1
|
Jiang H, Zhang W, Xu X, Yu X, Ji S. Decoding the genetic puzzle: Mutations in key driver genes of pancreatic neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189305. [PMID: 40158667 DOI: 10.1016/j.bbcan.2025.189305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Although pancreatic neuroendocrine tumors (PanNETs) are less common than other pancreatic tumors, they show significant differences in clinical behavior, genetics, and treatment responses. The understanding of the molecular pathways of PanNETs has gradually improved with advances in sequencing technology. Mutations in MEN1 (the most frequently varied gene) may result in the deletion of the tumor suppressor menin, affecting gene regulation, DNA repair, and chromatin modification. Changes in ATRX and DAXX involve chromatin remodeling, telomere stability and are associated with the alternative lengthening of telomeres (ALT) pathway and aggressive tumors. VHL mutations emphasize the roles of hypoxia and angiogenesis. Mutations in PTEN, TSC1/TSC2, and AKT1-3 often disrupt the mTOR pathway, complicating the genetic landscape of PanNETs. Understanding these genetic alterations and their impact on the PI3K/AKT/mTOR axis help to investigate new targeted therapies, which in turn can improve patient prognosis. This review aims to clarify PanNET pathogenesis through key mutations and their clinical relevance.
Collapse
Affiliation(s)
- Huanchang Jiang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Dehghan Manshadi M, Tajik F, Saeednejad Zanjani L, Hashemi F, Rahimi M, Fattahi F, Safaei S, Madjd Z, Ghods R. Lower cytoplasmic expression of DDIT4 is associated with poor prognosis in gastric cancer patients. Discov Oncol 2025; 16:374. [PMID: 40120027 PMCID: PMC11929655 DOI: 10.1007/s12672-025-02065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
INTRODUCTION DNA damage-inducible transcript 4 (DDIT4), also known as Redd1, Dig2, and RTP801 was identified to be upregulated in response to a variety of cellular stresses, including DNA damage, endoplasmic reticulum stress, and energy stress. Several studies have discovered that dysregulation of DDIT4 involved in various cancers with paradoxical expression and roles. Hence, this study was designed to investigate the clinical significance and prognostic value of DDIT4 in different subtypes of gastric cancer (GC). MATERIALS AND METHODS To evaluate the expression pattern of DDIT4 in GC tissues as well as adjacent normal tissue, we utilized immunohistochemistry on tissue microarray (TMA) slides. RESULTS Our findings revealed that nuclear expression of DDIT4 was higher in GC tissues than in non-malignant samples. Also, the cytoplasmic and membranous expression of DDIT4 were significantly lower in tumor samples (P = 0.007 and P = 0.002, respectively). The results indicated that there was a statistically significant association between low cytoplasmic and membranous expression of DDIT4 and advanced histological grade (P = 0.001 and P = 0.016). The survival analysis revealed that lowered cytoplasmic expression of DDIT4 is significantly associated with worse DSS (P = 0.038). CONCLUSION Lower cytoplasmic expression of DDIT4 could serve as a promising prognostic biomarker in GC.
Collapse
Affiliation(s)
- Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rahimi
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Sadegh Safaei
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sadeghipour A, Fattahi F, Madjd Z, Tajik F, Sedaghati F, Saeednejad Zanjani L. Increased nuclear expression of DNA damage inducible transcript 4 can serve as a potential prognostic biomarker in patients with gliomas: a study based on data mining and experimental tools. Discov Oncol 2025; 16:124. [PMID: 39915428 PMCID: PMC11802953 DOI: 10.1007/s12672-025-01865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
INTRODUCTION DNA damage-inducible transcript 4 (DDIT4), induced under cellular stress conditions, has been implicated in malignancies due to its abnormal expression patterns. MATERIALS AND METHODS The expression of DDIT4 at the mRNA level and its potential role as a prognostic biomarker in gliomas were analyzed using the GEPIA tool. To validate these findings, DDIT4 protein expression levels and their prognostic significance were examined in tissue microarrays from glioma patients using immunohistochemistry in clinical samples. RESULTS Bioinformatics analysis revealed that DDIT4 overexpression in glioma tumors and its high mRNA expression levels are associated with poor outcomes, likely through mTOR signaling. At the protein level, positive nuclear DDIT4 expression was linked to higher histological grades and temozolomide treatment. Kaplan-Meier survival analysis demonstrated that positive nuclear DDIT4 expression is a significant predictor of poor disease-specific survival (DSS) and recurrence-free survival (RFS). Additionally, nuclear DDIT4 expression was identified as an independent prognostic factor for DSS. CONCLUSION Our findings suggest that nuclear DDIT4 expression may serve as a potential prognostic biomarker and therapeutic target in glioma patients. However, further studies with larger sample sizes and long-term follow-ups are needed to validate these observations and confirm their clinical relevance.
Collapse
Affiliation(s)
- Alireza Sadeghipour
- Department of Pathology, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Surgery, Irvine Medical Center, University of California, Orange, CA, USA
| | - Farnoosh Sedaghati
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
4
|
Alves Â, Medeiros R, Teixeira AL, Dias F. Decoding PTEN regulation in clear cell renal cell carcinoma: Pathway for biomarker discovery and therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189165. [PMID: 39117092 DOI: 10.1016/j.bbcan.2024.189165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Renal cell carcinoma is the most common adult renal solid tumor and the deadliest urological cancer, with clear cell renal cell carcinoma (ccRCC) being the predominant subtype. The PI3K/AKT signaling pathway assumes a central role in ccRCC tumorigenesis, wherein its abnormal activation confers a highly aggressive phenotype, leading to swift resistance against current therapies and distant metastasis. Thus, treatment resistance and disease progression remain a persistent clinical challenge in managing ccRCC effectively. PTEN, an antagonist of the PI3K/AKT signaling axis, emerges as a crucial factor in tumor progression, often experiencing loss or inactivation in ccRCC, thereby contributing to elevated mortality rates in patients. Therefore, understanding the molecular mechanisms underlying PTEN suppression in ccRCC tumors holds promise for the discovery of biomarkers and therapeutic targets, ultimately enhancing patient monitoring and treatment outcomes. The present review aims to summarize these mechanisms, emphasizing their potential prognostic, predictive, and therapeutic value in managing ccRCC.
Collapse
Affiliation(s)
- Ângela Alves
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal; Faculty of Medicine (FMUP), University of Porto, 4200-319 Porto, Portugal; Laboratory Medicine, Clinical Pathology Department, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; Biomedicine Research Center (CEBIMED), Research Innovation and Development Institute (FP-I3ID), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal; Research Department, Portuguese League Against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.
| |
Collapse
|
5
|
Gómez-Virgilio L, Velazquez-Paniagua M, Cuazozon-Ferrer L, Silva-Lucero MDC, Gutierrez-Malacara AI, Padilla-Mendoza JR, Borbolla-Vázquez J, Díaz-Hernández JA, Jiménez-Orozco FA, Cardenas-Aguayo MDC. Genetics, Pathophysiology, and Current Challenges in Von Hippel-Lindau Disease Therapeutics. Diagnostics (Basel) 2024; 14:1909. [PMID: 39272694 PMCID: PMC11393980 DOI: 10.3390/diagnostics14171909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This review article focuses on von Hippel-Lindau (VHL) disease, a rare genetic disorder characterized by the development of tumors and cysts throughout the body. It discusses the following aspects of the disease. GENETICS VHL disease is caused by mutations in the VHL tumor suppressor gene located on chromosome 3. These mutations can be inherited or occur spontaneously. This article details the different types of mutations and their associated clinical features. PATHOPHYSIOLOGY The underlying cause of VHL disease is the loss of function of the VHL protein (pVHL). This protein normally regulates hypoxia-inducible factors (HIFs), which are involved in cell growth and survival. When pVHL is dysfunctional, HIF levels become elevated, leading to uncontrolled cell growth and tumor formation. CLINICAL MANIFESTATIONS VHL disease can affect various organs, including the brain, spinal cord, retina, kidneys, pancreas, and adrenal glands. Symptoms depend on the location and size of the tumors. DIAGNOSIS Diagnosis of VHL disease involves a combination of clinical criteria, imaging studies, and genetic testing. TREATMENT Treatment options for VHL disease depend on the type and location of the tumors. Surgery is the mainstay of treatment, but other options like radiation therapy may also be used. CHALLENGES This article highlights the challenges in VHL disease management, including the lack of effective therapies for some tumor types and the need for better methods to monitor disease progression. In conclusion, we emphasize the importance of ongoing research to develop new and improved treatments for VHL disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Mireya Velazquez-Paniagua
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Lucero Cuazozon-Ferrer
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Maria-Del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Andres-Ivan Gutierrez-Malacara
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Juan-Ramón Padilla-Mendoza
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Jessica Borbolla-Vázquez
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Job-Alí Díaz-Hernández
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | | | - Maria-Del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| |
Collapse
|
6
|
Yang J, Butti R, Cohn S, Toffessi-Tcheuyap V, Mal A, Nguyen M, Stevens C, Christie A, Mishra A, Ma Y, Kim J, Abraham R, Kapur P, Hammer RE, Brugarolas J. Unconventional mechanism of action and resistance to rapalogs in renal cancer. Proc Natl Acad Sci U S A 2024; 121:e2310793121. [PMID: 38861592 PMCID: PMC11194491 DOI: 10.1073/pnas.2310793121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
mTORC1 is aberrantly activated in renal cell carcinoma (RCC) and is targeted by rapalogs. As for other targeted therapies, rapalogs clinical utility is limited by the development of resistance. Resistance often results from target mutation, but mTOR mutations are rarely found in RCC. As in humans, prolonged rapalog treatment of RCC tumorgrafts (TGs) led to resistance. Unexpectedly, explants from resistant tumors became sensitive both in culture and in subsequent transplants in mice. Notably, resistance developed despite persistent mTORC1 inhibition in tumor cells. In contrast, mTORC1 became reactivated in the tumor microenvironment (TME). To test the role of the TME, we engineered immunocompromised recipient mice with a resistance mTOR mutation (S2035T). Interestingly, TGs became resistant to rapalogs in mTORS2035T mice. Resistance occurred despite mTORC1 inhibition in tumor cells and could be induced by coculturing tumor cells with mutant fibroblasts. Thus, enforced mTORC1 activation in the TME is sufficient to confer resistance to rapalogs. These studies highlight the importance of mTORC1 inhibition in nontumor cells for rapalog antitumor activity and provide an explanation for the lack of mTOR resistance mutations in RCC patients.
Collapse
Affiliation(s)
- Juan Yang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Shannon Cohn
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX78723
| | - Vanina Toffessi-Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Arijit Mal
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Mylinh Nguyen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-8816
| | - Christina Stevens
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Akhilesh Mishra
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Yuanqing Ma
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX75390-8821
| | - Robert Abraham
- Oncology R&D Group, Pfizer Worldwide Research and Development, San Diego, CA92121
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390-9234
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-8816
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| |
Collapse
|
7
|
Loghin A, Popelea MC, Todea-Moga CD, Cocuz IG, Borda A. Eosinophilic Solid and Cystic Renal Cell Carcinoma-A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5982. [PMID: 38892169 PMCID: PMC11172930 DOI: 10.3390/ijms25115982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Eosinophilic solid and cystic renal cell carcinoma (ESC-RCC) is a novel and uncommon type of renal cell carcinoma, which has been recently recognized and introduced as a distinct entity in the WHO 2022 kidney tumor classification. Previously known as "unclassified RCC", followed by "tuberous sclerosis complex (TSC)-associated RCC", ESC-RCC is now a distinct category of kidney tumor, with its own name, with specific clinical manifestations, and a unique morphological, immunohistochemical and molecular profile. Due to its recent introduction and the limited available data, the diagnosis of ESC-RCC is still a complex challenge, and it is probably frequently misdiagnosed. The secret of diagnosing this tumor lies in the pathologists' knowledge, and keeping it up to date through research, thereby limiting the use of outdated nomenclature. The aim of our case-based review is to provide a better understanding of this pathology and to enrich the literature with a new case report, which has some particularities compared to the existing cases.
Collapse
Affiliation(s)
- Andrada Loghin
- Histology Department, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.L.); (A.B.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania;
| | | | - Ciprian Doru Todea-Moga
- Urology Department, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Urology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Iuliu Gabriel Cocuz
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania;
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Angela Borda
- Histology Department, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.L.); (A.B.)
- Department of Pathology, Targu-Mureș Emergency County Hospital, 540139 Targu Mures, Romania
| |
Collapse
|
8
|
Alchoueiry M, Cornejo K, Henske EP. Kidney cancer: Links between hereditary syndromes and sporadic tumorigenesis. Semin Diagn Pathol 2024; 41:1-7. [PMID: 38008653 DOI: 10.1053/j.semdp.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Multiple hereditary syndromes predispose to kidney cancer, including Von Hippel-Lindau syndrome, BAP1-Tumor Predisposition Syndrome, Hereditary Papillary Renal Cell Carcinoma, Tuberous Sclerosis Complex, Birt-Hogg-Dubé syndrome, Hereditary Paraganglioma-Pheochromocytoma Syndrome, Fumarate Hydratase Tumor Predisposition Syndrome, and Cowden syndrome. In some cases, mutations in the genes that cause hereditary kidney cancer are tightly linked to similar histologic features in sporadic RCC. For example, clear cell RCC occurs in the hereditary syndrome VHL, and sporadic ccRCC usually has inactivation of the VHL gene. In contrast, mutations in FLCN, the causative gene for Birt-Hogg-Dube syndrome, are rarely found in sporadic RCC. Here, we focus on the genes and pathways that link hereditary and sporadic RCC.
Collapse
Affiliation(s)
- Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristine Cornejo
- Pathology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Tajik F, Fattahi F, Rezagholizadeh F, Bouzari B, Babaheidarian P, Baghai Wadji M, Madjd Z. Nuclear overexpression of DNA damage-inducible transcript 4 (DDIT4) is associated with aggressive tumor behavior in patients with pancreatic tumors. Sci Rep 2023; 13:19403. [PMID: 37938616 PMCID: PMC10632485 DOI: 10.1038/s41598-023-46484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is induced in various cellular stress conditions. Several studies showed that the dysregulation of DDIT4 is involved in different malignancies with paradoxical expressions and roles. Therefore, this study investigated the clinical significance, prognostic, and diagnostic value of DDIT4 in different types of pancreatic tumors (PT). The expression of DDIT4 and long non-coding RNA (TPTEP1) in mRNA level was examined in 27 fresh PT samples using Real-time quantitative PCR (RT-qPCR). Moreover, 200 formalin-fixed paraffin-embedded PT tissues, as well as 27 adjacent normal tissues, were collected to evaluate the clinical significance, prognostic, and diagnosis value of DDIT4 expression by immunohistochemistry (IHC) on tissue microarrays (TMA) slides. The results of RT-qPCR showed that the expression of DDIT4 in tumor samples was higher than in normal samples which was associated with high tumor grade (P = 0.015) and lymphovascular invasion (P = 0.048). Similar to this, IHC findings for nucleus, cytoplasm, and membrane localization showed higher expression of DDIT4 protein in PT samples rather than in nearby normal tissues. A statistically significant association was detected between a high level of nuclear expression of DDIT4 protein, and lymphovascular invasion (P = 0.025), as well as advanced TNM stage (P = 0.034) pancreatic ductal adenocarcinoma (PDAC) and in pancreatic neuroendocrine tumor (PNET), respectively. In contrast, a low level of membranous expression of DDIT4 protein showed a significant association with advanced histological grade (P = 0.011), margin involvement (P = 0.007), perineural invasion (P = 0.023), as well as lymphovascular invasion (P = 0.005) in PDAC. No significant association was found between survival outcomes and expression of DDIT4 in both types. It was found that DDIT4 has rational accuracy and high sensitivity as a diagnostic marker. Our results revealed a paradoxical role of DDIT4 expression protein based on the site of nuclear and membranous expression. The findings of this research indicated that there is a correlation between elevated nuclear expression of DDIT4 and the advancement and progression of disease in patients with PT. Conversely, high membranous expression of DDIT4 was associated with less aggressive tumor behavior in patients with PDAC. However, further studies into the prognostic value and biological function of DDIT4 are needed in future studies.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Surgery, University of California, Irvine, CA, USA
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Baghai Wadji
- Department of Surgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Kapur P, Brugarolas J, Trpkov K. Recent Advances in Renal Tumors with TSC/mTOR Pathway Abnormalities in Patients with Tuberous Sclerosis Complex and in the Sporadic Setting. Cancers (Basel) 2023; 15:4043. [PMID: 37627070 PMCID: PMC10452688 DOI: 10.3390/cancers15164043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
A spectrum of renal tumors associated with frequent TSC/mTOR (tuberous sclerosis complex/mechanistic target of rapamycin) pathway gene alterations (in both the germline and sporadic settings) have recently been described. These include renal cell carcinoma with fibromyomatous stroma (RCC FMS), eosinophilic solid and cystic renal cell carcinoma (ESC RCC), eosinophilic vacuolated tumor (EVT), and low-grade oncocytic tumor (LOT). Most of these entities have characteristic morphologic and immunohistochemical features that enable their recognition without the need for molecular studies. In this report, we summarize recent advances and discuss their evolving complexity.
Collapse
Affiliation(s)
- Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Brugarolas
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2L 2K5, Canada
- Alberta Precision Labs, Rockyview General Hospital, 7007 14 St., Calgary, AB T2V 1P9, Canada
| |
Collapse
|
11
|
Hitefield NL, Mackay S, Hays LE, Chen S, Oduor IO, Troyer DA, Nyalwidhe JO. Differential Activation of NRF2 Signaling Pathway in Renal-Cell Carcinoma Caki Cell Lines. Biomedicines 2023; 11:biomedicines11041010. [PMID: 37189628 DOI: 10.3390/biomedicines11041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Renal-cell carcinoma (RCC) is a heterogeneous disease consisting of several subtypes based on specific genomic profiles and histological and clinical characteristics. The subtype with the highest prevalence is clear-cell RCC (ccRCC), next is papillary RCC (pRCC), and then chromophobe RCC (chRCC). The ccRCC cell lines are further subdivided into prognostic expression-based subtypes ccA or ccB. This heterogeneity necessitates the development, availability, and utilization of cell line models with the correct disease phenotypic characteristics for RCC research. In this study, we focused on characterizing proteomic differences between the Caki-1 and Caki-2 cell lines that are commonly used in ccRCC research. Both cells are primarily defined as human ccRCC cell lines. Caki-1 cell lines are metastatic, harboring wild-type VHL, whereas Caki-2 are considered as the primary ccRCC cell lines expressing wild-type von Hippel–Lindau protein (pVHL). Here, we performed a comprehensive comparative proteomic analysis of Caki-1 and Caki-2 cells using tandem mass-tag reagents together with liquid chromatography mass spectrometry (LC/MS) for the identification and quantitation of proteins in the two cell lines. Differential regulation of a subset of the proteins identified was validated using orthogonal methods including western blot, q-PCR, and immunofluorescence assays. Integrative bioinformatic analysis identifies the activation/inhibition of specific molecular pathways, upstream regulators, and causal networks that are uniquely regulated and associated with the two cell lines and RCC subtypes, and potentially the disease stage. Altogether, we have identified multiple molecular pathways, including NRF2 signaling, which is the most significantly activated pathway in Caki-2 versus Caki-1 cells. Some of the differentially regulated molecules and signaling pathways could serve as potential diagnostic and prognostic biomarkers and therapeutic targets amongst ccRCC subtypes.
Collapse
|
12
|
Li J, Quan C, He YL, Cao Y, Chen Y, Wang YF, Wu LY. Autophagy regulated by the HIF/REDD1/mTORC1 signaling is progressively increased during erythroid differentiation under hypoxia. Front Cell Dev Biol 2022; 10:896893. [PMID: 36092719 PMCID: PMC9448881 DOI: 10.3389/fcell.2022.896893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
For hematopoietic stem and progenitor cells (HSPCs), hypoxia is a specific microenvironment known as the hypoxic niche. How hypoxia regulates erythroid differentiation of HSPCs remains unclear. In this study, we show that hypoxia evidently accelerates erythroid differentiation, and autophagy plays a pivotal role in this process. We further determine that mTORC1 signaling is suppressed by hypoxia to relieve its inhibition of autophagy, and with the process of erythroid differentiation, mTORC1 activity gradually decreases and autophagy activity increases accordingly. Moreover, we provide evidence that the HIF-1 target gene REDD1 is upregulated to suppress mTORC1 signaling and enhance autophagy, thereby promoting erythroid differentiation under hypoxia. Together, our study identifies that the enhanced autophagy by hypoxia favors erythroid maturation and elucidates a new regulatory pattern whereby autophagy is progressively increased during erythroid differentiation, which is driven by the HIF-1/REDD1/mTORC1 signaling in a hypoxic niche.
Collapse
|
13
|
Kapur P, Gao M, Zhong H, Chintalapati S, Mitui M, Barnes S, Zhou Q, Miyata J, Carrillo D, Malladi V, Rakheja D, Pedrosa I, Xu L, Kinch L, Brugarolas J. Germline and sporadic mTOR pathway mutations in low-grade oncocytic tumor of the kidney. Mod Pathol 2022; 35:333-343. [PMID: 34538873 PMCID: PMC9817016 DOI: 10.1038/s41379-021-00896-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023]
Abstract
Low-grade oncocytic tumor (LOT) of the kidney is a recently described entity with poorly understood pathogenesis. Using next-generation sequencing (NGS) and complementary approaches, we provide insight into its biology. We describe 22 LOT corresponding to 7 patients presenting with a median age of 75 years (range 63-86 years) and male to female ratio 2:5. All 22 tumors demonstrated prototypical microscopic features. Tumors were well-circumscribed and solid. They were composed of sheets of tumor cells in compact nests. Tumor cells had eosinophilic cytoplasm, round to oval nuclei (without nuclear membrane irregularities), focal subtle perinuclear halos, and occasional binucleation. Sharply delineated edematous stromal islands were often observed. Tumor cells were positive for PAX8, negative for CD117, and exhibited diffuse and strong cytokeratin-7 expression. Six patients presented with pT1 tumors. At a median follow-up of 29 months, four patients were alive without recurrence (three patients had died from unrelated causes). All tumors were originally classified as chromophobe renal cell carcinoma, eosinophilic variant (chRCC-eo). While none of the patients presented with known syndromic features, one patient with multiple bilateral LOTs was subsequently found to have a likely pathogenic germline TSC1 mutation. Somatic, likely activating, mutations in MTOR and RHEB were identified in all other evaluable LOTs. As assessed by phospho-S6 and phospho-4E-BP1, mTOR complex 1 (mTORC1) was activated across all cases but to different extent. MTOR mutant LOT exhibited lower levels of mTORC1 activation, possibly related to mTORC1 dimerization and the preservation of a wild-type MTOR copy (retained chromosome 1). Supporting its distinction from related entities, gene expression analyses showed that LOT clustered separately from classic chRCC, chRCC-eo, and RO. In summary, converging mTORC1 pathway mutations, mTORC1 complex activation, and a distinctive gene expression signature along with characteristic phenotypic features support LOT designation as a distinct entity with both syndromic and non-syndromic cases associated with an indolent course.
Collapse
Affiliation(s)
- Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ming Gao
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390,Department of Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Hua Zhong
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Suneetha Chintalapati
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Midori Mitui
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Spencer Barnes
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Qinbo Zhou
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Jeffrey Miyata
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390,Department of Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Deyssy Carrillo
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390,Department of Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Venkat Malladi
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390,Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Ivan Pedrosa
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Lin Xu
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Lisa Kinch
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - James Brugarolas
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Henske EP, Cornejo KM, Wu CL. Renal Cell Carcinoma in Tuberous Sclerosis Complex. Genes (Basel) 2021; 12:1585. [PMID: 34680979 PMCID: PMC8535193 DOI: 10.3390/genes12101585] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder in which renal manifestations are prominent. There are three major renal lesions in TSC: angiomyolipomas, cysts, and renal cell carcinoma (RCC). Major recent advances have revolutionized our understanding of TSC-associated RCC, including two series that together include more than 100 TSC-RCC cases, demonstrating a mean age at onset of about 36 years, tumors in children as young as 7, and a striking 2:1 female predominance. These series also provide the first detailed understanding of the pathologic features of these distinctive tumors, which include chromophobe-like features and eosinophilia, with some of the tumors unclassified. This pathologic heterogeneity is distinctive and reminiscent of the pathologic heterogeneity in Birt-Hogg-Dube-associated RCC, which also includes chromophobe-like tumors. Additional advances include the identification of sporadic counterpart tumors that carry somatic TSC1/TSC2/mTOR mutations. These include unclassified eosinophilic tumors, eosinophilic solid cystic RCC (ESC-RCC), and RCC with leiomyomatous stroma (RCCLMS). A variety of epithelial renal neoplasms have been identified both in patients with tuberous sclerosis complex (TSC) and in the nonsyndromic setting associated with somatic mutations in the TSC1 and TSC2 genes. Interestingly, whether tumors are related to a germline or somatic TSC1/2 mutation, these tumors often display similar morphologic and immunophenotypic features. Finally, recent work has identified molecular links between TSC and BHD-associated tumors, involving the TFEB/TFE3 transcription factors.
Collapse
Affiliation(s)
- Elizabeth P. Henske
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristine M. Cornejo
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (K.M.C.); (C.-L.W.)
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (K.M.C.); (C.-L.W.)
| |
Collapse
|
15
|
Liu X, Suo H, Zhou S, Hou Z, Bu M, Liu X, Xu W. Afatinib induces pro-survival autophagy and increases sensitivity to apoptosis in stem-like HNSCC cells. Cell Death Dis 2021; 12:728. [PMID: 34294686 PMCID: PMC8298552 DOI: 10.1038/s41419-021-04011-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Afatinib, a second-generation tyrosine kinase inhibitor (TKI), exerts its antitumor effects in head and neck squamous cell carcinoma (HNSCC) by inducing intrinsic apoptosis through suppression of mTORC1. However, the detailed mechanism and biological significance of afatinib-induced autophagy in HNSCC remains unclear. In the present study, we demonstrated that afatinib induced mTORC1 suppression-mediated autophagy in HNSCC cells. Further mechanistic investigation revealed that afatinib stimulated REDD1-TSC1 signaling, giving rise to mTORC1 inactivation and subsequent autophagy. Moreover, ROS generation elicited by afatinib was responsible for the induction of the REDD1-TSC1-mTORC1 axis. In addition, pharmacological or genetic inhibition of autophagy sensitized HNSCC cells to afatinib-induced apoptosis, demonstrating that afatinib activated pro-survival autophagy in HNSCC cells. Importantly, in vitro and in vivo assays showed that afatinib caused enhanced apoptosis but weaker autophagy in stem-like HNSCC cells constructed by CDH1 knockdown. This suggested that blocking autophagy has the potential to serve as a promising strategy to target HNSCC stem cells. In conclusion, our findings suggested that the combination treatment with afatinib and autophagy inhibitors has the potential to eradicate HNSCC cells, especially cancer stem cells in clinical therapy.
Collapse
Affiliation(s)
- Xianfang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Huiyuan Suo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Shengli Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Zhenxing Hou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Mingqiang Bu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, 277500, P.R. China
| | - Xiuxiu Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China.
| |
Collapse
|
16
|
Ganner A, Gehrke C, Klein M, Thegtmeier L, Matulenski T, Wingendorf L, Wang L, Pilz F, Greidl L, Meid L, Kotsis F, Walz G, Frew IJ, Neumann-Haefelin E. VHL suppresses RAPTOR and inhibits mTORC1 signaling in clear cell renal cell carcinoma. Sci Rep 2021; 11:14827. [PMID: 34290272 PMCID: PMC8295262 DOI: 10.1038/s41598-021-94132-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Inactivation of the tumor suppressor von Hippel-Lindau (VHL) gene is a key event in hereditary and sporadic clear cell renal cell carcinomas (ccRCC). The mechanistic target of rapamycin (mTOR) signaling pathway is a fundamental regulator of cell growth and proliferation, and hyperactivation of mTOR signaling is a common finding in VHL-dependent ccRCC. Deregulation of mTOR signaling correlates with tumor progression and poor outcome in patients with ccRCC. Here, we report that the regulatory-associated protein of mTOR (RAPTOR) is strikingly repressed by VHL. VHL interacts with RAPTOR and increases RAPTOR degradation by ubiquitination, thereby inhibiting mTORC1 signaling. Consistent with hyperactivation of mTORC1 signaling in VHL-deficient ccRCC, we observed that loss of vhl-1 function in C. elegans increased mTORC1 activity, supporting an evolutionary conserved mechanism. Our work reveals important new mechanistic insight into deregulation of mTORC1 signaling in ccRCC and links VHL directly to the control of RAPTOR/mTORC1. This may represent a novel mechanism whereby loss of VHL affects organ integrity and tumor behavior.
Collapse
Affiliation(s)
- Athina Ganner
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina Gehrke
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marinella Klein
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena Thegtmeier
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Matulenski
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Wingendorf
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lu Wang
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felicitas Pilz
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lars Greidl
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Meid
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fruzsina Kotsis
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ian J Frew
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Shulman M, Shi R, Zhang Q. Von Hippel-Lindau tumor suppressor pathways & corresponding therapeutics in kidney cancer. J Genet Genomics 2021; 48:552-559. [PMID: 34376376 PMCID: PMC8453047 DOI: 10.1016/j.jgg.2021.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
The identification and application of the Von Hippel-Lindau (VHL) gene is a seminal breakthrough in kidney cancer research. VHL and its protein pVHL are the root cause of most kidney cancers, and the cascading pathway below them is crucial for understanding hypoxia, in addition to the aforementioned tumorigenesis routes and treatments. We reviewed the history and functions of VHL/pVHL and Hypoxia-inducible factor (HIF), their well-known activities under low-oxygen environments as an E3 ubiquitin ligase and as a transcription factor, respectively, as well as their non-canonical functions revealed recently. Additionally, we discussed how their dysregulation promotes tumorigenesis: beginning with chromosome 3 p-arm (3p) loss/epigenetic methylation, followed by two-allele knockout, before the loss of complimentary tumor suppressor genes leads cells down predictable oncological paths. These different pathways can ultimately determine the grade, outcome, and severity of the deadliest genitourinary cancer. We finished by investigating current and proposed schemes to therapeutically treat clear cell renal cell carcinoma (ccRCC) by manipulating the hypoxic pathway utilizing Vascular Endothelial Growth Factor (VEGF) inhibitors, mammalian target of rapamycin complex 1 (mTORC1) inhibitors, small molecule HIF inhibitors, immune checkpoint blockade therapy, and synthetic lethality.
Collapse
Affiliation(s)
- Maxwell Shulman
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachel Shi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Kapur P, Gao M, Zhong H, Rakheja D, Cai Q, Pedrosa I, Margulis V, Xu L, Kinch L, Brugarolas J. Eosinophilic Vacuolated Tumor of the Kidney: A Review of Evolving Concepts in This Novel Subtype With Additional Insights From a Case With MTOR Mutation and Concomitant Chromosome 1 Loss. Adv Anat Pathol 2021; 28:251-257. [PMID: 34009776 PMCID: PMC8205969 DOI: 10.1097/pap.0000000000000299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in molecular genetics have expanded our knowledge of renal tumors and enabled a better classification. These studies have revealed that renal tumors with predominantly "eosinophilic/oncocytic" cytoplasm include several novel biological subtypes beyond the traditionally well-recognized renal oncocytoma and an eosinophilic variant of chromophobe renal cell carcinoma. Herein, we present a comprehensive review of the eosinophilic vacuolated tumor (EVT) building upon a case report including radiology, histopathology, electron microscopy, and next-generation sequencing. EVTs are characterized by mTORC1 activation. We speculate that loss of chromosome 1 in EVT with MTOR mutation may be driven in part by an advantage conferred by loss of the remaining MTOR wild-type allele. mTORC1 is best known for its role in promoting protein translation and it is interesting that dilated cisterns of rough endoplasmic reticulum (ER) likely account for the cytoplasmic vacuoles seen by light microscopy. We present an integrated view of EVT as well as cues that can assist in the differential diagnosis.
Collapse
Affiliation(s)
- Payal Kapur
- Department / Center of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
- Department / Center of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
- Department / Center of Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Ming Gao
- Department / Center of Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390
- Department / Center of Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Hua Zhong
- Department / Center of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
- Department / Center of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Dinesh Rakheja
- Department / Center of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
- Department / Center of Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Qi Cai
- Department / Center of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Ivan Pedrosa
- Department / Center of Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390
- Department / Center of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Vitaly Margulis
- Department / Center of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
- Department / Center of Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Lin Xu
- Departments / Centers of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Lisa Kinch
- Departments / Centers of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - James Brugarolas
- Department / Center of Kidney Cancer Program at Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390
- Department / Center of Hematology-Oncology Division of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| |
Collapse
|
19
|
Fattahi F, Saeednejad Zanjani L, Habibi Shams Z, Kiani J, Mehrazma M, Najafi M, Madjd Z. High expression of DNA damage-inducible transcript 4 (DDIT4) is associated with advanced pathological features in the patients with colorectal cancer. Sci Rep 2021; 11:13626. [PMID: 34211002 PMCID: PMC8249407 DOI: 10.1038/s41598-021-92720-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is induced in various cellular stress conditions. This study was conducted to investigate expression and prognostic significance of DDIT4 protein as a biomarker in the patients with colorectal cancer (CRC). PPI network and KEGG pathway analysis were applied to identify hub genes among obtained differentially expressed genes in CRC tissues from three GEO Series. In clinical, expression of DDIT4 as one of hub genes in three subcellular locations was evaluated in 198 CRC tissues using immunohistochemistry method on tissue microarrays. The association between DDIT4 expression and clinicopathological features as well as survival outcomes were analyzed. Results of bioinformatics analysis indicated 14 hub genes enriched in significant pathways according to KEGG pathways analysis among which DDIT4 was selected to evaluate CRC tissues. Overexpression of nuclear DDIT4 protein was found in CRC tissues compared to adjacent normal tissues (P = 0.003). Furthermore, higher nuclear expression of DDIT4 was found to be significantly associated with the reduced tumor differentiation and advanced TNM stages (all, P = 0.009). No significant association was observed between survival outcomes and nuclear expression of DDIT4 in CRC cases. Our findings indicated higher nuclear expression of DDIT4 was significantly associated with more aggressive tumor behavior and more advanced stage of disease in the patients with CRC.
Collapse
Affiliation(s)
- Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Mehrazma
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Pathology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Hypoxia favors chemoresistance in T-ALL through an HIF1α-mediated mTORC1 inhibition loop. Blood Adv 2021; 5:513-526. [PMID: 33496749 DOI: 10.1182/bloodadvances.2020002832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Resistance to chemotherapy, a major therapeutic challenge in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), can be driven by interactions between leukemic cells and the microenvironment that promote survival of leukemic cells. The bone marrow, an important leukemia niche, has low oxygen partial pressures that highly participate in the regulation of normal hematopoiesis. Here we show that hypoxia inhibits T-ALL cell growth by slowing down cell cycle progression, decreasing mitochondria activity, and increasing glycolysis, making them less sensitive to antileukemic drugs and preserving their ability to initiate leukemia after treatment. Activation of the mammalian target of rapamycin (mTOR) was diminished in hypoxic leukemic cells, and treatment of T-ALL with the mTOR inhibitor rapamycin in normoxia mimicked the hypoxia effects, namely decreased cell growth and increased quiescence and drug resistance. Knocking down (KD) hypoxia-induced factor 1α (HIF-1α), a key regulator of the cellular response to hypoxia, antagonized the effects observed in hypoxic T-ALL and restored chemosensitivity. HIF-1α KD also restored mTOR activation in low O2 concentrations, and inhibiting mTOR in HIF1α KD T-ALL protected leukemic cells from chemotherapy. Thus, hypoxic niches play a protective role of T-ALL during treatments. Inhibition of HIF-1α and activation of the mTORC1 pathway may help suppress the drug resistance of T-ALL in hypoxic niches.
Collapse
|
21
|
Cooperative Blockade of CK2 and ATM Kinases Drives Apoptosis in VHL-Deficient Renal Carcinoma Cells through ROS Overproduction. Cancers (Basel) 2021; 13:cancers13030576. [PMID: 33540838 PMCID: PMC7867364 DOI: 10.3390/cancers13030576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) is the eighth leading malignancy in the world, accounting for 4% of all cancers with poor outcome when metastatic. Protein kinases are highly druggable proteins, which are often aberrantly activated in cancers. The aim of our study was to identify candidate targets for metastatic clear cell renal cell carcinoma therapy, using chemo-genomic-based high-throughput screening. We found that the combined inhibition of the CK2 and ATM kinases in renal tumor cells and patient-derived tumor samples induces synthetic lethality. Mechanistic investigations unveil that this drug combination triggers apoptosis through HIF-2α-(Hypoxic inducible factor HIF-2α) dependent reactive oxygen species (ROS) overproduction, giving a new option for patient care in metastatic RCC. Abstract Kinase-targeted agents demonstrate antitumor activity in advanced metastatic clear cell renal cell carcinoma (ccRCC), which remains largely incurable. Integration of genomic approaches through small-molecules and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. The 786-O cell line represents a model for most ccRCC that have a loss of functional pVHL (von Hippel-Lindau). A multiplexed assay was used to study the cellular fitness of a panel of engineered ccRCC isogenic 786-O VHL− cell lines in response to a collection of targeted cancer therapeutics including kinase inhibitors, allowing the interrogation of over 2880 drug–gene pairs. Among diverse patterns of drug sensitivities, investigation of the mechanistic effect of one selected drug combination on tumor spheroids and ex vivo renal tumor slice cultures showed that VHL-defective ccRCC cells were more vulnerable to the combined inhibition of the CK2 and ATM kinases than wild-type VHL cells. Importantly, we found that HIF-2α acts as a key mediator that potentiates the response to combined CK2/ATM inhibition by triggering ROS-dependent apoptosis. Importantly, our findings reveal a selective killing of VHL-deficient renal carcinoma cells and provide a rationale for a mechanism-based use of combined CK2/ATM inhibitors for improved patient care in metastatic VHL-ccRCC.
Collapse
|
22
|
Coalescing lessons from oxygen sensing, tumor metabolism, and epigenetics to target VHL loss in kidney cancer. Semin Cancer Biol 2020; 67:34-42. [DOI: 10.1016/j.semcancer.2020.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023]
|
23
|
Targeting Metabolic Pathways in Kidney Cancer: Rationale and Therapeutic Opportunities. ACTA ACUST UNITED AC 2020; 26:407-418. [PMID: 32947309 DOI: 10.1097/ppo.0000000000000472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alterations in cellular sugar, amino acid and nucleic acid, and lipid metabolism, as well as in mitochondrial function, are a hallmark of renal cell carcinoma (RCC). The activation of oncogenes such as hypoxia-inducible factor and loss of the von Hippel-Lindau function and other tumor suppressors frequently occur early on during tumorigenesis and are the drivers for these changes, collectively known as "metabolic reprogramming," which promotes cellular growth, proliferation, and stress resilience. However, tumor cells can become addicted to reprogrammed metabolism. Here, we review the current knowledge of metabolic addictions in clear cell RCC, the most common form of RCC, and to what extent this has created therapeutic opportunities to interfere with such altered metabolic pathways to selectively target tumor cells. We highlight preclinical and emerging clinical data on novel therapeutics targeting metabolic traits in clear cell RCC to provide a comprehensive overview on current strategies to exploit metabolic reprogramming clinically.
Collapse
|
24
|
Bouthelier A, Aragonés J. Role of the HIF oxygen sensing pathway in cell defense and proliferation through the control of amino acid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118733. [DOI: 10.1016/j.bbamcr.2020.118733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/15/2020] [Accepted: 04/26/2020] [Indexed: 12/29/2022]
|
25
|
Polycystin-1 induces activation of the PI3K/AKT/mTOR pathway and promotes angiogenesis in renal cell carcinoma. Cancer Lett 2020; 489:135-143. [PMID: 32561414 DOI: 10.1016/j.canlet.2020.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 11/24/2022]
Abstract
In the present study we investigated the expression and the functional role of mechanosensitive polycystins in renal cell carcinoma (RCC). In 115 RCC patients we evaluated the protein expression of polycystin-1 (PC1), polycystin-2 (PC2), VEGF and protein components of the PI3K/Akt/mTOR pathway, which have been implicated both in RCC and polycystic kidney disease. PC1 and PC2 demonstrated reduced expression throughout the RCC tissue compared to the adjacent normal tissue. PC1 and PC2 revealed high expression when they were associated with higher grade and decreased 5-year survival respectively. PC1 and PC2 were positively correlated with p110γ subunit of PI3K and high PC1 expressing cells tended to display activation/phosphorylation of Akt. There was also a positive association between PC1 and VEGF expression, whereas PC1 augmented the tumor's microvascular network in stage IV carcinomas. In human RCC cells, functional inhibition of PC1 resulted in upregulation of the PI3K/Akt/mTOR pathway, enhanced cell proliferation and led to inhibition of cell migration. Conclusively, aberrant PC1 regulation is associated with increased angiogenesis and features of advanced disease in RCC tissues.
Collapse
|
26
|
Tumkur Sitaram R, Landström M, Roos G, Ljungberg B. Significance of PI3K signalling pathway in clear cell renal cell carcinoma in relation to VHL and HIF status. J Clin Pathol 2020; 74:216-222. [PMID: 32467322 DOI: 10.1136/jclinpath-2020-206693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022]
Abstract
Renal cell carcinoma (RCC) includes diverse tumour types characterised by various genetic abnormalities. The genetic changes, like mutations, deletions and epigenetic alterations, play a crucial role in the modification of signalling networks, tumour pathogenesis and prognosis. The most prevalent RCC type, clear cell RCC (ccRCC), is asymptomatic in the early stages and has a poorer prognosis compared with the papillary and the chromophobe types RCCs. Generally, ccRCC is refractory to chemotherapy and radiation therapy. Loss of von Hippel-Lindau (VHL) gene and upregulation of hypoxia-inducible factors (HIF), the signature of most sporadic ccRCC, promote multiple growth factors. Hence, VHL/HIF and a variety of pathways, including phosphatase and TEnsin homolog on chromosome 10/phosphatidylinositol-3-kinase (PI3K)/AKT, are closely connected and contribute to the ontogeny of ccRCC. In the recent decade, multiple targeting agents have been developed based on blocking major signalling pathways directly or indirectly involved in ccRCC tumour progression, metastasis, angiogenesis and survival. However, most of these drugs have limitations; either metastatic ccRCC develops resistance to these agents, or despite blocking receptors, tumour cells use alternate signalling pathways. This review compiles the state of knowledge about the PI3K/AKT signalling pathway confined to ccRCC and its cross-talks with VHL/HIF pathway.
Collapse
Affiliation(s)
- Raviprakash Tumkur Sitaram
- Department of Medical Biosciences, Pathology, Translational Research Center (TRC), Umeå Universitet, Umeå, Väasterbotten, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Translational Research Center (TRC), Umeå Universitet, Umeå, Väasterbotten, Sweden
| | - Göran Roos
- Department of Medical Biosciences, Pathology, Translational Research Center (TRC), Umeå Universitet, Umeå, Väasterbotten, Sweden
| | - Börje Ljungberg
- Department of Surgical and Preoperative Sciences, Urology and Andrology, Umeå Universitet, Umea, Västerbotten, Sweden
| |
Collapse
|
27
|
Yao H, Fan M, He X. Autophagy suppresses resveratrol-induced apoptosis in renal cell carcinoma 786-O cells. Oncol Lett 2020; 19:3269-3277. [PMID: 32256822 PMCID: PMC7074540 DOI: 10.3892/ol.2020.11442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023] Open
Abstract
As a polyphenolic compound, resveratrol (Res) is widely distributed in a variety of plants. Previous studies have demonstrated that Res can inhibit various different types of tumor growth. However, its role in renal cell carcinoma (RCC) remains largely unknown. The present study first demonstrated that Res inhibited cell viability and induced apoptosis in RCC 786-O cells. Further experiments revealed that Res damaged the mitochondria and activated caspase 3. In contrast, Z-VAD-FMK, a pan-caspase inhibitor, suppressed Res-induced apoptosis. Reactive oxygen species (ROS) were involved in the process of Res-induced apoptosis, and antioxidant N-acetyl cysteine could significantly attenuate this. Furthermore, Res activated c-Jun N-terminal kinase via ROS to induce autophagy, whereas inhibition of autophagy with chloroquine or Beclin 1 small interfering RNA aggravated Res-induced apoptosis, indicating that autophagy served as a pro-survival mechanism to protect 786-O cells from Res-induced apoptosis. Therefore, a combination of Res and autophagy inhibitors could enhance the inhibitory effect of Res on RCC.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
28
|
Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene 2020; 39:3413-3426. [PMID: 32123314 PMCID: PMC7194123 DOI: 10.1038/s41388-020-1234-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) comprises a diverse group of malignancies arising from the nephron. The most prevalent type, clear cell renal cell carcinoma (ccRCC), is characterized by genetic mutations in factors governing the hypoxia signaling pathway, resulting in metabolic dysregulation, heightened angiogenesis, intratumoral heterogeneity, and deleterious tumor microenvironmental (TME) crosstalk. Identification of specific genetic variances has led to therapeutic innovation and improved survival for patients with ccRCC. Current barriers to effective long-term therapeutic success highlight the need for continued drug development using improved modeling systems. ccRCC preclinical models can be grouped into three broad categories: cell line, mouse, and 3D models. Yet, the breadth of important unanswered questions in ccRCC research far exceeds the accessibility of model systems capable of carrying them out. Accordingly, we review the strengths, weaknesses, and therapeutic implications of each model system that are relied upon today.
Collapse
|
29
|
Hwang SH, Bang S, Kim W, Chung J. Von Hippel-Lindau tumor suppressor (VHL) stimulates TOR signaling by interacting with phosphoinositide 3-kinase (PI3K). J Biol Chem 2020; 295:2336-2347. [PMID: 31959630 DOI: 10.1074/jbc.ra119.011596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cell growth is positively controlled by the phosphoinositide 3-kinase (PI3K)-target of rapamycin (TOR) signaling pathway under conditions of abundant growth factors and nutrients. To discover additional mechanisms that regulate cell growth, here we performed RNAi-based mosaic analyses in the Drosophila fat body, the primary metabolic organ in the fly. Unexpectedly, the knockdown of the Drosophila von Hippel-Lindau (VHL) gene markedly decreased cell size and body size. These cell growth phenotypes induced by VHL loss of function were recovered by activation of TOR signaling in Drosophila Consistent with the genetic interactions between VHL and the signaling components of PI3K-TOR pathway in Drosophila, we observed that VHL loss of function in mammalian cells causes decreased phosphorylation of ribosomal protein S6 kinase and Akt, which represent the main activities of this pathway. We further demonstrate that VHL activates TOR signaling by directly interacting with the p110 catalytic subunit of PI3K. On the basis of the evolutionarily conserved regulation of PI3K-TOR signaling by VHL observed here, we propose that VHL plays an important role in the regulation and maintenance of proper cell growth in metazoans.
Collapse
Affiliation(s)
- Sun-Hong Hwang
- School of Biological Sciences, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Sunhoe Bang
- School of Biological Sciences, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Wonho Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
30
|
Wang C, Uemura M, Tomiyama E, Matsushita M, Koh Y, Nakano K, Hayashi Y, Ishizuya Y, Jingushi K, Kato T, Hatano K, Kawashima A, Ujike T, Nagahara A, Fujita K, Imamura R, Tsujikawa K, Nonomura N. MicroRNA-92b-3p is a prognostic oncomiR that targets TSC1 in clear cell renal cell carcinoma. Cancer Sci 2020; 111:1146-1155. [PMID: 31975504 PMCID: PMC7156823 DOI: 10.1111/cas.14325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Although several studies have reported that microRNA (miR)‐92b‐3p is involved in various cellular processes related to carcinogenesis, its physiological role in clear cell renal cell carcinoma (ccRCC) remains unclear. To clarify the role of miR‐92b‐3p in ccRCC, we compared miR‐92b‐3p expression levels in ccRCC tissues and adjacent normal renal tissues. Significant upregulation of miR‐92b‐3p was observed in ccRCC tissues. Overexpression of miR‐92b‐3p using a miRNA mimic promoted proliferation, migration, and invasion activities of ACHN cells. Functional inhibition of miR‐92b‐3p by a hairpin miRNA inhibitor suppressed Caki‐2 cell growth and invasion activities in vitro. Mechanistically, it was found that miR‐92b‐3p directly targeted the TSC1 gene, a known upstream regulator of mTOR. Overexpression of miR‐92b‐3p decreased the protein expression of TSC1 and enhanced the downstream phosphorylation of p70S6 kinase, suggesting that the mTOR signaling pathway was activated by miR‐92b‐3p in RCC cells. Importantly, a multivariate Cox proportion hazard model, based on TNM staging and high levels of miR‐92b‐3p, revealed that miR‐92b‐3p expression (high vs. low hazard ratio, 2.86; 95% confidence interval, 1.20‐6.83; P = .018) was a significant prognostic factor for overall survival of ccRCC patients with surgical management. Taken together, miR‐92b‐3p was found to act as an oncomiR, promoting cell proliferation by downregulating TSC1 in ccRCC.
Collapse
Affiliation(s)
- Cong Wang
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urological Immuno-Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoko Koh
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kosuke Nakano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yu Ishizuya
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urological Immuno-Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Ujike
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Nagahara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
31
|
Abstract
The discovery of the von Hippel-Lindau (VHL) gene marked a milestone in our understanding of clear cell renal cell carcinoma (ccRCC) pathogenesis. VHL inactivation is not only a defining feature of ccRCC, but also the initiating event. Herein, we discuss canonical and noncanonical pVHL functions, as well as breakthroughs shaping our understanding of ccRCC evolution and evolutionary subtypes. We conclude by presenting evolving strategies to therapeutically exploit effector mechanisms downstream of pVHL.
Collapse
|
32
|
Doan H, Parsons A, Devkumar S, Selvarajah J, Miralles F, Carroll VA. HIF-mediated Suppression of DEPTOR Confers Resistance to mTOR Kinase Inhibition in Renal Cancer. iScience 2019; 21:509-520. [PMID: 31710966 PMCID: PMC6849413 DOI: 10.1016/j.isci.2019.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 07/26/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a fundamental regulator of cell growth, proliferation, and metabolism. mTOR is activated in renal cancer and accelerates tumor progression. Here, we report that the mTOR inhibitor, DEP domain-containing mTOR-interacting protein (DEPTOR), is strikingly suppressed in clear cell renal cell carcinoma (ccRCC) tumors and cell lines. We demonstrate that DEPTOR is repressed by both hypoxia-inducible factors, HIF-1 and HIF-2, which occurs through activation of the HIF-target gene and transcriptional repressor, BHLHe40/DEC1/Stra13. Restoration of DEPTOR- and CRISPR/Cas9-mediated knockout experiments demonstrate that DEPTOR is growth inhibitory in ccRCC. Furthermore, loss of DEPTOR confers resistance to second-generation mTOR kinase inhibitors through deregulated mTORC1 feedback to IRS-2/PI3K/Akt. This work reveals a hitherto unknown mechanism of resistance to mTOR kinase targeted therapy that is mediated by HIF-dependent reprograming of mTOR/DEPTOR networks and suggests that restoration of DEPTOR in ccRCC will confer sensitivity to mTOR kinase therapeutics.
Collapse
Affiliation(s)
- Hong Doan
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Alexander Parsons
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Shruthi Devkumar
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK
| | - Jogitha Selvarajah
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK
| | - Francesc Miralles
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK
| | - Veronica A Carroll
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK.
| |
Collapse
|
33
|
Drug resistance in papillary RCC: from putative mechanisms to clinical practicalities. Nat Rev Urol 2019; 16:655-673. [PMID: 31602010 DOI: 10.1038/s41585-019-0233-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 11/08/2022]
Abstract
Papillary renal cell carcinoma (pRCC) is the second most common renal cell carcinoma (RCC) subtype and accounts for 10-15% of all RCCs. Despite clinical need, few pharmacogenomics studies in pRCC have been performed. Moreover, current research fails to adequately include pRCC laboratory models, such as the ACHN or Caki-2 pRCC cell lines. The molecular mechanisms involved in pRCC development and drug resistance are more diverse than in clear-cell RCC, in which inactivation of VHL occurs in the majority of tumours. Drug resistance to multiple therapies in pRCC occurs via genetic alteration (such as mutations resulting in abnormal receptor tyrosine kinase activation or RALBP1 inhibition), dysregulation of signalling pathways (such as GSK3β-EIF4EBP1, PI3K-AKT and the MAPK or interleukin signalling pathways), deregulation of cellular processes (such as resistance to apoptosis or epithelial-to-mesenchymal transition) and interactions between the cell and its environment (for example, through activation of matrix metalloproteinases). Improved understanding of resistance mechanisms will facilitate drug discovery and provide new effective therapies. Further studies on novel resistance biomarkers are needed to improve patient prognosis and stratification as well as drug development.
Collapse
|
34
|
Pang J, Wang L, Xu J, Xie Q, Liu Q, Tong D, Liu G, Huang Y, Yang X, Pan J, Yan X, Ma Q, Zhang D, Jiang J. A Renal Cell Carcinoma with Biallelic Somatic TSC2 Mutation: Clinical Study and Literature Review. Urology 2019; 133:96-102. [PMID: 31454656 DOI: 10.1016/j.urology.2019.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To elucidate the effect of the biallelic somatic TSC2 mutations, identified in one adolescent patient, in renal cell carcinoma (RCC). METHODS Mutation analyses, immunohistochemistry and real-time polymerase chain reaction (PCR) were conducted. RESULTS Two novel somatic mutations of TSC2 in unilateral and solitary RCC samples from a 14-year-old female were identified. The pathological features suggest the tumor as a clear-cell renal cell carcinoma. In addition, immunohistochemistry revealed elevated levels of phosphorylated S6K1. Results from in vitro cellular experiments suggest that the mutant TSC2 proteins were quickly degraded and they failed to repress the phosphorylation of S6K1 and STAT3, which leads to constitutive activation of mTORC1 pathway and ultimately cause the development of RCC. CONCLUSION Detecting TSC2 mutation in patients with early RCC onset would be beneficial and mTOR inhibitor could be a therapeutic option for TSC2 mutation-induced RCC.
Collapse
Affiliation(s)
- Jian Pang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Linang Wang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jing Xu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiubo Xie
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yiqiang Huang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Xingxia Yang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jinhong Pan
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, PR China
| | - Xiaochu Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, PR China
| | - Qiang Ma
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, PR China.
| |
Collapse
|
35
|
Mallikarjuna P, Raviprakash TS, Aripaka K, Ljungberg B, Landström M. Interactions between TGF-β type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma. Cell Cycle 2019; 18:2141-2156. [PMID: 31339433 PMCID: PMC6986558 DOI: 10.1080/15384101.2019.1642069] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To investigate the significance of expression of HIF-1α, HIF-2α, and SNAIL1 proteins; and TGF-β signaling pathway proteins in ccRCC, their relation with clinicopathological parameters and patient's survival were examined. We also investigated potential crosstalk between HIF-α and TGF-β signaling pathway, including the TGF-β type 1 receptor (ALK5-FL) and the intracellular domain of ALK5 (ALK5-ICD). Tissue samples from 154 ccRCC patients and comparable adjacent kidney cortex samples from 38 patients were analyzed for HIF-1α/2α, TGF-β signaling components, and SNAIL1 proteins by immunoblot. Protein expression of HIF-1α and HIF-2α were significantly higher, while SNAIL1 had similar expression levels in ccRCC compared with the kidney cortex. HIF-2α associated with poor cancer-specific survival, while HIF-1α and SNAIL1 did not associate with survival. Moreover, HIF-2α positively correlated with ALK5-ICD, pSMAD2/3, and PAI-1; HIF-1α positively correlated with pSMAD2/3; SNAIL1 positively correlated with ALK5-FL, ALK5-ICD, pSMAD2/3, PAI-1, and HIF-2α. Intriguingly, in vitro experiments performed under normoxic conditions revealed that ALK5 interacts with HIF-1α and HIF-2α, and promotes their expression and the expression of their target genes GLUT1 and CA9, in a VHL dependent manner. We found that ALK5 induces expression of HIF-1α and HIF-2α, through its kinase activity. Under hypoxic conditions, HIF-α proteins correlated with the activated TGF-β signaling pathway. In conclusion, we reveal that ALK5 plays a pivotal role in synergistic crosstalk between TGF-β signaling and hypoxia pathway, and that the interaction between ALK5 and HIF-α contributes to tumor progression.
Collapse
Affiliation(s)
| | | | - Karthik Aripaka
- a Department of Medical Biosciences, Pathology , Umeå , Sweden
| | - Börje Ljungberg
- b Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University , Umeå , Sweden
| | | |
Collapse
|
36
|
Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to Systemic Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies. Mol Cancer Ther 2019; 17:1355-1364. [PMID: 29967214 DOI: 10.1158/1535-7163.mct-17-1299] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/28/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. It is categorized into various subtypes, with clear cell RCC (ccRCC) representing about 85% of all RCC tumors. The lack of sensitivity to chemotherapy and radiation therapy prompted research efforts into novel treatment options. The development of targeted therapeutics, including multi-targeted tyrosine kinase inhibitors (TKI) and mTOR inhibitors, has been a major breakthrough in ccRCC therapy. More recently, other therapeutic strategies, including immune checkpoint inhibitors, have emerged as effective treatment options against advanced ccRCC. Furthermore, recent advances in disease biology, tumor microenvironment, and mechanisms of resistance formed the basis for attempts to combine targeted therapies with newer generation immunotherapies to take advantage of possible synergy. This review focuses on the current status of basic, translational, and clinical studies on mechanisms of resistance to systemic therapies in ccRCC. Mol Cancer Ther; 17(7); 1355-64. ©2018 AACR.
Collapse
Affiliation(s)
- Peter Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Shreyas Joshi
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Pooja Ghatalia
- Division of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Kutikov
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert G Uzzo
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Vladimir M Kolenko
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, Warren AY, Stewart GD, Eisen T, Bihary D, Samarajiwa SA, Vanharanta S. A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma. Nat Commun 2019; 10:1152. [PMID: 30858363 PMCID: PMC6411998 DOI: 10.1038/s41467-019-09116-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/15/2019] [Indexed: 12/17/2022] Open
Abstract
Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.
Collapse
Affiliation(s)
- Saiful E Syafruddin
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Paulo Rodrigues
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Erika Vojtasova
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Saroor A Patel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - M Nazhif Zaini
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Johanna Burge
- Academic Urology Group, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Grant D Stewart
- Academic Urology Group, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tim Eisen
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Health Partners, Cambridge, CB2 0QQ, UK
- Oncology Early Clinical Development, AstraZeneca, Cambridge, SG8 6EH, UK
| | - Dóra Bihary
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
38
|
Tian T, Li X, Zhang J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int J Mol Sci 2019; 20:ijms20030755. [PMID: 30754640 PMCID: PMC6387042 DOI: 10.3390/ijms20030755] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) pathway plays a crucial role in regulation of cell survival, metabolism, growth and protein synthesis in response to upstream signals in both normal physiological and pathological conditions, especially in cancer. Aberrant mTOR signaling resulting from genetic alterations from different levels of the signal cascade is commonly observed in various types of cancers. Upon hyperactivation, mTOR signaling promotes cell proliferation and metabolism that contribute to tumor initiation and progression. In addition, mTOR also negatively regulates autophagy via different ways. We discuss mTOR signaling and its key upstream and downstream factors, the specific genetic changes in the mTOR pathway and the inhibitors of mTOR applied as therapeutic strategies in eight solid tumors. Although monotherapy and combination therapy with mTOR inhibitors have been extensively applied in preclinical and clinical trials in various cancer types, innovative therapies with better efficacy and less drug resistance are still in great need, and new biomarkers and deep sequencing technologies will facilitate these mTOR targeting drugs benefit the cancer patients in personalized therapy.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Xiaoyi Li
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
39
|
Elias R, Sharma A, Singla N, Brugarolas J. Next Generation Sequencing in Renal Cell Carcinoma: Towards Precision Medicine. KIDNEY CANCER JOURNAL : OFFICIAL JOURNAL OF THE KIDNEY CANCER ASSOCIATION 2019; 17:94-104. [PMID: 32206160 PMCID: PMC7089604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Roy Elias
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
- Department of Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - Akanksha Sharma
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - Nirmish Singla
- Department of Urology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - James Brugarolas
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
- Department of Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| |
Collapse
|
40
|
Ilic BB, Antic JA, Bankovic JZ, Milicevic IT, Rodic GS, Ilic DS, Tulic CD, Todorovic VN, Damjanovic SS. VHL Dependent Expression of REDD1 and PDK3 Proteins in Clear-cell Renal Cell Carcinoma. J Med Biochem 2018; 37:31-38. [PMID: 30581339 PMCID: PMC6294108 DOI: 10.1515/jomb-2017-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023] Open
Abstract
Background Sporadic clear-cell renal cell carcinoma (ccRCC) is associated with mutations in the VHL gene, upregulated mammalian target of rapamycin (mTOR) activity and glycolytic metabolism. Here, we analyze the effect of VHL mutational status on the expression level of mTOR, eIF4E-BP1, AMPK, REDD1, and PDK3 proteins. Methods Total proteins were isolated from 21 tumorous samples with biallelic inactivation, 10 with monoallelic inactivation and 6 tumors with a wild-type VHL (wtVHL) gene obtained from patients who underwent total nephrectomy. The expressions of target proteins were assessed using Western blot. Results Expressions of mTOR, eIF4EBP1 and AMPK were VHL independent. Tumors with monoallelic inactivation of VHL underexpressed REDD1 in comparison to wtVHL tumors (P = 0.042), tumors with biallelic VHL inactivation (P < 0.005) and control tissue (P = 0.004). Additionally, REDD1 expression was higher in tumors with VHL biallelic inactivation than in control tissue (P = 0.008). Only in wt tumor samples PDK3 was overexpressed in comparison to tumors with biallelic inactivation of VHL gene (P = 0.012) and controls (P = 0.016). In wtVHL ccRCC, multivariate linear regression analysis revealed that 97.4% of variability in PDK3 expression can be explained by variations in AMPK amount. Conclusion Expressions of mTOR, eIF4EBP1 and AMPK were VHL independent. We have shown for the first time VHL dependent expression of PDK3 and we provide additional evidence that VHL mutational status affects REDD1 expression in sporadic ccRCC.
Collapse
Affiliation(s)
- Bojana B Ilic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Jadranka A Antic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Jovana Z Bankovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Ivana T Milicevic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Gordana S Rodic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Dusan S Ilic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Cane D Tulic
- Clinic for Urology, Medical School, University of Belgrade, Belgrade, Serbia
| | - Vera N Todorovic
- Institute for Histology and Embryology, School of Medicine of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Svetozar S Damjanovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| |
Collapse
|
41
|
Graham J, Heng DYC, Brugarolas J, Vaishampayan U. Personalized Management of Advanced Kidney Cancer. Am Soc Clin Oncol Educ Book 2018; 38:330-341. [PMID: 30231375 DOI: 10.1200/edbk_201215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The treatment of renal cell carcinoma represents one of the great success stories in translational cancer research, with the development of novel therapies targeting key oncogenic pathways. These include drugs that target the VEGF and mTOR pathways, as well as novel immuno-oncology agents. Despite the therapeutic advancements, there is a paucity of well-validated prognostic and predictive biomarkers in advanced kidney cancer. With a number of highly effective therapies available across multiple lines, it will become increasingly important to develop a more tailored approach to treatment selection. Prognostic clinical models, such the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) model, are routinely used for prognostication in clinical practice. The IMDC model has demonstrated a predictive capability in the context of these treatments including immune checkpoint inhibition. A number of promising molecular markers and gene expression signatures are being explored as prognostic and predictive biomarkers, but none are ready to be widely used for treatment selection. In this review, we will explore the current landscape of personalized care in metastatic renal cell carcinoma. This will include a focus on both prognostic and predictive factors as well as clinical applications of biology in kidney cancer.
Collapse
Affiliation(s)
- Jeffrey Graham
- From the Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX; Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - Daniel Y C Heng
- From the Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX; Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - James Brugarolas
- From the Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX; Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - Ulka Vaishampayan
- From the Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX; Karmanos Cancer Institute, Wayne State University, Detroit, MI
| |
Collapse
|
42
|
Chang B, Meng J, Zhu H, Du X, Sun L, Wang L, Li S, Yang G. Overexpression of the recently identified oncogene REDD1 correlates with tumor progression and is an independent unfavorable prognostic factor for ovarian carcinoma. Diagn Pathol 2018; 13:87. [PMID: 30428884 PMCID: PMC6236897 DOI: 10.1186/s13000-018-0754-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023] Open
Abstract
Background Regulated in development and DNA damage response (REDD1), a gene responding to hypoxia or multiple DNA damage events, was recently implicated in cancer development and progression. Previously, in vivo and in vitro experiments indicated that REDD1 functions as an oncogene in ovarian cancer cells. However, the role of REDD1 in cancer cell migration and invasion and in clinical significance of prognostic values is not examined in detail. Methods We detected the REDD1 protein expression by immunohistochemistry in 18 normal ovarian surface epithelium or fallopian tube epithelium specimens, 24 ovarian borderline tumors, and 229 ovarian cancers. Fisher’s exact test, logistic regression analysis, the Kaplan–Meier method, and the log-rank test were used to evaluate the association of REDD1 with clinical factors, overall survival and disease-free survival. The prognostic predictive value of REDD1 for ovarian cancer patients was evaluated using multivariate Cox proportional hazard regression models. REDD1 expression in HEY, HEY A8, SKOV3, SKOV3 ip1, OVCA429, OVCA433 and A2780 human ovarian epithelial cancer cell lines was detected by western blotting. The role of REDD1 in cell invasion and migration was assessed by transwell migration and invasion assays using SKOV3, A2780, HEY, HEYA8, and SKOV3-REDD1 with parental A2780-REDD1 HEY-REDD1i and HEY A8-REDD1i. Results High expression of REDD1 was observed in 35.4% of primary ovarian carcinoma samples. Overexpression of cytoplasmic REDD1 in ovarian cancer was significantly associated with serous carcinoma (P < 0.001), late-stage disease (P < 0.001), ascites (P < 0.001), and partial or non-response to chemotherapy (P < 0.001). High cytoplasmic expression of REDD1 was correlated with poorer overall survival (P < 0.001) and disease-free survival (P < 0.001). The multivariate Cox proportional hazards regression analysis indicated that patients with high cytoplasmic REDD1 expression had a high risk of death (P < 0.001) and high risk of an event (i.e., recurrence, progression, or death) (P < 0.001). REDD1 was first reported as an independent prognostic factor in ovarian cancer patients. In addition, REDD1 overexpression enhanced ovarian cancer cell migration and invasion. Conclusion REDD1 is an independent unfavorable prognostic factor in ovarian carcinoma and may promote ovarian cancer metastasis. Electronic supplementary material The online version of this article (10.1186/s13000-018-0754-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Chang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032, China
| | - Huimin Zhu
- Department of Pathology, Shihezi University School of Medicine, Shihezi, 832003, Xinjiang, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032, China
| | - Lili Sun
- Department of Pathology, Shihezi University School of Medicine, Shihezi, 832003, Xinjiang, China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032, China
| | - Shugang Li
- Department of Preventive Medicine, Shihezi University School of Medicine, Shihezi, 832003, Xinjiang, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 20032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032, China. .,Central Laboratory, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
43
|
Meléndez-Rodríguez F, Roche O, Sanchez-Prieto R, Aragones J. Hypoxia-Inducible Factor 2-Dependent Pathways Driving Von Hippel-Lindau-Deficient Renal Cancer. Front Oncol 2018; 8:214. [PMID: 29938199 PMCID: PMC6002531 DOI: 10.3389/fonc.2018.00214] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
The most common type of the renal cancers detected in humans is clear cell renal cell carcinomas (ccRCCs). These tumors are usually initiated by biallelic gene inactivation of the Von Hippel-Lindau (VHL) factor in the renal epithelium, which deregulates the hypoxia-inducible factors (HIFs) HIF1α and HIF2α, and provokes their constitutive activation irrespective of the cellular oxygen availability. While HIF1α can act as a ccRCC tumor suppressor, HIF2α has emerged as the key HIF isoform that is essential for ccRCC tumor progression. Indeed, preclinical and clinical data have shown that pharmacological inhibitors of HIF2α can efficiently combat ccRCC growth. In this review, we discuss the molecular basis underlying the oncogenic potential of HIF2α in ccRCC by focusing on those pathways primarily controlled by HIF2α that are thought to influence the progression of these tumors.
Collapse
Affiliation(s)
- Florinda Meléndez-Rodríguez
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Olga Roche
- Unidad Asociada de Biomedicina, Universidad de Castilla-La Mancha, Consejo Superior de Investigaciones Científicas (CSIC), Albacete, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ricardo Sanchez-Prieto
- Unidad Asociada de Biomedicina, Universidad de Castilla-La Mancha, Consejo Superior de Investigaciones Científicas (CSIC), Albacete, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de investigaciones Biomedicas Alberto Sols, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Julian Aragones
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
44
|
Abstract
Metastatic renal cell carcinoma (mRCC) is an incurable malignancy, characterized by its resistance to traditional chemotherapy, radiation, and hormonal therapy. Treatment perspectives and prognosis of patients with mRCC have been significantly improved by advances in the understanding of its molecular pathogenesis, which have led to the development of targeted therapeutics. Different molecular factors derived from the tumor or the host detected in both tissue or serum could be predictive of therapeutic benefit. Some of them suggest a rational selection of patients to be treated with certain therapies, though none have been validated for routine use. This article provides an overview of both clinical and molecular factors associated with predictive or prognostic value in mRCC and emphasizes that both should be considered in parallel to provide the most appropriate, individualized treatment and achieve the best outcomes in clinical practice.
Collapse
|
45
|
Abstract
The von Hippel–Lindau (VHL) gene is a two-hit tumor suppressor gene and is linked to the development of the most common form of kidney cancer, clear cell renal carcinoma; blood vessel tumors of the retina, cerebellum, and spinal cord called hemangioblastomas; and tumors of the sympathoadrenal nervous system called paragangliomas. The VHL gene product, pVHL, is the substrate recognition subunit of a cullin-dependent ubiquitin ligase that targets the α subunits of hypoxia-inducible factor (HIF) for destruction when oxygen is plentiful. Mounting evidence implicates HIF2 in the pathogenesis of pVHL-defective tumors and has provided a conceptual foundation for the development of drugs to treat them that inhibit HIF2-responsive gene products such as VEGF and, more recently, HIF2 itself. pVHL has additional, noncanonical functions that are cancer relevant, including roles related to the primary cilium, chromosome stability, extracellular matrix formation, and survival signaling.
Collapse
Affiliation(s)
- William G. Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
46
|
Dayton JB, Piccolo SR. Classifying cancer genome aberrations by their mutually exclusive effects on transcription. BMC Med Genomics 2017; 10:66. [PMID: 29322935 PMCID: PMC5763295 DOI: 10.1186/s12920-017-0303-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Malignant tumors are typically caused by a conglomeration of genomic aberrations-including point mutations, small insertions, small deletions, and large copy-number variations. In some cases, specific chemotherapies and targeted drug treatments are effective against tumors that harbor certain genomic aberrations. However, predictive aberrations (biomarkers) have not been identified for many tumor types and treatments. One way to address this problem is to examine the downstream, transcriptional effects of genomic aberrations and to identify characteristic patterns. Even though two tumors harbor different genomic aberrations, the transcriptional effects of those aberrations may be similar. These patterns could be used to inform treatment choices. METHODS We used data from 9300 tumors across 25 cancer types from The Cancer Genome Atlas. We used supervised machine learning to evaluate our ability to distinguish between tumors that had mutually exclusive genomic aberrations in specific genes. An ability to accurately distinguish between tumors with aberrations in these genes suggested that the genes have a relatively different downstream effect on transcription, and vice versa. We compared these findings against prior knowledge about signaling networks and drug responses. RESULTS Our analysis recapitulates known relationships in cancer pathways and identifies gene pairs known to predict responses to the same treatments. For example, in lung adenocarcinomas, gene-expression profiles from tumors with somatic aberrations in EGFR or MET were negatively correlated with each other, in line with prior knowledge that MET amplification causes resistance to EGFR inhibition. In breast carcinomas, we observed high similarity between PTEN and PIK3CA, which play complementary roles in regulating cellular proliferation. In a pan-cancer analysis, we found that genomic aberrations in BRAF and VHL exhibit downstream effects that are clearly distinct from other genes. CONCLUSION We show that transcriptional data offer promise as a way to group genomic aberrations according to their downstream effects, and these groupings recapitulate known relationships. Our approach shows potential to help pharmacologists and clinical trialists narrow the search space for candidate gene/drug associations, including for rare mutations, and for identifying potential drug-repurposing opportunities.
Collapse
Affiliation(s)
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, UT 84602 USA
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108 USA
| |
Collapse
|
47
|
Di Conza G, Trusso Cafarello S, Loroch S, Mennerich D, Deschoemaeker S, Di Matteo M, Ehling M, Gevaert K, Prenen H, Zahedi RP, Sickmann A, Kietzmann T, Moretti F, Mazzone M. The mTOR and PP2A Pathways Regulate PHD2 Phosphorylation to Fine-Tune HIF1α Levels and Colorectal Cancer Cell Survival under Hypoxia. Cell Rep 2017; 18:1699-1712. [PMID: 28199842 PMCID: PMC5318657 DOI: 10.1016/j.celrep.2017.01.051] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 10/22/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
Oxygen-dependent HIF1α hydroxylation and degradation are strictly controlled by PHD2. In hypoxia, HIF1α partly escapes degradation because of low oxygen availability. Here, we show that PHD2 is phosphorylated on serine 125 (S125) by the mechanistic target of rapamycin (mTOR) downstream kinase P70S6K and that this phosphorylation increases its ability to degrade HIF1α. mTOR blockade in hypoxia by REDD1 restrains P70S6K and unleashes PP2A phosphatase activity. Through its regulatory subunit B55α, PP2A directly dephosphorylates PHD2 on S125, resulting in a further reduction of PHD2 activity that ultimately boosts HIF1α accumulation. These events promote autophagy-mediated cell survival in colorectal cancer (CRC) cells. B55α knockdown blocks neoplastic growth of CRC cells in vitro and in vivo in a PHD2-dependent manner. In patients, CRC tissue expresses higher levels of REDD1, B55α, and HIF1α but has lower phospho-S125 PHD2 compared with a healthy colon. Our data disclose a mechanism of PHD2 regulation that involves the mTOR and PP2A pathways and controls tumor growth. PHD2 is phosphorylated at Ser125 by P70S6K and dephosphorylated by PP2A/B55α PHD2 dephosphorylation impairs its function, resulting in increased HIF1α accumulation HIF1α promotes CRC survival in hypoxia via autophagy in a PHD2/B55α-dependent fashion B55α silencing blocks CRC tumor growth in vitro and in vivo; this is PHD2 dependent
Collapse
Affiliation(s)
- Giusy Di Conza
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah Trusso Cafarello
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Stefan Loroch
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Sofie Deschoemaeker
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Manuel Ehling
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Hans Prenen
- Digestive Oncology Unit, Department of Oncology, University Hospital Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Rene Peiman Zahedi
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK; Medizinisches Proteom Center, Ruhr Universität Bochum, 44801 Bochum, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, 00143 Roma, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
48
|
Duran I, Lambea J, Maroto P, González-Larriba JL, Flores L, Granados-Principal S, Graupera M, Sáez B, Vivancos A, Casanovas O. Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action. Target Oncol 2017; 12:19-35. [PMID: 27844272 DOI: 10.1007/s11523-016-0463-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal cell carcinoma (RCC) is a complex disease characterized by mutations in several genes. Loss of function of the von Hippel-Lindau (VHL) tumour suppressor gene is a very common finding in RCC and leads to up-regulation of hypoxia-inducible factor (HIF)-responsive genes accountable for angiogenesis and cell growth, such as platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). Binding of these proteins to their cognate tyrosine kinase receptors on endothelial cells promotes angiogenesis. Promotion of angiogenesis is in part due to the activation of the phosphatidylinositol-3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathway. Inhibition of this pathway decreases protein translation and inhibits both angiogenesis and tumour cell proliferation. Although tyrosine kinase inhibitors (TKIs) stand as the main first-line treatment option for advanced RCC, eventually all patients will become resistant to TKIs. Resistance can be overcome by using second-line treatments with different mechanisms of action, such as inhibitors of mTOR, c-MET, programmed death 1 (PD-1) receptor, or the combination of an mTOR inhibitor (mTORi) with a TKI. In this article, we briefly review current evidence regarding mechanisms of resistance in RCC and treatment strategies to overcome resistance with a special focus on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- I Duran
- Sección de Oncología Médica, Hospital Universitario Virgen del Rocío, Sevilla, Spain.,Laboratorio de Terapias Avanzadas y Biomarcadores en Oncología, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - J Lambea
- Servicio de Oncología Médica, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - P Maroto
- Servicio de Oncología Médica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | - S Granados-Principal
- Servicio de Oncología Médica, Complejo Hospitalario de Jaén, Jaén, Spain.,GENYO, Centre for Genomics and Oncological Research (Pfizer/University of Granada/Andalusian Regional Government), PTS Granada, Granada, Spain
| | - M Graupera
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain
| | - B Sáez
- Departmento de Bioquímica, Biología Molecular y Celular, Instituto Universitario de Investigación en Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - A Vivancos
- Departamento de Bioquímica y Biología Molecular, Universidad Pompeu Fabra, Barcelona, Spain
| | - O Casanovas
- ProCURE Research Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet de Llobregat, Avinguda Gran Via, 199-203, 08907, Barcelona, Spain.
| |
Collapse
|
49
|
Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. Mol Cancer 2016; 15:83. [PMID: 27993170 PMCID: PMC5168717 DOI: 10.1186/s12943-016-0565-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023] Open
Abstract
Cell lines are still a tool of choice for many fields of biomedical research, including oncology. Although cancer is a very complex disease, many discoveries have been made using monocultures of established cell lines. Therefore, the proper use of in vitro models is crucial to enhance our understanding of cancer. Therapeutics against renal cell cancer (RCC) are also screened with the use of cell lines. Multiple RCC in vitro cultures are available, allowing in vivo heterogeneity in the laboratory, but at the same time, these can be a source of errors. In this review, we tried to sum up the data on the RCC cell lines used currently. An increasing amount of data on RCC shed new light on the molecular background of the disease; however, it revealed how much still needs to be done. As new types of RCC are being distinguished, novel cell lines and the re-exploration of old ones seems to be indispensable to create effective in vitro tools for drug screening and more.
Collapse
Affiliation(s)
- Klaudia K Brodaczewska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Michal Fiedorowicz
- Department of Experimental Pharmacology, Polish Academy of Science Medical Research Centre, Warsaw, Poland
| | - Camillo Porta
- Department of Medical Oncology, IRCCS San Matteo University Hospital Foundation, Pavia, Italy
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.
| |
Collapse
|
50
|
Damjanovic SS, Ilic BB, Beleslin Cokic BB, Antic JA, Bankovic JZ, Milicevic IT, Rodic GS, Ilic DS, Todorovic VN, Puskas N, Tulic CD. Tuberous sclerosis complex protein 1 expression is affected by VHL Gene alterations and HIF-1α production in sporadic clear-cell renal cell carcinoma. Exp Mol Pathol 2016; 101:323-331. [PMID: 27845047 DOI: 10.1016/j.yexmp.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
Alterations in von Hippel-Lindau gene (VHL) do not determine deregulation of hypoxia-inducible factors (HIFs) in clear-cell renal carcinoma (ccRCC). Their effects on tuberous sclerosis proteins (TSC1/2) and heat shock protein 90 (Hsp90) expressions in sporadic ccRCC are unknown. Therefore, we analyze the impact of VHL alterations and HIF-α production on the expression of TSC proteins and Hsp90 in these tumors. Alterations in VHL gene region exhibited 37/47 (78.7%) tumors. Monoallelic inactivation (intragenic mutation or LOH) was found in 10 (21.3%) and biallelic inactivation (intragenic mutation plus LOH) in 27 (57.4%) ccRCCs. Tumorous expression of HIF-α mRNAs, HIF-α, Hsp90 and TSC2 were VHL independent; TSC2 was underexpressed in all tumors by immunostaining (P<0.001). Immunoblotting revealed that TSC1 production was lower in tumors with monoallelic VHL inactivation than in control (P=0.01) and tissues with biallelic VHL inactivation (P=0.019), while tumors lacking HIF-1α (16/47) concurrently overexpressed HIF-2α and underexpressed TSC1 in comparison to controls (P=0.01 for both) and HIF-1α positive tumors (P=0.015 and P=0.050). Significant portion of variability (56.4%) in tumor diameter was explained by oscillations in nuclear grade, and TSC1 and HIF-2α expression in VHL altered tumors. In conclusion, while TSC2 is broadly downregulated in sporadic ccRCC, TSC1 expression is reduced in two subsets of these tumors, those with monoallelic VHL gene inactivation and those with concurrent low HIF-1α and high HIF-2α expression. Hence, the involvement of nuclear grade, TSC1 and HIF-2α in the progression of VHL altered tumors, implies the interplay between pVHL and TSC1.
Collapse
Affiliation(s)
- Svetozar S Damjanovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia.
| | - Bojana B Ilic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Bojana B Beleslin Cokic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Jadranka A Antic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Jovana Z Bankovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Ivana T Milicevic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Gordana S Rodic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Dusan S Ilic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department for Neuroendocrine Tumors and Hereditary Cancer Syndromes, Dr Subotica 13, Belgrade, Serbia
| | - Vera N Todorovic
- Institute for Histology and Embryology, School of Medicine of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Nela Puskas
- Institute of Histology and Embryology, Medical School, University of Belgrade, Belgrade, Serbia
| | - Cane D Tulic
- Clinic for Urology, Medical School, University of Belgrade, Belgrade, Serbia
| |
Collapse
|