1
|
Li Z, Yang X, Wang S, Ma H, Yang K, Shi J, Wang X. Design, synthesis, and biological evaluation of hypoxic-activation prodrug TH-302 derivatives. Bioorg Med Chem Lett 2025; 122:130189. [PMID: 40107631 DOI: 10.1016/j.bmcl.2025.130189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
This study aims to design and develop novel and efficient anti-hypoxic cell tumor drugs. Using the TH-302 as lead compound, structural modifications are conducted to synthesize a series of novel derivatives to investigate the structural activity relationship (SAR) against ovarian cancer cell line (SKOV3) and glioblastoma cell line (U87MG) in vitro. The structural modifications mainly include four aspects: changes in substituents on N; changes in isomers; changes in nitro group position; changes in substituting halogens in phosphoramide mustard. The results of CCK-8 assay indicate that the steric hindrance and electronic effects of substituents on N have significant impacts on the activity, while changes in nitro group positions have minimal effects on the activity, and Bromo-phosphoramide mustard exhibits better activity than Chloro-phosphoramide mustard. Compounds 15c and 16d exhibit significantly superior antitumor activity compared to TH-302, with IC50 values of 42 μM and 32 μM for SKOV3 cells, and IC50 values of 47 μM and 41 μM for U87MG cells, respectively.
Collapse
Affiliation(s)
- Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xingchen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hongzhao Ma
- Jiangsu Huajing Molecular Imaging and Pharmaceutical Research Institute Co. Ltd., Changshu, Jiangsu 215500, China
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xin Wang
- Jiangnan University Medical Center, JUMC, Wuxi, Jiangsu 214002, China
| |
Collapse
|
2
|
Braga C, Ferreira-Silva M, Corvo ML, Moreira R, Fernandes AR, Vaz J, Perry MJ. Nitroaromatic-based triazene prodrugs to target the hypoxic microenvironment in glioblastoma. RSC Med Chem 2025:d4md00876f. [PMID: 39850550 PMCID: PMC11753466 DOI: 10.1039/d4md00876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/04/2025] [Indexed: 01/25/2025] Open
Abstract
Hypoxia is a hallmark of the glioblastoma multiforme microenvironment and represents a promising therapeutic target for cancer treatment. Herein, we report nitroaromatic-based triazene prodrugs designed for selective activation by tumoral endogenous reductases and release of the cytotoxic methyldiazonium ion via a self-immolative mechanism. While compounds bearing a 2-nitrofuran bioreductive group were more efficiently activated by nitroreductases, 4-nitrobenzyl prodrugs 1b, 1d and 1e elicited a more pronounced cytotoxic effect against LN-229 and U-87 MG glioblastoma cell lines under hypoxic conditions when compared to temozolomide (TMZ), the golden standard for glioblastoma treatment. This cytotoxic response aligns with the increased apoptosis levels in LN-229 cells and senescence induction in U-87 MG cells, promoted by prodrugs 1d and 1e, under hypoxic conditions. These results highlight the potential of these hypoxia-activated nitroaromatic-based triazene prodrugs for selective delivery of the cytotoxic methyldiazonium ion and support further optimization to provide a safer alternative for glioblastoma treatment.
Collapse
Affiliation(s)
- Cláudia Braga
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Margarida Ferreira-Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
- Applied Molecular Biosciences Unit (UCIBIO), Departamento de Ciências da Vida, NOVA School of Science and Technology, NOVA University Lisbon 2829-516 Caparica Portugal
| | - M Luísa Corvo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Alexandra R Fernandes
- Applied Molecular Biosciences Unit (UCIBIO), Departamento de Ciências da Vida, NOVA School of Science and Technology, NOVA University Lisbon 2829-516 Caparica Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon 2819-516 Caparica Portugal
| | - João Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Maria J Perry
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| |
Collapse
|
3
|
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight JR, López-Giráldez F, Choi H, Socci ND, Merghoub T, Awad M, Getz G, Gainor J, Hellmann MD, Caron É, Kaech SM, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. J Exp Med 2025; 222:e20231106. [PMID: 39585348 PMCID: PMC11602551 DOI: 10.1084/jem.20231106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/29/2024] [Accepted: 09/27/2024] [Indexed: 11/26/2024] Open
Abstract
Despite the established use of immune checkpoint inhibitors (ICIs) to treat non-small cell lung cancer (NSCLC), only a subset of patients benefit from treatment and ∼50% of patients whose tumors respond eventually develop acquired resistance (AR). To identify novel drivers of AR, we generated murine Msh2 knock-out (KO) lung tumors that initially responded but eventually developed AR to anti-PD-1, alone or in combination with anti-CTLA-4. Resistant tumors harbored decreased infiltrating T cells and reduced cancer cell-intrinsic MHC-I and MHC-II levels, yet remained responsive to IFNγ. Resistant tumors contained extensive regions of hypoxia, and a hypoxia signature derived from single-cell transcriptional profiling of resistant cancer cells was associated with decreased progression-free survival in a cohort of NSCLC patients treated with anti-PD-1/PD-L1 therapy. Targeting hypoxic tumor regions using a hypoxia-activated pro-drug delayed AR to ICIs in murine Msh2 KO tumors. Thus, this work provides a rationale for targeting tumor metabolic features, such as hypoxia, in combination with immune checkpoint inhibition.
Collapse
Affiliation(s)
| | | | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | | | - Arvind Ravi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - James R. Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Hyejin Choi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas D. Socci
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program & Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Mark Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research and Department of Pathology, Massachusetts Genral Hospital, Boston, MA, USA
| | - Justin Gainor
- Center for Thoracic Cancers, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew D. Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Étienne Caron
- CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA, USA
| | - Katerina Politi
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Departments of Pathology and Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Kim CG, Jose J, Hay MP, Choi PJ. Novel Prodrug Strategies for the Treatment of Tuberculosis. Chem Asian J 2024; 19:e202400944. [PMID: 39179514 PMCID: PMC11613820 DOI: 10.1002/asia.202400944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is on the rise and increasing antimicrobial resistance is a global threat. This phenomenon necessitates new drug design methods such as a prodrug strategy to develop novel antitubercular agents. The prodrug strategy is a viable and useful means to improve the absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles of pharmacologically active agents. Granulomas are a pathological hallmark of M.tb infection and bear a remarkable resemblance to the tumour microenvironment, including regions of hypoxia. The hypoxic environment observed in the two structures offer an exceptional opportunity to deliver antitubercular agents selectively in a similar manner to hypoxia activated prodrugs in cancer therapy. Nitroimidazoles have been studied extensively as bioactivated prodrugs of cancer, and their suitability as substrates for mammalian reductases highlight their huge potential. This review will discuss the mechanism of action and resistance mechanisms of the current prodrugs used for the treatment of tuberculosis. It will also highlight the potential advantages and challenges of using hypoxia activated prodrugs as a viable strategy to target latent M.tb in hypoxic regions of granulomas.
Collapse
Affiliation(s)
- Christine G. Kim
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
5
|
Xiao D, Liu L, Xie F, Dong J, Wang Y, Xu X, Zhong W, Deng H, Zhou X, Li S. Azobenzene-Based Linker Strategy for Selective Activation of Antibody-Drug Conjugates. Angew Chem Int Ed Engl 2024; 63:e202310318. [PMID: 38369681 DOI: 10.1002/anie.202310318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Existing antibody-drug conjugate (ADC) linkers, whether cleavable or non-cleavable, are designed to release highly toxic payloads or payload derivatives upon internalisation of the ADCs into cells. However, clinical studies have shown that only <1 % of the dosed ADCs accumulate in tumour cells. The remaining >99 % of ADCs are nonspecifically distributed in healthy tissue cells, thus inevitably leading to off-target toxicity. Herein, we describe an intelligent tumour-specific linker strategy to address these limitations. A tumour-specific linker is constructed by introducing a hypoxia-activated azobenzene group as a toxicity controller. We show that this azobenzene-based linker is non-cleavable in healthy tissues (O2 >10 %), and the corresponding payload derivative, cysteine-appended azobenzene-linker-monomethyl auristatin E (MMAE), can serve as a safe prodrug to mask the toxicity of MMAE (switched off). Upon exposure to the hypoxic tumour microenvironment (O2<1 %), this linker is cleaved to release MMAE and fully restores the high cytotoxicity of the ADC (switched on). Notably, the azobenzene linker-containing ADC exhibits satisfactory antitumour efficacy in vivo and a larger therapeutic window compared with ADCs containing traditional cleavable or non-cleavable linkers. Thus, our azobenzene-based linker sheds new light on the development of next-generation ADC linkers.
Collapse
Affiliation(s)
- Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
6
|
Mathur S, Chen S, Rejniak KA. Exploring chronic and transient tumor hypoxia for predicting the efficacy of hypoxia-activated pro-drugs. NPJ Syst Biol Appl 2024; 10:1. [PMID: 38182612 PMCID: PMC10770176 DOI: 10.1038/s41540-023-00327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Hypoxia, a low level of oxygen in the tissue, arises due to an imbalance between the vascular oxygen supply and oxygen demand by the surrounding cells. Typically, hypoxia is viewed as a negative marker of patients' survival, because of its implication in the development of aggressive tumors and tumor resistance. Several drugs that specifically target the hypoxic cells have been developed, providing an opportunity for exploiting hypoxia to improve cancer treatment. Here, we consider combinations of hypoxia-activated pro-drugs (HAPs) and two compounds that transiently increase intratumoral hypoxia: a vasodilator and a metabolic sensitizer. To effectively design treatment protocols with multiple compounds we used mathematical micro-pharmacology modeling and determined treatment schedules that take advantage of heterogeneous and dynamically changing oxygenation in tumor tissue. Our model was based on data from murine pancreatic cancers treated with evofosfamide (as a HAP) and either hydralazine (as a vasodilator), or pyruvate (as a metabolic sensitizer). Subsequently, this model was used to identify optimal schedules for different treatment combinations. Our simulations showed that schedules of HAPs with the vasodilator had a bimodal distribution, while HAPs with the sensitizer showed an elongated plateau. All schedules were more successful than HAP monotherapy. The three-compound combination had three local optima, depending on the HAPs clearance from the tissue interstitium, each two-fold more effective than baseline HAP treatment. Our study indicates that the three-compound therapy administered in the defined order will improve cancer response and that designing complex schedules could benefit from the use of mathematical modeling.
Collapse
Affiliation(s)
- Shreya Mathur
- H. Lee Moffitt Cancer Center and Research Institute, IMO High School Internship Program, Tampa, FL, USA
- University of Florida, Undergraduate Studies, Gainesville, FL, USA
| | - Shannon Chen
- H. Lee Moffitt Cancer Center and Research Institute, IMO High School Internship Program, Tampa, FL, USA
- University of Florida, Undergraduate Studies, Gainesville, FL, USA
| | - Katarzyna A Rejniak
- H. Lee Moffitt Cancer Center and Research Institute, Integrated Mathematical Oncology Department, Tampa, FL, USA.
- University of South Florida, Morsani College of Medicine, Department of Oncologic Sciences, Tampa, FL, USA.
| |
Collapse
|
7
|
Yaromina A, Koi L, Schuitmaker L, van der Wiel AMMA, Dubois LJ, Krause M, Lambin P. Overcoming radioresistance with the hypoxia-activated prodrug CP-506: A pre-clinical study of local tumour control probability. Radiother Oncol 2023; 186:109738. [PMID: 37315579 DOI: 10.1016/j.radonc.2023.109738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND PURPOSE Tumour hypoxia is an established radioresistance factor. A novel hypoxia-activated prodrug CP-506 has been proven to selectively target hypoxic tumour cells and to cause anti-tumour activity. The current study investigates whether CP-506 improves outcome of radiotherapy in vivo. MATERIALS AND METHODS Mice bearing FaDu and UT-SCC-5 xenografts were randomized to receive 5 daily injections of CP-506/vehicle followed by single dose (SD) irradiation. In addition, CP-506 was combined once per week with fractionated irradiation (30 fractions/6 weeks). Animals were followed-up to score all recurrences. In parallel, tumours were harvested to evaluate pimonidazole hypoxia, DNA damage (γH2AX), expression of oxidoreductases. RESULTS CP-506 treatment significantly increased local control rate after SD in FaDu, 62% vs. 27% (p = 0.024). In UT-SCC-5, this effect was not curative and only marginally significant. CP-506 induced significant DNA damage in FaDu (p = 0.009) but not in UT- SCC-5. Hypoxic volume (HV) was significantly smaller (p = 0.038) after pretreatment with CP-506 as compared to vehicle in FaDu but not in less responsive UT-SCC-5. Adding CP-506 to fractionated radiotherapy in FaDu did not result in significant benefit. CONCLUSION The results support the use of CP-506 in combination with radiation in particular using hypofractionation schedules in hypoxic tumours. The magnitude of effect depends on the tumour model, therefore it is expected that applying appropriate patient stratification strategy will further enhance the benefit of CP-506 treatment for cancer patients. A phase I-IIA clinical trial of CP-506 in monotherapy or in combination with carboplatin or a checkpoint inhibitor has been approved (NCT04954599).
Collapse
Affiliation(s)
- Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
| | - Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Lesley Schuitmaker
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | | | - Ludwig Jerome Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, German Cancer Research Center, Heidelberg, National Center for Tumour Diseases (NCT), partner site Dresden, German Cancer Consortium (DKTK), core center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
8
|
Wong WW, O'Brien-Gortner SF, Anderson RF, Wilson WR, Hay MP, Dickson BD. Hypoxia-activated prodrugs of phenolic olaparib analogues for tumour-selective chemosensitisation. RSC Med Chem 2023; 14:1309-1330. [PMID: 37484567 PMCID: PMC10357951 DOI: 10.1039/d3md00117b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 07/25/2023] Open
Abstract
Poly(ADP-ribose)polymerase inhibitors (PARPi) are used for treatment of tumours with a defect in homologous recombination (HR) repair. Combination with radio- or chemotherapy could broaden their applicability but a major hurdle is enhancement of normal tissue toxicity. Development of hypoxia-activated prodrugs (HAPs) of PARPi has potential to restrict PARP inhibition to tumours thereby avoiding off-target toxicity. We have designed and synthesised phenolic derivatives of olaparib (termed phenolaparibs) and corresponding ether-linked HAPs. Phenolaparib cytotoxicity in HR-proficient and deficient cell lines was consistent with inhibition of PARP-1. Prodrugs were deactivated relative to phenolaparibs in biochemical PARP-1 inhibition assays, and cell culture. Prodrug 7 was selectively converted to phenolaparib 4 under hypoxia and demonstrated hypoxia-selective cytotoxicity, including chemosensitisation of HR-proficient cells in combination with temozolomide. This work demonstrates the feasibility of a HAP approach to PARPi for use in combination therapies.
Collapse
Affiliation(s)
- Way W Wong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
| | - Sophia F O'Brien-Gortner
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
- School of Chemical Sciences, The University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
| | - Michael P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
| | - Benjamin D Dickson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland Private Bag 92019 Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland Symonds St Auckland 1010 New Zealand
| |
Collapse
|
9
|
Bayraktar A, Li X, Kim W, Zhang C, Turkez H, Shoaie S, Mardinoglu A. Drug repositioning targeting glutaminase reveals drug candidates for the treatment of Alzheimer's disease patients. J Transl Med 2023; 21:332. [PMID: 37210557 DOI: 10.1186/s12967-023-04192-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Despite numerous clinical trials and decades of endeavour, there is still no effective cure for Alzheimer's disease. Computational drug repositioning approaches may be employed for the development of new treatment strategies for Alzheimer's patients since an extensive amount of omics data has been generated during pre-clinical and clinical studies. However, targeting the most critical pathophysiological mechanisms and determining drugs with proper pharmacodynamics and good efficacy are equally crucial in drug repurposing and often imbalanced in Alzheimer's studies. METHODS Here, we investigated central co-expressed genes upregulated in Alzheimer's disease to determine a proper therapeutic target. We backed our reasoning by checking the target gene's estimated non-essentiality for survival in multiple human tissues. We screened transcriptome profiles of various human cell lines perturbed by drug induction (for 6798 compounds) and gene knockout using data available in the Connectivity Map database. Then, we applied a profile-based drug repositioning approach to discover drugs targeting the target gene based on the correlations between these transcriptome profiles. We evaluated the bioavailability, functional enrichment profiles and drug-protein interactions of these repurposed agents and evidenced their cellular viability and efficacy in glial cell culture by experimental assays and Western blotting. Finally, we evaluated their pharmacokinetics to anticipate to which degree their efficacy can be improved. RESULTS We identified glutaminase as a promising drug target. Glutaminase overexpression may fuel the glutamate excitotoxicity in neurons, leading to mitochondrial dysfunction and other neurodegeneration hallmark processes. The computational drug repurposing revealed eight drugs: mitoxantrone, bortezomib, parbendazole, crizotinib, withaferin-a, SA-25547 and two unstudied compounds. We demonstrated that the proposed drugs could effectively suppress glutaminase and reduce glutamate production in the diseased brain through multiple neurodegeneration-associated mechanisms, including cytoskeleton and proteostasis. We also estimated the human blood-brain barrier permeability of parbendazole and SA-25547 using the SwissADME tool. CONCLUSIONS This study method effectively identified an Alzheimer's disease marker and compounds targeting the marker and interconnected biological processes by use of multiple computational approaches. Our results highlight the importance of synaptic glutamate signalling in Alzheimer's disease progression. We suggest repurposable drugs (like parbendazole) with well-evidenced activities that we linked to glutamate synthesis hereby and novel molecules (SA-25547) with estimated mechanisms for the treatment of Alzheimer's patients.
Collapse
Affiliation(s)
- Abdulahad Bayraktar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Xiangyu Li
- Bash Biotech Inc, 600 West Broadway, Suite 700, San Diego, CA, 92101, USA
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121, Stockholm, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121, Stockholm, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121, Stockholm, Sweden.
| |
Collapse
|
10
|
Yilmaz D, Tuzer M, Unlu MB. Assessing the therapeutic response of tumors to hypoxia-targeted prodrugs with an in silico approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10941-10962. [PMID: 36124576 DOI: 10.3934/mbe.2022511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor hypoxia is commonly recognized as a condition stimulating the progress of the aggressive phenotype of tumor cells. Hypoxic tumor cells inhibit the delivery of cytotoxic drugs, causing hypoxic areas to receive insufficient amounts of anticancer agents, which results in adverse treatment responses. Being such an obstruction to conventional therapies for cancer, hypoxia might be considered a target to facilitate the efficacy of treatments in the resistive environment of tumor sites. In this regard, benefiting from prodrugs that selectively target hypoxic regions remains an effective approach. Additionally, combining hypoxia-activated prodrugs (HAPs) with conventional chemotherapeutic drugs has been used as a promising strategy to eradicate hypoxic cells. However, determining the appropriate sequencing and scheduling of the combination therapy is also of great importance in obtaining favorable results in anticancer therapy. Here, benefiting from a modeling approach, we study the efficacy of HAPs in combination with chemotherapeutic drugs on tumor growth and the treatment response. Different treatment schedules have been investigated to see the importance of determining the optimal schedule in combination therapy. The effectiveness of HAPs in varying hypoxic conditions has also been explored in the study. The model provides qualitative conclusions about the treatment response, as the maximal benefit is obtained from combination therapy with greater cell death for highly hypoxic tumors. It has also been observed that the antitumor effects of HAPs show a hypoxia-dependent profile.
Collapse
Affiliation(s)
- Defne Yilmaz
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Mert Tuzer
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8648, Japan
| |
Collapse
|
11
|
Hu J, Li X, Yang L, Li H. Hypoxia, a key factor in the immune microenvironment. Biomed Pharmacother 2022; 151:113068. [PMID: 35676780 DOI: 10.1016/j.biopha.2022.113068] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
The physical and chemical pressures in the tumor microenvironment (TME) play an important role in tumor development by regulating stromal elements, including immune cells. Hypoxia can induce a cascade of events in tumor initiation and development via immune regulation. As a dangerous factor, hypoxia activates multiple signaling pathways to reshape the immune microenvironment, leading to immunosuppression. Consequently, targeting hypoxia in the TME is a potential strategy to prevent immune escape and inhibit malignant tumor progression. In this review, we summarized the role of hypoxia-induced factors in the tumor immune escape process and provide a novel pathway to restrain tumor progression and development.
Collapse
Affiliation(s)
- Jingyao Hu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China.
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China.
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China.
| |
Collapse
|
12
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Liu Z, Zhang Y, Shen N, Sun J, Tang Z, Chen X. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Adv Drug Deliv Rev 2022; 183:114138. [PMID: 35143895 DOI: 10.1016/j.addr.2022.114138] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Nanomedicine greatly improves the efficiency in the delivery of antitumor drugs into the tumor, but insufficient tumoral penetration impairs the therapeutic efficacy of most nanomedicines. Vascular disrupting agent (VDA) nanomedicines are distributed around the tumor vessels due to the low tissue penetration in solid tumors, and the released drugs can selectively destroy immature tumor vessels and block the supply of oxygen and nutrients, leading to the internal necrosis of the tumors. VDAs can also improve the vascular permeability of the tumor, further increasing the extravasation of VDA nanomedicines in the tumor site, markedly reducing the dependence of nanomedicines on the enhanced permeability and retention effect (EPR effect). This review highlights the progress of VDA nanomedicines in recent years and their application in cancer therapy. First, the mechanisms of different VDAs are introduced. Subsequently, different strategies of delivering VDAs are described. Finally, multiple combination strategies with VDA nanomedicines in cancer therapy are described in detail.
Collapse
|
14
|
Park K, Veena MS, Shin DS. Key Players of the Immunosuppressive Tumor Microenvironment and Emerging Therapeutic Strategies. Front Cell Dev Biol 2022; 10:830208. [PMID: 35345849 PMCID: PMC8957227 DOI: 10.3389/fcell.2022.830208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is a complex, dynamic battlefield for both immune cells and tumor cells. The advent of the immune checkpoint inhibitors (ICI) since 2011, such as the anti-cytotoxic T-lymphocyte associated protein (CTLA)-4 and anti-programmed cell death receptor (PD)-(L)1 antibodies, provided powerful weapons in the arsenal of cancer treatments, demonstrating unprecedented durable responses for patients with many types of advanced cancers. However, the response rate is generally low across tumor types and a substantial number of patients develop acquired resistance. These primary or acquired resistance are attributed to various immunosuppressive elements (soluble and cellular factors) and alternative immune checkpoints in the TME. Therefore, a better understanding of the TME is absolutely essential to develop therapeutic strategies to overcome resistance. Numerous clinical studies are underway using ICIs and additional agents that are tailored to the characteristics of the tumor or the TME. Some of the combination treatments are already approved by the Food and Drug Administration (FDA), such as platinum-doublet chemotherapy, tyrosine kinase inhibitor (TKI) -targeting vascular endothelial growth factor (VEGF) combined with anti-PD-(L)1 antibodies or immuno-immuno combinations (anti-CTLA-4 and anti-PD-1). In this review, we will discuss the key immunosuppressive cells, metabolites, cytokines or chemokines, and hypoxic conditions in the TME that contribute to tumor immune escape and the prospect of relevant clinical trials by targeting these elements in combination with ICIs.
Collapse
Affiliation(s)
- Kevin Park
- Department of Medicine, Division of Hematology/Oncology, Los Angeles, CA, United States.,VA Greater Los Angeles Healthcare System, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Mysore S Veena
- Department of Medicine, Division of Hematology/Oncology, Los Angeles, CA, United States.,VA Greater Los Angeles Healthcare System, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology/Oncology, Los Angeles, CA, United States.,VA Greater Los Angeles Healthcare System, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.,Molecular Biology Institute, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
15
|
Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022; 19:281-301. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has become a serious health problem with high impact worldwide. The heterogeneity of PDAC makes it difficult to apply drug delivery systems (DDS) used in other cancer models, for example, the poorly developed vascular system makes anti-angiogenic therapy ineffective. Due to its various malignant pathological changes, drug delivery against PDAC is a matter of urgent concern. Based on this situation, various drug delivery strategies specially designed for PDAC have been generated. AREAS COVERED This review will briefly describe how delivery systems can be designed through nanotechnology and formulation science. Most research focused on penetrating the stromal barrier, exploiting and alleviating the hypoxic microenvironment, targeting immune cells, or designing vaccines, and combination therapies. This review will summarize the ways to reverse the malignant pathological features of PDAC and hopefully provide ideas for subsequent studies. EXPERT OPINION Drug delivery systems designed to achieve penetrating functions or to alleviate hypoxia and activate immunity have achieved good therapeutic results in animal models in several studies. In future studies, there is a need to deliver PDAC therapeutics in a more precise manner, or the use of drug carriers for multiple functions simultaneously, are potential therapeutic strategy.
Collapse
Affiliation(s)
- Haolin Song
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| | - Chen Jiang
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| |
Collapse
|
16
|
van der Wiel AM, Jackson-Patel V, Niemans R, Yaromina A, Liu E, Marcus D, Mowday AM, Lieuwes NG, Biemans R, Lin X, Fu Z, Kumara S, Jochems A, Ashoorzadeh A, Anderson RF, Hicks KO, Bull MR, Abbattista MR, Guise CP, Deschoemaeker S, Thiolloy S, Heyerick A, Solivio MJ, Balbo S, Smaill JB, Theys J, Dubois LJ, Patterson AV, Lambin P. Selectively Targeting Tumor Hypoxia With the Hypoxia-Activated Prodrug CP-506. Mol Cancer Ther 2021; 20:2372-2383. [PMID: 34625504 PMCID: PMC9398139 DOI: 10.1158/1535-7163.mct-21-0406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
Hypoxia-activated prodrugs (HAP) are a promising class of antineoplastic agents that can selectively eliminate hypoxic tumor cells. This study evaluates the hypoxia-selectivity and antitumor activity of CP-506, a DNA alkylating HAP with favorable pharmacologic properties. Stoichiometry of reduction, one-electron affinity, and back-oxidation rate of CP-506 were characterized by fast-reaction radiolytic methods with observed parameters fulfilling requirements for oxygen-sensitive bioactivation. Net reduction, metabolism, and cytotoxicity of CP-506 were maximally inhibited at oxygen concentrations above 1 μmol/L (0.1% O2). CP-506 demonstrated cytotoxicity selectively in hypoxic 2D and 3D cell cultures with normoxic/anoxic IC50 ratios up to 203. Complete resistance to aerobic (two-electron) metabolism by aldo-keto reductase 1C3 was confirmed through gain-of-function studies while retention of hypoxic (one-electron) bioactivation by various diflavin oxidoreductases was also demonstrated. In vivo, the antitumor effects of CP-506 were selective for hypoxic tumor cells and causally related to tumor oxygenation. CP-506 effectively decreased the hypoxic fraction and inhibited growth of a wide range of hypoxic xenografts. A multivariate regression analysis revealed baseline tumor hypoxia and in vitro sensitivity to CP-506 were significantly correlated with treatment response. Our results demonstrate that CP-506 selectively targets hypoxic tumor cells and has broad antitumor activity. Our data indicate that tumor hypoxia and cellular sensitivity to CP-506 are strong determinants of the antitumor effects of CP-506.
Collapse
Affiliation(s)
- Alexander M.A. van der Wiel
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Victoria Jackson-Patel
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Raymon Niemans
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Emily Liu
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Damiënne Marcus
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Alexandra M. Mowday
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Natasja G. Lieuwes
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Rianne Biemans
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Xiaojing Lin
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Zhe Fu
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sisira Kumara
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Arthur Jochems
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Robert F. Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Kevin O. Hicks
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Matthew R. Bull
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Maria R. Abbattista
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Christopher P. Guise
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jeff B. Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jan Theys
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ludwig J. Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding Author: Adam V. Patterson, Auckland Cancer Society Research Centre, University of Auckland, Faculty of Medicine and Health Sciences, Auckland 1142, New Zealand. E-mail:
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
17
|
Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 2021; 18:751-772. [PMID: 34326502 DOI: 10.1038/s41571-021-00539-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.
Collapse
|
18
|
Jayaprakash P, Vignali PDA, Delgoffe GM, Curran MA. Hypoxia Reduction Sensitizes Refractory Cancers to Immunotherapy. Annu Rev Med 2021; 73:251-265. [PMID: 34699264 DOI: 10.1146/annurev-med-060619-022830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to fuel their relentless expansion, cancers must expand their vasculature to augment delivery of oxygen and essential nutrients. The disordered web of irregular vessels that results, however, leaves gaps in oxygen delivery that foster tumor hypoxia. At the same time, tumor cells increase their oxidative metabolism to cope with the energetic demands of proliferation, which further worsens hypoxia due to heightened oxygen consumption. In these hypoxic, nutrient-deprived environments, tumors and suppressive stroma evolve to flourish while antitumor immunity collapses due to a combination of energetic deprivation, toxic metabolites, acidification, and other suppressive signals. Reversal of cancer hypoxia thus has the potential to increase the survival and effector function of tumor-infiltrating T cells, as well as to resensitize tumors to immunotherapy. Early clinical trials combining hypoxia reduction with immune checkpoint blockade have shown promising results in treating patients with advanced, metastatic, and therapeutically refractory cancers. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Priyamvada Jayaprakash
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
| | - Paolo Dario Angelo Vignali
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, Pennsylvania 15232, USA
| | - Greg M Delgoffe
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, Pennsylvania 15232, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
| |
Collapse
|
19
|
Kishimoto S, Brender JR, Chandramouli GVR, Saida Y, Yamamoto K, Mitchell JB, Krishna MC. Hypoxia-Activated Prodrug Evofosfamide Treatment in Pancreatic Ductal Adenocarcinoma Xenografts Alters the Tumor Redox Status to Potentiate Radiotherapy. Antioxid Redox Signal 2021; 35:904-915. [PMID: 32787454 PMCID: PMC8568781 DOI: 10.1089/ars.2020.8131] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: In hypoxic tumor microenvironments, the strongly reducing redox environment reduces evofosfamide (TH-302) to release a cytotoxic bromo-isophosphoramide (Br-IPM) moiety. This drug therefore preferentially attacks hypoxic regions in tumors where other standard anticancer treatments such as chemotherapy and radiation therapy are often ineffective. Various combination therapies with evofosfamide have been proposed and tested in preclinical and clinical settings. However, the treatment effect of evofosfamide monotherapy on tumor hypoxia has not been fully understood, partly due to the lack of quantitative methods to assess tumor pO2in vivo. Here, we use quantitative pO2 imaging by electron paramagnetic resonance (EPR) to evaluate the change in tumor hypoxia in response to evofosfamide treatment using two pancreatic ductal adenocarcinoma xenograft models: MIA Paca-2 tumors responding to evofosfamide and Su.86.86 tumors that do not respond. Results: EPR imaging showed that oxygenation improved globally after evofosfamide treatment in hypoxic MIA Paca-2 tumors, in agreement with the ex vivo results obtained from hypoxia staining by pimonidazole and in apparent contrast to the decrease in Ktrans observed in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Innovations: The observation that evofosfamide not only kills the hypoxic region of the tumor but also improves oxygenation in the residual tumor regions provides a rationale for combination therapies using radiation and antiproliferatives post evofosfamide for improved outcomes. Conclusion: This study suggests that reoxygenation after evofosfamide treatment is due to decreased oxygen demand rather than improved perfusion. Following the change in pO2 after treatment may therefore yield a way of monitoring treatment response. Antioxid. Redox Signal. 35, 904-915.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
21
|
Li Y, Zhao L, Li XF. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front Oncol 2021; 11:700407. [PMID: 34395270 PMCID: PMC8358929 DOI: 10.3389/fonc.2021.700407] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an important characteristic of most solid malignancies, and is closely related to tumor prognosis and therapeutic resistance. Hypoxia is one of the most important factors associated with resistance to conventional radiotherapy and chemotherapy. Therapies targeting tumor hypoxia have attracted considerable attention. Hypoxia-activated prodrugs (HAPs) are bioreductive drugs that are selectively activated under hypoxic conditions and that can accurately target the hypoxic regions of solid tumors. Both single-agent and combined use with other drugs have shown promising antitumor effects. In this review, we discuss the mechanism of action and the current preclinical and clinical progress of several of the most widely used HAPs, summarize their existing problems and shortcomings, and discuss future research prospects.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
22
|
Anduran E, Dubois LJ, Lambin P, Winum JY. Hypoxia-activated prodrug derivatives of anti-cancer drugs: a patent review 2006 - 2021. Expert Opin Ther Pat 2021; 32:1-12. [PMID: 34241566 DOI: 10.1080/13543776.2021.1954617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The hypoxic tumor microenvironment represents a persistent obstacle in the treatment of most solid tumors. In the past years, significant efforts have been made to improve the efficacy of anti-cancer drugs. Therefore, hypoxia-activated prodrugs (HAPs) of chemotherapeutic compounds have attracted widespread interest as a therapeutic means to treat hypoxic tumors. AREAS COVERED This updated review paper covers key patents published between 2006 and 2021 on the developments of HAP derivatives of anti-cancer compounds. EXPERT OPINION Despite significant achievements in the development of HAP derivatives of anti-cancer compounds and although many clinical trials have been performed or are ongoing both as monotherapies and as part of combination therapies, there has currently no HAP anti-cancer agent been commercialized into the market. Unsuccessful clinical translation is partly due to the lack of patient stratification based on reliable biomarkers that are predictive of a positive response to hypoxia-targeted therapy.
Collapse
Affiliation(s)
- Emilie Anduran
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.,GROW-School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Ludwig J Dubois
- GROW-School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Philippe Lambin
- GROW-School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
23
|
Spatially-resolved pharmacokinetic/pharmacodynamic modelling of bystander effects of a nitrochloromethylbenzindoline hypoxia-activated prodrug. Cancer Chemother Pharmacol 2021; 88:673-687. [PMID: 34245333 DOI: 10.1007/s00280-021-04320-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Hypoxia-activated prodrugs (HAPs) have the potential for eliminating chemo- and radiation-resistant hypoxic tumour cells, but their activity is often compromised by limited penetration into hypoxic zones. Nitrochloromethylbenzindoline (nitroCBI) HAPs are reduced in hypoxic cells to highly cytotoxic DNA minor groove alkylating aminoCBI metabolites. In this study, we investigate whether a lead nitroCBI, SN30548, generates a significant bystander effect through the diffusion of its aminoCBI metabolite and whether this compensates for any diffusion limitations of the prodrug in tumour tissue. METHODS Metabolism and uptake of the nitroCBI in oxic and anoxic cells, and diffusion through multicellular layer cultures, was characterised by LC-MS/MS. To quantify bystander effects, clonogenic cell killing of HCT116 cells was assessed in multicellular spheroid co-cultures comprising cells transfected with cytochrome P450 oxidoreductase (POR) or E. coli nitroreductase NfsA. Spatially-resolved pharmacokinetic/pharmacodynamic (PK/PD) models, parameterised by the above measurements, were developed for spheroids and tumours using agent-based and Green's function modelling, respectively. RESULTS NitroCBI was reduced to aminoCBI by POR under anoxia and by NfsA under oxia, and was the only significant cytotoxic metabolite in both cases. In spheroid co-cultures comprising 30% NfsA-expressing cells, non-metabolising cells were as sensitive as the NfsA cells, demonstrating a marked bystander effect. Agent-based PK/PD models provided good prediction of cytotoxicity in spheroids, while use of the same parameters in a Green's function model for a tumour microregion demonstrated that local diffusion of aminoCBI overcomes the penetration limitation of the prodrug. CONCLUSIONS The nitroCBI HAP SN30548 generates a highly efficient bystander effect through local diffusion of its active metabolite in tumour tissue.
Collapse
|
24
|
Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res 2021; 40:197. [PMID: 34154610 PMCID: PMC8215813 DOI: 10.1186/s13046-021-02000-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia in solid tumors is an important predictor of treatment resistance and poor clinical outcome. The significance of hypoxia in the development of resistance to radiotherapy has been recognized for decades and the search for hypoxia-targeting, radiosensitizing agents continues. This review summarizes the main hypoxia-related processes relevant for radiotherapy on the subcellular, cellular and tissue level and discusses the significance of hypoxia in radiation oncology, especially with regard to the current shift towards hypofractionated treatment regimens. Furthermore, we discuss the strategies to interfere with hypoxia for radiotherapy optimization, and we highlight novel insights into the molecular pathways involved in hypoxia that might be utilized to increase the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
25
|
Al-Hilal TA, Hossain MA, Alobaida A, Alam F, Keshavarz A, Nozik-Grayck E, Stenmark KR, German NA, Ahsan F. Design, synthesis and biological evaluations of a long-acting, hypoxia-activated prodrug of fasudil, a ROCK inhibitor, to reduce its systemic side-effects. J Control Release 2021; 334:237-247. [PMID: 33915222 DOI: 10.1016/j.jconrel.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
ROCK, one of the downstream regulators of Rho, controls actomyosin cytoskeleton organization, stress fiber formation, smooth muscle contraction, and cell migration. ROCK plays an important role in the pathologies of cerebral and coronary vasospasm, hypertension, cancer, and arteriosclerosis. Pharmacological-induced systemic inhibition of ROCK affects both the pathological and physiological functions of Rho-kinase, resulting in hypotension, increased heart rate, decreased lymphocyte count, and eventually cardiovascular collapse. To overcome the adverse effects of systemic ROCK inhibition, we developed a bioreductive prodrug of a ROCK inhibitor, fasudil, that functions selectively under hypoxic conditions. By masking fasudil's active site with a bioreductive 4-nitrobenzyl group, we synthesized a prodrug of fasudil that is inactive in normoxia. Reduction of the protecting group initiated by hypoxia reveals an electron-donating substituent that leads to fragmentation of the parent molecule. Under normoxia the fasudil prodrug displayed significantly reduced activity against ROCK compared to its parent compound, but under severe hypoxia the prodrug was highly effective in suppressing ROCK activity. Under hypoxia the prodrug elicited an antiproliferative effect on disease-afflicted pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. The prodrug displayed a long plasma half-life, remained inactive in the blood, and produced no drop in systemic blood pressure when compared with fasudil-treated controls. Due to its selective nature, our hypoxia-activated fasudil prodrug could be used to treat diseases where tissue-hypoxia or hypoxic cells are the pathological basis of the disease.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutical Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Mohammad Anwar Hossain
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Ahmed Alobaida
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutics, School of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Farzana Alam
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Ali Keshavarz
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutical and Biomedical Sciences, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA.
| |
Collapse
|
26
|
Fu Z, Mowday AM, Smaill JB, Hermans IF, Patterson AV. Tumour Hypoxia-Mediated Immunosuppression: Mechanisms and Therapeutic Approaches to Improve Cancer Immunotherapy. Cells 2021; 10:1006. [PMID: 33923305 PMCID: PMC8146304 DOI: 10.3390/cells10051006] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 01/05/2023] Open
Abstract
The magnitude of the host immune response can be regulated by either stimulatory or inhibitory immune checkpoint molecules. Receptor-ligand binding between inhibitory molecules is often exploited by tumours to suppress anti-tumour immune responses. Immune checkpoint inhibitors that block these inhibitory interactions can relieve T-cells from negative regulation, and have yielded remarkable activity in the clinic. Despite this success, clinical data reveal that durable responses are limited to a minority of patients and malignancies, indicating the presence of underlying resistance mechanisms. Accumulating evidence suggests that tumour hypoxia, a pervasive feature of many solid cancers, is a critical phenomenon involved in suppressing the anti-tumour immune response generated by checkpoint inhibitors. In this review, we discuss the mechanisms associated with hypoxia-mediate immunosuppression and focus on modulating tumour hypoxia as an approach to improve immunotherapy responsiveness.
Collapse
Affiliation(s)
- Zhe Fu
- Malaghan Institute of Medical Research, Wellington 6042, New Zealand; (Z.F.); (I.F.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
| | - Alexandra M. Mowday
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jeff B. Smaill
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington 6042, New Zealand; (Z.F.); (I.F.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
| | - Adam V. Patterson
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
27
|
Li Y, Zhao L, Li XF. The Hypoxia-Activated Prodrug TH-302: Exploiting Hypoxia in Cancer Therapy. Front Pharmacol 2021; 12:636892. [PMID: 33953675 PMCID: PMC8091515 DOI: 10.3389/fphar.2021.636892] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is an important feature of most solid tumors, conferring resistance to radiation and many forms of chemotherapy. However, it is possible to exploit the presence of tumor hypoxia with hypoxia-activated prodrugs (HAPs), agents that in low oxygen conditions undergo bioreduction to yield cytotoxic metabolites. Although many such agents have been developed, we will focus here on TH-302. TH-302 has been extensively studied, and we discuss its mechanism of action, as well as its efficacy in preclinical and clinical studies, with the aim of identifying future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
28
|
Evofosfamide Is Effective against Pediatric Aggressive Glioma Cell Lines in Hypoxic Conditions and Potentiates the Effect of Cytotoxic Chemotherapy and Ionizing Radiations. Cancers (Basel) 2021; 13:cancers13081804. [PMID: 33918823 PMCID: PMC8070185 DOI: 10.3390/cancers13081804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite many therapeutic approaches attempted over the last years, the prognosis of children with high-grade glioma or diffuse intrinsic pontine glioma remains dismal. Hypoxia-activated prodrugs (HAPs) were developed to target hypoxic areas within solid tumors as gliomas. Evofosfamide (Evo) is a 2nd generation HAP exhibiting significant preclinical and clinical activities against adult glioblastoma. We thus investigated the potential of Evo in six pediatric glioma cell lines. Interestingly, we showed that the growth of all cell lines was inhibited by Evo, mainly under hypoxia as expected. We also evidenced a significant synergism between Evo and three drugs widely used in pediatric oncology. Finally, Evo appeared able to potentiate the effect of ionizing radiations. Since these tumors are highly hypoxic and Evo appears effective in hypoxic glioma cells as a single drug and in combination with radio- and chemotherapy, hypoxia-activated prodrugs could represent a promising therapeutic option for children with brain tumors. Abstract Hypoxia is a hallmark of many solid tumors and is associated with resistance to anticancer treatments. Hypoxia-activated prodrugs (HAPs) were developed to target the hypoxic regions of these tumors. Among 2nd generation HAPs, Evofosfamide (Evo, also known as TH-302) exhibits preclinical and clinical activities against adult glioblastoma. In this study, we evaluated its potential in the field of pediatric neuro-oncology. We assessed the efficacy of Evo in vitro as a single drug, or in combination with SN38, doxorubicin, and etoposide, against three pediatric high-grade glioma (pHGG) and three diffuse intrinsic pontine glioma (DIPG) cell lines under hypoxic conditions. We also investigated radio-sensitizing effects using clonogenic assays. Evo inhibited the growth of all cell lines, mainly under hypoxia. We also highlighted a significant synergism between Evo and doxorubicin, SN38, or etoposide. Finally, Evo radio-sensitized the pHGG cell line tested, both with fractionated and single-dose irradiation schedules. Altogether, we report here the first preclinical proof of evidence about Evofosfamide efficiency against hypoxic pHGG and DIPG cells. Since such tumors are highly hypoxic, and Evo potentiates the effect of ionizing radiation and chemotherapy, it appears as a promising therapeutic strategy for children with brain tumors.
Collapse
|
29
|
Tumor Hypoxia as a Barrier in Cancer Therapy: Why Levels Matter. Cancers (Basel) 2021; 13:cancers13030499. [PMID: 33525508 PMCID: PMC7866096 DOI: 10.3390/cancers13030499] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia is a common feature of solid tumors and associated with poor outcome in most cancer types and treatment modalities, including radiotherapy, chemotherapy, surgery and, most likely, immunotherapy. Emerging strategies, such as proton therapy and combination therapies with radiation and hypoxia targeted drugs, provide new opportunities to overcome the hypoxia barrier and improve therapeutic outcome. Hypoxia is heterogeneously distributed both between and within tumors and shows large variations across patients not only in prevalence, but importantly, also in level. To best exploit the emerging strategies, a better understanding of how individual hypoxia levels from mild to severe affect tumor biology is vital. Here, we discuss our current knowledge on this topic and how we should proceed to gain more insight into the field. Abstract Hypoxia arises in tumor regions with insufficient oxygen supply and is a major barrier in cancer treatment. The distribution of hypoxia levels is highly heterogeneous, ranging from mild, almost non-hypoxic, to severe and anoxic levels. The individual hypoxia levels induce a variety of biological responses that impair the treatment effect. A stronger focus on hypoxia levels rather than the absence or presence of hypoxia in our investigations will help development of improved strategies to treat patients with hypoxic tumors. Current knowledge on how hypoxia levels are sensed by cancer cells and mediate cellular responses that promote treatment resistance is comprehensive. Recently, it has become evident that hypoxia also has an important, more unexplored role in the interaction between cancer cells, stroma and immune cells, influencing the composition and structure of the tumor microenvironment. Establishment of how such processes depend on the hypoxia level requires more advanced tumor models and methodology. In this review, we describe promising model systems and tools for investigations of hypoxia levels in tumors. We further present current knowledge and emerging research on cellular responses to individual levels, and discuss their impact in novel therapeutic approaches to overcome the hypoxia barrier.
Collapse
|
30
|
Veerasubramanian PK, Trinh A, Akhtar N, Liu WF, Downing TL. Biophysical and epigenetic regulation of cancer stemness, invasiveness and immune action. CURRENT TISSUE MICROENVIRONMENT REPORTS 2020; 1:277-300. [PMID: 33817661 PMCID: PMC8015331 DOI: 10.1007/s43152-020-00021-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The tumor microenvironment (TME) is an amalgam of multiple dysregulated biophysical cues that can alter cellular behavior through mechanotransductive signaling and epigenetic modifications. Through this review, we seek to characterize the extent of biophysical and epigenetic regulation of cancer stemness and tumor-associated immune cells in order to identify ideal targets for cancer therapy. RECENT FINDINGS Recent studies have identified cancer stemness and immune action as significant contributors to neoplastic disease, due to their susceptibility to microenvironmental influences. Matrix stiffening, altered vasculature, and resultant hypoxia within the TME can influence cancer stem cell (CSC) and immune cell behavior, as well as alter the epigenetic landscapes involved in cancer development. SUMMARY This review highlights the importance of aberrant biophysical cues in driving cancer progression through altered behavior of CSCs and immune cells, which in turn sustains further biophysical dysregulation. We examine current and potential therapeutic approaches that break this self-sustaining cycle of disease progression by targeting the presented biophysical and epigenetic signatures of cancer. We also summarize strategies including the normalization of the TME, targeted drug delivery, and inhibition of cancer-enabling epigenetic players.
Collapse
Affiliation(s)
- Praveen Krishna Veerasubramanian
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Annie Trinh
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
| | - Navied Akhtar
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA, USA
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
31
|
Ray P, Dutta D, Haque I, Nair G, Mohammed J, Parmer M, Kale N, Orr M, Jain P, Banerjee S, Reindl KM, Mallik S, Kambhampati S, Banerjee SK, Quadir M. pH-Sensitive Nanodrug Carriers for Codelivery of ERK Inhibitor and Gemcitabine Enhance the Inhibition of Tumor Growth in Pancreatic Cancer. Mol Pharm 2020; 18:87-100. [PMID: 33231464 DOI: 10.1021/acs.molpharmaceut.0c00499] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a metabolic disorder, remains one of the leading cancer mortality sources worldwide. An initial response to treatments, such as gemcitabine (GEM), is often followed by emergent resistance reflecting an urgent need for alternate therapies. The PDAC resistance to GEM could be due to ERK1/2 activity. However, successful ERKi therapy is hindered due to low ligand efficiency, poor drug delivery, and toxicity. In this study, to overcome these limitations, we have designed pH-responsive nanoparticles (pHNPs) with a size range of 100-150 nm for the simultaneous delivery of ERKi (SCH 772984) and GEM with tolerable doses. These pHNPs are polyethylene glycol (PEG)-containing amphiphilic polycarbonate block copolymers with tertiary amine side chains. They are systemically stable and capable of improving in vitro and in vivo drug delivery at the cellular environment's acidic pH. The functional analysis indicates that the nanomolar doses of ERKi or GEM significantly decreased the 50% growth inhibition (IC50) of PDAC cells when encapsulated in pHNPs compared to free drugs. The combination of ERKi with GEM displayed a synergistic inhibitory effect. Unexpectedly, we uncover that the minimum effective dose of ERKi significantly promotes GEM activities on PDAC cells. Furthermore, we found that pHNP-encapsulated combination therapy of ERKi with GEM was superior to unencapsulated combination drug therapy. Our findings, thus, reveal a simple, yet efficient, drug delivery approach to overcome the limitations of ERKi for clinical applications and present a new model of sensitization of GEM by ERKi with no or minimal toxicity.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Gauthami Nair
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jiyan Mohammed
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Meredith Parmer
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Pooja Jain
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Suman Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
32
|
Chen SX, Xue F, Kuang Y, Chen S, Sheng D, Chen H. A self-activating nanovesicle with oxygen-depleting capability for efficient hypoxia-responsive chemo-thermo cancer therapy. Biomaterials 2020; 269:120533. [PMID: 33228991 DOI: 10.1016/j.biomaterials.2020.120533] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/30/2022]
Abstract
Hypoxia-activated prodrugs (HAPs) promise to mitigate side effects of conventional chemotherapy and to enable precise medication treatment. One challenge facing HAPs-based chemotherapy is prodrug failure in normoxic tumor region. However, current strategies to enhance tumor hypoxia rely on delivery of oxygen-consuming agents and external stimulation, which can impede the optimal application of HAPs. Herein, a novel self-activating nanovesicle, TH-302@BR-Chitosan NPs, is constructed by assembling bilirubin-chitosan conjugate (named as BR-Chitosan) with a HAP, TH-302. It is interesting to find that the BR-Chitosan shows the inherent oxygen-depleting performance, especially in the presence of over expressed H2O2 in tumor area, during which the BR-Chitosan can facily transform into biliverdin-chitosan (BV-Chitosan) and subsequently result in the disassembly of nanovesicles to release and activate the prodrug. Thus, this in situ strengthening hypoxia level of tumor can greatly promote the chemotherapy efficacy of HAPs. Moreover, as the oxidation derivatives of BR-Chitosan, BV-Chitosan exhibits intense absorbance at the range from long wavelength of visible region to near-infrared region, which can be acted as an effective photothermal agent for photothermal therapy (PTT). This biodegradable and self-activating nanovesicle with concise formulation demonstrates greatly enhanced synergistic therapeutic outcome in the activatable chemo-thermo combined therapy, showing much promising in future clinical transformation.
Collapse
Affiliation(s)
- Shi-Xiong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fengfeng Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| | - Yichen Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Siyu Chen
- Department of Medical Imaging, The Third Affiliated Hospital, Orthopedic Hospital of Guangdong Province, Southern Medical University, Guangdong, 510000, PR China
| | - Danli Sheng
- Department of Ultrasound, Fudan University, Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China.
| |
Collapse
|
33
|
Busk M, Overgaard J, Horsman MR. Imaging of Tumor Hypoxia for Radiotherapy: Current Status and Future Directions. Semin Nucl Med 2020; 50:562-583. [PMID: 33059825 DOI: 10.1053/j.semnuclmed.2020.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor regions that are transiently or chronically undersupplied with oxygen (hypoxia) and nutrients, and enriched with acidic waste products, are common due to an abnormal and inefficient tumor vasculature, and a deviant highly glycolytic energy metabolism. There is compelling evidence that tumor hypoxia is strongly linked to poor prognosis since oxygen-deprived cells are highly resistant to therapy including radio- and chemotherapy, and survival of such cells is a primary cause of disease relapse. Despite a general improvement in cancer survival rates, hypoxia remains a formidable challenge. Recent progress in radiation delivery systems with improved spatial accuracy that allows dose escalation to hypoxic tumors or even tumor subvolumes, and the development of hypoxia-selective drugs, including bioreductive prodrugs, holds great promise for overcoming this obstacle. However, apart from one notable exception, translation of promising preclinical therapies to the clinic have largely been disappointing. A major obstacle in clinical trials on hypoxia-targeting strategies has been the lack of reliable information on tumor hypoxia, which is crucial for patient stratification into groups of those that are likely to benefit from intervention and those who are not. Further, in many newer trials on hypoxia-selective drugs the choice of cancer disease and combination therapy has not always been ideal, especially not for clinical proof of principle trials. Clearly, there is a pending need for clinical applicable methodologies that may allow us to quantify, map and monitor hypoxia. Molecular imaging may provide the information required for narrowing the gap between potential and actual patient benefit of hypoxia-targeting strategies. The grand majority of preclinical and clinical work has focused on the usefulness of PET-based assessment of hypoxia-selective tracers. Since hypoxia PET has profound inherent weaknesses, the use of other methodologies, including more indirect methods that quantifies blood flow or oxygenation-dependent flux changes through ATP-generating pathways (eg, anaerobic glycolysis) is being extensively studied. In this review, we briefly discuss established and emerging hypoxia-targeting strategies, followed by a more thorough evaluation of strengths and weaknesses of clinical applicable imaging methodologies that may guide timely treatment intensification to overcome hypoxia-driven resistance. Historically, most evidence for the linkage between hypoxia and poor outcome is based on work in the field of radiotherapy. Therefore, main emphasis in this review is on targeting and imaging of hypoxia for improved radiotherapy.
Collapse
Affiliation(s)
- Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark; Danish Centre for Particle Therapy, (AUH), Aarhus, Denmark.
| | - Jens Overgaard
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| |
Collapse
|
34
|
Yoon J, Kang SY, Lee KH, Cheon GJ, Oh DY. Targeting Hypoxia Using Evofosfamide and Companion Hypoxia Imaging of FMISO-PET in Advanced Biliary Tract Cancer. Cancer Res Treat 2020; 53:471-479. [PMID: 33091966 PMCID: PMC8053876 DOI: 10.4143/crt.2020.577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Hypoxia is widely known as one of the mechanisms of chemoresistance and as an environmental condition which triggers invasion and metastasis of cancer. Evofosfamide is a hypoxia-activated prodrug of the cytotoxin bromo-isophosphoramide mustard conjugated with 2-nitroimidazole. Biliary tract cancer (BTC) is known to contain large hypoxic area. This study evaluated the efficacy and safety of evofosfamide as a second-line treatment of advanced BTC. Materials and Methods Patients received evofosfamide at a dose of 340 mg/m2 on days 1, 8, and 15 of every 28-day cycle. Primary end-point was progression-free survival (PFS) rate at 4-months (4m-PFSR). Secondary end-points included overall survival (OS), PFS, disease control rate (DCR), metabolic response by 18F-fluorodeoxyglucose positron emission tomography (PET), hypoxic parameters evaluated by 18F-fluoromisonidazole (FMISO) PET and toxicity. Results Twenty patients were treated with evofosfamide, with 16 response-evaluable patients. There was no objective response; stable disease was observed in nine patients, with a DCR of 56.25%. 4m-PFSR was 40.6%. Median PFS was 3.60 months (95% confidence interval [CI], 1.68 to 5.52). Median OS was 6.37 months (95% CI, 3.94 to 8.79). Reduction of tumor metabolic activity was observed in eight of 15 patients (53.3%). High baseline hypoxic parameters were associated with poor PFS. Change of hypoxic parameters between pretreatment and post-treatment reflected hypoxic-activated drug response. There was no treatment-related death. Conclusion Evofosfamide as second-line treatment of advanced BTC showed acceptable safety and comparable efficacy to other agents. Changes in volumetric parameters measured with FMISO PET, showing the degree of tumor hypoxia, reflected the response to evofosfamide based on the mode of action.
Collapse
Affiliation(s)
- Jeesun Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seo Young Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Peleli M, Moustakas A, Papapetropoulos A. Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies. Int J Mol Sci 2020; 21:E7371. [PMID: 33036204 PMCID: PMC7582718 DOI: 10.3390/ijms21197371] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma and other brain or CNS malignancies (like neuroblastoma and medulloblastoma) are difficult to treat and are characterized by excessive vascularization that favors further tumor growth. Since the mean overall survival of these types of diseases is low, the finding of new therapeutic approaches is imperative. In this review, we discuss the importance of the interaction between the endothelium and the tumor cells in brain and CNS malignancies. The different mechanisms of formation of new vessels that supply the tumor with nutrients are discussed. We also describe how the tumor cells (TC) alter the endothelial cell (EC) physiology in a way that favors tumorigenesis. In particular, mechanisms of EC-TC interaction are described such as (a) communication using secreted growth factors (i.e., VEGF, TGF-β), (b) intercellular communication through gap junctions (i.e., Cx43), and (c) indirect interaction via intermediate cell types (pericytes, astrocytes, neurons, and immune cells). At the signaling level, we outline the role of important mediators, like the gasotransmitter nitric oxide and different types of reactive oxygen species and the systems producing them. Finally, we briefly discuss the current antiangiogenic therapies used against brain and CNS tumors and the potential of new pharmacological interventions that target the EC-TC interaction.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| |
Collapse
|
36
|
Hamis S, Kohandel M, Dubois LJ, Yaromina A, Lambin P, Powathil GG. Combining hypoxia-activated prodrugs and radiotherapy in silico: Impact of treatment scheduling and the intra-tumoural oxygen landscape. PLoS Comput Biol 2020; 16:e1008041. [PMID: 32745136 PMCID: PMC7425994 DOI: 10.1371/journal.pcbi.1008041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/13/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022] Open
Abstract
Hypoxia-activated prodrugs (HAPs) present a conceptually elegant approach to not only overcome, but better yet, exploit intra-tumoural hypoxia. Despite being successful in vitro and in vivo, HAPs are yet to achieve successful results in clinical settings. It has been hypothesised that this lack of clinical success can, in part, be explained by the insufficiently stringent clinical screening selection of determining which tumours are suitable for HAP treatments. Taking a mathematical modelling approach, we investigate how tumour properties and HAP-radiation scheduling influence treatment outcomes in simulated tumours. The following key results are demonstrated in silico: (i) HAP and ionising radiation (IR) monotherapies may attack tumours in dissimilar, and complementary, ways. (ii) HAP-IR scheduling may impact treatment efficacy. (iii) HAPs may function as IR treatment intensifiers. (iv) The spatio-temporal intra-tumoural oxygen landscape may impact HAP efficacy. Our in silico framework is based on an on-lattice, hybrid, multiscale cellular automaton spanning three spatial dimensions. The mathematical model for tumour spheroid growth is parameterised by multicellular tumour spheroid (MCTS) data.
Collapse
Affiliation(s)
- Sara Hamis
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland
- Department of Mathematics, College of Science, Swansea University, Swansea, Wales, United Kingdom
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Gibin G. Powathil
- Department of Mathematics, College of Science, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
37
|
Strapcova S, Takacova M, Csaderova L, Martinelli P, Lukacikova L, Gal V, Kopacek J, Svastova E. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel) 2020; 12:E2005. [PMID: 32707920 PMCID: PMC7464147 DOI: 10.3390/cancers12082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a common phenomenon that occurs in most solid tumors. Regardless of tumor origin, the evolution of a hypoxia-adapted phenotype is critical for invasive cancer development. Pancreatic ductal adenocarcinoma is also characterized by hypoxia, desmoplasia, and the presence of necrosis, predicting poor outcome. Carbonic anhydrase IX (CAIX) is one of the most strict hypoxia regulated genes which plays a key role in the adaptation of cancer cells to hypoxia and acidosis. Here, we summarize clinical data showing that CAIX expression is associated with tumor necrosis, vascularization, expression of Frizzled-1, mucins, or proteins involved in glycolysis, and inevitably, poor prognosis of pancreatic cancer patients. We also describe the transcriptional regulation of CAIX in relation to signaling pathways activated in pancreatic cancers. A large part deals with the preclinical evidence supporting the relevance of CAIX in processes leading to the aggressive behavior of pancreatic tumors. Furthermore, we focus on CAIX occurrence in pre-cancerous lesions, and for the first time, we describe CAIX expression within intraductal papillary mucinous neoplasia. Our review concludes with a detailed account of clinical trials implicating that treatment consisting of conventionally used therapies combined with CAIX targeting could result in an improved anti-cancer response in pancreatic cancer patients.
Collapse
Affiliation(s)
- Sabina Strapcova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Martina Takacova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Lucia Csaderova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Paola Martinelli
- Institute of Cancer Research, Clinic of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Cancer Cell Signaling, Boehringer-Ingelheim RCV Vienna, A-1121 Vienna, Austria
| | - Lubomira Lukacikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Viliam Gal
- Alpha Medical Pathology, Ruzinovska 6, 82606 Bratislava, Slovakia;
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| |
Collapse
|
38
|
Huo D, Jiang X, Hu Y. Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904337. [PMID: 31663198 DOI: 10.1002/adma.201904337] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Engineered nanomaterials have been extensively employed as therapeutics for tumor management. Meanwhile, the complex tumor niche along with multiple barriers at the cellular level collectively hinders the action of nanomedicines. Here, the advanced strategies that hold promise for overcoming the numerous biological barriers facing nanomedicines are summarized. Starting from tumor entry, methods that promote tissue penetration of nanomedicine and address the hypoxia issue are also highlighted. Then, emphasis is given to the significance of overcoming both physical barriers, such as membrane-associated efflux pumps, and biological features, such as resistance to apoptosis. The pros and cons for an individual approach are presented. In addition, the associated technical problems are discussed, along with the importance of balancing the therapeutic merits and the additional cost of sophisticated nanomedicine designs.
Collapse
Affiliation(s)
- Da Huo
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
39
|
Anastassova N, Stoyanov S, Mavrova A, Yancheva D. Spectroscopic and in silico study on the conversion of N,N'-disubstituted hydrazone derivatives of 5-nitrobenzimidazole-2-thione into anion and radical anion products: Implications in hepatotoxicity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118279. [PMID: 32217448 DOI: 10.1016/j.saa.2020.118279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
The conversion of N,N'-disubstituted hydrazone derivatives of 5-nitrobenzimidazole-2-thione into radical anion and dianion products was studied through infrared (IR) spectroscopy and computational methods. The electrochemical reduction of 3,3'-(5-nitro-2-thioxo-1H-benzo[d]imidazole-1,3(2H)-diyl)bis(N'-(2-methoxybenzylidene))propane-hydrazide was performed directly in the IR cell and the spectral changes were monitored over time in order to identify the spectral bands originating from the reduction product. In order to clarify whether the reduction leads to the generation of radical anion or deprotonated radical dianion, a second spectroscopic experiment was carried out where deprotonation was achieved by treatment with sodium methoxide. Both experiments resulted in distinctly different spectral features, giving evidence that the reduction to radical anion is not accompanied by deprotonation. In order to explain the experimentally observed differences in the hepatotoxicity within the series of N,N'-disubstituted derivatives of 5-nitrobenzimidazole-2-thione, several molecular electronic parameters such as frontier molecular orbitals, spin and charge distribution over fragments, and electron affinities of the studied hydrazone derivatives were compared to those of a previously studied ester derivative. Based on the estimated electronic parameters, it was shown that the type of the side chains (ester, hydrazone etc.) attached to the N-atoms in the nitrobenzimidazole derivatives do not change significantly the propensity of the compounds towards nitro reduction, but however the generated radical anions are characterized by different reactivity accounting for the different hepatotoxicity.
Collapse
Affiliation(s)
- N Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113 Sofia, Bulgaria
| | - S Stoyanov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113 Sofia, Bulgaria
| | - A Mavrova
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - D Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113 Sofia, Bulgaria.
| |
Collapse
|
40
|
Sun Z, Zhang H, Wu J, Gao F, Zhang C, Hu X, Liu Q, Wei Y, Zhuang J, Huang X. A Novel Model System for Understanding Anticancer Activity of Hypoxia-Activated Prodrugs. Mol Pharm 2020; 17:2072-2082. [PMID: 32352301 DOI: 10.1021/acs.molpharmaceut.0c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reports on the comprehensive factors for design considerations of hypoxia-activated prodrugs (HAPs) are rare. We introduced a new model system composed of a series of highly water-soluble HAPs, providing a platform to comprehensively understand the interaction between HAPs and hypoxic biosystems. Specifically, four kinds of new HAPs were designed and synthesized, containing the same biologically active moiety but masked by different bioreductive groups. Our results demonstrated that the activity of the prodrugs was strongly dependent on not only the molecular structure but also the hypoxic tumor microenvironment. We found the presence of a direct linear relationship between cytotoxicity of the HAPs and the reduction potential of whole molecule/oxygen concentration/reductase expression. Moreover, limited blood vasculature in hypoxic regions was also a critical barrier for effective activation of the HAPs. This study offers a comprehensive insight into understanding the design factors required for HAPs.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Haoqi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Fangli Gao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Congcong Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P.R. China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yonghua Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Jie Zhuang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Huang Y, Jin C, Yu J, Wang L, Lu W. A novel multifunctional 2-nitroimidazole-based bioreductive linker and its application in hypoxia-activated prodrugs. Bioorg Chem 2020; 101:103975. [PMID: 32474180 DOI: 10.1016/j.bioorg.2020.103975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Tumor hypoxia has been widely explored over the years as a diagnostic and therapeutic marker. Herein, we designed, optimized and synthesized a new multifunctional bioreductive linker (12) containing an alkynyl group (potential click chemistry fragment); the linker is based on 2-nitroimidazole which was expected to simultaneously overcome the drawbacks of hypoxia-activated prodrugs (poor selectivity and unsatisfactory water solubility). Furthermore, a hypoxia-activated, water-soluble SN-38 prodrug was obtained, and it was stable under physiological conditions and was rapidly released as an active drug under hypoxic conditions.
Collapse
Affiliation(s)
- Ying Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Chen Jin
- Xingliu (Shanghai) Pharmaceutical Technology Co., Ltd, Room A406, 1#Building, No. 1976 Middle Gaoke Road, Shanghai 201210, PR China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Lei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
42
|
Anduran E, Aspatwar A, Parvathaneni NK, Suylen D, Bua S, Nocentini A, Parkkila S, Supuran CT, Dubois L, Lambin P, Winum JY. Hypoxia-Activated Prodrug Derivatives of Carbonic Anhydrase Inhibitors in Benzenesulfonamide Series: Synthesis and Biological Evaluation. Molecules 2020; 25:E2347. [PMID: 32443462 PMCID: PMC7287649 DOI: 10.3390/molecules25102347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia, a common feature of solid tumours' microenvironment, is associated with an aggressive phenotype and is known to cause resistance to anticancer chemo- and radiotherapies. Tumour-associated carbonic anhydrases isoform IX (hCA IX), which is upregulated under hypoxia in many malignancies participating to the microenvironment acidosis, represents a valuable target for drug strategy against advanced solid tumours. To overcome cancer cell resistance and improve the efficacy of therapeutics, the use of bio-reducible prodrugs also known as Hypoxia-activated prodrugs (HAPs), represents an interesting strategy to be applied to target hCA IX isozyme through the design of selective carbonic anhydrase IX inhibitors (CAIs). Here, we report the design, synthesis and biological evaluations including CA inhibition assays, toxicity assays on zebrafish and viability assays on human cell lines (HT29 and HCT116) of new HAP-CAIs, harboring different bio-reducible moieties in nitroaromatic series and a benzenesulfonamide warhead to target hCA IX. The CA inhibition assays of this compound series showed a slight selectivity against hCA IX versus the cytosolic off-target hCA II and hCA I isozymes. Toxicity and viability assays have highlighted that the compound bearing the 2-nitroimidazole moiety possesses the lowest toxicity (LC50 of 1400 µM) and shows interesting results on viability assays.
Collapse
Affiliation(s)
- Emilie Anduran
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology and Fimlab Ltd., University of Tampere and Tampere University Hospital, 33520 Tampere, Finland; (A.A.); (S.P.)
| | - Nanda-Kumar Parvathaneni
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Dennis Suylen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands;
| | - Silvia Bua
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Alessio Nocentini
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology and Fimlab Ltd., University of Tampere and Tampere University Hospital, 33520 Tampere, Finland; (A.A.); (S.P.)
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
| |
Collapse
|
43
|
Calpe B, Kovacs WJ. High-throughput screening in multicellular spheroids for target discovery in the tumor microenvironment. Expert Opin Drug Discov 2020; 15:955-967. [PMID: 32364413 DOI: 10.1080/17460441.2020.1756769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Solid tumors are highly influenced by a complex tumor microenvironment (TME) that cannot be modeled with conventional two-dimensional (2D) cell culture. In addition, monolayer culture conditions tend to induce undesirable molecular and phenotypic cellular changes. The discrepancy between in vitro and in vivo is an important factor accounting for the high failure rate in drug development. Three-dimensional (3D) multicellular tumor spheroids (MTS) more closely resemble the in vivo situation in avascularized tumors. AREAS COVERED This review describes the use of MTS for anti-cancer drug discovery, with an emphasis on high-throughput screening (HTS) compatible assays. In particular, we focus on how these assays can be used for target discovery in the context of the TME. EXPERT OPINION Arrayed MTS in microtiter plates are HTS compatible but remain more expensive and time consuming than their 2D culture counterpart. It is therefore imperative to use assays with multiplexed readouts, in order to maximize the information that can be gained with the screen. In this context, high-content screening allowing to uncover microenvironmental dependencies is the true added value of MTS-based screening compared to 2D culture-based screening. Hit translation in animal models will, however, be key to allow a broader use of MTS-based screening in industry.
Collapse
Affiliation(s)
- Blaise Calpe
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland.,Department of Biology, Debiopharm , Lausanne, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
44
|
Gerard Y, Voissière A, Peyrode C, Galmier MJ, Maubert E, Ghedira D, Tarrit S, Gaumet V, Canitrot D, Miot-Noirault E, Chezal JM, Weber V. Design, synthesis and evaluation of targeted hypoxia-activated prodrugs applied to chondrosarcoma chemotherapy. Bioorg Chem 2020; 98:103747. [PMID: 32208207 DOI: 10.1016/j.bioorg.2020.103747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/13/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment in chondrosarcoma (CHS), a chemo- and radio-resistant cancer provides unique hallmarks for developing a chondrosarcoma targeted drug-delivery system. Tumor targeting could be achieved using a quaternary ammonium function (QA) as a ligand for aggrecan, the main high negative charged proteoglycan of the extracellular matrix of CHS, and a 2-nitroimidazole as trigger that enables hypoxia-responsive drug release. In a previous work, ICF05016 was identified as efficient proteoglycan-targeting hypoxia-activated prodrug in a human extraskeletal myxoid chondrosarcoma model in mice and a first study of the structure-activity relationship of the QA function and the alkyl linker length was conducted. Here, we report the second part of the study, namely the modification of the nitro-aromatic trigger and the position of the proteoglycan-targeting ligand at the aromatic ring as well as the nature of the alkylating mustard. Synthetic approaches have been established to functionalize the 2-nitroimidazole ring at the N-1 and C-4 positions with a terminal tertiary alkyl amine, and to perform the phosphorylation step namely through the use of an amine borane complex, leading to phosphoramide and isophosphoramide mustards and also to a phosphoramide mustard bearing four 2-chloroethyl chains. In a preliminary study using a reductive chemical activation, QA-conjugates, except the 4-nitrobenzyl one, were showed to undergo efficient cleavage with release of the corresponding mustard. However N,N,N-trimethylpropylaminium tethered to the N-1 or C-4 positions of the imidazole seemed to hamper the enzymatic reduction of the prodrugs and all tested compounds featured moderate selectivity toward hypoxic cells, likely not sufficient for application as hypoxia-activated prodrugs.
Collapse
Affiliation(s)
- Yvain Gerard
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Aurélien Voissière
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Caroline Peyrode
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Marie-Josephe Galmier
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Elise Maubert
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Donia Ghedira
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Sebastien Tarrit
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Vincent Gaumet
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Damien Canitrot
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Valérie Weber
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
45
|
Dell’Oro M, Short M, Wilson P, Bezak E. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12010163. [PMID: 31936565 PMCID: PMC7017270 DOI: 10.3390/cancers12010163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction: Despite improvements in radiation therapy, chemotherapy and surgical procedures over the last 30 years, pancreatic cancer 5-year survival rate remains at 9%. Reduced stroma permeability and heterogeneous blood supply to the tumour prevent chemoradiation from making a meaningful impact on overall survival. Hypoxia-activated prodrugs are the latest strategy to reintroduce oxygenation to radioresistant cells harbouring in pancreatic cancer. This paper reviews the current status of photon and particle radiation therapy for pancreatic cancer in combination with systemic therapies and hypoxia activators. Methods: The current effectiveness of management of pancreatic cancer was systematically evaluated from MEDLINE® database search in April 2019. Results: Limited published data suggest pancreatic cancer patients undergoing carbon ion therapy and proton therapy achieve a comparable median survival time (25.1 months and 25.6 months, respectively) and 1-year overall survival rate (84% and 77.8%). Inconsistencies in methodology, recording parameters and protocols have prevented the safety and technical aspects of particle therapy to be fully defined yet. Conclusion: There is an increasing requirement to tackle unmet clinical demands of pancreatic cancer, particularly the lack of synergistic therapies in the advancing space of radiation oncology.
Collapse
Affiliation(s)
- Mikaela Dell’Oro
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- Correspondence: ; Tel.: +61-435214264
| | - Michala Short
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- School of Engineering, University of South Australia, Adelaide SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Physics, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
46
|
Spiegelberg L, van Hoof SJ, Biemans R, Lieuwes NG, Marcus D, Niemans R, Theys J, Yaromina A, Lambin P, Verhaegen F, Dubois LJ. Evofosfamide sensitizes esophageal carcinomas to radiation without increasing normal tissue toxicity. Radiother Oncol 2019; 141:247-255. [PMID: 31431383 PMCID: PMC6913516 DOI: 10.1016/j.radonc.2019.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Esophageal cancer incidence is increasing and is rarely curable. Hypoxic tumor areas cause resistance to conventional therapies, making them susceptible for treatment with hypoxia-activated prodrugs (HAPs). We investigated in vivo whether the HAP evofosfamide (TH-302) could increase the therapeutic ratio by sensitizing esophageal carcinomas to radiotherapy without increasing normal tissue toxicity. MATERIALS AND METHODS To assess therapeutic efficacy, growth of xenografted esophageal squamous cell (OE21) or adeno (OE19) carcinomas was monitored after treatment with TH-302 (50 mg/kg, QD5) and irradiation (sham or 10 Gy). Short- and long-term toxicity was assessed in a gut mucosa and lung fibrosis irradiation model, sensitive to acute and late radiation injury respectively. Mice were injected with TH-302 (50 mg/kg, QD5) and the abdominal area (sham, 8 or 10 Gy) or the upper part of the right lung (sham, 20 Gy) was irradiated. Damage to normal tissues was assessed 84 hours later by histology and blood plasma citrulline levels (gut) and for up to 1 year by non-invasive micro CT imaging (lung). RESULTS The combination treatment of TH-302 with radiotherapy resulted in significant tumor growth delay in OE19 (P = 0.02) and OE21 (P = 0.03) carcinomas, compared to radiotherapy only. Irradiation resulted in a dose-dependent decrease of crypt survival (P < 0.001), mucosal surface area (P < 0.01) and citrulline levels (P < 0.001) in both tumor and non-tumor bearing animals. On the long-term, irradiation increased CT density in the lung, indicating fibrosis, over time. TH-302 did not influence the radiation-induced short-term and long-term toxicity, confirmed by histological evaluation. CONCLUSION The combination of TH-302 and radiotherapy might be a promising approach to improve the therapeutic index for esophageal cancer patients.
Collapse
Affiliation(s)
- Linda Spiegelberg
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Stefan J van Hoof
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Rianne Biemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Natasja G Lieuwes
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Damiënne Marcus
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Raymon Niemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Jan Theys
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
47
|
Harms JK, Lee TW, Wang T, Lai A, Kee D, Chaplin JM, McIvor NP, Hunter FW, Macann AMJ, Wilson WR, Jamieson SMF. Impact of Tumour Hypoxia on Evofosfamide Sensitivity in Head and Neck Squamous Cell Carcinoma Patient-Derived Xenograft Models. Cells 2019; 8:E717. [PMID: 31337055 PMCID: PMC6678517 DOI: 10.3390/cells8070717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023] Open
Abstract
Tumour hypoxia is a marker of poor prognosis and failure of chemoradiotherapy in head and neck squamous cell carcinoma (HNSCC), providing a strategy for therapeutic intervention in this setting. To evaluate the utility of the hypoxia-activated prodrug evofosfamide (TH-302) in HNSCC, we established ten early passage patient-derived xenograft (PDX) models of HNSCC that were characterised by their histopathology, hypoxia status, gene expression, and sensitivity to evofosfamide. All PDX models closely resembled the histology of the patient tumours they were derived from. Pimonidazole-positive tumour hypoxic fractions ranged from 1.7-7.9% in line with reported HNSCC clinical values, while mRNA expression of the Toustrup hypoxia gene signature showed close correlations between PDX and matched patient tumours, together suggesting the PDX models may accurately model clinical tumour hypoxia. Evofosfamide as a single agent (50 mg/kg IP, qd × 5 for three weeks) demonstrated antitumour efficacy that was variable across the PDX models, ranging from complete regressions in one p16-positive PDX model to lack of significant activity in the three most resistant models. Despite all PDX models showing evidence of tumour hypoxia, and hypoxia being essential for activation of evofosfamide, the antitumour activity of evofosfamide only weakly correlated with tumour hypoxia status determined by pimonidazole immunohistochemistry. Other candidate evofosfamide sensitivity genes-MKI67, POR, and SLFN11-did not strongly influence evofosfamide sensitivity in univariate analyses, although a weak significant relationship with MKI67 was observed, while SLFN11 expression was lost in PDX tumours. Overall, these data confirm that evofosfamide has antitumour activity in clinically-relevant PDX tumour models of HNSCC and support further clinical evaluation of this drug in HNSCC patients. Further research is required to identify those factors that, alongside hypoxia, can influence sensitivity to evofosfamide and could act as predictive biomarkers to support its use in precision medicine therapy of HNSCC.
Collapse
Affiliation(s)
- Julia K Harms
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Tet-Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tao Wang
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Amy Lai
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Dennis Kee
- LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - John M Chaplin
- Department of Otolaryngology-Head and Neck Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Nick P McIvor
- Department of Otolaryngology-Head and Neck Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Andrew M J Macann
- Department of Radiation Oncology, Auckland City Hospital, Auckland 1023, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand.
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
48
|
Diethelm-Varela B, Ai Y, Liang D, Xue F. Nitrogen Mustards as Anticancer Chemotherapies: Historic Perspective, Current Developments and Future Trends. Curr Top Med Chem 2019; 19:691-712. [PMID: 30931858 DOI: 10.2174/1568026619666190401100519] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/11/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
Nitrogen mustards, a family of DNA alkylating agents, marked the start of cancer pharmacotherapy. While traditionally characterized by their dose-limiting toxic effects, nitrogen mustards have been the subject of intense research efforts, which have led to safer and more effective agents. Even though the alkylating prodrug mustards were first developed decades ago, active research on ways to improve their selectivity and cytotoxic efficacy is a currently active topic of research. This review addresses the historical development of the nitrogen mustards, outlining their mechanism of action, and discussing the improvements on their therapeutic profile made through rational structure modifications. A special emphasis is made on discussing the nitrogen mustard prodrug category, with Cyclophosphamide (CPA) serving as the main highlight. Selected insights on the latest developments on nitrogen mustards are then provided, limiting such information to agents that preserve the original nitrogen mustard mechanism as their primary mode of action. Additionally, future trends that might follow in the quest to optimize these invaluable chemotherapeutic medications are succinctly suggested.
Collapse
Affiliation(s)
- Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
49
|
Hunter FW, Devaux JBL, Meng F, Hong CR, Khan A, Tsai P, Ketela TW, Sharma I, Kakadia PM, Marastoni S, Shalev Z, Hickey AJR, Print CG, Bohlander SK, Hart CP, Wouters BG, Wilson WR. Functional CRISPR and shRNA Screens Identify Involvement of Mitochondrial Electron Transport in the Activation of Evofosfamide. Mol Pharmacol 2019; 95:638-651. [PMID: 30979813 DOI: 10.1124/mol.118.115196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/08/2019] [Indexed: 01/29/2023] Open
Abstract
Evofosfamide (TH-302) is a hypoxia-activated DNA-crosslinking prodrug currently in clinical development for cancer therapy. Oxygen-sensitive activation of evofosfamide depends on one-electron reduction, yet the reductases that catalyze this process in tumors are unknown. We used RNA sequencing, whole-genome CRISPR knockout, and reductase-focused short hairpin RNA screens to interrogate modifiers of evofosfamide activation in cancer cell lines. Involvement of mitochondrial electron transport in the activation of evofosfamide and the related nitroaromatic compounds EF5 and FSL-61 was investigated using 143B ρ 0 (ρ zero) cells devoid of mitochondrial DNA and biochemical assays in UT-SCC-74B cells. The potency of evofosfamide in 30 genetically diverse cancer cell lines correlated with the expression of genes involved in mitochondrial electron transfer. A whole-genome CRISPR screen in KBM-7 cells identified the DNA damage-response factors SLX4IP, C10orf90 (FATS), and SLFN11, in addition to the key regulator of mitochondrial function, YME1L1, and several complex I constituents as modifiers of evofosfamide sensitivity. A reductase-focused shRNA screen in UT-SCC-74B cells similarly identified mitochondrial respiratory chain factors. Surprisingly, 143B ρ 0 cells showed enhanced evofosfamide activation and sensitivity but had global transcriptional changes, including increased expression of nonmitochondrial flavoreductases. In UT-SCC-74B cells, evofosfamide oxidized cytochromes a, b, and c and inhibited respiration at complexes I, II, and IV without quenching reactive oxygen species production. Our results suggest that the mitochondrial electron transport chain contributes to evofosfamide activation and that predicting evofosfamide sensitivity in patients by measuring the expression of canonical bioreductive enzymes such as cytochrome P450 oxidoreductase is likely to be futile.
Collapse
Affiliation(s)
- Francis W Hunter
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Jules B L Devaux
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Fanying Meng
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Cho Rong Hong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Aziza Khan
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Peter Tsai
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Troy W Ketela
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Indumati Sharma
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Purvi M Kakadia
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Stefano Marastoni
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Zvi Shalev
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Anthony J R Hickey
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Cristin G Print
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Stefan K Bohlander
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Charles P Hart
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - Bradly G Wouters
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences (F.W.H., C.R.H., A.K., I.S., W.R.W.), Maurice Wilkins Centre for Molecular Biodiscovery (F.W.H., A.J.R.H., C.G.P., W.R.W.), School of Biological Sciences, Faculty of Science (J.B.L.D., A.J.R.H.), and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences (P.T., P.M.K., C.G.P., S.K.B.), University of Auckland, Auckland, New Zealand; Threshold Pharmaceuticals, South San Francisco, California (F.M., C.P.H.); Princess Margaret Genomics Centre (T.W.K.) and Princess Margaret Cancer Centre (S.M., Z.S., B.G.W.), University Health Network, and Departments of Radiation Oncology (B.G.W.) and Medical Biophysics (B.G.W.), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Studies Towards Hypoxia-Activated Prodrugs of PARP Inhibitors. Molecules 2019; 24:molecules24081559. [PMID: 31010230 PMCID: PMC6514732 DOI: 10.3390/molecules24081559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/21/2023] Open
Abstract
Poly(ADP-ribose)polymerase (PARP) inhibitors (PARPi) have recently been approved for the treatment of breast and ovarian tumors with defects in homologous recombination repair (HRR). Although it has been demonstrated that PARPi also sensitize HRR competent tumors to cytotoxic chemotherapies or radiotherapy, normal cell toxicity has remained an obstacle to their use in this context. Hypoxia-activated prodrugs (HAPs) provide a means to limit exposure of normal cells to active drug, thus adding a layer of tumor selectivity. We have investigated potential HAPs of model PARPi in which we attach a bioreducible “trigger” to the amide nitrogen, thereby blocking key binding interactions. A representative example showed promise in abrogating PARPi enzymatic activity in a biochemical assay, with a ca. 160-fold higher potency of benzyl phthalazinone 4 than the corresponding model HAP 5, but these N-alkylated compounds did not release the PARPi upon one-electron reduction by radiolysis. Therefore, we extended our investigation to include NU1025, a PARPi that contains a phenol distal to the core binding motif. The resulting 2-nitroimidazolyl ether provided modest abrogation of PARPi activity with a ca. seven-fold decrease in potency, but released the PARPi efficiently upon reduction. This investigation of potential prodrug approaches for PARPi has identified a useful prodrug strategy for future exploration.
Collapse
|