1
|
Feng S, Liu H, Yun C, Zhu W, Pan Y. Application of EGFR-TKIs in brain tumors, a breakthrough in future? J Transl Med 2025; 23:449. [PMID: 40241139 PMCID: PMC12004797 DOI: 10.1186/s12967-025-06448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Brain tumors, both primary and secondary, represent a significant clinical challenge due to their high mortality and limited treatment options. Primary brain tumors, such as gliomas and meningiomas, and brain metastases from cancers such as non-small cell lung cancer and breast cancer require innovative therapeutic strategies. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR -TKIs) have emerged as a promising treatment option, particularly for tumors harboring EGFR mutations. This review examines the use of EGFR-TKIs in brain tumors, highlighting both laboratory and clinical research findings. In primary brain tumors and brain metastases, EGFR-TKIs have shown potential in controlling tumor growth and improving patient outcomes. Advanced applications, such as nano-formulated EGFR-TKIs and combination therapies with other pathway inhibitors, are being investigated to improve efficacy and overcome resistance. Challenges such as treatment-related events, resistance mechanisms and blood-brain barrier penetration remain significant hurdles. Addressing tumor heterogeneity through personalized medicine approaches is critical to optimizing EGFR-TKI therapies. This review highlights the need for continued research to refine these therapies and improve survival for patients with brain tumors.
Collapse
Affiliation(s)
- Shiying Feng
- Central Clinical Medical School, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
- Department of Oncology, Inner Mongolia Baotou City Central Hospital, Baotou, Inner Mongolia, 014040, China
| | - Huiqin Liu
- Department of Gynecology & Obstetrics, Inner Mongolia Baotou City Central Hospital, Baotou, Inner Mongolia, 014040, China
| | - Cuilan Yun
- Department of Gynecology & Obstetrics, Inner Mongolia Baotou City Central Hospital, Baotou, Inner Mongolia, 014040, China
| | - Wei Zhu
- Department of Oncology, Inner Mongolia Baotou City Central Hospital, Baotou, Inner Mongolia, 014040, China.
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
2
|
Buzatu IM, Tataranu LG, Duta C, Stoian I, Alexandru O, Dricu A. A Review of FDA-Approved Multi-Target Angiogenesis Drugs for Brain Tumor Therapy. Int J Mol Sci 2025; 26:2192. [PMID: 40076810 PMCID: PMC11899917 DOI: 10.3390/ijms26052192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neovascularization is an important process in brain tumor development, invasion and metastasis. Several research studies have indicated that the VEGF signaling target has potential for reducing angiogenesis in brain tumors. However, targeting VEGF signaling has not met the expected efficacy, despite initial enthusiasm. This is partly because tumors cleverly use alternative growth factor pathways, other than VEGF signaling, to restore angiogenesis. Multi-target inhibitors have been developed to inhibit several receptor kinases that play a role in the development of angiogenesis. By simultaneously affecting various receptor kinases, these treatments can potentially obstruct various angiogenic pathways that are involved in brain cancer advancement, often offering a more holistic strategy than treatments focusing on just one kinase. Since 2009, the FDA has approved a number of multi-kinase inhibitors that target angiogenic growth factor receptors (e.g., VEGFR, PDGFR, FGFR, RET, c-KIT, MET, AXL and others) for treatment of malignant diseases, including brain cancer. Here, we present some recent results from the literature regarding the preclinical and clinical effects of these inhibitors on brain tumors.
Collapse
Affiliation(s)
- Iuliana Mihaela Buzatu
- Department of Microbiology, “Fundeni” Clinical Institute, Șoseaua Fundeni 258, 022328 Bucharest, Romania;
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania;
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Carmen Duta
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| | - Irina Stoian
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| |
Collapse
|
3
|
Lim S, Lee KW, Kim JY, Kim KD. Consideration of SHP-1 as a Molecular Target for Tumor Therapy. Int J Mol Sci 2023; 25:331. [PMID: 38203502 PMCID: PMC10779157 DOI: 10.3390/ijms25010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Abnormal activation of receptor tyrosine kinases (RTKs) contributes to tumorigenesis, while protein tyrosine phosphatases (PTPs) contribute to tumor control. One of the most representative PTPs is Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1), which is associated with either an increased or decreased survival rate depending on the cancer type. Hypermethylation in the promoter region of PTPN6, the gene for the SHP-1 protein, is a representative epigenetic regulation mechanism that suppresses the expression of SHP-1 in tumor cells. SHP-1 comprises two SH2 domains (N-SH2 and C-SH2) and a catalytic PTP domain. Intramolecular interactions between the N-SH2 and PTP domains inhibit SHP-1 activity. Opening of the PTP domain by a conformational change in SHP-1 increases enzymatic activity and contributes to a tumor control phenotype by inhibiting the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathway. Although various compounds that increase SHP-1 activation or expression have been proposed as tumor therapeutics, except sorafenib and its derivatives, few candidates have demonstrated clinical significance. In some cancers, SHP-1 expression and activation contribute to a tumorigenic phenotype by inducing a tumor-friendly microenvironment. Therefore, developing anticancer drugs targeting SHP-1 must consider the effect of SHP-1 on both cell biological mechanisms of SHP-1 in tumor cells and the tumor microenvironment according to the target cancer type. Furthermore, the use of combination therapies should be considered.
Collapse
Affiliation(s)
- Seyeon Lim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Ki Won Lee
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Ciclopirox drives growth arrest and autophagic cell death through STAT3 in gastric cancer cells. Cell Death Dis 2022; 13:1007. [PMID: 36443287 PMCID: PMC9705325 DOI: 10.1038/s41419-022-05456-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Ciclopirox (CPX), an antifungal drug, has recently been identified as a promising agent for cancer treatment. However, the effects and underlying mechanism of CPX as an antitumor agent of gastric cancer (GC) remain largely unknown. Here, we found that CPX dramatically suppresses GC xenograft growth in vitro via inhibiting proliferation and stimulating autophagic cell death rather than apoptosis. Moreover, CPX (20 mg/kg, intraperitoneally) substantially inhibits GC xenograft tumor growth in vivo. Mechanistically, CPX promotes growth arrest and autophagic cell death through suppressing the phosphorylation of signal transducers and activators of transcription 3 (STAT3) at tyrosine 705 (Tyr705) and serine 727 (Ser727) sites, respectively. Additionally, CPX induces STAT3 ubiquitination, which subsequently leads to a decrease in the p-STAT3 (Ser727) level. On the other hand, CPX represses the p-STAT3 (Tyr705) level via p-Src (Tyr416) inhibition. Collectively, our findings unmask a novel mechanism by which CPX regulates growth and autophagic cell death in GC cells via regulating the phosphorylation of STAT3 both at Tyr705 and Ser727 residues, and suggest that CPX may be a potential treatment for GC.
Collapse
|
5
|
Inhibition of USP1 activates ER stress through Ubi-protein aggregation to induce autophagy and apoptosis in HCC. Cell Death Dis 2022; 13:951. [PMID: 36357365 PMCID: PMC9649627 DOI: 10.1038/s41419-022-05341-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022]
Abstract
The deubiquitinating enzyme USP1 (ubiquitin-specific protease 1) plays a role in the progression of various tumors, emerging as a potential therapeutic target. This study aimed to determine the role of USP1 as a therapeutic target in hepatocellular carcinoma (HCC). We detected USP1 expression in the tumor and adjacent tissues of patients with HCC using immunohistochemical staining. We evaluated the effect of the USP1 inhibitor ML-323 on HCC cell proliferation and cell cycle using a CCK-8 cell-counting kit and plate cloning assays, and propidium iodide, respectively. Apoptosis was detected by annexin V-FITC/Propidium Iodide (PI) staining and caspase 3 (casp3) activity. Transmission electron microscopy and LC3B immunofluorescence were used to detect autophagy. Western blotting was used to detect the accumulation of ubiquitinated proteins, the expression of endoplasmic reticulum (ER) stress-related proteins, and the AMPK-ULK1/ATG13 signaling pathway. We demonstrated that ML-323 inhibits the growth of HCC cells and induces G1 phase cell cycle arrest by regulating cyclin expression. ML-323 treatment resulted in the accumulation of ubiquitinated proteins, induced ER stress, and triggered Noxa-dependent apoptosis, which was regulated by the Activating Transcription Factor 4(ATF4). Moreover, active ER stress induces protective autophagy by increasing AMPK phosphorylation; therefore, we inhibited ER stress using 4-Phenylbutyric acid (4-PBA), which resulted in ER stress reduction, apoptosis, and autophagy in ML-323-treated HCC cells. In addition, blocking autophagy using the AMPK inhibitor compound C (CC), chloroquine (CQ), or bafilomycin A1 (BafA1) enhanced the cytotoxic effect of ML-323. Our findings revealed that targeting USP1 may be a potential strategy for the treatment of HCC.
Collapse
|
6
|
Xiong F, Wang Q, Wu GH, Liu WZ, Wang B, Chen YJ. Direct and indirect effects of IFN-α2b in malignancy treatment: not only an archer but also an arrow. Biomark Res 2022; 10:69. [PMID: 36104718 PMCID: PMC9472737 DOI: 10.1186/s40364-022-00415-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Interferon-α2b (IFN-α2b) is a highly active cytokine that belongs to the interferon-α (IFN-α) family. IFN-α2b has beneficial antiviral, antitumour, antiparasitic and immunomodulatory activities. Direct and indirect antiproliferative effects of IFN-α2b have been found to occur via multiple pathways, mainly the JAK-STAT pathway, in certain cancers. This article reviews mechanistic studies and clinical trials on IFN-α2b. Potential regulators of the function of IFN-α2b were also reviewed, which could be utilized to relieve the poor response to IFN-α2b. IFN-α2b can function not only by enhancing the systematic immune response but also by directly killing tumour cells. Different parts of JAK-STAT pathway activated by IFN-α2b, such as interferon alpha and beta receptors (IFNARs), Janus kinases (JAKs) and IFN‐stimulated gene factor 3 (ISGF3), might serve as potential target for enhancing the pharmacological action of IFN-α2b. Despite some issues that remain to be solved, based on current evidence, IFN-α2b can inhibit disease progression and improve the survival of patients with certain types of malignant tumours. More efforts should be made to address potential adverse effects and complications.
Collapse
|
7
|
Lensoside Aβ as an Adjuvant to the Anti-Glioma Potential of Sorafenib. Cancers (Basel) 2021; 13:cancers13112637. [PMID: 34072003 PMCID: PMC8198162 DOI: 10.3390/cancers13112637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Flavonoids are plant polyphenolic secondary metabolites, commonly consumed in the human diet. Lensoside Aβ is a quercetin glycoside isolated from the aerial parts of lentil (Lens culinaris) organs. The activity of this secondary metabolite, especially in terms of its anticancer potential, has been poorly studied. Currently, there are no published data about the effect of this flavonoid on gliomas, which are so-far incurable, aggressive neoplasms of the central nervous system with a highly infiltrative character. In this study, we found that lensoside Aβ itself exhibits poor anti-glioma properties but exerts a strongly potentiated effect in combination with sorafenib (inhibitor of Raf kinase) on apoptosis induction in cancer cells. Our results have shown that sorafenib with lensoside Aβ seems to be a promising combination that might be useful in glioma therapy. Additionally, the former observation, pointing to the key role of flavonoids as adjuvants in chemotherapy, is confirmed. Abstract Aim: The anti-glioma effect of lensoside Aβ alone and in combination with sorafenib (pro-survival Raf kinase inhibitor) was evaluated for the first time in terms of programmed cell death induction in anaplastic astrocytoma and glioblastoma multiforme cell lines as an experimental model. Apoptosis, autophagy, and necrosis were identified microscopically (fluorescence and scanning microscopes) and confirmed by flow cytometry (mitochondrial membrane potential MMP and cell death). The expression of apoptotic (caspase 3) and autophagic markers (beclin 1) as well as Raf kinase were estimated by immunoblotting. The FTIR method was used to determine the interaction of the studied drugs with lipid and protein groups within cells, while the modes of drug action within the cells were assessed with the FLIM technique. Results: Lensoside Aβ itself does not exhibit anti-glioma activity but significantly enhances the anti-cancer potential of sorafenib, initiating mainly apoptosis of up to 90% of cells. It was correlated with an increased level of active caspase 3, a reduced MMP value, and a lower level of Raf kinase. The interaction with membrane structures led to morphological changes typical of programmed death. Conclusions: Our results indicate that lensoside Aβ plays an important role as an adjuvant in chemotherapy with sorafenib and may be a potential candidate in anti-glioma combination therapy.
Collapse
|
8
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|
9
|
Popescu GDA, Scheau C, Badarau IA, Dumitrache MD, Caruntu A, Scheau AE, Costache DO, Costache RS, Constantin C, Neagu M, Caruntu C. The Effects of Capsaicin on Gastrointestinal Cancers. Molecules 2020; 26:94. [PMID: 33379302 PMCID: PMC7794743 DOI: 10.3390/molecules26010094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal (GI) cancers are a group of diseases with very high positions in the ranking of cancer incidence and mortality. While they show common features regarding the molecular mechanisms involved in cancer development, organ-specific pathophysiological processes may trigger distinct signaling pathways and intricate interactions with inflammatory cells from the tumoral milieu and mediators involved in tumorigenesis. The treatment of GI cancers is a topic of increasing interest due to the severity of these diseases, their impact on the patients' survivability and quality of life, and the burden they set on the healthcare system. As the efficiency of existing drugs is hindered by chemoresistance and adverse reactions when administered in high doses, new therapies are sought, and emerging drugs, formulations, and substance synergies are the focus of a growing number of studies. A class of chemicals with great potential through anti-inflammatory, anti-oxidant, and anti-tumoral effects is phytochemicals, and capsaicin in particular is the subject of intensive research looking to validate its position in complementing cancer treatment. Our paper thoroughly reviews the available scientific evidence concerning the effects of capsaicin on major GI cancers and its interactions with the molecular pathways involved in the course of these diseases.
Collapse
Affiliation(s)
| | - Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
| | - Ioana Anca Badarau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
| | - Mihai-Daniel Dumitrache
- Departament of Pneumology IV, “Marius Nasta” Institute of Pneumophtysiology, 050159 Bucharest, Romania;
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
- Department of Preclinical Sciences, Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Daniel Octavian Costache
- Department of Dermatology, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
| | - Raluca Simona Costache
- Gastroenterology and Internal Medicine Clinic, “Carol Davila” Central Military Emergency Hospital, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
10
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
11
|
Varone A, Spano D, Corda D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020; 10:935. [PMID: 32596156 PMCID: PMC7300250 DOI: 10.3389/fonc.2020.00935] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Shp1 is a cytosolic tyrosine phosphatase that regulates a broad range of cellular functions and targets, modulating the flow of information from the cell membrane to the nucleus. While initially studied in the hematopoietic system, research conducted over the past years has expanded our understanding of the biological role of Shp1 to other tissues, proposing it as a novel tumor suppressor gene functionally involved in different hallmarks of cancer. The main mechanism by which Shp1 curbs cancer development and progression is the ability to attenuate and/or terminate signaling pathways controlling cell proliferation, survival, migration, and invasion. Thus, alterations in Shp1 function or expression can contribute to several human diseases, particularly cancer. In cancer cells, Shp1 activity can indeed be affected by mutations or epigenetic silencing that cause failure of Shp1-mediated homeostatic maintenance. This review will discuss the current knowledge of the cellular functions controlled by Shp1 in non-hematopoietic tissues and solid tumors, the mechanisms that regulate Shp1 expression, the role of its mutation/expression status in cancer and its value as potential target for cancer treatment. In addition, we report information gathered from the public available data from The Cancer Genome Atlas (TCGA) database on Shp1 genomic alterations and correlation with survival in solid cancers patients.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Department of Biomedical Sciences, National Research Council, Rome, Italy
| |
Collapse
|
12
|
Swiatek-Machado K, Kaminska B. STAT Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:203-222. [PMID: 32034715 DOI: 10.1007/978-3-030-30651-9_10] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
STAT (signal transducers and activators of transcription) are latent cytoplasmic transcription factors that function as downstream effectors of cytokine and growth factor receptor signaling. The canonical JAK/STAT signaling pathway involves the activation of Janus kinases (JAK) or growth factors receptor kinases, phosphorylation of STAT proteins, their dimerization and translocation into the nucleus where STATs act as transcription factors with pleiotropic downstream effects. STAT signaling is tightly controlled with restricted kinetics due to action of its negative regulators. While STAT1 is believed to play an important role in growth arrest and apoptosis, and to act as a tumor suppressor, STAT3 and 5 are involved in promoting cell cycle progression, cellular transformation, and preventing apoptosis. Aberrant activation of STATs, in particular STAT3 and STAT5, have been found in a large number of human tumors, including gliomas and may contribute to oncogenesis. In this chapter, we have (1) summarized the mechanisms of STAT activation in normal and malignant signaling; (2) discussed evidence for the critical role of constitutively activated STAT3 and STAT5 in glioma pathobiology; (3) disclosed molecular and pharmacological strategies to interfere with STAT signaling for potential therapeutic intervention in gliomas.
Collapse
Affiliation(s)
- Karolina Swiatek-Machado
- Laboratory of Transcription Regulation, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, PL 02-093, Warsaw, Poland.
| | - Bozena Kaminska
- Laboratory of Transcription Regulation, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, PL 02-093, Warsaw, Poland
| |
Collapse
|
13
|
Sousa JFD, Serafim RB, Freitas LMD, Fontana CR, Valente V. DNA repair genes in astrocytoma tumorigenesis, progression and therapy resistance. Genet Mol Biol 2019; 43:e20190066. [PMID: 31930277 PMCID: PMC7198033 DOI: 10.1590/1678-4685-gmb-2019-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant type of primary brain tumor,
showing rapid development and resistance to therapies. On average, patients
survive 14.6 months after diagnosis and less than 5% survive five years or more.
Several pieces of evidence have suggested that the DNA damage signaling and
repair activities are directly correlated with GBM phenotype and exhibit
opposite functions in cancer establishment and progression. The functions of
these pathways appear to present a dual role in tumorigenesis and cancer
progression. Activation and/or overexpression of ATRX, ATM and RAD51 genes were
extensively characterized as barriers for GBM initiation, but paradoxically the
exacerbated activity of these genes was further associated with cancer
progression to more aggressive stages. Excessive amounts of other DNA repair
proteins, namely HJURP, EXO1, NEIL3, BRCA2, and BRIP, have also been connected
to proliferative competence, resistance and poor prognosis. This scenario
suggests that these networks help tumor cells to manage replicative stress and
treatment-induced damage, diminishing genome instability and conferring therapy
resistance. Finally, in this review we address promising new drugs and
therapeutic approaches with potential to improve patient survival. However,
despite all technological advances, the prognosis is still dismal and further
research is needed to dissect such complex mechanisms.
Collapse
Affiliation(s)
- Juliana Ferreira de Sousa
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rodolfo Bortolozo Serafim
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Laura Marise de Freitas
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Carla Raquel Fontana
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
| | - Valeria Valente
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil.,Centro de Terapia Celular (CEPID-FAPESP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
14
|
Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci Rep 2019; 9:19095. [PMID: 31836811 PMCID: PMC6911098 DOI: 10.1038/s41598-019-55666-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Sorafenib (SO) is a multi-kinase inhibitor that targets upstream signals in the MAPK pathway. Drug resistance and transient survival benefits are the main obstacles associated with SO treatment in Hepatocellular carcinoma (HCC) patients. Mebendazole (MBZ), an anthelmintic agent, has demonstrated activity against various cancer types. Therefore, we aimed to investigate the possible mechanisms of MBZ other than its anti-tubulin activity. MBZ (100 mg/kg/day, P.O.) was administered to N-nitrosodiethylamine-induced HCC mice as a monotherapeutic agent or in combination with SO. Our results revealed that MBZ decreased AFP levels, improved liver function and histology and increased survival in HCC mice, particularly when administered in combination with SO. MBZ also reduced hepatic inflammation and fibrogenesis as evidenced by reductions in TNF-α and TGF-β1 levels, respectively. Increased hepatic caspases-3 and -9 and decreased BCL-2 levels suggest induced-cell death. In addition, MBZ demonstrated anti-angiogenic, anti-metastatic, and anti-proliferative effects, as indicated by reduced VEGF levels, MMP-2:TIMP-1 ratios, and reduced cyclin D1 levels and Ki67 immunostaining, respectively. Our main finding was that MBZ targeted downstream signal of the MAPK pathway by inhibiting ERK1/2 phosphorylation. Targeting downstream MAPK signalling by MBZ and upstream signalling by SO is a novel approach to minimizing resistance and prolonging survival.
Collapse
|
15
|
Liu Q, Wang L, Li D, Zhao J, Chen S, Li J. Synergistic effect of STAT3‑targeted small interfering RNA and AZD0530 against glioblastoma in vitro and in vivo. Mol Med Rep 2019; 20:3625-3632. [PMID: 31485668 PMCID: PMC6755172 DOI: 10.3892/mmr.2019.10596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to explore the synergistic effect of signal transducer and activator of transcription 3 (STAT3)-targeted small interfering (si)RNA and AZD0530 against glioblastoma in vitro and in vivo. Glioblastoma cell lines U87 and U251 were divided into four groups and treated with control, LV-STAT3 siRNA, AZD0530, and combined LV-STAT3 siRNA with AZD0530, respectively. The proliferation and apoptotic capacity of glioblastoma cells was assessed by Cell Counting Kit-8 and double staining flow cytometry assays, respectively. Additionally, the potential effect of LV-STAT3 siRNA and AZD0530 on glioblastoma was evaluated in vivo. Images were captured of the tumor formation in mice every week. Following three weeks of treatment, NMR scan and immunohistochemistry were performed. The treatment of combined LV-STAT3 siRNA and AZD0530 was more effective in inhibiting proliferation and inducing apoptosisof glioblastoma cells in comparison with the treatment of either LV-STAT3 siRNA or AZD0530 alone. Although LV-STAT3 siRNA or AZD0530 treatment alone suppressed tumor growth in mice, the combined treatment had a more significant effect than the treatment of LV-STAT3 siRNA or AZD0530 alone. According to the results of both in vitro and in vivo assays, a combined therapy of LV-STAT3 siRNA with AZD0530 could enhance therapeutic effects on glioblastoma, supporting the idea that the combination of LV-STAT3 siRNA and AZD0530 could serve as a novel and effective strategy to combat glioblastoma.
Collapse
Affiliation(s)
- Qingjun Liu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300050, P.R. China
| | - Leibo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300050, P.R. China
| | - David Li
- English Department, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jingxia Zhao
- Department of Physiology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Shen Chen
- Department of Neurosurgery, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Jialin Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300050, P.R. China
| |
Collapse
|
16
|
Clavreul A, Roger E, Pourbaghi-Masouleh M, Lemaire L, Tétaud C, Menei P. Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma. Drug Deliv 2019; 25:1756-1765. [PMID: 30338715 PMCID: PMC6225440 DOI: 10.1080/10717544.2018.1507061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anticancer agents that target both tumor cells and angiogenesis are of potential interest for glioblastoma (GB) therapy. One such agent is sorafenib (SFN), a tyrosine kinase inhibitor. However, poor aqueous solubility and undesirable side effects limit its clinical application, including local treatment. We encapsulated SFN in lipid nanocapsules (LNCs) to overcome these drawbacks. LNCs are nanocarriers formulated according to a solvent-free process, using only components that have received regulatory approval. SFN-LNCs had a diameter of 54 ± 1 nm, high encapsulation efficiency (>90%), and a drug payload of 2.11 ± 0.03 mg/g of LNC dispersion. They inhibited in vitro angiogenesis and decreased human U87MG GB cell viability similarly to free SFN. In vivo studies showed that the intratumoral administration of SFN-LNCs or free SFN in nude mice bearing an orthotopic U87MG human GB xenograft decreased the proportion of proliferating cells in the tumor relative to control groups. SFN-LNCs were more effective than free SFN for inducing early tumor vascular normalization, characterized by increases in tumor blood flow and decreases in tumor vessel area. These results highlight the potential of LNCs as delivery systems for SFN. The vascular normalization induced by SFN-LNCs could be used to improve the efficacy of chemotherapy or radiotherapy for treating GB.
Collapse
Affiliation(s)
- Anne Clavreul
- a Département de Neurochirurgie , CHU , Angers , France.,b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| | - Emilie Roger
- c MINT, INSERM 1066, CNRS 6021 , Université d'Angers, UNIV Angers , Angers , France
| | - Milad Pourbaghi-Masouleh
- b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France.,d Division of Drug Delivery and Tissue Engineering, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Laurent Lemaire
- c MINT, INSERM 1066, CNRS 6021 , Université d'Angers, UNIV Angers , Angers , France.,e PRISM-IRM , UNIV Angers , Angers , France
| | - Clément Tétaud
- b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| | - Philippe Menei
- a Département de Neurochirurgie , CHU , Angers , France.,b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| |
Collapse
|
17
|
Xu J, Huang F, Yao Z, Jia C, Xiong Z, Liang H, Lin N, Deng M. Inhibition of cyclin E1 sensitizes hepatocellular carcinoma cells to regorafenib by mcl-1 suppression. Cell Commun Signal 2019; 17:85. [PMID: 31349793 PMCID: PMC6660968 DOI: 10.1186/s12964-019-0398-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Background To clarify the effects of cylcin E1 expression on HCC tumor progression, we studied the expression of cyclin E1 and inhibitory efficacy of regorafenib and sorafenib in HCC cells, and investigated a potential therapy that combines regorafenib treatment with cyclin E1 inhibition. Methods Western blotting for caspase-3 and Hoechst 33225 staining was used to measure the expression level of apoptosis-related proteins under drug treatment. Results Our results showed that enhanced expression of cyclin E1 after transfection compromised apoptosis in HCC cells induced by regorafenib or sorafenib. Conversely, down-regulation of cyclin E1 gene expression or inhibition of cyclin E1 by the cyclin-dependent kinase (CDK) inhibitors dinaciclib (DIN) or flavopiridol sensitized HCC cells to regorafenib and sorafenib by inducing apoptosis. The expression of Mcl-1, which is modulated by STAT3, plays a key role in regulating the therapeutic effects of CDK inhibitors. Xenograft experiments conducted to test the efficacy of regorafenib combined with DIN showed dramatic tumor inhibitory effects due to induction of apoptosis. Our results suggested that the level of cyclin E1 expression in HCCs may be used as a pharmacodynamic biomarker to assess the antitumor effects of regorafenib or sorafenib. Conclusions Combining regorafenib and CDK inhibitors may enhance the clinical efficiency of the treatment of HCCs. Electronic supplementary material The online version of this article (10.1186/s12964-019-0398-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianliang Xu
- Hepatobilliary Surgery Department, The Third affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe District, Guangzhou, Guangdong, China
| | - Fei Huang
- Anesthesiology Department, The third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhicheng Yao
- General surgery, The Third affiliated hospital of Sun Yat-sen University, No. 600, Tianhe District, Guangzhou, 510630, Guangdong, China.
| | - Changchang Jia
- Cell & Gene therapy center, The Third affiliated Hospital of Sun Yat-sen Uuniversity, Guangzhou, Guangdong, China
| | - Zhiyong Xiong
- General surgery, The Third affiliated hospital of Sun Yat-sen University, No. 600, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Hao Liang
- General surgery, The Third affiliated hospital of Sun Yat-sen University, No. 600, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Nan Lin
- Hepatobilliary Surgery Department, The Third affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe District, Guangzhou, Guangdong, China
| | - Meihai Deng
- Hepatobilliary Surgery Department, The Third affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Lamano JB, Lamano JB, Li YD, DiDomenico JD, Choy W, Veliceasa D, Oyon DE, Fakurnejad S, Ampie L, Kesavabhotla K, Kaur R, Kaur G, Biyashev D, Unruh DJ, Horbinski CM, James CD, Parsa AT, Bloch O. Glioblastoma-Derived IL6 Induces Immunosuppressive Peripheral Myeloid Cell PD-L1 and Promotes Tumor Growth. Clin Cancer Res 2019; 25:3643-3657. [PMID: 30824583 PMCID: PMC6571046 DOI: 10.1158/1078-0432.ccr-18-2402] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/02/2019] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Upregulation of programmed death-ligand 1 (PD-L1) on circulating and tumor-infiltrating myeloid cells is a critical component of GBM-mediated immunosuppression that has been associated with diminished response to vaccine immunotherapy and poor survival. Although GBM-derived soluble factors have been implicated in myeloid PD-L1 expression, the identity of such factors has remained unknown. This study aimed to identify factors responsible for myeloid PD-L1 upregulation as potential targets for immune modulation. EXPERIMENTAL DESIGN Conditioned media from patient-derived GBM explant cell cultures was assessed for cytokine expression and utilized to stimulate naïve myeloid cells. Myeloid PD-L1 induction was quantified by flow cytometry. Candidate cytokines correlated with PD-L1 induction were evaluated in tumor sections and plasma for relationships with survival and myeloid PD-L1 expression. The role of identified cytokines on immunosuppression and survival was investigated in vivo utilizing immunocompetent C57BL/6 mice bearing syngeneic GL261 and CT-2A tumors. RESULTS GBM-derived IL6 was identified as a cytokine that is necessary and sufficient for myeloid PD-L1 induction in GBM through a STAT3-dependent mechanism. Inhibition of IL6 signaling in orthotopic murine glioma models was associated with reduced myeloid PD-L1 expression, diminished tumor growth, and increased survival. The therapeutic benefit of anti-IL6 therapy proved to be CD8+ T-cell dependent, and the antitumor activity was additive with that provided by programmed death-1 (PD-1)-targeted immunotherapy. CONCLUSIONS Our findings suggest that disruption of IL6 signaling in GBM reduces local and systemic myeloid-driven immunosuppression and enhances immune-mediated antitumor responses against GBM.
Collapse
Affiliation(s)
- Jonathan B Lamano
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | | | - Yuping D Li
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | | | - Winward Choy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Dorina Veliceasa
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Daniel E Oyon
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Shayan Fakurnejad
- Stanford School of Medicine, Stanford University, Stanford, California
| | - Leonel Ampie
- Department of Neurosurgery, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Kartik Kesavabhotla
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Rajwant Kaur
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Gurvinder Kaur
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Dauren Biyashev
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Dusten J Unruh
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | | | - Orin Bloch
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
19
|
Doan P, Musa A, Candeias NR, Emmert-Streib F, Yli-Harja O, Kandhavelu M. Alkylaminophenol Induces G1/S Phase Cell Cycle Arrest in Glioblastoma Cells Through p53 and Cyclin-Dependent Kinase Signaling Pathway. Front Pharmacol 2019; 10:330. [PMID: 31001122 PMCID: PMC6454069 DOI: 10.3389/fphar.2019.00330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 03/19/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor in adults. We show here that small molecule 2-[(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl]phenol (THTMP), a potential anticancer agent, increases the human glioblastoma cell death. Its mechanism of action and the interaction of selective signaling pathways remain elusive. Three structurally related phenolic compounds were tested in multiple glioma cell lines in which the potential activity of the compound, THTMP, was further validated and characterized. Upon prolonged exposer to THTMP, all glioma cell lines undergo p53 and cyclin-dependent kinase mediated cell death with the IC50 concentration of 26.5 and 75.4 μM in LN229 and Snb19, respectively. We found that THTMP strongly inhibited cell growth in a dose and in time dependent manner. THTMP treatment led to G1/S cell cycle arrest and apoptosis induction of glioma cell lines. Furthermore, we identified 3,714 genes with significant changes at the transcriptional level in response to THTMP. Further, a transcriptional analysis (RNA-seq) revealed that THTMP targeted the p53 signaling pathway specific genes causing DNA damage and cell cycle arrest at G1/S phase explained by the decrease of cyclin-dependent kinase 1, cyclin A2, cyclin E1 and E2 in glioma cells. Consistently, THTMP induced the apoptosis by regulating the expression of Bcl-2 family genes and reactive oxygen species while it also changed the expression of several anti-apoptotic genes. These observations suggest that THTMP exerts proliferation activity inhibition and pro-apoptosis effects in glioma through affecting cell cycle arrest and intrinsic apoptosis signaling. Importantly, THTMP has more potential at inhibiting GBM cell proliferation compared to TMZ, the current chemotherapy treatment administered to GBM patients; thus, we propose that THTMP may be an alternative therapeutic option for glioblastoma.
Collapse
Affiliation(s)
- Phuong Doan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland.,Institute of Biosciences and Medical Technology, Tampere, Finland
| | - Aliyu Musa
- Institute of Biosciences and Medical Technology, Tampere, Finland.,Predictive Medicine and Data Analytics Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Frank Emmert-Streib
- Institute of Biosciences and Medical Technology, Tampere, Finland.,Predictive Medicine and Data Analytics Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland
| | - Olli Yli-Harja
- Institute of Biosciences and Medical Technology, Tampere, Finland.,Computaional Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland.,Institute for Systems Biology, Seattle, WA, United States
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland.,Institute of Biosciences and Medical Technology, Tampere, Finland
| |
Collapse
|
20
|
Nabavi SM, Ahmed T, Nawaz M, Devi KP, Balan DJ, Pittalà V, Argüelles-Castilla S, Testai L, Khan H, Sureda A, de Oliveira MR, Vacca RA, Xu S, Yousefi B, Curti V, Daglia M, Sobarzo-Sánchez E, Filosa R, Nabavi SF, Majidinia M, Dehpour AR, Shirooie S. Targeting STATs in neuroinflammation: The road less traveled! Pharmacol Res 2018; 141:73-84. [PMID: 30550953 DOI: 10.1016/j.phrs.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
JAK/STAT transduction pathway is a highly conserved pathway implicated in regulating cellular proliferation, differentiation, survival and apoptosis. Dysregulation of this pathway is involved in the onset of autoimmune, haematological, oncological, metabolic and neurological diseases. Over the last few years, the research of anti-neuroinflammatory agents has gained considerable attention. The ability to diminish the STAT-induced transcription of inflammatory genes is documented for both natural compounds (such as polyphenols) and chemical drugs. Among polyphenols, quercetin and curcumin directly inhibit STAT, while Berberis vulgaris L. and Sophora alopecuroides L extracts act indirectly. Also, the Food and Drug Administration has approved several JAK/STAT inhibitors (direct or indirect) for treating inflammatory diseases, indicating STAT can be considered as a therapeutic target for neuroinflammatory pathologies. Considering the encouraging data obtained so far, clinical trials are warranted to demonstrate the effectiveness and potential use in the clinical practice of STAT inhibitors to treat inflammation-associated neurodegenerative pathologies.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Maheen Nawaz
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, E-07122 Palma de Mallorca, Spain.
| | - Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, I-70126, Bari, Italy
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Valeria Curti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Rosanna Filosa
- Consorzio Sannio Tech, Appia Str, Apollosa, BN 82030, Italy
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M, Jadidi-Niaragh F. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother 2018; 108:1415-1424. [DOI: 10.1016/j.biopha.2018.09.177] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
|
22
|
Jo Y, Kim EH, Sai S, Kim JS, Cho JM, Kim H, Baek JH, Kim JY, Hwang SG, Yoon M. Functional Biological Activity of Sorafenib as a Tumor-Treating Field Sensitizer for Glioblastoma Therapy. Int J Mol Sci 2018; 19:E3684. [PMID: 30469352 PMCID: PMC6274791 DOI: 10.3390/ijms19113684] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma, the most common primary brain tumor in adults, is an incurable malignancy with poor short-term survival and is typically treated with radiotherapy along with temozolomide. While the development of tumor-treating fields (TTFields), electric fields with alternating low and intermediate intensity has facilitated glioblastoma treatment, clinical outcomes of TTFields are reportedly inconsistent. However, combinatorial administration of chemotherapy with TTFields has proven effective for glioblastoma patients. Sorafenib, an anti-proliferative and apoptogenic agent, is used as first-line treatment for glioblastoma. This study aimed to investigate the effect of sorafenib on TTFields-induced anti-tumor and anti-angiogenesis responses in glioblastoma cells in vitro and in vivo. Sorafenib sensitized glioblastoma cells to TTFields, as evident from significantly decreased post-TTFields cell viability (p < 0.05), and combinatorial treatment with sorafenib and TTFields accelerated apoptosis via reactive oxygen species (ROS) generation, as evident from Poly (ADP-ribose) polymerase (PARP) cleavage. Furthermore, use of sorafenib plus TTFields increased autophagy, as evident from LC3 upregulation and autophagic vacuole formation. Cell cycle markers accumulated, and cells underwent a G2/M arrest, with an increased G0/G1 cell ratio. In addition, the combinatorial treatment significantly inhibited tumor cell motility and invasiveness, and angiogenesis. Our results suggest that combination therapy with sorafenib and TTFields is slightly better than each individual therapy and could potentially be used to treat glioblastoma in clinic, which requires further studies.
Collapse
Affiliation(s)
- Yunhui Jo
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- Department of Bio-Convergence Engineering, Korea University, Seoul 02842, Korea.
| | - Eun Ho Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba 263-0024, Japan.
| | - Jin Su Kim
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Jae-Min Cho
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hyeongi Kim
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Jeong-Hwa Baek
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Jeong-Yub Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Myonggeun Yoon
- Department of Bio-Convergence Engineering, Korea University, Seoul 02842, Korea.
| |
Collapse
|
23
|
Liang YY, Deng XB, Zeng LS, Lin XT, Shao XF, Wang B, Mo ZW, Yuan YW. RASSF6-mediated inhibition of Mcl-1 through JNK activation improves the anti-tumor effects of sorafenib in renal cell carcinoma. Cancer Lett 2018; 432:75-83. [PMID: 29864454 DOI: 10.1016/j.canlet.2018.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
Ras association domain family member 6 (RASSF6) has been shown to act as a tumor suppressor and predictor of poor prognosis in renal cell carcinoma (RCC). However, little is known about the effects of RASSF6 on sorafenib resistance or the underlying mechanism. Here, we show that RASSF6 expression positively correlates with sorafenib sensitivity in RCC cells and human samples. Stable ectopic overexpression of RASSF6 in RCC cell lines reduces resistance to sorafenib in vitro and in vivo. At a molecular level, RASSF6 activates the JNK signaling pathway, which further contributes to Mcl-1 inhibition. Suppression of the JNK pathway can partially restore Mcl-1 expression and sorafenib resistance. Together, these findings suggest that RASSF6 inhibits sorafenib resistance by repressing Mcl-1 through the JNK-dependent pathway. RASSF6 may serve as a novel regulator for sorafenib therapy in RCC.
Collapse
Affiliation(s)
- Ying-Ying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Xu-Bin Deng
- Department of Internal Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Li-Si Zeng
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Xian-Tao Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Xun-Fan Shao
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Bin Wang
- Department of Urology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Zhi-Wen Mo
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Sorafenib inhibits cell growth but fails to enhance radio- and chemosensitivity of glioblastoma cell lines. Oncotarget 2018; 7:61988-61995. [PMID: 27542273 PMCID: PMC5308705 DOI: 10.18632/oncotarget.11328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glioblastomas (GBM) are the most common malignant type of primary brain tumor. GBM are intensively treated with surgery and combined radiochemotherapy using X-irradiation and temozolomide (TMZ) but they are still associated with an extremely poor prognosis, urging for the development of new treatment strategies. To improve the outcome of GBM patients, the small molecule multi-kinase inhibitor sorafenib has moved into focus of recent research. Sorafenib has already been shown to enhance the radio- and radiochemosensitivity of other tumor entities. Whether sorafenib is also able to sensitize GBM cells to radio- and chemotherapy is still an unsolved question which we have addressed in this study. METHODS The effect of sorafenib on signaling, proliferation, radiosensitivity, chemosensitivity and radiochemosensitivity was analyzed in six glioblastoma cell lines using Western blot, proliferation- and colony formation assays. RESULTS In half of the cell lines sorafenib clearly inhibited MAPK signaling. We also observed a strong blockage of proliferation, which was, however, not associated with MAPK pathway inhibition. Sorafenib had only minor effects on cell survival when administered alone. Most importantly, sorafenib treatment failed to enhance GBM cell killing by irradiation, TMZ or combined treatment, and instead rather caused resistance in some cell lines. CONCLUSION Our data suggest that sorafenib treatment may not improve the efficacy of radiochemotherapy in GBM.
Collapse
|
25
|
Zhang Y, Li G, Liu X, Song Y, Xie J, Li G, Ren J, Wang H, Mou J, Dai J, Liu F, Guo L. Sorafenib inhibited cell growth through the MEK/ERK signaling pathway in acute promyelocytic leukemia cells. Oncol Lett 2018; 15:5620-5626. [PMID: 29552199 PMCID: PMC5840677 DOI: 10.3892/ol.2018.8010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
The present study assessed the mechanism underlying the effect of sorafenib on the proliferation and apoptosis of the acute promyelocytic leukemia (APL) cell line NB4. NB4 cells were treated with different concentrations of sorafenib (0, 1.5, 3, 6, and 12 µM) for 24, 48 and 72 h. Cell proliferation, cell cycle, and apoptosis were analyzed using an MTT assay and flow cytometry analysis, respectively. Reverse transcription-semi-quantitative polymerase chain reaction and western blot analysis were performed to assess the expression of caspase-3, caspase-8, myeloid cell leukemia (MCL)1, cyclin D1, mitogen-activated protein kinase (MEK), phosphorylated (P)-MEK, extracellular signal-regulated kinase (ERK) and P-ERK. The results of the MTT assay demonstrated that, compared with untreated cells, the proliferation of sorafenib-treated NB4 cells was inhibited dose- and time-dependently. Furthermore, cell cycle arrest was induced in the G0/G1 phase and cell apoptosis was promoted in a dose-dependent manner in sorafenib-treated NB4 cells compared with untreated cells. In addition, the expression of the proapoptotic molecules caspase-3 and caspase-8 was significantly upregulated, and the expression of the antiapoptotic molecule MCL1 and the cell cycle-associated cyclin D1 was downregulated in sorafenib-treated NB4 cells compared with untreated cells. Furthermore, the phosphorylation of MEK and ERK was inhibited in sorafenib-treated NB4 cells compared with untreated cells. Sorafenib may inhibit proliferation and induce cell cycle arrest and apoptosis in APL cells. The underlying mechanisms of such effects may be associated with alterations to the expression of apoptosis-associated and cell cycle-associated molecules via MEK/ERK signaling pathway inhibition.
Collapse
Affiliation(s)
- Yunjie Zhang
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China.,Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Gangcan Li
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Xin Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Yanping Song
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jia Xie
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Guang Li
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jingjing Ren
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Hao Wang
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jiao Mou
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jinqian Dai
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Feng Liu
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Liang Guo
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
26
|
Clavreul A, Pourbaghi-Masouleh M, Roger E, Lautram N, Montero-Menei CN, Menei P. Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: a good deal? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:135. [PMID: 28962658 PMCID: PMC5622550 DOI: 10.1186/s13046-017-0605-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Background Glioblastoma (GB) is the most malignant brain tumor in adults. It is characterized by angiogenesis and a high proliferative and invasive capacity. Standard therapy (surgery, radiotherapy and chemotherapy with temozolomide) is of limited efficacy. Innovative anticancer drugs targeting both tumor cells and angiogenesis are urgently required, together with effective systems for their delivery to the brain. We assessed the ability of human mesenchymal stromal cells (MSCs) to uptake the multikinase inhibitor, sorafenib (SFN), and to carry this drug to a brain tumor following intranasal administration. Method MSCs were primed with SFN and drug content and release were quantified by analytical chemistry techniques. The ability of SFN-primed MSCs to inhibit the survival of the human U87MG GB cell line and endothelial cells was assessed in in vitro assays. These cells were then administered intranasally to nude mice bearing intracerebral U87MG xenografts. Their effect on tumor growth and angiogenesis was evaluated by magnetic resonance imaging and immunofluorescence analyses, and was compared with the intranasal administration of unprimed MSCs or SFN alone. Results MSCs took up about 9 pg SFN per cell, with no effect on viability, and were able to release 60% of the primed drug. The cytostatic activity of the released SFN was entirely conserved, resulting in a significant inhibition of U87MG and endothelial cell survival in vitro. Two intranasal administrations of SFN-primed MSCs in U87MG-bearing mice resulted in lower levels of tumor angiogenesis than the injection of unprimed MSCs or SFN alone, but had no effect on tumor volume. We also observed an increase in the proportion of small intratumoral vessels in animals treated with unprimed MSCs; this effect being abolished if the MSCs were primed with SFN. Conclusion We show the potential of MSCs to carry SFN to brain tumors following an intranasal administration. However, the therapeutic effect is modest probably due to the pro-tumorigenic properties of MSCs, which may limit the action of the released SFN. This calls into question the suitability of MSCs for use in GB therapy and renders it necessary to find methods guaranteeing the safety of this cellular vector after drug delivery.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, Angers, France. .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | - Milad Pourbaghi-Masouleh
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emilie Roger
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Nolwenn Lautram
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | | | - Philippe Menei
- Département de Neurochirurgie, CHU, Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| |
Collapse
|
27
|
Chang N, Ahn SH, Kong DS, Lee HW, Nam DH. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Mol Cell Endocrinol 2017; 451:53-65. [PMID: 28089821 DOI: 10.1016/j.mce.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of cancer that begins within the brain; generally, the patient has a dismal prognosis and limited therapeutic options. Signal transducer and activator of transcription 3 (STAT3) is a critical mediator of tumorigenesis, tumor progression, and suppression of anti-tumor immunity in GBM. In a high percentage of GBM cells and tumor microenvironments, persistent activation of STAT3 induces cell proliferation, anti-apoptosis, glioma stem cell maintenance, tumor invasion, angiogenesis, and immune evasion. This makes STAT3 an attractive therapeutic target and a prognostic indicator in GBM. Targeting STAT3 affords an opportunity to disrupt multiple pro-oncogenic pathways at a single molecular hub. Unfortunately, there are no successful STAT3 inhibitors currently in clinical trials. However, strong clinical evidence implicating STAT3 as a major factor in GBM justifies the identification of safe and effective strategies for inhibiting STAT3.
Collapse
Affiliation(s)
- Nakho Chang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, South Korea
| | - Sun Hee Ahn
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, South Korea
| | - Doo-Sik Kong
- Departments of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Hye Won Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, South Korea; Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea.
| | - Do-Hyun Nam
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, South Korea; Departments of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
| |
Collapse
|
28
|
Kolosenko I, Yu Y, Busker S, Dyczynski M, Liu J, Haraldsson M, Palm Apergi C, Helleday T, Tamm KP, Page BDG, Grander D. Identification of novel small molecules that inhibit STAT3-dependent transcription and function. PLoS One 2017. [PMID: 28636670 PMCID: PMC5479526 DOI: 10.1371/journal.pone.0178844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activation of Signal Transducer and Activator of Transcription 3 (STAT3) has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z’ = 0,8). This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set). Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (IK); (DG)
| | - Yasmin Yu
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sander Busker
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jianping Liu
- Karolinska High-Throughput Center, Department of Medical Biochemistry and Biophysics, Division of Functional Genomics, Karolinska Institutet Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Palm Apergi
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Katja Pokrovskaja Tamm
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Brent D. G. Page
- Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Dan Grander
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (IK); (DG)
| |
Collapse
|
29
|
Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. Int J Mol Sci 2017; 18:ijms18061234. [PMID: 28594363 PMCID: PMC5486057 DOI: 10.3390/ijms18061234] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1), a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3) and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.
Collapse
|
30
|
Abeni E, Salvi A, Marchina E, Traversa M, Arici B, De Petro G. Sorafenib induces variations of the DNA methylome in HA22T/VGH human hepatocellular carcinoma-derived cells. Int J Oncol 2017; 51:128-144. [PMID: 28560380 PMCID: PMC5467784 DOI: 10.3892/ijo.2017.4019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Sorafenib is currently used to treat advanced and/or unresectable hepatocellular carcinoma (HCC), but the increase of the median survival was only 3 months. Moreover, sorafenib has severe side effects and patients develop resistance quickly. Epigenetic alterations such as DNA methylation play a decisive role in the development and progression of HCC. To our knowledge, there are no studies that analysed the global DNA methylation changes in HCC cells treated with sorafenib. Using MeDip-chip technologies, we found 1230 differentially methylated genes in HA22T/VGH cells treated with sorafenib compared to untreated cells. Gene ontology and pathway analysis allowed identifying several enriched signaling pathways involved in tumorigenesis and cancer progression. Among the genes differentially methylated we found genes related to apoptosis, angiogenesis and invasion, and genes belonging to pathways known to be deregulated in HCC such as RAF/MEK/ERK, JAK-STAT, PI3K/AKT/mTOR and NF-κB. Generally, we found that oncogenes tended to be hypermethylated and the tumor suppressor genes tended to be hypomethylated after sorafenib treatment. Finally, we validated MeDip-chip results for several genes found differentially methylated such as BIRC3, FOXO3, MAPK3, SMAD2 and TSC2, using both COBRA assay and direct bisulfite sequencing and we evaluated their mRNA expression. Our findings suggest that sorafenib could affect the methylation level of genes associated to cancer-related processes and pathways in HCC cells, some of which have been previously described to be directly targeted by sorafenib.
Collapse
Affiliation(s)
- Edoardo Abeni
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Michele Traversa
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Bruna Arici
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| |
Collapse
|
31
|
Gillissen B, Richter A, Richter A, Preissner R, Schulze-Osthoff K, Essmann F, Daniel PT. Bax/Bak-independent mitochondrial depolarization and reactive oxygen species induction by sorafenib overcome resistance to apoptosis in renal cell carcinoma. J Biol Chem 2017; 292:6478-6492. [PMID: 28154184 DOI: 10.1074/jbc.m116.754184] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
Renal cell carcinoma (RCC) is polyresistant to chemo- and radiotherapy and biologicals, including TNF-related apoptosis-inducing ligand (TRAIL). Sorafenib, a multikinase inhibitor approved for the treatment of RCC, has been shown to sensitize cancer cells to TRAIL-induced apoptosis, in particular by down-regulation of the Bak-inhibitory Bcl-2 family protein Mcl-1. Here we demonstrate that sorafenib overcomes TRAIL resistance in RCC by a mechanism that does not rely on Mcl-1 down-regulation. Instead, sorafenib induces rapid dissipation of the mitochondrial membrane potential (ΔΨm) that is accompanied by the accumulation of reactive oxygen species (ROS). Loss of ΔΨm and ROS production induced by sorafenib are independent of caspase activities and do not depend on the presence of the proapoptotic Bcl-2 family proteins Bax or Bak, indicating that both events are functionally upstream of the mitochondrial apoptosis signaling cascade. More intriguingly, we find that it is sorafenib-induced ROS accumulation that enables TRAIL to activate caspase-8 in RCC. This leads to apoptosis that involves activation of an amplification loop via the mitochondrial apoptosis pathway. Thus, our mechanistic data indicate that sorafenib bypasses central resistance mechanisms through a direct induction of ΔΨm breakdown and ROS production. Activation of this pathway might represent a useful strategy to overcome the cell-inherent resistance to cancer therapeutics, including TRAIL, in multiresistant cancers such as RCC.
Collapse
Affiliation(s)
- Bernhard Gillissen
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany.,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Anja Richter
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany.,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Antje Richter
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany
| | - Robert Preissner
- the Institute of Physiology and Experimental Clinical Research Center, University Medical Center Charité, 13125 Berlin, Germany
| | - Klaus Schulze-Osthoff
- the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,the Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and
| | - Frank Essmann
- the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,the Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and
| | - Peter T Daniel
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany, .,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,Clinical and Molecular Oncology, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| |
Collapse
|
32
|
Ilexgenin A exerts anti-inflammation and anti-angiogenesis effects through inhibition of STAT3 and PI3K pathways and exhibits synergistic effects with Sorafenib on hepatoma growth. Toxicol Appl Pharmacol 2017; 315:90-101. [PMID: 27986624 DOI: 10.1016/j.taap.2016.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 12/20/2022]
|
33
|
Fritsche-Guenther R, Witzel F, Kempa S, Brummer T, Sers C, Blüthgen N. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis. Oncotarget 2016; 7:7960-9. [PMID: 26799289 PMCID: PMC4884967 DOI: 10.18632/oncotarget.6959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 01/20/2023] Open
Abstract
Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell.
Collapse
Affiliation(s)
- Raphaela Fritsche-Guenther
- Max-Delbrück-Center for Molecular Medicin (MDC) Berlin Buch, The Berlin Institute for Medical Systems Biology (BIMSB), 13125 Berlin, Germany
| | - Franziska Witzel
- Institute of Pathology, Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück-Center for Molecular Medicin (MDC) Berlin Buch, The Berlin Institute for Medical Systems Biology (BIMSB), 13125 Berlin, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research and Centre for Biological Signalling Studies BIOSS, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Christine Sers
- Institute of Pathology, Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Humboldt University Berlin, 10099 Berlin, Germany
| |
Collapse
|
34
|
Sorafenib induces autophagic cell death and apoptosis in hepatic stellate cell through the JNK and Akt signaling pathways. Anticancer Drugs 2016; 27:192-203. [PMID: 26629768 DOI: 10.1097/cad.0000000000000316] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Increasing hepatic stellate cell (HSC) death is an attractive approach for limiting liver fibrosis. We investigated the molecular mechanisms underlying the effects of sorafenib on HSCs. LX2 cells were incubated with sorafenib and a variety of inhibitors of apoptosis, autophagy, and necrosis. Electron microscopy was used to observe autophagosomes. Inhibitors and siRNA were used to examine the role of the Akt/mTOR/p70S6K and JNK pathways. Ultrastructural analysis revealed that rat HSCs treated with 5 μmol/l sorafenib accumulated residual digested material and empty or autophagic vacuoles. Incubating LX2 cells with lysosomal protease inhibitors increased the accumulation of LC3-II, indicating that sorafenib enhances autophagic flux in HSCs. Autophagy may precede apoptosis. Lower concentrations of sorafenib and a shorter treatment time resulted in the dominance of autophagic cell death over apoptosis. Further analysis showed that Beclin 1 is inactivated by the caspases induced by sorafenib during apoptosis. Inhibition of autophagy in LX2 cells using 3-methyladenine treatment or siRNA-mediated knockdown of Atg5 resulted in a marked increase in apoptosis. Finally, sorafenib induced programmed cell death by attenuation and activation of Akt/mTOR/p70S6K and JNK signaling. Sorafenib-induced cell death is mediated by both autophagy and apoptosis. Elucidation of the signaling pathways activated by sorafenib could potentially lead to novel antifibrosis therapies for chronic liver diseases.
Collapse
|
35
|
Kiprianova I, Remy J, Milosch N, Mohrenz IV, Seifert V, Aigner A, Kögel D. Sorafenib Sensitizes Glioma Cells to the BH3 Mimetic ABT-737 by Targeting MCL1 in a STAT3-Dependent Manner. Neoplasia 2016; 17:564-73. [PMID: 26297434 PMCID: PMC4547411 DOI: 10.1016/j.neo.2015.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/23/2015] [Accepted: 07/02/2015] [Indexed: 01/25/2023] Open
Abstract
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is overactivated in malignant glioma and plays a key role in promoting cell survival, thereby increasing the acquired apoptosis resistance of these tumors. Here we investigated the STAT3/myeloid cell leukemia 1 (MCL1) signaling pathway as a target to overcome the resistance of glioma cells to the Bcl-2-inhibiting synthetic BH3 mimetic ABT-737. Stable lentiviral knockdown of MCL1 sensitized LN229 and U87 glioma cells to apoptotic cell death induced by single-agent treatment with ABT-737 which was associated with an early activation of DEVDase activity, cytochrome c release, and nuclear apoptosis. Similar sensitizing effects were observed when ABT-737 treatment was combined with the multikinase inhibitor sorafenib which effectively suppressed levels of phosphorylated STAT3 and MCL1 in MCL1-proficient LN229 and U87 glioma cells. In analogous fashion, these synergistic effects were observed when we combined ABT-737 with the STAT3 inhibitor WP-1066. Lentiviral knockdown of the activating transcription factor 5 combined with subsequent quantitative polymerase chain reaction analysis revealed that sorafenib-dependent suppression of MCL1 occurred at the transcriptional level but did not depend on activating transcription factor 5 which previously had been proposed to be essential for MCL1-dependent glioma cell survival. In contrast, the constitutively active STAT3 mutant STAT3-C was able to significantly enhance MCL1 levels under sorafenib treatment to retain cell survival. Collectively, these data demonstrate that sorafenib targets MCL1 in a STAT3-dependent manner, thereby sensitizing glioma cells to treatment with ABT-737. They also suggest that targeting STAT3 in combination with inducers of the intrinsic pathway of apoptosis may be a promising novel strategy for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Irina Kiprianova
- Experimental Neurosurgery, Goethe University Hospital, Frankfurt am Main, Germany
| | - Janina Remy
- Experimental Neurosurgery, Goethe University Hospital, Frankfurt am Main, Germany
| | - Nelli Milosch
- Experimental Neurosurgery, Goethe University Hospital, Frankfurt am Main, Germany
| | - Isabelle V Mohrenz
- Experimental Neurosurgery, Goethe University Hospital, Frankfurt am Main, Germany
| | - Volker Seifert
- Dept. of Neurosurgery, Goethe University Hospital, Frankfurt am Main, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
36
|
Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol 2016; 37:11553-11572. [DOI: 10.1007/s13277-016-5098-7] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023] Open
|
37
|
Hsu C, Lin LI, Cheng YC, Feng ZR, Shao YY, Cheng AL, Ou DL. Cyclin E1 Inhibition can Overcome Sorafenib Resistance in Hepatocellular Carcinoma Cells Through Mcl-1 Suppression. Clin Cancer Res 2015; 22:2555-64. [PMID: 26603262 DOI: 10.1158/1078-0432.ccr-15-0499] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/27/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE To clarify the effects of cyclin E1 suppression on antitumor efficacy of sorafenib in hepatocellular carcinoma cells and to explore the potential of combining sorafenib with cyclin-dependent kinase (CDK) inhibition in therapy. EXPERIMENTAL DESIGN The effects of cyclin E1 suppression on sorafenib-induced apoptosis were tested in both sorafenib-sensitive (Huh-7 and HepG2, IC50 5-6 μmol/L) and sorafenib-resistant (Huh-7R and HepG2R, IC50 14-15 μmol/L) hepatocellular carcinoma cells. The activity of pertinent signaling pathways and the expression of cell cycle and apoptosis-related proteins were measured using Western blotting. Efficacy of sorafenib combined with the pan-CDK inhibitor flavopiridol was tested both in vitro and in xenograft experiments. The pertinent downstream mediators of antitumor efficacy were tested in transient transfection and RNA interference experiments. RESULTS Cyclin E1 mRNA and protein expressions were suppressed after sorafenib treatment in sorafenib-sensitive but not in sorafenib-resistant hepatocellular carcinoma cells. Changes in cyclin E2 or D1 were not correlated with sorafenib sensitivity. The knockdown of cyclin E1 expression reversed the resistance of hepatocellular carcinoma cells to sorafenib in terms of cell growth and apoptosis induction, whereas the overexpression of cyclin E1 increased the resistance to sorafenib. The growth-inhibitory and apoptosis-inducing effects of sorafenib were enhanced by flavopiridol, and Mcl-1 suppression was determined to play a critical role in mediating this enhancing effect. CONCLUSIONS The cyclin E1 suppression in hepatocellular carcinoma cells may serve as a pharmacodynamic biomarker for predicting sorafenib efficacy. The combination of sorafenib and CDK inhibitors may improve the efficacy of sorafenib in hepatocellular carcinoma. Clin Cancer Res; 22(10); 2555-64. ©2015 AACR.
Collapse
Affiliation(s)
- Chiun Hsu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan. National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Liang-In Lin
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Che Cheng
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Zi-Rui Feng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan. National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Yun Shao
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ann-Lii Cheng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan. National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan. Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taiwan
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan. National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
38
|
Liu RM, Li YB, Liang XF, Liu HZ, Xiao JH, Zhong JJ. Structurally related ganoderic acids induce apoptosis in human cervical cancer HeLa cells: Involvement of oxidative stress and antioxidant protective system. Chem Biol Interact 2015; 240:134-144. [PMID: 26282491 DOI: 10.1016/j.cbi.2015.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Ganoderic acids (GAs) produced by Ganoderma lucidum possess anticancer activities with the generation of reactive oxygen species (ROS). However, the role of oxidative stress in apoptotic process induced by GAs is still undefined. In this study, the effects of four structurally related GAs, i.e. GA-T, GA-Mk, and two deacetylated derivatives of GA-T (GA-T1 and GA-T2) on the antioxidant defense system and induced apoptosis in cervical cancer cells HeLa were investigated in vitro. Our results indicated that the tested GAs (5-40 μM) induced apoptotic cell death through mitochondrial membrane potential decrease and activation of caspase-9 and caspase-3. Furthermore, GAs increased the generation of intracellular ROS and attenuated antioxidant defense system by decreasing glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The above effects were remarkably blocked by the exogenous antioxidants, i.e. N-acetylcysteine, catalase and diphenyleneiodonium chloride. The potency of the four GAs toward induced apoptosis, generation of ROS and suppression of antioxidant defense system was in the order of: GA-T > GA-Mk ≈ GA-T1 > GA-T2 in HeLa cells. These findings suggest that GAs induced mitochondria-dependent cell apoptosis in HeLa cells are mediated via enhancing oxidative stress and depressing antioxidant defense. Additionally, the acetylation of hydroxyl groups in GAs may contribute to their pro-oxidant activities and cytotoxicity, which is helpful to the development of novel chemotherapy agents.
Collapse
Affiliation(s)
- Ru-Ming Liu
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, PR China
| | - Ying-Bo Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiang-Feng Liang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Hui-Zhou Liu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jian-Hui Xiao
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, PR China.
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, PR China.
| |
Collapse
|
39
|
Machado VA, Peixoto D, Costa R, Froufe HJ, Calhelha RC, Abreu RM, Ferreira IC, Soares R, Queiroz MJR. Synthesis, antiangiogenesis evaluation and molecular docking studies of 1-aryl-3-[(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas: Discovery of a new substitution pattern for type II VEGFR-2 Tyr kinase inhibitors. Bioorg Med Chem 2015; 23:6497-509. [DOI: 10.1016/j.bmc.2015.08.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/01/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022]
|
40
|
Martin del Campo SE, Levine KM, Mundy-Bosse BL, Grignol VP, Fairchild ET, Campbell AR, Trikha P, Mace TA, Paul BK, Jaime-Ramirez AC, Markowitz J, Kondadasula SV, Guenterberg KD, McClory S, Karpa VI, Pan X, Olencki TE, Monk JP, Mortazavi A, Tridandapani S, Lesinski GB, Byrd JC, Caligiuri MA, Shah MH, Carson WE. The Raf Kinase Inhibitor Sorafenib Inhibits JAK-STAT Signal Transduction in Human Immune Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:1995-2005. [PMID: 26238487 DOI: 10.4049/jimmunol.1400084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/07/2015] [Indexed: 01/07/2023]
Abstract
Sorafenib is an oral multikinase inhibitor that was originally developed as a Raf kinase inhibitor. We hypothesized that sorafenib would also have inhibitory effects on cytokine signaling pathways in immune cells. PBMCs from normal donors were treated with varying concentrations of sorafenib and stimulated with IFN-α or IL-2. Phosphorylation of STAT1 and STAT5 was measured by flow cytometry and confirmed by immunoblot analysis. Changes in IFN-α- and IL-2-stimulated gene expression were measured by quantitative PCR, and changes in cytokine production were evaluated by ELISA. Cryopreserved PBMCs were obtained from cancer patients before and after receiving 400 mg sorafenib twice daily. Patient PBMCs were thawed, stimulated with IL-2 or IFN-α, and evaluated for phosphorylation of STAT1 and STAT5. Pretreatment of PBMCs with 10 μM sorafenib decreased STAT1 and STAT5 phosphorylation after treatment with IFN-α or IL-2. This inhibitory effect was observed in PBMCs from healthy donors over a range of concentrations of sorafenib (5-20 μM), IL-2 (2-24 nM), and IFN-α (10(1)-10(6) U/ml). This effect was observed in immune cell subsets, including T cells, B cells, NK cells, regulatory T cells, and myeloid-derived suppressor cells. Pretreatment with sorafenib also inhibited PBMC expression of IFN-α- and IL-2-regulated genes and inhibited NK cell production of IFN-γ, RANTES, MIP1-α, and MIG in response to IFN-α stimulation. PBMCs from patients receiving sorafenib therapy showed decreased responsiveness to IL-2 and IFN-α treatment. Sorafenib is a Raf kinase inhibitor that could have off-target effects on cytokine-induced signal transduction in immune effector cells.
Collapse
Affiliation(s)
| | - Kala M Levine
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | - Valerie P Grignol
- Department of Surgery, The Ohio State University, Columbus, OH 43210; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Ene T Fairchild
- Department of General Pediatrics, Nationwide Children's Hospital, Columbus, OH 43205
| | - Amanda R Campbell
- Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Prashant Trikha
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Thomas A Mace
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Bonnie K Paul
- Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Joseph Markowitz
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | | | - Susan McClory
- Department of Internal Medicine, Barnes-Jewish Hospital, St. Louis, MO 63110
| | | | - Xueliang Pan
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210
| | - Thomas E Olencki
- Medical Oncology, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - J Paul Monk
- Medical Oncology, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Amir Mortazavi
- Medical Oncology, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Susheela Tridandapani
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Department of Pulmonary, Allergy, Critical Care and Sleep, The Ohio State University, Columbus, OH 43210
| | - Gregory B Lesinski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Medical Oncology, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - John C Byrd
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; and
| | - Michael A Caligiuri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Manisha H Shah
- Medical Oncology, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - William E Carson
- Department of Surgery, The Ohio State University, Columbus, OH 43210; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| |
Collapse
|
41
|
Terada T, Noda S, Inui KI. Management of dose variability and side effects for individualized cancer pharmacotherapy with tyrosine kinase inhibitors. Pharmacol Ther 2015; 152:125-34. [PMID: 25976912 DOI: 10.1016/j.pharmthera.2015.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/23/2015] [Indexed: 12/18/2022]
Abstract
Molecular-targeted therapies with tyrosine kinase inhibitors (TKIs) have provided a major breakthrough in cancer treatment. These agents are given orally and demonstrated to be substrates for drug transporters. In clinical settings, TKIs are mainly used at a fixed dose, but wide interpatient variability has been observed in their pharmacokinetics and/or pharmacodynamics. Genetic polymorphisms of ABC transporters, drug-drug interaction and adherence are among the factors causing such variation. To overcome these problems, therapeutic drug monitoring has been applied in clinical practice for patient care. Skin disorders are frequently observed as adverse drug reactions when using TKIs, and are commonly managed by symptomatic therapy based on clinical experience. Recent studies have provided some insights into the molecular mechanisms underlying skin disorders induced by TKIs. This review article summarizes the accumulated clinical and basic pharmacological evidence of TKIs, focusing on erlotinib, sorafenib and sunitinib.
Collapse
Affiliation(s)
- Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan.
| | - Satoshi Noda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | - Ken-Ichi Inui
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Kyoto, Japan
| |
Collapse
|
42
|
Gotink KJ, Rovithi M, de Haas RR, Honeywell RJ, Dekker H, Poel D, Azijli K, Peters GJ, Broxterman HJ, Verheul HMW. Cross-resistance to clinically used tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib. Cell Oncol (Dordr) 2015; 38:119-129. [PMID: 25665527 PMCID: PMC4555235 DOI: 10.1007/s13402-015-0218-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 01/24/2023] Open
Abstract
PURPOSE When during cancer treatment resistance to a tyrosine kinase inhibitor (TKI) occurs, switching to another TKI is often considered as a reasonable option. Previously, we reported that resistance to sunitinib may be caused by increased lysosomal sequestration, leading to increased intracellular lysosomal storage and, thereby, inactivity. Here, we studied the effect of several other TKIs on the development of (cross-) resistance. METHODS TKI resistance was induced by continuous exposure of cancer cell lines to increasing TKI concentrations for 3-4 months. (Cross-) resistance was evaluated using MTT cell proliferation assays. Intracellular TKI concentrations were measured using LC-MS/MS. Western blotting was used to detect lysosome-associated membrane protein-1 and -2 (LAMP1/2) expression. RESULTS The previously generated sunitinib-resistant (SUN) renal cancer cells (786-O) and colorectal cancer cells (HT-29) were found to be cross-resistant to pazopanib, erlotinib and lapatinib, but not sorafenib. Exposure of 786-O and HT-29 cells to sorafenib, pazopanib or erlotinib for 3-4 months induced drug resistance to pazopanib and erlotinib, but not sorafenib. Intracellular drug accumulation was found to be increased in pazopanib- and erlotinib-, but not in sorafenib-exposed cells. Lysosomal capacity, reflected by LAMP1/2 expression, was found to be increased in resistant cells and, in addition, to be transient. No cross-resistance to the mTOR inhibitor everolimus was detected. CONCLUSIONS Our data indicate that tumor cells can develop (cross-) resistance to TKIs, and that such resistance includes increased intracellular drug accumulation accompanied by increased lysosomal storage. Transient (cross-) resistance was found to occur for several of the TKIs tested, but not for everolimus, indicating that switching from a TKI to a mTOR inhibitor may be an attractive therapeutic option.
Collapse
Affiliation(s)
- Kristy J. Gotink
- Department of Medical Oncology, VU University Medical Center, Rm 3A46, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Maria Rovithi
- Department of Medical Oncology, VU University Medical Center, Rm 3A46, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Richard R. de Haas
- Department of Medical Oncology, VU University Medical Center, Rm 3A46, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Richard J. Honeywell
- Department of Medical Oncology, VU University Medical Center, Rm 3A46, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Henk Dekker
- Department of Medical Oncology, VU University Medical Center, Rm 3A46, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Dennis Poel
- Department of Medical Oncology, VU University Medical Center, Rm 3A46, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kaamar Azijli
- Department of Medical Oncology, VU University Medical Center, Rm 3A46, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center, Rm 3A46, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Henk J. Broxterman
- Department of Medical Oncology, VU University Medical Center, Rm 3A46, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Henk M. W. Verheul
- Department of Medical Oncology, VU University Medical Center, Rm 3A46, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
43
|
Amantini C, Morelli MB, Santoni M, Soriani A, Cardinali C, Farfariello V, Eleuteri AM, Bonfili L, Mozzicafreddo M, Nabissi M, Cascinu S, Santoni G. Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells. Oncoscience 2015; 2:395-409. [PMID: 26097873 PMCID: PMC4468325 DOI: 10.18632/oncoscience.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
Sorafenib, a tyrosine kinase inhibitor, has been demonstrated to exert anti-tumor effects. However, the molecular mechanisms underlying its effects on bladder cancer remain unknown. Here, we evaluated the mechanisms responsible for the sorafenib-induced anti-tumor effects on 5637 and T24 bladder cancer cells. We demonstrated that sorafenib reduces cell viability, stimulates lysosome permeabilization and induces apoptosis of bladder cancer cells. These effects are dependent by the activation of cathepsin B released from lysosomes. The sorafenib-increased cathepsin B activity induced the proteolysis of Bid into tBid that stimulates the intrinsic pathway of apoptosis characterized by mitochondrial membrane depolarization, oxygen radical generation and cytochrome c release. Moreover, we found that cathepsin B enzymatic activity, induced by sorafenib, is dependent on its dephosphorylation via PTEN activation and Akt inactivation. Pretreatment with orthovanadate rescued bladder cancer cells from apoptosis. In addition, the Akt inhibitor perifosine increased the sensitivity of bladder cancer cells to sorafenib-induced cytotoxicity. Overall, our results show that apoptotic cell death induced by sorafenib in bladder cancer cells is dependent on cathepsin B activity and involved PTEN and Akt signaling pathways. The Akt inhibitor perifosine increased the cytotoxic effects of sorafenib in bladder cancer cells.
Collapse
Affiliation(s)
- Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy ; Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Matteo Santoni
- Department of Medical Oncology, Polytechnic University of Marche, Ancona, Italy
| | | | - Claudio Cardinali
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy ; Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Stefano Cascinu
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| |
Collapse
|
44
|
Li J, Chen Y, Wan J, Liu X, Yu C, Li W. ABT-263 enhances sorafenib-induced apoptosis associated with Akt activity and the expression of Bax and p21((CIP1/WAF1)) in human cancer cells. Br J Pharmacol 2015; 171:3182-95. [PMID: 24571452 DOI: 10.1111/bph.12659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Sorafenib, a potent inhibitor that targets several kinases associated with tumourigenesis and cell survival, has been approved for clinical treatment as a single agent. However, combining sorafenib with other agents improves its anti-tumour efficacy in various preclinical tumour models. ABT-263, a second-generation BH3 mimic, binds to the anti-apoptotic family members Bcl-2, Bcl-xL and Bcl-w, and has been demonstrated to enhance TNFSF10 (TRAIL)-induced apoptosis in human hepatocarcinoma cells. Hence, we investigated the effects of ABT-263 treatment combined with sorafenib. EXPERIMENTAL APPROACH The effects of ABT-263 combined with sorafenib were investigated in vitro, on cell viability, clone formation and apoptosis, and the mechanism examined using western blot and flow cytometry. This combination was also evaluated in vivo, in a mouse xenograft model; tumour growth, volume and weights were measured and a TUNEL assay performed. KEY RESULTS ABT-263 enhanced sorafenib-induced apoptosis while sparing non-tumourigenic cells. Although ABT-263 plus sorafenib significantly stimulated intracellular reactive oxygen species production and subsequent mitochondrial depolarization, this was not sufficient to trigger cell apoptosis. ABT-263 plus sorafenib significantly decreased Akt activity, which was, at least partly, involved in its effect on apoptosis. Bax and p21 (CIP1/WAF1) were shown to play a critical role in ABT-263 plus sorafenib-induced apoptosis. Combining sorafenib with ABT-263 dramatically increased its efficacy in vivo. CONCLUSION AND IMPLICATIONS The anti-tumour activity of ABT-263 plus sorafenib may involve the induction of intrinsic cell apoptosis via inhibition of Akt, and reduced Bax and p21 expression. Our findings offer a novel effective therapeutic strategy for tumour treatment.
Collapse
Affiliation(s)
- Jingru Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
45
|
Signal transducer and activator of transcription 3 as molecular therapy for non-small-cell lung cancer. J Thorac Oncol 2015; 9:488-96. [PMID: 24736071 DOI: 10.1097/jto.0000000000000107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Targeting signal transducer and activator of transcription 3 (STAT3), a transcription factor that modulates survival-directed transcription, is often persistently activated in epidermal growth factor receptor (EGFR) wild-type non-small-cell lung cancer (NSCLC). The aim of this study was to determine whether sorafenib and its derivative can inhibit EGFR wild-type NSCLC via STAT3 inactivation. METHODS EGFR wild-type NSCLC cell lines (A549 H292 H322 H358 and H460) were treated with sorafenib or SC-1, a sorafenib derivative that closely resembled sorafenib structurally but was devoid of kinase inhibitory activity. Apoptosis and signal transduction were analyzed. In vivo efficacy was determined in nude mice with H460 and A549 xenograft. RESULTS SC-1 had better effects than sorafenib on growth inhibition and apoptosis in all tested EGFR wild-type NSCLC lines. SC-1 reduced STAT3 phosphorylation at tyrosine 705 in all tested EGFR wild-type NSCLC cells. The expression of STAT3-driven genes, including cylcin D1 and survivin, was also repressed by SC-1. Ectopic expression of STAT3 in H460 cells abolished apoptosis in SC-1-treated cells. Sorafenib and SC-1 enhanced Src homology-2 containing protein tyrosine phosphatase-1 (SHP-1) activity, whereas knockdown of SHP-1, but not SHP-2 or protein-tyrosine phosphatase 1B (PTP-1B), by small interference RNA reduced SC-1-induced apoptosis. SC-1 significantly reduced H460 and A549 tumor growth in vivo through SHP-1/STAT3 pathway. CONCLUSIONS SC-1 provides proof that targeting STAT3 signaling pathway may be a novel approach for the treatment of EGFR wild-type NSCLC.
Collapse
|
46
|
Toledo M, Penna F, Busquets S, López-Soriano FJ, Argilés JM. Distinct behaviour of sorafenib in experimental cachexia-inducing tumours: the role of STAT3. PLoS One 2014; 9:e113931. [PMID: 25436606 PMCID: PMC4250056 DOI: 10.1371/journal.pone.0113931] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022] Open
Abstract
The presence of a tumour is very often associated with wasting in the host, affecting both skeletal muscle and adipose tissue. In the present study we used sorafenib, a multi-kinase inhibitor with anti-tumour activity, in order to investigate the effects of chemotherapy on wasting. Three different experimental mouse tumour models were included: C26 colon carcinoma, B16 melanoma and Lewis lung carcinoma (LLC). The results obtained clearly show that sorafenib was effective in reducing tumour growth in LLC and B16 models, while it had no effect on C26. Interestingly, sorafenib treatment reduced the signs of muscle wasting and improved the physical activity in the LLC model and also in the C26, despite the absence of antineoplastic action in the latter. Our results discard a role for IL-6 in the action of sorafenib since the drug did not affect the levels of this cytokine. Conversely, sorafenib seems to act by influencing both STAT3 and ERK activity at muscle level, leading to reduced accumulation of Pax7 and atrogin-1. Sorafenib may interfere with muscle wasting by decreasing the activation of these signal transduction pathways.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cachexia/complications
- Cachexia/drug therapy
- Carcinoma, Lewis Lung/complications
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/pathology
- Colon/drug effects
- Colon/metabolism
- Colon/pathology
- Colonic Neoplasms/complications
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/pathology
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Melanoma, Experimental/complications
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Niacinamide/therapeutic use
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- STAT3 Transcription Factor/metabolism
- Sorafenib
- Wasting Syndrome/complications
- Wasting Syndrome/drug therapy
Collapse
Affiliation(s)
- Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Fabio Penna
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Chuang HY, Chang YF, Liu RS, Hwang JJ. Serial low doses of sorafenib enhance therapeutic efficacy of adoptive T cell therapy in a murine model by improving tumor microenvironment. PLoS One 2014; 9:e109992. [PMID: 25333973 PMCID: PMC4198194 DOI: 10.1371/journal.pone.0109992] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/09/2014] [Indexed: 01/05/2023] Open
Abstract
Requirements of large numbers of transferred T cells and various immunosuppressive factors and cells in the tumor microenvironment limit the applications of adoptive T cells therapy (ACT) in clinic. Accumulating evidences show that chemotherapeutic drugs could act as immune supportive instead of immunosuppressive agents when proper dosage is used, and combined with immunotherapy often results in better treatment outcomes than monotherapy. Controversial immunomodulation effects of sorafenib, a multi-kinases inhibitor, at high and low doses have been reported in several types of cancer. However, what is the range of the low-dose sorafenib will influence the host immunity and responses of ACT is still ambiguous. Here we used a well-established E.G7/OT-1 murine model to understand the effects of serial low doses of sorafenib on both tumor microenvironment and transferred CD8+ T cells and the underlying mechanisms. Sorafenib lowered the expressions of immunosuppressive factors, and enhanced functions and migrations of transferred CD8+ T cells through inhibition of STAT3 and other immunosuppressive factors. CD8+ T cells were transduced with granzyme B promoter for driving imaging reporters to visualize the activation and distribution of transferred CD8+ T cells prior to adoptive transfer. Better activations of CD8+ T cells and tumor inhibitions were found in the combinational group compared with CD8+ T cells or sorafenib alone groups. Not only immunosuppressive factors but myeloid derived suppressive cells (MDSCs) and regulatory T cells (Tregs) were decreased in sorafenib-treated group, indicating that augmentation of tumor inhibition and function of CD8+ T cells by serial low doses of sorafenib were via reversing the immunosuppressive microenvironment. These results revealed that the tumor inhibitions of sorafenib not only through eradicating tumor cells but modifying tumor microenvironment, which helps outcomes of ACT significantly.
Collapse
Affiliation(s)
- Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Fang Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ren-Shyan Liu
- National PET/Cyclotron Center and Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeng-Jong Hwang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
48
|
Xia Y, Song X, Li D, Ye T, Xu Y, Lin H, Meng N, Li G, Deng S, Zhang S, Liu L, Zhu Y, Zeng J, Lei Q, Pan Y, Wei Y, Zhao Y, Yu L. YLT192, a novel, orally active bioavailable inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy in preclinical models. Sci Rep 2014; 4:6031. [PMID: 25112436 PMCID: PMC4129416 DOI: 10.1038/srep06031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/23/2014] [Indexed: 02/05/2023] Open
Abstract
Antagonizing vascular endothelial growth factor receptor 2 (VEGFR2) to block angiogenesis has been applied toward cancer therapy for its role in promoting cancer growth and metastasis. However, most these clinical anticancer drugs have unexpected side effects. Development of novel VEGFR2 inhibitors with less toxicity remains an urgent need. In this study, we describe a novel, well-tolerated, and orally active VEGFR2 inhibitor, YLT192, which inhibits tumor angiogenesis and growth. YLT192 significantly inhibited kinase activity of VEGFR2 and suppressed proliferation, migration, invasion, and tube formation of human umbilical vascular endothelial cells (HUVEC) in vitro. In addition, it inhibited VEGF-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVEC. Zebrafish embryonic models and alginate-encapsulated tumor cell assays indicated YLT192 also inhibited angiogenesis in vivo. Moreover, YLT192 could directly inhibit proliferation and induce apoptosis of cancer cells in vitro and in vivo. Oral administration of YLT192 at a dose of 100 mg/kg/day could markedly inhibited human tumor xenograft growth without causing obvious toxicities. It decreased microvessel densities (MVD) in tumor sections. It also shows good safety profiles in the studies with mice and rats. Taken together, these preclinical evaluations suggest that YLT192 inhibits angiogenesis and may be a promising anticancer drug candidate.
Collapse
Affiliation(s)
- Yong Xia
- 1] State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China [2]
| | - Xuejiao Song
- 1] State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China [2]
| | - Deliang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Youzhi Xu
- Department of Pathophysiology, School of Basic Medicine, AnHui Medical University, Hefei, 230032, China
| | - Hongjun Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Nana Meng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Guobo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Senyi Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yongxia Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Youli Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
49
|
Siveen KS, Nguyen AH, Lee JH, Li F, Singh SS, Kumar AP, Low G, Jha S, Tergaonkar V, Ahn KS, Sethi G. Negative regulation of signal transducer and activator of transcription-3 signalling cascade by lupeol inhibits growth and induces apoptosis in hepatocellular carcinoma cells. Br J Cancer 2014; 111:1327-37. [PMID: 25101566 PMCID: PMC4183851 DOI: 10.1038/bjc.2014.422] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 02/06/2023] Open
Abstract
Background: Constitutive activation of signal transducer and activator of transcription signalling 3 (STAT3) has been linked with survival, proliferation and angiogenesis in a wide variety of malignancies including hepatocellular carcinoma (HCC). Methods: We evaluated the effect of lupeol on STAT3 signalling cascade and its regulated functional responses in HCC cells. Results: Lupeol suppressed constitutive activation of STAT3 phosphorylation at tyrosine 705 residue effectively in a dose- and time-dependent manner. The phosphorylation of Janus-activated kinases (JAKs) 1 and 2 and Src was also suppressed by lupeol. Pervanadate treatment reversed the downregulation of phospho-STAT3 induced by lupeol, thereby indicating the involvement of a phosphatase. Indeed, we observed that treatment with lupeol increased the protein and mRNA levels of SHP-2, and silencing of SHP-2 abolished the inhibitory effects of lupeol on STAT3 activation. Treatment with lupeol also downregulated the expression of diverse STAT3-regulated genes and decreased the binding of STAT3 to VEGF promoter. Moreover, the proliferation of various HCC cells was significantly suppressed by lupeol, being associated with substantial induction of apoptosis. Depletion of SHP-2 reversed the observed antiproliferative and pro-apoptotic effects of lupeol. Conclusions: Lupeol exhibited its potential anticancer effects in HCC through the downregulation of STAT3-induced pro-survival signalling cascade.
Collapse
Affiliation(s)
- K S Siveen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - A H Nguyen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - J H Lee
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - F Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - S S Singh
- 1] Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore [2] Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - A P Kumar
- 1] Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore [2] Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore [3] Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6009, Australia [4] Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - G Low
- 1] Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore [2] Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - S Jha
- 1] Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore [2] Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - V Tergaonkar
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive Proteos, Singapore, Singapore
| | - K S Ahn
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - G Sethi
- 1] Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore [2] Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| |
Collapse
|
50
|
Wu J, Feng X, Zhang B, Li J, Xu X, Liu J, Wang X, Wang J, Tong X. Blocking the bFGF/STAT3 interaction through specific signaling pathways induces apoptosis in glioblastoma cells. J Neurooncol 2014; 120:33-41. [PMID: 25048528 DOI: 10.1007/s11060-014-1529-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/28/2014] [Indexed: 12/17/2022]
Abstract
We have reported that basic fibroblast growth factor (bFGF) demonstrates an intimate connection with signal transducer and activator of transcription 3 (STAT3) in malignant brain tumor cells. However, its mechanisms are still unclear. In this study, we used inhibitors to block specific signaling pathways, including JAK, PI3K/Akt, and Src pathways, to explore how bFGF mediates crosstalk with STAT3 in two glioblastoma(GBM) cell lines: U251 (mutant p53) and U87 (wild-type p53). Furthermore, we explored how the bFGF/STAT3 pathway affects GBM cell apoptosis. Our results suggest that bFGF can induce the activation of STAT3 mainly through the JAK and PI3K/Akt pathways, and that siRNA-mediated knockdown of STAT3 markedly reduces the bFGF levels in U251 cells. Our results also suggest that STAT3 knockdown increases the expression of pro-apoptotic genes and decreases the expression of anti-apoptotic genes, subsequently collapsing the mitochondrial membrane potentials in vitro and impairs tumor growth in vivo.
Collapse
Affiliation(s)
- Jingchao Wu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300060, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|