Lu]Lu-DOTA-TATE.
Collapse
Affiliation(s)
- Johannes Zellmer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Hsi-Yu Yen
- Department of Pathology, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Comparative Experimental Pathology, Technical University of Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Erik Mille
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Katja Steiger
- Department of Pathology, Technical University of Munich, Munich, Germany
- Comparative Experimental Pathology, Technical University of Munich, Munich, Germany
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany.
| |
Collapse
|
23
|
Shiratori H, Kawai K, Okada M, Nozawa H, Hata K, Tanaka T, Nishikawa T, Shuno Y, Sasaki K, Kaneko M, Murono K, Emoto S, Ishii H, Sonoda H, Ushiku T, Ishihara S. Metastatic role of mammalian target of rapamycin signaling activation by chemoradiotherapy in advanced rectal cancer. Cancer Sci 2020; 111:1291-1302. [PMID: 31997546 PMCID: PMC7156826 DOI: 10.1111/cas.14332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/04/2023] Open
Abstract
Postoperative distant metastasis dramatically affects rectal cancer patients who have undergone neoadjuvant chemoradiotherapy (NACRT). Here, we clarified the association between NACRT‐mediated mammalian target of rapamycin (mTOR) signaling pathway activation and rectal cancer metastatic potential. We performed immunohistochemistry for phosphorylated mTOR (p‐mTOR) and phosphorylated S6 (p‐S6) on surgical specimen blocks from 98 rectal cancer patients after NACRT (cohort 1) and 80 colorectal cancer patients without NACRT (cohort 2). In addition, we investigated the association between mTOR pathway activity, affected by irradiation, and the migration ability of colorectal cancer cells in vitro. Based on the results of the clinical study, p‐mTOR was significantly overexpressed in cohort 1 (with NACRT) as compared to levels in cohort 2 (without NACRT) (P < .001). High p‐mTOR and p‐S6 levels correlated with the development of distant metastasis only in cohort 1. Specifically, high p‐S6 expression (HR 4.51, P = .002) and high pathological T‐stage (HR 3.73, P = .020) after NACRT were independent predictors of the development of distant metastasis. In vitro, p‐S6 levels and migration ability increased after irradiation in SW480 cells (TP53 mutation‐type) but decreased in LoVo cells (TP53 wild‐type), suggesting that irradiation modulates mTOR signaling and migration through cell type‐dependent mechanisms. We next assessed the expression level of p53 by immunostaining in cohort 1 and demonstrated that p‐S6 was overexpressed in samples with high p53 expression as compared to levels in samples with low p53 expression (P = .008). In conclusion, p‐S6 levels after NACRT correlate with postoperative distant metastasis in rectal cancer patients, suggesting that chemoradiotherapy might modulate the mTOR signaling pathway, promoting metastasis.
Collapse
Affiliation(s)
- Hiroshi Shiratori
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazushige Kawai
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Masamichi Okada
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Nozawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Tanaka
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nishikawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Yasutaka Shuno
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazuhito Sasaki
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Manabu Kaneko
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Koji Murono
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shigenobu Emoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Ishii
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Sonoda
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Predicting Radiation Resistance in Breast Cancer with Expression Status of Phosphorylated S6K1. Sci Rep 2020; 10:641. [PMID: 31959810 PMCID: PMC6971275 DOI: 10.1038/s41598-020-57496-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the mammalian target of rapamcyin (mTOR) pathway is associated with radio-resistance in cancer treatment. We hypothesised that phosphorylated ribosomal S6 kinase 1 (p-S6K1), a major downstream regulator of the mTOR pathway, may play a role in predicting radio-resistance. Therefore, we evaluated the association of p-S6K1 expression with radio-resistance in breast cancer cell lines and patients. During median follow-up of 33 (range, 0.1-111) months for 1770 primary breast cancer patients who underwent surgery, patients expressing p-S6K1 showed worse 10-year loco-regional recurrence-free survival (LRFS) compared to that of p-S6K1-negative patients after radiotherapy (93.4% vs. 97.7%, p = 0.015). Multivariate analysis revealed p-S6K1 expression as a predictor of radio-resistance (hazard ratio 7.9, 95% confidence interval 1.1-58.5, p = 0.04). In vitro, CD44high/CD24low MCF7 cells with a radioresistant phenotype expressed higher levels of p-S6K1 than control MCF7 cells. Furthermore, the combination of radiation with treatment of everolimus, an mTOR-S6K1 pathway inhibitor, sensitised CD44high/CD24low MCF7 cells to a greater extent than MCF7 cells. This study provides in vivo and in vitro evidence for p-S6K1 expression status as an important marker for predicting the resistance to radiotherapy and as a possible target for radio-sensitization in breast cancer patients.
Collapse
|
25
|
Bosacki C, Vallard A, Jmour O, Ben Mrad M, Lahmamssi C, Bousarsar A, Vial N, Guillaume E, Daguenet E, Magné N. [Radiotherapy and immune suppression: A short review]. Bull Cancer 2019; 107:84-101. [PMID: 31866074 DOI: 10.1016/j.bulcan.2019.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/28/2023]
Abstract
The management of patients undergoing immunosuppressive agents is really challenging. Based on precaution principle, it seems mandatory to stop immunosuppressive (or immunomodulating) agents during radiation. Yet, it is impossible in grafted patients. It is possible in patients with autoimmune disease, but in this case, the autoimmune disease might modify patient's radio-sensitivity. We provide a short review about the safety of radiotherapy in grafted/auto-immune patients. The literature is limited with data coming from outdated case-report or case-control studies. It seems that radiotherapy is feasible in grafted patients, but special dose-constraints limitations must probably be considered for the transplant and the other organs at risk. There is very little data about the safety of radiotherapy, when associated with immunomodulating agents. The most studied drug is the methotrexate but only its prescription as a chemotherapy (high doses for a short period of time) was reported. When used as an immunomodulator, it should probably be stopped 4 months before and after radiation. Apart from rheumatoid arthritis, it seems that collagen vascular diseases and especially systemic scleroderma and systemic lupus erythematous feature increased radio-sensitivity with increased severe late toxicities. Transplanted patients and collagen vascular disease patients should be informed that there is very little data about safety of radiation in their case.
Collapse
Affiliation(s)
- Claire Bosacki
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France.
| | - Alexis Vallard
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Omar Jmour
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Majed Ben Mrad
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Chaimaa Lahmamssi
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Amal Bousarsar
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Nicolas Vial
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Elodie Guillaume
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Elisabeth Daguenet
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France; Institut de cancérologie Lucien-Neuwirth, département universitaire de recherche et éducation, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Nicolas Magné
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France; Institut de cancérologie Lucien-Neuwirth, département universitaire de recherche et éducation, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| |
Collapse
|
26
|
Chinnaiyan P, Won M, Wen PY, Rojiani AM, Werner-Wasik M, Shih HA, Ashby LS, Michael Yu HH, Stieber VW, Malone SC, Fiveash JB, Mohile NA, Ahluwalia MS, Wendland MM, Stella PJ, Kee AY, Mehta MP. A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913. Neuro Oncol 2019; 20:666-673. [PMID: 29126203 DOI: 10.1093/neuonc/nox209] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background This phase II study was designed to determine the efficacy of the mammalian target of rapamycin (mTOR) inhibitor everolimus administered daily with conventional radiation therapy and chemotherapy in patients with newly diagnosed glioblastoma. Methods Patients were randomized to radiation therapy with concurrent and adjuvant temozolomide with or without daily everolimus (10 mg). The primary endpoint was progression-free survival (PFS) and the secondary endpoints were overall survival (OS) and treatment-related toxicities. Results A total of 171 patients were randomized and deemed eligible for this study. Patients randomized to receive everolimus experienced a significant increase in both grade 4 toxicities, including lymphopenia and thrombocytopenia, and treatment-related deaths. There was no significant difference in PFS between patients randomized to everolimus compared with control (median PFS time: 8.2 vs 10.2 mo, respectively; P = 0.79). OS for patients randomized to receive everolimus was inferior to that for control patients (median survival time: 16.5 vs 21.2 mo, respectively; P = 0.008). A similar trend was observed in both O6-methylguanine-DNA-methyltransferase promoter hypermethylated and unmethylated tumors. Conclusion Combining everolimus with conventional chemoradiation leads to increased treatment-related toxicities and does not improve PFS in patients with newly diagnosed glioblastoma. Although the median survival time in patients receiving everolimus was comparable to contemporary studies, it was inferior to the control in this randomized study.
Collapse
Affiliation(s)
| | - Minhee Won
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania, USA
| | - Patrick Y Wen
- Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| | - Amyn M Rojiani
- Augusta University-Medical College of Georgia, Augusta, Georgia, USA
| | | | - Helen A Shih
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lynn S Ashby
- Barrow Neurological Institute accruals under Arizona Oncology Services Foundation, Phoenix, Arizona, USA
| | | | - Volker W Stieber
- Novant Health Forsyth Regional Cancer Center accruals under Southeast Cancer Control Consortium, Inc, CCOP, Goldsboro, North Carolina, USA
| | - Shawn C Malone
- The Ottawa Hospital Regional Cancer Centre, Ottawa, Ontario, Canada
| | - John B Fiveash
- University of Alabama at Birmingham Medical Center, Birmingham, Alabama, USA
| | | | | | | | - Philip J Stella
- Saint Joseph Mercy Hospital accruals under Michigan Cancer Research Consortium CCOP, Ypsilanti, Michigan, USA
| | - Andrew Y Kee
- Legacy Health Systems accruals under Mayo Clinic, Portland, Oregon, USA
| | | |
Collapse
|
27
|
Kim JH, Jenrow KA, Brown SL. Novel biological strategies to enhance the radiation therapeutic ratio. Radiat Oncol J 2018; 36:172-181. [PMID: 30309208 PMCID: PMC6226138 DOI: 10.3857/roj.2018.00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Successful anticancer strategies require a differential response between tumor and normal tissue (i.e., a therapeutic ratio). In fact, improving the effectiveness of a cancer therapeutic is of no clinical value in the absence of a significant increase in the differential response between tumor and normal tissue. Although radiation dose escalation with the use of intensity modulated radiation therapy has permitted the maximum tolerable dose for most locally advanced cancers, improvements in tumor control without damaging normal adjacent tissues are needed. As a means of increasing the therapeutic ratio, several new approaches are under development. Drugs targeting signal transduction pathways in cancer progression and more recently, immunotherapeutics targeting specific immune cell subsets have entered the clinic with promising early results. Radiobiological research is underway to address pressing questions as to the dose per fraction, irradiated tumor volume and time sequence of the drug administration. To exploit these exciting novel strategies, a better understanding is needed of the cellular and molecular pathways responsible for both cancer and normal tissue and organ response, including the role of radiation-induced accelerated senescence. This review will highlight the current understanding of promising biologically targeted therapies to enhance the radiation therapeutic ratio.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| | - Kenneth A Jenrow
- Department of Psychology/Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
28
|
Zhang X, Wang J, Li X, Wang D. Lysosomes contribute to radioresistance in cancer. Cancer Lett 2018; 439:39-46. [PMID: 30217567 DOI: 10.1016/j.canlet.2018.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/05/2018] [Accepted: 08/30/2018] [Indexed: 01/02/2023]
Abstract
Radiotherapy is one of the most widely used methods to treat human tumors. Efficacy is due mainly to the DNA damage it induces. However, tumor cells often develop responsive adaptiveness to radiation treatment to survive, which leads to radioresistance. Many cellular processes, such as DNA damage repair, cell cycle arrest and autophagy, are involved in the development of radioresistance. Few interventions to combat radioresistance exist to date. In recent years, the lysosome has been reported to contribute to chemo- and radioresistance. Although for many years, the lysosome was known as an organelle that degrades waste materials, we now know it is also involved in important signaling pathways regulating cellular homeostasis. Although an increasing number of preclinical studies show that lysosome-related factors promote radioresistance, the role of the lysosome in radioresistance has not been systematically demonstrated. Here, we combine an updated understanding of lysosomes with a review of current studies regarding the role of lysosomes in mediating radioresistance.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China; Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
29
|
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-dependent pathway is one of the most integral pathways linked to cell metabolism, proliferation, differentiation, and survival. This pathway is dysregulated in a variety of diseases, including neoplasia, immune-mediated diseases, and fibroproliferative diseases such as pulmonary fibrosis. The mTOR kinase is frequently referred to as the master regulator of this pathway. Alterations in mTOR signaling are closely associated with dysregulation of autophagy, inflammation, and cell growth and survival, leading to the development of lung fibrosis. Inhibitors of mTOR have been widely studied in cancer therapy, as they may sensitize cancer cells to radiation therapy. Studies also suggest that mTOR inhibitors are promising modulators of fibroproliferative diseases such as idiopathic pulmonary fibrosis (IPF) and radiation-induced pulmonary fibrosis (RIPF). Therefore, mTOR represents an attractive and unique therapeutic target in pulmonary fibrosis. In this review, we discuss the pathological role of mTOR kinase in pulmonary fibrosis and examine how mTOR inhibitors may mitigate fibrotic progression.
Collapse
|
30
|
Kaemmerer E, Turner D, Peters AA, Roberts-Thomson SJ, Monteith GR. An automated epifluorescence microscopy imaging assay for the identification of phospho-AKT level modulators in breast cancer cells. J Pharmacol Toxicol Methods 2018; 92:13-19. [PMID: 29438745 DOI: 10.1016/j.vascn.2018.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/28/2018] [Accepted: 02/08/2018] [Indexed: 11/19/2022]
Abstract
AKT is an enzyme of the PI3K/pAKT pathway, regulating proliferation and cell survival. High basal levels of active, phosphorylated AKT (pAKT) are associated with tumor progression and therapeutic resistance in some breast cancer subtypes, including HER2 positive breast cancers. Various stimuli can increase pAKT levels and elevated basal pAKT levels are a feature of PTEN-deficient breast cancer cell lines. The aim of this study was to develop an assay able to identify modulators of pAKT levels using an automated epifluorescence microscope and high content analysis. To develop this assay, we used HCC-1569, a PTEN-deficient, HER2-overexpressing breast cancer cell line with elevated basal pAKT levels. HCC-1569 cells were treated with a selective pharmacological inhibitor of AKT (MK-2206) to reduce basal pAKT levels or EGF to increase pAKT levels. Immunofluorescence images were acquired using an automated epifluorescence microscope and integrated intensity of cytoplasmic pAKT staining was calculated using high content analysis software. Mean and median integrated cytoplasmic intensity were normalized using fold change and standard score to assess assay quality and to identify most robust data analysis. The highest z' factor was achieved for median data normalization using the standard score method (z' = 0.45). Using our developed assay we identified the calcium homeostasis regulating proteins TPRV6, STIM1 and TRPC1 as modulators of pAKT levels in HCC-1569 cells. Calcium signaling controls a diverse array of cellular processes and some calcium homeostasis regulating proteins are involved in modulating pAKT levels in cancer cells. Thus, these identified hits present promising targets for further assessment.
Collapse
Affiliation(s)
- Elke Kaemmerer
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia.
| | - Dane Turner
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
| | - Amelia A Peters
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia.
| | | | - Gregory R Monteith
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
31
|
Eke I, Makinde AY, Aryankalayil MJ, Sandfort V, Palayoor ST, Rath BH, Liotta L, Pierobon M, Petricoin EF, Brown MF, Stommel JM, Ahmed MM, Coleman CN. Exploiting Radiation-Induced Signaling to Increase the Susceptibility of Resistant Cancer Cells to Targeted Drugs: AKT and mTOR Inhibitors as an Example. Mol Cancer Ther 2018; 17:355-367. [PMID: 28802252 PMCID: PMC5805592 DOI: 10.1158/1535-7163.mct-17-0262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Implementing targeted drug therapy in radio-oncologic treatment regimens has greatly improved the outcome of cancer patients. However, the efficacy of molecular targeted drugs such as inhibitory antibodies or small molecule inhibitors essentially depends on target expression and activity, which both can change during the course of treatment. Radiotherapy has previously been shown to activate prosurvival pathways, which can help tumor cells to adapt and thereby survive treatment. Therefore, we aimed to identify changes in signaling induced by radiation and evaluate the potential of targeting these changes with small molecules to increase the therapeutic efficacy on cancer cell survival. Analysis of "The Cancer Genome Atlas" database disclosed a significant overexpression of AKT1, AKT2, and MTOR genes in human prostate cancer samples compared with normal prostate gland tissue. Multifractionated radiation of three-dimensional-cultured prostate cancer cell lines with a dose of 2 Gy/day as a clinically relevant schedule resulted in an increased protein phosphorylation and enhanced protein-protein interaction between AKT and mTOR, whereas gene expression of AKT, MTOR, and related kinases was not altered by radiation. Similar results were found in a xenograft model of prostate cancer. Pharmacologic inhibition of mTOR/AKT signaling after activation by multifractionated radiation was more effective than treatment prior to radiotherapy. Taken together, our findings provide a proof-of-concept that targeting signaling molecules after activation by radiotherapy may be a novel and promising treatment strategy for cancers treated with multifractionated radiation regimens such as prostate cancer to increase the sensitivity of tumor cells to molecular targeted drugs. Mol Cancer Ther; 17(2); 355-67. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."
Collapse
Affiliation(s)
- Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Adeola Y Makinde
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Veit Sandfort
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Sanjeewani T Palayoor
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Barbara H Rath
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Matthew F Brown
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jayne M Stommel
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
32
|
Chatterjee AD, Roy D, Guevara P, Pal R, Naryan M, Roychowdhury S, Das S. Arachidonic Acid Induces the Migration of MDA-MB-231 Cells by Activating Raft-associated Leukotriene B4 Receptors. CLINICAL CANCER DRUGS 2018; 5:28-41. [PMID: 30443489 PMCID: PMC6233886 DOI: 10.2174/2212697x05666180418145601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The migration of tumor cells is critical in spreading cancers through the lymphatic nodes and circulatory systems. Although arachidonic acid (AA) and its soluble metabolites have been shown to induce the migration of breast and colon cancer cells, the mechanism by which it induces such migration has not been fully understood. OBJECTIVE The effect of AA on migratory responses of the MDA-MB-231 cell line (a triple-negative breast cancer cell) was examined and compared with MCF-7 (estrogen-receptor positive) breast cancer cells to elucidate the mechanism of AA-induced migration. METHODS Migrations of breast cancer cells were examined with the help of wound-healing assays. AA-induced eicosanoid synthesis was monitored by RP-HPLC. Cellular localizations of lipoxygenase and lipid rafts were assessed by immunoblot and confocal microscopy. RESULTS AA treatment stimulated the synthesis of leukotriene B4 (LTB4) and HETE-8, but lowered the levels of prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), and HETE-5 in MDA-MB-231 cells. Further analysis indicated that AA increased the expression of 5-lipoxygenase (5-LOX) in this cell line and inhibiting its expression by small molecule inhibitors lowered the production of LTB4 and reduced migration. In contrast, MCF-7 cells did not show any appreciable changes in eicosanoid synthesis, 5-LOX expression, or cellular migration. CONCLUSION Our results suggest that AA treatment activates the BLT1 receptor (present in membrane microdomains) and stimulates the synthesis of LTB4 production, which is likely to be associated with the migration of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Atasi De Chatterjee
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Debarshi Roy
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Priscilla Guevara
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Rituraj Pal
- Department of Chemistry, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Mahesh Naryan
- Department of Chemistry, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Sukla Roychowdhury
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Siddhartha Das
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| |
Collapse
|
33
|
Murata Y, Hashimoto T, Urushihara Y, Shiga S, Takeda K, Jingu K, Hosoi Y. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217. Biochem Biophys Res Commun 2018; 495:2566-2572. [DOI: 10.1016/j.bbrc.2017.12.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
34
|
Li L, Wang L, Prise KM, Yu KN, Chen G, Chen L, Mei Y, Han W. Akt/mTOR mediated induction of bystander effect signaling in a nucleus independent manner in irradiated human lung adenocarcinoma epithelial cells. Oncotarget 2017; 8:18010-18020. [PMID: 28152510 PMCID: PMC5392303 DOI: 10.18632/oncotarget.14931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022] Open
Abstract
Cytoplasm is an important target for the radiation-induced bystander effect (RIBE). In the present work, the critical role of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in the generation of RIBE signaling after X-ray irradiation and the rapid phosphorylation of Akt and mTOR was observed in the cytoplasm of irradiated human lung adenocarcinoma epithelial (A549) cells. Targeting A549 cytoplasts with individual protons from a microbeam showed that RIBE signal(s) mediated by the Akt/mTOR pathway were generated even in the absence of a cell nucleus. These results provide a new insight into the mechanisms driving the cytoplasmic response to irradiation and their impact on the production of RIBE signal(s).
Collapse
Affiliation(s)
- Lu Li
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China.,Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Lu Wang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Kevin M Prise
- Centre for Cancer Research & Cell Biology, Queen's University, Belfast, UK
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Lianyun Chen
- Institute of Technical Biological & Agriculture Engineering, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Yide Mei
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
35
|
Sato K, Azuma R, Imai T, Shimokawa T. Enhancement of mTOR signaling contributes to acquired X-ray and C-ion resistance in mouse squamous carcinoma cell line. Cancer Sci 2017; 108:2004-2010. [PMID: 28718972 PMCID: PMC5623753 DOI: 10.1111/cas.13323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/25/2022] Open
Abstract
Our aim was to evaluate whether repetition of C‐ion (carbon ion beam) irradiation induces radioresistance as well as repeated X‐ray irradiation in cancer cell lines, and to find the key molecular pathway for radioresistance by comparing radioresistant cancer cells with their parental cells. A mouse squamous cell carcinoma cell line, NR‐S1, and radioresistant cancer cells, NR‐S1‐C30 (C30) and NR‐S1‐X60 (X60), established by repetition of C‐ion and X‐ray irradiation, respectively, were used. X‐ray and C‐ion sensitivity, changes in lysosome, mitochondria, intracellular ATP and reactive oxygen species (ROS) level, and mechanistic target of rapamycin (mTOR) signaling were evaluated. Moreover, the effect of rapamycin on radioresistance was also assessed. X‐ray and C‐ion resistance of C30 cells was moderate, and the resistance of X60 cells was the highest in this study. In X60 cells, the amount of lysosome, mitochondria, intracellular ATP and ROS level were significantly increased, and mTOR and p70S6K (ribosomal protein S6 kinase p70) phosphorylation were enhanced compared with C30 and NR‐S1 cells. The inhibition of mTOR signaling was effective for X‐ray and C‐ion radiosensitization in both cell lines, especially in X60 cells in which X‐ray and C‐ion resistance was decreased to the same level as that in NR‐S1 cells. Our results indicated that the contribution to generate X‐ray and C‐ion resistance was less for repeated C‐ion irradiations compared with repeated X‐ray irradiation. Moreover, we found that activated mTOR signaling contributes to X‐ray and C‐ion resistance in the X60 cancer cells.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Cancer Metastasis Research Team, Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan.,Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Rikako Azuma
- Cancer Metastasis Research Team, Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan.,Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba
| | - Takashi Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takashi Shimokawa
- Cancer Metastasis Research Team, Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
36
|
Browne AJ, Kubasch ML, Göbel A, Hadji P, Chen D, Rauner M, Stölzel F, Hofbauer LC, Rachner TD. Concurrent antitumor and bone-protective effects of everolimus in osteotropic breast cancer. Breast Cancer Res 2017; 19:92. [PMID: 28793923 PMCID: PMC5551016 DOI: 10.1186/s13058-017-0885-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Background The mammalian target of rapamycin inhibitor everolimus is approved as an antitumor agent in advanced estrogen receptor-positive breast cancer. Surrogate bone marker data from clinical trials suggest effects on bone metabolism, but the mode of action of everolimus in bone biology remains unclear. In this study, we assessed potential bone-protective effects of everolimus in the context of osteotropic tumors. Methods The effects of everolimus on cancer cell viability in vitro and on tumor growth in vivo were assessed. Everolimus-regulated osteoclastogenesis and osteoblastogenesis were also assessed in vitro before we assessed the bone-protective effect of everolimus in a model where bone loss was induced in ovariectomized (OVX) mice. Finally, the role of everolimus in the progression of osteolytic bone disease was assessed in an intracardiac model of breast cancer bone metastases. Results At low concentrations (1 nM) in vitro, everolimus reduced the viability of human and murine cancer cell lines and impaired the osteoclastogenesis of osteoclast progenitors as assessed by quantitative real-time polymerase chain reaction and counting tartrate-resistant acid phosphatase-positive, multinucleated osteoclasts (p < 0.001). Everolimus had little or no deleterious effect on osteoblastogenesis in vitro, with concentrations of 1 and 10 nM increasing the messenger RNA expression of osteoblast marker genes (p ≤ 0.05) and leaving mineralization in differentiated human mesenchymal stem cells unchanged. Everolimus treatment (1 mg/kg body weight/day) prevented the bone loss observed in OVX mice and concurrently inhibited the metastatic growth of MDA-MB-231 cells by 70% (p < 0.002) while preserving bone mass in an intracardiac model of bone metastasis. Conclusions These results underline the antitumor effects of everolimus and highlight its bone-protective efficacy, warranting further research on the potential implications on bone health in populations prone to osteoporosis and bone metastases, such as postmenopausal women with breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0885-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew J Browne
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany.,Center for Healthy Aging, Technical University Dresden, Dresden, Germany
| | - Marie L Kubasch
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany.,Center for Healthy Aging, Technical University Dresden, Dresden, Germany
| | - Andy Göbel
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany.,Center for Healthy Aging, Technical University Dresden, Dresden, Germany
| | - Peyman Hadji
- Philipps University of Marburg, Marburg, Germany
| | - David Chen
- Novartis Pharmaceutical Corp., East Hanover, NJ, USA
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany.,Center for Healthy Aging, Technical University Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Division of Hematology, Department of Medicine I, Technical University Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany.,Center for Healthy Aging, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany. .,Center for Healthy Aging, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
37
|
Wang D, Gao L, Liu X, Yuan C, Wang G. Improved antitumor effect of ionizing radiation in combination with rapamycin for treating nasopharyngeal carcinoma. Oncol Lett 2017; 14:1105-1108. [PMID: 28693280 DOI: 10.3892/ol.2017.6208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/17/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study is to investigate if rapamycin is a radiosensitizer of nasopharyngeal carcinoma (NPC), and to identify which pathways are involved in radiation sensitization. In vitro, using untreated cells as the control, NPC cells were treated with rapamycin, ionizing radiation (IR) or both. Differences in the phosphorylation of ribosomal protein S6 and glycogen synthase kinase (GSK) 3β, expression of cyclin D1, clonogenic survival, number of phosphorylated histone subunit 2AX (γH2AX) foci, and cell cycle status between the study groups were compared. The results indicated that rapamycin alone decreased the phosphorylation of S6 and GSK3β, as well as the expression of cyclin D1, in NPC cells. Thus, rapamycin-treated NPC cells had lower cell viability, and higher DNA damage and G1 arrest than control cells. In addition, the combination of rapamycin and IR caused the highest cell death, DNA damage and G1 arrest when compared with the effects caused by either treatment alone. In conclusion, rapamycin improves the anti-tumor effect of IR for treating NPC through inhibiting the Akt/mechanistic target of rapamycin/S6 and Akt/GSK3β/cyclin D1 signaling pathways.
Collapse
Affiliation(s)
- Di Wang
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410004, P.R. China
| | - Lichen Gao
- Department of Pharmacy, Changsha Central Hospital, Changsha, Hunan 410004, P.R. China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, P.R. China
| | - Chuang Yuan
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, P.R. China
| | - Guihua Wang
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410004, P.R. China
| |
Collapse
|
38
|
Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs 2017; 28:446-456. [DOI: 10.1097/cad.0000000000000479] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Tam SY, Wu VWC, Law HKW. Influence of autophagy on the efficacy of radiotherapy. Radiat Oncol 2017; 12:57. [PMID: 28320471 PMCID: PMC5359955 DOI: 10.1186/s13014-017-0795-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an important catabolic process in which cells digest and recycle their own cytoplasmic contents for maintaining cellular homeostasis. Interestingly, autophagy could play both pro-death and pro-survival roles in influencing the development of cancer via various signal pathways. As radiotherapy is one of the main treatment modalities for cancer, we reviewed the effect of autophagy modulations on radiosensitivity and radiotherapy efficacy in various cancer types. The future development of autophagy modifications for improving radiotherapy efficacy and cancer prognosis will also be discussed.
Collapse
Affiliation(s)
- Shing Yau Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Vincent Wing Cheung Wu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
40
|
Gao W, Lam JWK, Li JZH, Chen SQ, Tsang RKY, Chan JYW, Wong TS. MicroRNA-138-5p controls sensitivity of nasopharyngeal carcinoma to radiation by targeting EIF4EBP1. Oncol Rep 2017; 37:913-920. [PMID: 28075468 DOI: 10.3892/or.2017.5354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/26/2016] [Indexed: 11/06/2022] Open
Abstract
Radiation therapy is the standard treatment for primary nasopharyngeal carcinoma (NPC). MicroRNA regulates cancer responsiveness to radiation therapy by controlling the genes involved in radiation responses. Recent studies suggested that downregulation of microRNA-138-5p was clinically significant in NPC. Here, we evaluated the effect of miR-138-5p on radiosensitivity of NPC cells and explored the underlying mechanisms by identifying its target gene that impacted sensitivity to radiation. Our results revealed that overexpression of miR-138-5p reduced the ability to form colonies, inhibited proliferation, and enhanced radiation-induced DNA damage and autophagy in NPC cells upon radiation treatment. By integrating predicted targets with the transcripts downregulated by miR-138-5p, EIF4EBP1 was identified to be a target gene of miR-138-5p. Results from luciferase reporter assay demonstrated that miR-138-5p downregulated the expression of EIF4EBP1 by binding to the 3'-UTR. Silence of EIF4EBP1 enhanced radiosensitivity of NPC cells as evidenced by reduced ability to form colonies after radiation exposure. In summary, our results indicated that miR-138-5p enhanced radiosensitivity of NPC cells by targeting EIF4EBP1. Further studies are warranted to investigate the potential use of miR-138-5p in the clinical management and treatment prediction of NPC patients.
Collapse
Affiliation(s)
- Wei Gao
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Jacky Wei Kei Lam
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - John Zeng-Hong Li
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Si-Qi Chen
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | | | - Jimmy Yu-Wai Chan
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Thian-Sze Wong
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
41
|
Hu T, Zhou R, Zhao Y, Wu G. Integrin α6/Akt/Erk signaling is essential for human breast cancer resistance to radiotherapy. Sci Rep 2016; 6:33376. [PMID: 27624978 PMCID: PMC5022055 DOI: 10.1038/srep33376] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022] Open
Abstract
Integrin α6 (ITGA6), a transmembrane glycoprotein adhesion receptor protein, is widely upregulated in many types of tumors and promotes migration and invasion in cancer cells. However, the role that the ITGA6-associated signaling network plays in radiosensitivity in breast cancer has not been described. The expression of ITGA6 was examined in human breast cancer and normal breast cell lines using western blot analysis. We also explored the role of ITGA6 in the regulation of radiation sensitivity in breast cancer using the colony formation assays, cell cycle analyses, apoptosis assays and immunofluorescence analyses. The results showed that the protein and mRNA expression levels of ITGA6 was higher in breast cancer cells than in normal cells. ITGA6 protectived responses to radiotherapy in breast cancer cells by altering cell apoptosis, DNA damage repair and cell-cycle regulation. Furthermore, ITGA6 enhanced radiation resistance via PI3K/Akt and MEK/Erk signaling. In addition, overexpressing ITGA6 promoted radiation resistance in cells, and this effect was neutralized by the PI3K inhibitor LY294002 and MEK inhibitor U0126. Taken together, these findings indicate that ITGA6 might be involved in a mechanism that underlies radiation resistance and that ITGA6 could be a potential target for therapies aimed at overcoming radiation resistance in breast cancer.
Collapse
Affiliation(s)
- Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| |
Collapse
|
42
|
PI3K/Akt/mTOR activation by suppression of ELK3 mediates chemosensitivity of MDA-MB-231 cells to doxorubicin by inhibiting autophagy. Biochem Biophys Res Commun 2016; 477:277-82. [DOI: 10.1016/j.bbrc.2016.06.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022]
|
43
|
Hellström VC, Enström Y, von Zur-Mühlen B, Hagberg H, Laurell A, Nyberg F, Bäckman L, Opelz G, Döhler B, Holmberg L, Tufveson G, Enblad G, Lorant T. Malignancies in transplanted patients: Multidisciplinary evaluation and switch to mTOR inhibitors after kidney transplantation - experiences from a prospective, clinical, observational study. Acta Oncol 2016; 55:774-81. [PMID: 26824275 DOI: 10.3109/0284186x.2015.1130855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Solid organ transplant recipients are at increased risk of developing malignancies. The objective of this prospective, observational, one-armed study was to study the feasibility to add a mammalian target of rapamycin (mTOR) inhibitor to the immunosuppressive regimen in transplanted patients with post-transplant malignancies. During the trial the need to improve identification of post-transplant malignancies and to reassure adequate oncological treatment of these patients became evident. Multidisciplinary team (MDT) evaluation of oncological and immunosuppressive treatments was implemented for all patients with malignancies after renal or combined renal and pancreas transplantation because of the trial. Material and methods At Uppsala University Hospital, Sweden, a MDT consisting of transplant surgeons, nephrologists, oncologists and dermatologists evaluated 120 renal or combined renal and pancreas-transplanted recipients diagnosed with malignancies from September 2006 to July 2012. To identify all malignancies, the population was linked to the Regional Tumor Registry (RTR). We recorded to which extent a switch to mTOR inhibitors was possible and how often the originally planned oncological managements were adjusted. All patients were followed for three years. (ClinicalTrials.gov: NCT02241564). Results In 76 of 120 patients (63%) a switch to mTOR inhibitors was possible. Immunosuppression was interrupted in seven patients (6%), reduced in three patients (2%) and remained unchanged in 34 of 120 patients (28%). Identification of post-transplant malignancies increased significantly after linkage to RTR (p = 0.015). The initially recommended oncological treatment was adjusted in 23 of 44 patients (52%) with solid or hematological malignancies; 36 of these patients (82%) were treated according to national guidelines. Conclusion In two thirds of the patients the immunosuppressive treatment could be changed to an mTOR inhibitor with anti-tumor effects in transplanted patients with post-transplant malignancies. The use of regional tumor registers considerably improved the identification of patients with post-transplant malignancies indicating that post-transplant malignancies might be timely underreported in transplant registers.
Collapse
Affiliation(s)
- Vivan C. Hellström
- Department of Surgical Sciences, Section of Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | - Ylva Enström
- Department of Medical Sciences, Section of Dermatology and Venereology, Uppsala University, Uppsala, Sweden
| | - Bengt von Zur-Mühlen
- Department of Surgical Sciences, Section of Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | - Hans Hagberg
- Department of Immunology, Genetics and Pathology, Section of Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Anna Laurell
- Department of Immunology, Genetics and Pathology, Section of Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Filippa Nyberg
- Institution for Clinical Sciences, Section of Dermatology, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Lars Bäckman
- Department of Surgical Sciences, Section of Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | - Gerhard Opelz
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Bernd Döhler
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Lars Holmberg
- Department of Surgical Sciences. Regional Cancer Centre Uppsala Örebro, Uppsala University, Uppsala, Sweden
| | - Gunnar Tufveson
- Department of Surgical Sciences, Section of Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Section of Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Tomas Lorant
- Department of Surgical Sciences, Section of Transplantation Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Holler M, Grottke A, Mueck K, Manes J, Jücker M, Rodemann HP, Toulany M. Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells. PLoS One 2016; 11:e0154745. [PMID: 27137757 PMCID: PMC4854483 DOI: 10.1371/journal.pone.0154745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Inhibition of mammalian target of rapamycin-complex 1 (mTORC1) induces activation of Akt. Because Akt activity mediates the repair of ionizing radiation-induced DNA double-strand breaks (DNA-DSBs) and consequently the radioresistance of solid tumors, we investigated whether dual targeting of mTORC1 and Akt impairs DNA-DSB repair and induces radiosensitization. Combining mTORC1 inhibitor rapamycin with ionizing radiation in human non-small cell lung cancer (NSCLC) cells (H661, H460, SK-MES-1, HTB-182, A549) and in the breast cancer cell line MDA-MB-231 resulted in radiosensitization of H661 and H460 cells (responders), whereas only a very slight effect was observed in A549 cells, and no effect was observed in SK-MES-1, HTB-182 or MDA-MB-231 cells (non-responders). In responder cells, rapamycin treatment did not activate Akt1 phosphorylation, whereas in non-responders, rapamycin mediated PI3K-dependent Akt activity. Molecular targeting of Akt by Akt inhibitor MK2206 or knockdown of Akt1 led to a rapamycin-induced radiosensitization of non-responder cells. Compared to the single targeting of Akt, the dual targeting of mTORC1 and Akt1 markedly enhanced the frequency of residual DNA-DSBs by inhibiting the non-homologous end joining repair pathway and increased radiation sensitivity. Together, lack of radiosensitization induced by rapamycin was associated with rapamycin-mediated Akt1 activation. Thus, dual targeting of mTORC1 and Akt1 inhibits repair of DNA-DSB leading to radiosensitization of solid tumor cells.
Collapse
Affiliation(s)
- Marina Holler
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Astrid Grottke
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Katharina Mueck
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Julia Manes
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - H. Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen, Roentgenweg 11, 72076, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
45
|
Targeting the epigenetics of the DNA damage response in breast cancer. Cell Death Dis 2016; 7:e2180. [PMID: 27054335 PMCID: PMC4855664 DOI: 10.1038/cddis.2016.85] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Cancer is as much an epigenetic disease as it is a genetic disease, and epigenetic alterations in cancer often serve as potent surrogates for genetic mutations. Because the epigenetic factors involved in the DNA damage response are regulated by multiple elements, therapies to target specific components of the epigenetic machinery can be inefficient. In contrast, therapies aimed at inhibiting the methionine cycle can indirectly inhibit both DNA and protein methylation, and the wide variety of genes and pathways that are affected by these methylations make this global strategy very attractive. In the present study, we propose an adjuvant therapy that targets the epigenetics of the DNA damage response in breast cancer cells and that results in efficient apoptosis and a reduction in distant metastases in vivo. We observed that a combined therapy designed to uncouple adenosine metabolism using dipyridamole in the presence of a new synthetic antifolate, 3-O-(3,4,5-trimethoxybenzoyl)-(-)-catechin, simultaneously and efficiently blocked both the folic cycle and the methionine cycle in breast cancer cells and sensitized these cells to radiotherapy. The treatment impeded the recruitment of 53BP1 and BRCA1 to the chromatin regions flanking DNA double-strand breaks and thereby avoided the DNA damage responses in breast cancer cells that were exposed to ionizing radiation. In addition, this hypomethylating therapy was also efficient in reducing the self-renewal capability of breast cancer-initiating cells and induced reversion of mesenchymal phenotypes in breast cancer cells.
Collapse
|
46
|
Kim SY, Hong SH, Basse PH, Wu C, Bartlett DL, Kwon YT, Lee YJ. Cancer Stem Cells Protect Non-Stem Cells From Anoikis: Bystander Effects. J Cell Biochem 2016; 117:2289-301. [PMID: 26918647 DOI: 10.1002/jcb.25527] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/24/2016] [Indexed: 01/26/2023]
Abstract
Cancer stem cells (CSCs) are capable of initiation and metastasis of tumors. Therefore, understanding the biology of CSCs and the interaction between CSCs and their counterpart non-stem cells is crucial for developing a novel cancer therapy. We used CSC-like and non-stem breast cancer MDA-MB-231 and MDA-MB-453 cells to investigate mammosphere formation. We investigated the role of the epithelial cadherin (E-cadherin)-extracellular signal-regulated kinase (Erk) axis in anoikis. Data from E-cadherin small hairpin RNA assay and mitogen-activated protein kinase kinase (MEK) inhibitor study show that activation of Erk, but not modulation of E-cadherin level, may play an important role in anoikis resistance. Next, the two cell subtypes were mixed and the interaction between them during mammosphere culture and xenograft tumor formation was investigated. Unlike CSC-like cells, increased secretion of interleukin-6 (IL-6) and growth-related oncogene (Gro) chemokines was detected during mammosphere culture in non-stem cells. Similar results were observed in mixed cells. Interestingly, CSC-like cells protected non-stem cells from anoikis and promoted tumor growth. Our results suggest bystander effects between CSC-like cells and non-stem cells. J. Cell. Biochem. 117: 2289-2301, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seog-Young Kim
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Se-Hoon Hong
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Per H Basse
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - David L Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, 110-799, Korea
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
47
|
Scheer AS, Zih FSW, Maki E, Koch CA, McCready DR. Post-mastectomy Radiation: Should Subtype Factor into the Decision? Ann Surg Oncol 2016; 23:2462-70. [DOI: 10.1245/s10434-015-5071-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/17/2023]
|
48
|
Murata Y, Uehara Y, Hosoi Y. Activation of mTORC1 under nutrient starvation conditions increases cellular radiosensitivity in human liver cancer cell lines, HepG2 and HuH6. Biochem Biophys Res Commun 2015; 468:684-90. [PMID: 26585486 DOI: 10.1016/j.bbrc.2015.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The presence of unperfused regions containing cells under hypoxic and nutrient starvation conditions contributes to radioresistance in solid human tumors. It is well known that the hypoxia causes cellular radioresistance. However, the effects of nutrient starvation conditions on cellular radiosensitivity remain unclear. METHODS Human liver cancer cell lines, HepG2 and HuH6, and a SV40-transformed human fibroblast cell line, LM217 were used to examine the effects of nutrient starvation conditions on cellular radiosensitivity and on activity of mammalian target of rapamycin complex 1 (mTORC1) that senses cellular nutrient conditions and affects radiosensitivity. RESULTS In contrast to suppressed mTORC1 activity under nutrient starvation conditions in LM217, HepG2 and HuH6 cells showed increased mTORC1 activity under nutrient starvation conditions. Both AMP-activated protein kinase (AMPK) and Akt were activated under nutrient starvation conditions in all the three cell lines. Under starvation conditions, increased radiosensitivity was observed in HepG2 and HuH6 cells, in contrast to decreased radiosensitivity in LM217 cells. Knockdown of mTOR using siRNA for mTOR or treatment with a mTOR inhibitor, rapamycin, suppressed the increased radiosensitivity under starvation conditions in HepG2 cells. CONCLUSION Our data show for the first time that nutrient starvation conditions activate mTORC1 and increase radiosensitivity through mTORC1 activation in liver cancer cell lines, HepG2 and HuH6.
Collapse
Affiliation(s)
- Yasuhiko Murata
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Snedai, Miyagi-ken 980-8575, Japan
| | - Yoshihiko Uehara
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Snedai, Miyagi-ken 980-8575, Japan
| | - Yoshio Hosoi
- Department of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Snedai, Miyagi-ken 980-8575, Japan.
| |
Collapse
|
49
|
Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int J Mol Sci 2015; 16:26880-913. [PMID: 26569225 PMCID: PMC4661850 DOI: 10.3390/ijms161125991] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.
Collapse
|
50
|
Arnason T, Harkness T. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1. Cancers (Basel) 2015; 7:2063-82. [PMID: 26501324 PMCID: PMC4695877 DOI: 10.3390/cancers7040877] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer.
Collapse
Affiliation(s)
- Terra Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Correspondence: ; Tel.:+1-306-844-1119; Fax: +1-306-844-1512
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|