1
|
Wu X, Liu R, Zhang Z, Yang J, Liu X, Jiang L, Fang M, Wang S, Lai L, Song Y, Li Z. The RhoB p.S73F mutation leads to cerebral palsy through dysregulation of lipid homeostasis. EMBO Mol Med 2024; 16:2002-2023. [PMID: 39080495 PMCID: PMC11393352 DOI: 10.1038/s44321-024-00113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/14/2024] Open
Abstract
Cerebral palsy (CP) is a prevalent neurological disorder that imposes a significant burden on children, families, and society worldwide. Recently, the RhoB p.S73F mutation was identified as a de novo mutation associated with CP. However, the mechanism by which the RhoB p.S73F mutation causes CP is currently unclear. In this study, rabbit models were generated to mimic the human RhoB p.S73F mutation using the SpG-BE4max system, and exhibited the typical symptoms of human CP, such as periventricular leukomalacia and spastic-dystonic diplegia. Further investigation revealed that the RhoB p.S73F mutation could activate ACAT1 through the LYN pathway, and the subsequently altered lipid levels may lead to neuronal and white matter damage resulting in the development of CP. This study presented the first mammalian model of genetic CP that accurately replicates the RhoB p.S73F mutation in humans, provided further insights between RhoB and lipid metabolism, and novel therapeutic targets for human CP.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruonan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhongtian Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, 100039, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou, 510530, China
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Liqiang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mengmeng Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shoutang Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Liangxue Lai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, 100039, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou, 510530, China.
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Su Y, Mei L, Jiang T, Wang Z, Ji Y. Novel role of lncRNAs regulatory network in papillary thyroid cancer. Biochem Biophys Rep 2024; 38:101674. [PMID: 38440062 PMCID: PMC10909982 DOI: 10.1016/j.bbrep.2024.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine malignancy. The incidence of PTC has increased annually worldwide. Thus, PTC diagnosis and treatment attract more attention. Noncoding RNAs (lncRNAs) play crucial roles in PTC progression and act as prognostic biomarkers. Moreover, microRNAs (miRNAs) and epithelial-mesenchymal transition (EMT)-associated proteins have potential biomarkers for diagnosing and treating PTC. However, the correlation of lncRNAs with miRNAs and EMT-associated proteins needs further clarification. The present review highlights the recent advances of lncRNAs in PTC. We significantly summarized the two molecular regulatory mechanisms in PTC progress, including lncRNAs-miRNAs-protein signaling axes and lncRNAs-EMT pathways. This review will help our understanding of the association between lncRNAs and PTC and may assist us in evaluating the prognosis for PTC patients. Taken together, targeting the lncRNAs regulatory network has promising applications in diagnosing and treating PTC.
Collapse
Affiliation(s)
- Yuanhao Su
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated, Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tiantian Jiang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Zhidong Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated, Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
3
|
van Golen KL. Inflammatory breast cancer biomarkers and biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:63-76. [PMID: 38637100 DOI: 10.1016/bs.ircmb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory breast cancer (IBC) is a unique breast cancer with a highly virulent course and low 5- and 10-year survival rates. Even though it only accounts for 1-5% of breast cancers it is estimated to account for 10% of breast cancer deaths annually in the United States. The accuracy of diagnosis and classification of this unique cancer is a major concern within the medical community. Early molecular and biological studies incidentally included IBC samples with other conventional breast cancers and were not informative as to the unique nature of the disease. Subsequent molecular studies that focused specifically on IBC demonstrated that IBC has a unique biology different from other forms of breast cancer. Additionally, a handful of unique signature genes that are hallmarks of IBC have also been suggested. Further understanding of IBC biology can help with diagnosis and treatment of the disease. The current article reviews the history and highlights of IBC studies.
Collapse
Affiliation(s)
- Kenneth L van Golen
- Department of Biological Sciences, The University of Delaware, Newark, DE, United States; The Center for Translational Cancer Research, Newark, DE, United States.
| |
Collapse
|
4
|
Yang C, Hardy P. The Multifunctional Nature of the MicroRNA/AKT3 Regulatory Axis in Human Cancers. Cells 2023; 12:2594. [PMID: 37998329 PMCID: PMC10670075 DOI: 10.3390/cells12222594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Serine/threonine kinase (AKT) signaling regulates diverse cellular processes and is one of the most important aberrant cell survival mechanisms associated with tumorigenesis, metastasis, and chemoresistance. Targeting AKT has become an effective therapeutic strategy for the treatment of many cancers. AKT3 (PKBγ), the least studied isoform of the AKT family, has emerged as a major contributor to malignancy. AKT3 is frequently overexpressed in human cancers, and many regulatory oncogenic or tumor suppressor small non-coding RNAs (ncRNAs), including microRNAs (miRNAs), have recently been identified to be involved in regulating AKT3 expression. Therefore, a better understanding of regulatory miRNA/AKT3 networks may reveal novel biomarkers for the diagnosis of patients with cancer and may provide invaluable information for developing more effective therapeutic strategies. The aim of this review was to summarize current research progress in the isoform-specific functions of AKT3 in human cancers and the roles of dysregulated miRNA/AKT3 in specific types of human cancers.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, Montreal, QC H3T 1C5, Canada;
- Department of Pharmacology and Physiology, Department of Pediatrics, University of Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
5
|
Kempska J, Oliveira-Ferrer L, Grottke A, Qi M, Alawi M, Meyer F, Borgmann K, Hamester F, Eylmann K, Rossberg M, Smit DJ, Jücker M, Laakmann E, Witzel I, Schmalfeldt B, Müller V, Legler K. Impact of AKT1 on cell invasion and radiosensitivity in a triple negative breast cancer cell line developing brain metastasis. Front Oncol 2023; 13:1129682. [PMID: 37483521 PMCID: PMC10358765 DOI: 10.3389/fonc.2023.1129682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The PI3K/AKT pathway is activated in 43-70% of breast cancer (BC)-patients and promotes the metastatic potential of BC cells by increasing cell proliferation, invasion and radioresistance. Therefore, AKT1-inhibition in combination with radiotherapy might be an effective treatment option for triple-negative breast cancer (TNBC)-patients with brain metastases. Methods The impact of AKT1-knockout (AKT1_KO) and AKT-inhibition using Ipatasertib on MDA-MB-231 BR cells was assessed using in vitro cell proliferation and migration assays. AKT1-knockout in MDA-MB-231BR cells was performed using CRISPR/Cas9. The effect of AKT1-knockout on radiosensitivity of MDA-MB-231BR cell lines was determined via colony formation assays after cell irradiation. To detect genomic variants in AKT1_KO MDA-MB-231BR cells, whole-genome sequencing (WGS) was performed. Results Pharmacological inhibition of AKT with the pan-AKT inhibitor Ipatasertib led to a significant reduction of cell viability but did not impact cell migration. Moreover, only MDA-MB-231BR cells were sensitized following Ipatasertib-treatment. Furthermore, specific AKT1-knockout in MDA-MB-231BR showed reduced cell viability in comparison to control cells, with significant effect in one of two analyzed clones. Unexpectedly, AKT1 knockout led to increased cell migration and clonogenic potential in both AKT1_KO clones. RNAseq-analysis revealed the deregulation of CTSO, CYBB, GPR68, CEBPA, ID1, ID4, METTL15, PBX1 and PTGFRN leading to the increased cell migration, higher clonogenic survival and decreased radiosensitivity as a consequence of the AKT1 knockout in MDA-MB-231BR. Discussion Collectively, our results demonstrate that Ipatasertib leads to radiosensitization and reduced cell proliferation of MDA-MB-231BR. AKT1-inhibition showed altered gene expression profile leading to modified cell migration, clonogenic survival and radioresistance in MDA-MB-231BR. We conclude, that AKT1-inhibition in combination with radiotherapy contribute to novel treatment strategies for breast cancer brain metastases.
Collapse
Affiliation(s)
- Joanna Kempska
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Astrid Grottke
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Minyue Qi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Meyer
- Laboratory of Radiobiology & Experimental Radio Oncology, Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radio Oncology, Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabienne Hamester
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kathrin Eylmann
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maila Rossberg
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel J. Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Laakmann
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karen Legler
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Xie X, Lee J, Fuson JA, Liu H, Iwase T, Yun K, Margain C, Tripathy D, Ueno NT. Identification of Kinase Targets for Enhancing the Antitumor Activity of Eribulin in Triple-Negative Breast Cell Lines. Biomedicines 2023; 11:735. [PMID: 36979714 PMCID: PMC10045293 DOI: 10.3390/biomedicines11030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype of breast cancer, and current treatments are only partially effective in disease control. More effective combination approaches are needed to improve the survival of TNBC patients. Eribulin mesylate, a non-taxane microtubule dynamics inhibitor, is approved by the U.S. Food and Drug Administration to treat metastatic breast cancer after at least two previous chemotherapeutic regimens. However, eribulin as a single agent has limited therapeutic efficacy against TNBC. METHODS High-throughput kinome library RNAi screening, Ingenuity Pathway Analysis, and STRING analysis were performed to identify target kinases for combination with eribulin. The identified combinations were validated using in vivo and ex vivo proliferation assays. RESULTS We identified 135 potential kinase targets whose inhibition enhanced the antiproliferation effect of eribulin in TNBC cells, with the PI3K/Akt/mTOR and the MAPK/JNK pathways emerging as the top candidates. Indeed, copanlisib (pan-class I PI3K inhibitor), everolimus (mTOR inhibitor), trametinib (MEK inhibitor), and JNK-IN-8 (pan-JNK inhibitor) produced strong synergistic antiproliferative effects when combined with eribulin, and the PI3K and mTOR inhibitors had the most potent effects in vitro. CONCLUSIONS Our data suggest a new strategy of combining eribulin with PI3K or mTOR inhibitors to treat TNBC.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon A. Fuson
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huey Liu
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Toshiaki Iwase
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyuson Yun
- Research Institute at Houston Methodist, Weill Cornell Medical College, Houston, TX 77030, USA
| | | | - Debu Tripathy
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology and Therapeutics, University of Hawai’i Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
7
|
Mittler F, Obeïd P, Haguet V, Allier C, Gerbaud S, Rulina AV, Gidrol X, Balakirev MY. Mechanical stress shapes the cancer cell response to neddylation inhibition. J Exp Clin Cancer Res 2022; 41:115. [PMID: 35354476 PMCID: PMC8966269 DOI: 10.1186/s13046-022-02328-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/13/2022] [Indexed: 12/28/2022] Open
Abstract
Background The inhibition of neddylation by the preclinical drug MLN4924 represents a new strategy to combat cancer. However, despite being effective against hematologic malignancies, its success in solid tumors, where cell–cell and cell-ECM interactions play essential roles, remains elusive. Methods Here, we studied the effects of MLN4924 on cell growth, migration and invasion in cultured prostate cancer cells and in disease-relevant prostate tumoroids. Using focused protein profiling, drug and RNAi screening, we analyzed cellular pathways activated by neddylation inhibition. Results We show that mechanical stress induced by MLN4924 in prostate cancer cells significantly affects the therapeutic outcome. The latter depends on the cell type and involves distinct Rho isoforms. In LNCaP and VCaP cells, the stimulation of RhoA and RhoB by MLN4924 markedly upregulates the level of tight junction proteins at cell–cell contacts, which augments the mechanical strain induced by Rho signaling. This “tight junction stress response” (TJSR) causes the collapse of cell monolayers and a characteristic rupture of cancer spheroids. Notably, TJSR is a major cause of drug-induced apoptosis in these cells. On the other hand, in PC3 cells that underwent partial epithelial-to-mesenchymal transition (EMT), the stimulation of RhoC induces an adverse effect by promoting amoeboid cell scattering and invasion. We identified complementary targets and drugs that allow for the induction of TJSR without stimulating RhoC. Conclusions Our finding that MLN4924 acts as a mechanotherapeutic opens new ways to improve the efficacy of neddylation inhibition as an anticancer approach. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02328-y.
Collapse
|
8
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
9
|
Manai M, ELBini-Dhouib I, Finetti P, Bichiou H, Reduzzi C, Aissaoui D, Ben-Hamida N, Agavnian E, Srairi-Abid N, Lopez M, Amri F, Guizani-Tabbane L, Rahal K, Mrad K, Manai M, Birnbaum D, Mamessier E, Cristofanilli M, Boussen H, Kharrat M, Doghri R, Bertucci F. MARCKS as a Potential Therapeutic Target in Inflammatory Breast Cancer. Cells 2022; 11:cells11182926. [PMID: 36139501 PMCID: PMC9496908 DOI: 10.3390/cells11182926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory breast cancer (IBC) is the most pro-metastatic form of breast cancer (BC). We previously demonstrated that protein overexpression of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) protein was associated with shorter survival in IBC patients. MARCKS has been associated with the PI3K/AKT pathway. MARCKS inhibitors are in development. Our objective was to investigate MARCKS, expressed preferentially in IBC that non-IBC (nIBC), as a novel potential therapeutic target for IBC. The biologic activity of MPS, a MARCKS peptide inhibitor, on cell proliferation, migration, invasion, and mammosphere formation was evaluated in IBC (SUM149 and SUM190) and nIBC (MDA-MB-231 and MCF7) cell lines, as well as its effects on protein expression in the PTEN/AKT and MAPK pathways. The prognostic relevance of MARCKS and phosphatase and tensin homolog (PTEN) protein expression as a surrogate marker of metastasis-free survival (MFS) was evaluated by immunohistochemistry (IHC) in a retrospective series of archival tumor samples derived from 180 IBC patients and 355 nIBC patients. In vitro MPS impaired cell proliferation, migration and invasion, and mammosphere formation in IBC cells. MARCKS inhibition upregulated PTEN and downregulated pAKT and pMAPK expression in IBC cells, but not in nIBC cells. By IHC, MARCKS expression and PTEN expression were negatively correlated in IBC samples and were associated with shorter MFS and longer MFS, respectively, in multivariate analysis. The combination of MARCKS-/PTEN+ protein status was associated with longer MFS in IBC patient only (p = 8.7 × 10−3), and mirrored the molecular profile (MARCKS-downregulated/PTEN-upregulated) of MPS-treated IBC cell lines. In conclusion, our results uncover a functional role of MARCKS implicated in IBC aggressiveness. Associated with the good-prognosis value of the MARCKS-/PTEN+ protein status that mirrors the molecular profile of MPS-treated IBC cell lines, our results suggest that MARCKS could be a potential therapeutic target in patients with MARCKS-positive IBC. Future preclinical studies using a larger panel of IBC cell lines, animal models and analysis of a larger series of clinical samples are warranted in order to validate our results.
Collapse
Affiliation(s)
- Maroua Manai
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
- Human Genetics Laboratory (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Anatomic Pathology Department, Salah Azaiz Institute, Tunis 1006, Tunisia
- Correspondence: (M.M.); (F.B.); Tel.: +1-312-900-6650 (M.M.); +33-4-91-22-35-37 (F.B.)
| | - Ines ELBini-Dhouib
- Biomolecules Laboratory of Venins and Theranostic Applications, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, «Equipe labellisée Ligue Contre le Cancer», 13009 Marseille, France
| | - Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules-LR16 IPT06, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dorra Aissaoui
- Biomolecules Laboratory of Venins and Theranostic Applications, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Naziha Ben-Hamida
- Anatomic Pathology Department, Salah Azaiz Institute, Tunis 1006, Tunisia
| | - Emilie Agavnian
- Department of Bio-Pathology, Paoli-Calmettes Institute, 13009 Marseille, France
| | - Najet Srairi-Abid
- Biomolecules Laboratory of Venins and Theranostic Applications, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Marc Lopez
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, «Equipe labellisée Ligue Contre le Cancer», 13009 Marseille, France
| | - Fatma Amri
- Laboratory of Neurophysiology Cellular Phytopathology and Biomolecules Valorisation (LR18ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules-LR16 IPT06, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Khaled Rahal
- Department of Surgical Oncology, Salah Azaiez Institute, Bab Saadoun, Tunis 1006, Tunisia
| | - Karima Mrad
- Anatomic Pathology Department, Salah Azaiz Institute, Tunis 1006, Tunisia
| | - Mohamed Manai
- Mycology, Pathologies and Biomarkers Laboratory (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, «Equipe labellisée Ligue Contre le Cancer», 13009 Marseille, France
| | - Emilie Mamessier
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, «Equipe labellisée Ligue Contre le Cancer», 13009 Marseille, France
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Hamouda Boussen
- Medical Oncology Service, Hospital of Ariana, Ariana 2080, Tunisia
| | - Maher Kharrat
- Human Genetics Laboratory (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Raoudha Doghri
- Anatomic Pathology Department, Salah Azaiz Institute, Tunis 1006, Tunisia
| | - François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, «Equipe labellisée Ligue Contre le Cancer», 13009 Marseille, France
- Medicine School, Aix-Marseille University, 13005 Marseille, France
- Department of Medical Oncology, Paoli-Calmettes Institute, 13009 Marseille, France
- Correspondence: (M.M.); (F.B.); Tel.: +1-312-900-6650 (M.M.); +33-4-91-22-35-37 (F.B.)
| |
Collapse
|
10
|
Lieser RM, Hartzell EJ, Yur D, Sullivan MO, Chen W. EGFR Ligand Clustering on E2 Bionanoparticles for Targeted Delivery of Chemotherapeutics to Breast Cancer Cells. Bioconjug Chem 2022; 33:452-462. [PMID: 35167278 DOI: 10.1021/acs.bioconjchem.1c00579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Naturally occurring protein nanocages are promising drug carriers because of their uniform size and biocompatibility. Engineering efforts have enhanced the delivery properties of nanocages, but cell specificity and high drug loading remain major challenges. Herein, we fused the SpyTag peptide to the surface of engineered E2 nanocages to enable tunable nanocage decoration and effective E2 cell targeting using a variety of SpyCatcher (SC) fusion proteins. Additionally, the core of the E2 nanocage incorporated four phenylalanine mutations previously shown to allow hydrophobic loading of doxorubicin and pH-responsive release in acidic environments. We functionalized the surface of the nanocage with a highly cell-specific epidermal growth factor receptor (EGFR)-targeting protein conjugate, 4GE11-mCherry-SC, developed previously in our laboratories by employing unnatural amino acid (UAA) protein engineering chemistries. Herein, we demonstrated the benefits of this engineered protein nanocage construct for efficient drug loading, with a straightforward method for removal of the unloaded drug through elastin-like polypeptide-mediated inverse transition cycling. Additionally, we demonstrated approximately 3-fold higher doxorubicin internalization in inflammatory breast cancer cells compared to healthy breast epithelial cells, leading to targeted cell death at concentrations below the IC50 of free doxorubicin. Collectively, these results demonstrated the versatility of our UAA-based EGFR-targeting protein construct to deliver a variety of cargoes efficiently, including engineered E2 nanocages capable of site-specific functionalization and doxorubicin loading.
Collapse
Affiliation(s)
- Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Akt Isoforms: A Family Affair in Breast Cancer. Cancers (Basel) 2021; 13:cancers13143445. [PMID: 34298660 PMCID: PMC8306188 DOI: 10.3390/cancers13143445] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States. The Akt signaling pathway is deregulated in approximately 70% of patients with breast cancer. While targeting Akt is an effective therapeutic strategy for the treatment of breast cancer, there are several members in the Akt family that play distinct roles in breast cancer. However, the function of Akt isoforms depends on many factors. This review analyzes current progress on the isoform-specific functions of Akt isoforms in breast cancer. Abstract Akt, also known as protein kinase B (PKB), belongs to the AGC family of protein kinases. It acts downstream of the phosphatidylinositol 3-kinase (PI3K) and regulates diverse cellular processes, including cell proliferation, cell survival, metabolism, tumor growth and metastasis. The PI3K/Akt signaling pathway is frequently deregulated in breast cancer and plays an important role in the development and progression of breast cancer. There are three closely related members in the Akt family, namely Akt1(PKBα), Akt2(PKBβ) and Akt3(PKBγ). Although Akt isoforms share similar structures, they exhibit redundant, distinct as well as opposite functions. While the Akt signaling pathway is an important target for cancer therapy, an understanding of the isoform-specific function of Akt is critical to effectively target this pathway. However, our perception regarding how Akt isoforms contribute to the genesis and progression of breast cancer changes as we gain new knowledge. The purpose of this review article is to analyze current literatures on distinct functions of Akt isoforms in breast cancer.
Collapse
|
12
|
Thomas C, Karagounis IV, Srivastava RK, Vrettos N, Nikolos F, Francois N, Huang M, Gong S, Long Q, Kumar S, Koumenis C, Krishnamurthy S, Ueno NT, Chakrabarti R, Maity A. Estrogen Receptor β-Mediated Inhibition of Actin-Based Cell Migration Suppresses Metastasis of Inflammatory Breast Cancer. Cancer Res 2021; 81:2399-2414. [PMID: 33514514 PMCID: PMC8570087 DOI: 10.1158/0008-5472.can-20-2743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
Inflammatory breast cancer (IBC) is a highly metastatic breast carcinoma with high frequency of estrogen receptor α (ERα) negativity. Here we explored the role of the second ER subtype, ERβ, and report expression in IBC tumors and its correlation with reduced metastasis. Ablation of ERβ in IBC cells promoted cell migration and activated gene networks that control actin reorganization, including G-protein-coupled receptors and downstream effectors that activate Rho GTPases. Analysis of preclinical mouse models of IBC revealed decreased metastasis of IBC tumors when ERβ was expressed or activated by chemical agonists. Our findings support a tumor-suppressive role of ERβ by demonstrating the ability of the receptor to inhibit dissemination of IBC cells and prevent metastasis. On the basis of these findings, we propose ERβ as a potentially novel biomarker and therapeutic target that can inhibit IBC metastasis and reduce its associated mortality. SIGNIFICANCE: These findings demonstrate the capacity of ERβ to elicit antimetastatic effects in highly aggressive inflammatory breast cancer and propose ERβ and the identified associated genes as potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Christoforos Thomas
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Ilias V Karagounis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ratnesh K Srivastava
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas Vrettos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fotis Nikolos
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Noëlle Francois
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Menggui Huang
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Siliang Gong
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sushil Kumar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Influence of ARHGAP29 on the Invasion of Mesenchymal-Transformed Breast Cancer Cells. Cells 2020; 9:cells9122616. [PMID: 33291460 PMCID: PMC7762093 DOI: 10.3390/cells9122616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
Aggressive and mesenchymal-transformed breast cancer cells show high expression levels of Rho GTPase activating protein 29 (ARHGAP29), a negative regulator of RhoA. ARHGAP29 was the only one of 32 GTPase-activating enzymes whose expression significantly increased after the induction of mesenchymal transformation in breast cancer cells. Therefore, we investigated the influence of ARHGAP29 on the invasiveness of aggressive and mesenchymal-transformed breast cancer cells. After knock-down of ARHGAP29 using siRNA, invasion of HCC1806, MCF-7-EMT, and T-47D-EMT breast cancer cells was significantly reduced. This could be explained by reduced inhibition of RhoA and a consequent increase in stress fiber formation. Proliferation of the breast cancer cell line T-47D-EMT was slightly increased by reduced expression of ARHGAP29, whereas that of HCC1806 and MCF-7-EMT significantly increased. Using interaction analyses we found that AKT1 is a possible interaction partner of ARHGAP29. Therefore, the expression of AKT1 after siRNA knock-down of ARHGAP29 was tested. Reduced ARHGAP29 expression was accompanied by significantly reduced AKT1 expression. However, the ratio of active pAKT1 to total AKT1 remained unchanged or was significantly increased after ARHGAP29 knock-down. Our results show that ARHGAP29 could be an important factor in the invasion of aggressive and mesenchymal-transformed breast cancer cells. Further research is required to fully understand the underlying mechanisms.
Collapse
|
14
|
Lehman HL, Kidacki M, Stairs DB. Twist2 is NFkB-responsive when p120-catenin is inactivated and EGFR is overexpressed in esophageal keratinocytes. Sci Rep 2020; 10:18829. [PMID: 33139779 PMCID: PMC7608670 DOI: 10.1038/s41598-020-75866-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most aggressive and fatal cancer types. ESCC classically progresses rapidly and frequently causes mortality in four out of five patients within two years of diagnosis. Yet, little is known about the mechanisms that make ESCC so aggressive. In a previous study we demonstrated that p120-catenin (p120ctn) and EGFR, two genes associated with poor prognosis in ESCC, work together to cause invasion. Specifically, inactivation of p120ctn combined with overexpression of EGFR induces a signaling cascade that leads to hyperactivation of NFkB and a resultant aggressive cell type. The purpose of this present study was to identify targets that are responsive to NFkB when p120ctn and EGFR are modified. Using human esophageal keratinocytes, we have identified Twist2 as an NFkB-responsive gene. Interestingly, we found that when NFkB is hyperactivated in cells with EGFR overexpression and p120ctn inactivation, Twist2 is significantly upregulated. Inhibition of NFkB activity results in nearly complete loss of Twist2 expression, suggesting that this potential EMT-inducing gene, is a responsive target of NFkB. There exists a paucity of research on Twist2 in any cancer type; as such, these findings are important in ESCC as well as in other cancer types.
Collapse
Affiliation(s)
- Heather L Lehman
- Department of Biology, Millersville University, Millersville, PA, 17551, USA
| | - Michal Kidacki
- Department of Internal Medicine, Mercy Catholic Medical Center, Darby, PA, 19023, USA
| | - Douglas B Stairs
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Dr., Mail Code H083, Hershey, PA, 17033, USA.
| |
Collapse
|
15
|
Hartzell EJ, Lieser RM, Sullivan MO, Chen W. Modular Hepatitis B Virus-like Particle Platform for Biosensing and Drug Delivery. ACS NANO 2020; 14:12642-12651. [PMID: 32924431 DOI: 10.1021/acsnano.9b08756] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hepatitis B virus-like particle (HBV VLP) is an attractive protein nanoparticle platform due to the availability of 240 modification sites for engineering purposes. Although direct protein insertion into the surface loop has been demonstrated, this decoration strategy is restricted by the size of the inserted protein moieties. Meanwhile, larger proteins can be decorated using chemical conjugations; yet these approaches perturb the integrity of more delicate proteins and can unfavorably orient the proteins, impairing active surface display. Herein, we aim to create a robust and highly modular method to produce smart HBV-based nanodevices by using the SpyCatcher/SpyTag system, which allows a wide range of peptides and proteins to be conjugated directly and simply onto the modified HBV capsids in a controlled and biocompatible manner. Our technology allows the modular surface modification of HBV VLPs with multiple components, which provides signal amplification, increased targeting avidity, and high therapeutic payload incorporation. We have achieved a yield of over 200 mg/L for these engineered HBV VLPs and demonstrated the flexibility of this platform in both biosensing and drug delivery applications. The ability to decorate over 200 nanoluciferases per VLP improved detection signal by over 1500-fold, such that low nanomolar levels of thrombin could be detected by the naked eye. Meanwhile, a dimeric prodrug-activating enzyme was loaded without cross-linking particles by coexpressing orthogonally labeled monomers. This along with a epidermal growth factor receptor-binding peptide enabled tunable uptake of HBV VLPs into inflammatory breast cancer cells, leading to efficient suicide enzyme delivery and cell killing.
Collapse
Affiliation(s)
- Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
16
|
Rho GTPases: Big Players in Breast Cancer Initiation, Metastasis and Therapeutic Responses. Cells 2020; 9:cells9102167. [PMID: 32992837 PMCID: PMC7600866 DOI: 10.3390/cells9102167] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases, a family of the Ras GTPase superfamily, are key regulators of the actin cytoskeleton. They were originally thought to primarily affect cell migration and invasion; however, recent advances in our understanding of the biology and function of Rho GTPases have demonstrated their diverse roles within the cell, including membrane trafficking, gene transcription, migration, invasion, adhesion, survival and growth. As these processes are critically involved in cancer initiation, metastasis and therapeutic responses, it is not surprising that studies have demonstrated important roles of Rho GTPases in cancer. Although the majority of data indicates an oncogenic role of Rho GTPases, tumor suppressor functions of Rho GTPases have also been revealed, suggesting a context and cell-type specific function for Rho GTPases in cancer. This review aims to summarize recent progresses in our understanding of the regulation and functions of Rho GTPases, specifically in the context of breast cancer. The potential of Rho GTPases as therapeutic targets and prognostic tools for breast cancer patients are also discussed.
Collapse
|
17
|
Targeting Signaling Pathways in Inflammatory Breast Cancer. Cancers (Basel) 2020; 12:cancers12092479. [PMID: 32883032 PMCID: PMC7563157 DOI: 10.3390/cancers12092479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory breast cancer (IBC), although rare, is the most aggressive type of breast cancer. Only 2-4% of breast cancer cases are classified as IBC, but-owing to its high rate of metastasis and poor prognosis-8% to 10% of breast cancer-related mortality occur in patients with IBC. Currently, IBC-specific targeted therapies are not available, and there is a critical need for novel therapies derived via understanding novel targets. In this review, we summarize the biological functions of critical signaling pathways in the progression of IBC and the preclinical and clinical studies of targeting these pathways in IBC. We also discuss studies of crosstalk between several signaling pathways and the IBC tumor microenvironment.
Collapse
|
18
|
Hinz N, Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019; 17:154. [PMID: 31752925 PMCID: PMC6873690 DOI: 10.1186/s12964-019-0450-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AKT, also known as protein kinase B, is a key element of the PI3K/AKT signaling pathway. Moreover, AKT regulates the hallmarks of cancer, e.g. tumor growth, survival and invasiveness of tumor cells. After AKT was discovered in the early 1990s, further studies revealed that there are three different AKT isoforms, namely AKT1, AKT2 and AKT3. Despite their high similarity of 80%, the distinct AKT isoforms exert non-redundant, partly even opposing effects under physiological and pathological conditions. Breast cancer as the most common cancer entity in women, frequently shows alterations of the PI3K/AKT signaling. MAIN CONTENT A plethora of studies addressed the impact of AKT isoforms on tumor growth, metastasis and angiogenesis of breast cancer as well as on therapy response and overall survival in patients. Therefore, this review aimed to give a comprehensive overview about the isoform-specific effects of AKT in breast cancer and to summarize known downstream and upstream mechanisms. Taking account of conflicting findings among the studies, the majority of the studies reported a tumor initiating role of AKT1, whereas AKT2 is mainly responsible for tumor progression and metastasis. In detail, AKT1 increases cell proliferation through cell cycle proteins like p21, p27 and cyclin D1 and impairs apoptosis e.g. via p53. On the downside AKT1 decreases migration of breast cancer cells, for instance by regulating TSC2, palladin and EMT-proteins. However, AKT2 promotes migration and invasion most notably through regulation of β-integrins, EMT-proteins and F-actin. Whilst AKT3 is associated with a negative ER-status, findings about the role of AKT3 in regulation of the key properties of breast cancer are sparse. Accordingly, AKT1 is mutated and AKT2 is amplified in some cases of breast cancer and AKT isoforms are associated with overall survival and therapy response in an isoform-specific manner. CONCLUSIONS Although there are several discussed hypotheses how isoform specificity is achieved, the mechanisms behind the isoform-specific effects remain mostly unrevealed. As a consequence, further effort is necessary to achieve deeper insights into an isoform-specific AKT signaling in breast cancer and the mechanism behind it.
Collapse
Affiliation(s)
- Nico Hinz
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
19
|
Lieser RM, Chen W, Sullivan MO. Controlled Epidermal Growth Factor Receptor Ligand Display on Cancer Suicide Enzymes via Unnatural Amino Acid Engineering for Enhanced Intracellular Delivery in Breast Cancer Cells. Bioconjug Chem 2019; 30:432-442. [PMID: 30615416 DOI: 10.1021/acs.bioconjchem.8b00783] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteins are ideal candidates for disease treatment because of their high specificity and potency. Despite this potential, delivery of proteins remains a significant challenge due to the intrinsic size, charge, and stability of proteins. Attempts to overcome these challenges have most commonly relied on direct conjugation of polymers and peptides to proteins via reactive groups on naturally occurring residues. While such approaches have shown some success, they allow limited control of the spacing and number of moieties coupled to proteins, which can hinder bioactivity and delivery capabilities of the therapeutic. Here, we describe a strategy to site-specifically conjugate delivery moieties to therapeutic proteins through unnatural amino acid (UAA) incorporation, in order to explore the effect of epidermal growth factor receptor (EGFR)-targeted ligand valency and spacing on internalization of proteins in EGFR-overexpressing inflammatory breast cancer (IBC) cells. Our results demonstrate the ability to enhance targeted protein delivery by tuning a small number of EGFR ligands per protein and clustering these ligands to promote multivalent ligand-receptor interactions. Furthermore, the tailorability of this simple approach was demonstrated through IBC-targeted cell death via the delivery of yeast cytosine deaminase (yCD), a prodrug converting enzyme.
Collapse
Affiliation(s)
- Rachel M Lieser
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| |
Collapse
|
20
|
Martínez-Montemayor MM, Ling T, Suárez-Arroyo IJ, Ortiz-Soto G, Santiago-Negrón CL, Lacourt-Ventura MY, Valentín-Acevedo A, Lang WH, Rivas F. Identification of Biologically Active Ganoderma lucidum Compounds and Synthesis of Improved Derivatives That Confer Anti-cancer Activities in vitro. Front Pharmacol 2019; 10:115. [PMID: 30837881 PMCID: PMC6389703 DOI: 10.3389/fphar.2019.00115] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
We previously reported that Ganoderma lucidum extract (GLE) demonstrate significant anti-cancer activity against triple negative inflammatory breast cancer models. Herein, we aimed to elucidate the bioactive compounds of GLE responsible for this anti-cancer activity. We performed NMR, X-ray crystallography and analog derivatization as well as anti-cancer activity studies to elucidate and test the compounds. We report the structures of the seven most abundant GLE compounds and their selective efficacy against triple negative (TNBC) and inflammatory breast cancers (IBC) and other human cancer cell types (solid and blood malignancies) to illustrate their potential as anti-cancer agents. Three of the seven compounds (ergosterol, 5,6-dehydroergosterol and ergosterol peroxide) exhibited significant in vitro anti-cancer activities, while we report for the first time the structure elucidation of 5,6-dehydroergosterol from Ganoderma lucidum. We also show for the first time in TNBC/IBC cells that ergosterol peroxide (EP) displays anti-proliferative effects through G1 phase cell cycle arrest, apoptosis induction via caspase 3/7 activation, and PARP cleavage. EP decreased migratory and invasive effects of cancer cells while inhibiting the expression of total AKT1, AKT2, BCL-XL, Cyclin D1 and c-Myc in the tested IBC cells. Our investigation also indicates that these compounds induce reactive oxygen species, compromising cell fate. Furthermore, we generated a superior derivative, ergosterol peroxide sulfonamide, with improved potency in IBC cells and ample therapeutic index (TI > 10) compared to normal cells. The combined studies indicate that EP from Ganoderma lucidum extract is a promising molecular scaffold for further exploration as an anti-cancer agent.
Collapse
Affiliation(s)
| | - Taotao Ling
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ivette J. Suárez-Arroyo
- Cancer Research Unit, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Gabriela Ortiz-Soto
- Cancer Research Unit, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | | | - Mercedes Y. Lacourt-Ventura
- Cancer Research Unit, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Anibal Valentín-Acevedo
- Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Walter H. Lang
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Fatima Rivas
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
21
|
Yuan YH, Wang HY, Lai Y, Zhong W, Liang WL, Yan FD, Yu Z, Chen JK, Lin Y. Epigenetic inactivation of HOXD10 is associated with human colon cancer via inhibiting the RHOC/AKT/MAPK signaling pathway. Cell Commun Signal 2019; 17:9. [PMID: 30683109 PMCID: PMC6347846 DOI: 10.1186/s12964-018-0316-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND To examine the influence of HOXD10 on the metabolism and growth of colon carcinoma cells by suppressing the RHOC/AKT/MAPK pathway. METHODS Thirty-seven paired colon cancer and its adjacent samples from The Cancer Genome Atlas (TCGA) were analyzed. Chip Analysis Methylation Pipeline (ChAMP) analysis was employed for differential methylated points (DMPs) and the differential methylation regions (DMRs) screening. The HOXD10 mRNA expression and DNA methylation levels were detected by RT-PCR. The Cell proliferation, migration, invasion and apoptosis were respectively measured by MTT assay, transwell assay, wound healing assay and flow cytometry assay in carcinoma cell lines after treated with 5-aza-2'-deoxycytidine (5-Aza-dC) or transfected with HOXD10-expressing plasmid. The expression of HOXD10 and RHOC was revealed by immunohistochemistry in disparate differentiation colon carcinoma tissues, and the dephosphorylation of AKT and MAPK pathways were detected by RT-PCR and western blot. RESULTS The bioinformatics analysis demonstrated that HOXD10 was hypermethylated and low-expressed in colorectal cancer tissues. The detection of RT-PCR indicated the similar results in colorectal cancer cell lines and tissues. The induction of demethylation was recovered by treatment with 5-Aza-dC and the HOXD10 in colorectal cancer cell lines was re-expressed by transfection with a HOXD10 expression vector. The demethylation or overexpression of HOXD10 suppressed proliferation, migration, invasion and promoted apoptosis in colorectal cancer cells. HXOD10 suppressed the tumor growth and detected an opposite trend of protein RHOC. AKT and MAPK pathways were notably inactivated after the dephosphorylation due to the overexpression of HOXD10. CONCLUSIONS HOXD10 was suppressed in colon adenocarcinoma cells, which down-regulated RHOC/AKT/MAPK pathway to enhance colon cancer cells apoptosis and constrain the proliferation, migration and invasion.
Collapse
Affiliation(s)
- Yu-Hong Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, Guangdong, China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Han-Yu Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.,Department of Radiation Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yu Lai
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Wa Zhong
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Wei-Ling Liang
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Fu-de Yan
- Department of Internal Medicine, Luopu Community Health Service Center of Panyu District, Guangzhou, 511431, Guangdong, China
| | - Zhong Yu
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jun-Kai Chen
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, Guangdong, China. .,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
22
|
Mamouch F, Berrada N, Aoullay Z, El Khanoussi B, Errihani H. Inflammatory Breast Cancer: A Literature Review. World J Oncol 2018; 9:129-135. [PMID: 30524636 PMCID: PMC6279456 DOI: 10.14740/wjon1161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 01/13/2023] Open
Abstract
The multidisciplinary management of inflammatory breast cancer (IBC), which is the most aggressive form of breast cancer due to its rapid proliferation, has changed over the past three decades thanks to advances in medical treatments that represent the basis of treatment, without eliminating the use of locoregional treatments including surgery and radiotherapy in the localized stages. The molecular profile determination of IBC allows the orientation towards new targeted therapeutic strategies with an impact on survival.
Collapse
Affiliation(s)
- Fouzia Mamouch
- Mohammed V University, Rabat, Morocco.,National Institute of Oncology, Rabat, Morocco
| | | | - Zineb Aoullay
- Mohammed V University, Rabat, Morocco.,National Institute of Oncology, Rabat, Morocco
| | | | - Hassan Errihani
- Mohammed V University, Rabat, Morocco.,National Institute of Oncology, Rabat, Morocco
| |
Collapse
|
23
|
Lim B, Woodward WA, Wang X, Reuben JM, Ueno NT. Inflammatory breast cancer biology: the tumour microenvironment is key. Nat Rev Cancer 2018; 18:485-499. [PMID: 29703913 DOI: 10.1038/s41568-018-0010-y] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive disease that accounts for ~2-4% of all breast cancers. However, despite its low incidence rate, IBC is responsible for 7-10% of breast cancer-related mortality in Western countries. Thus, the discovery of robust biological targets and the development of more effective therapeutics in IBC are crucial. Despite major international efforts to understand IBC biology, genomic studies have not led to the discovery of distinct biological mechanisms in IBC that can be translated into novel therapeutic strategies. In this Review, we discuss these molecular profiling efforts and highlight other important aspects of IBC biology. We present the intrinsic characteristics of IBC, including stemness, metastatic potential and hormone receptor positivity; the extrinsic features of the IBC tumour microenvironment (TME), including various constituent cell types; and lastly, the communication between these intrinsic and extrinsic components. We summarize the latest perspectives on the key biological features of IBC, with particular emphasis on the TME as an important contributor to the aggressive nature of IBC. On the basis of the current understanding of IBC, we hope to develop the next generation of translational studies, which will lead to much-needed survival improvements in patients with this deadly disease.
Collapse
Affiliation(s)
- Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Zare A, Petrova A, Agoumi M, Amstrong H, Bigras G, Tonkin K, Wine E, Baksh S. RIPK2: New Elements in Modulating Inflammatory Breast Cancer Pathogenesis. Cancers (Basel) 2018; 10:cancers10060184. [PMID: 29874851 PMCID: PMC6025367 DOI: 10.3390/cancers10060184] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer that is associated with significantly high mortality. In spite of advances in IBC diagnoses, the prognosis is still poor compared to non-IBC. Due to the aggressive nature of the disease, we hypothesize that elevated levels of inflammatory mediators may drive tumorigenesis and metastasis in IBC patients. Utilizing IBC cell models and patient tumor samples, we can detect elevated NF-κB activity and hyperactivation of non-canonical drivers of NF-κB (nuclear factor kappaB)-directed inflammation such as tyrosine phosphorylated receptor-interacting protein kinase 2 (pY RIPK2), when compared to non-IBC cells or patients. Interestingly, elevated RIPK2 activity levels were present in a majority of pre-chemotherapy samples from IBC patients at the time of diagnosis to suggest that patients at diagnosis had molecular activation of NF-κB via RIPK2, a phenomenon we define as “molecular inflammation”. Surprisingly, chemotherapy did cause a significant increase in RIPK2 activity and thus molecular inflammation suggesting that chemotherapy does not resolve the molecular activation of NF-κB via RIPK2. This would impact on the metastatic potential of IBC cells. Indeed, we can demonstrate that RIPK2 activity correlated with advanced tumor, metastasis, and group stage as well as body mass index (BMI) to indicate that RIPK2 might be a useful prognostic marker for IBC and advanced stage breast cancer.
Collapse
Affiliation(s)
- Alaa Zare
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Alexandra Petrova
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Mehdi Agoumi
- Anatomic Pathologist at DynalifeDx, Diagnostic Laboratory Services; Department of Laboratory Medicine and Pathology, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2R3, Canada.
| | - Heather Amstrong
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Gilbert Bigras
- Cross Cancer Institute Department of Laboratory Medicine and Pathology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada.
| | - Katia Tonkin
- Division of Medical Oncology, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada.
| | - Eytan Wine
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Shairaz Baksh
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
- Division of Medical Oncology, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada.
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2R7, Canada.
- Women and Children's Health Research Institute, Edmonton Clinic Health Academy (ECHA), University of Alberta, 4-081 11405 87 Avenue NW Edmonton, AB T6G 1C9, Canada.
| |
Collapse
|
25
|
Zhang S, Chang X, Ma J, Chen J, Zhi Y, Li Z, Dai D. Downregulation of STARD8 in gastric cancer and its involvement in gastric cancer progression. Onco Targets Ther 2018; 11:2955-2961. [PMID: 29849465 PMCID: PMC5967373 DOI: 10.2147/ott.s154524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective Rho-GTPases play a pivotal role in a wide variety of signal transduction pathways and are associated with a great number of human carcinomas. STARD8, which is a Rho-GTPase-activating protein, has been proposed as a tumor suppressor gene, but its role in gastric cancer remains elusive. In this study, we investigate the expression of STARD8 in gastric cancer and its association with gastric cancer progression. Materials and methods One normal gastric mucosa cell line for example GES1 and six human gastric cancer cell lines such as AGS, MGC803, MKN45, SGC7901, HGC27 and BGC823 were utilized to analyze STARD8 mRNA and protein levels by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. A total of 70 paired gastric tissues including corresponding nonmalignant gastric tissues and cancer tissues were utilized to analyze the protein expression of STARD8 using immunohistochemistry, and the correlation between STARD8 level and clinicopathological features was also evaluated. Results STARD8 was found to be downregulated in primary gastric cancer cells and tissues compared with the normal gastric mucosa cell line, GES1, and corresponding nonmalignant gastric tissues, while its decreased expression was significantly associated with TNM stage, lymph node metastasis and differentiation (p<0.05). Conclusion There is significantly decreased expression of STARD8 in gastric cancer cells and tissues, and its expression may contribute to gastric tumorigenesis.
Collapse
Affiliation(s)
- Shuanglong Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Xiaojing Chang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jinguo Ma
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Hulun Buir People's Hospital, Hulun Buir Medical School in Nationalities University of Inner Mongolia, Hulun Buir, People's Republic of China
| | - Jing Chen
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yu Zhi
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Zhenhua Li
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Dongqiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
26
|
RSK2 drives cell motility by serine phosphorylation of LARG and activation of Rho GTPases. Proc Natl Acad Sci U S A 2017; 115:E190-E199. [PMID: 29279389 PMCID: PMC5777029 DOI: 10.1073/pnas.1708584115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cell motility is a dynamic process that requires the directed application of force and continuous coordinated changes in cell adhesion and cytoskeletal architecture often in response to extracellular stimuli. Here we have defined a mechanism by which RSK2 can promote cell migration and invasion in response to promotility stimuli. We show that in response to these signals RSK2 directly binds the RhoGEF LARG and phosphorylates it, thereby promoting LARG activation of RhoA GTPases. Moreover, we find that RSK2 is important for epidermal growth factor activation of Rho GTPases. These results advance our understanding of cell motility, RSK kinase function, and LARG/RhoA activation by revealing that these pathways are integrated and the precise mechanism by which that is accomplished. Directed migration is essential for cell motility in many processes, including development and cancer cell invasion. RSKs (p90 ribosomal S6 kinases) have emerged as central regulators of cell migration; however, the mechanisms mediating RSK-dependent motility remain incompletely understood. We have identified a unique signaling mechanism by which RSK2 promotes cell motility through leukemia-associated RhoGEF (LARG)-dependent Rho GTPase activation. RSK2 directly interacts with LARG and nucleotide-bound Rho isoforms, but not Rac1 or Cdc42. We further show that epidermal growth factor or FBS stimulation induces association of endogenous RSK2 with LARG and LARG with RhoA. In response to these stimuli, RSK2 phosphorylates LARG at Ser1288 and thereby activates RhoA. Phosphorylation of RSK2 at threonine 577 is essential for activation of LARG-RhoA. Moreover, RSK2-mediated motility signaling depends on RhoA and -B, but not RhoC. These results establish a unique RSK2-dependent LARG-RhoA signaling module as a central organizer of directed cell migration and invasion.
Collapse
|
27
|
Costa R, Santa-Maria CA, Rossi G, Carneiro BA, Chae YK, Gradishar WJ, Giles FJ, Cristofanilli M. Developmental therapeutics for inflammatory breast cancer: Biology and translational directions. Oncotarget 2017; 8:12417-12432. [PMID: 27926493 PMCID: PMC5355355 DOI: 10.18632/oncotarget.13778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer, which accounts for approximately 3% of cases of breast malignancies. Diagnosis relies largely on its clinical presentation, and despite a characteristic phenotype, underlying molecular mechanisms are poorly understood. Unique clinical presentation indicates that IBC is a distinct clinical and biological entity when compared to non-IBC. Biological understanding of non-IBC has been extrapolated into IBC and targeted therapies for HER2 positive (HER2+) and hormonal receptor positive non-IBC led to improved patient outcomes in the recent years. This manuscript reviews recent discoveries related to the underlying biology of IBC, clinical progress to date and suggests rational approaches for investigational therapies.
Collapse
Affiliation(s)
- Ricardo Costa
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America
| | - Cesar A Santa-Maria
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Giovanna Rossi
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Benedito A Carneiro
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - William J Gradishar
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Francis J Giles
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Massimo Cristofanilli
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| |
Collapse
|
28
|
Joglekar-Javadekar M, Van Laere S, Bourne M, Moalwi M, Finetti P, Vermeulen PB, Birnbaum D, Dirix LY, Ueno N, Carter M, Rains J, Ramachandran A, Bertucci F, van Golen KL. Characterization and Targeting of Platelet-Derived Growth Factor Receptor alpha (PDGFRA) in Inflammatory Breast Cancer (IBC). Neoplasia 2017; 19:564-573. [PMID: 28609680 PMCID: PMC5470553 DOI: 10.1016/j.neo.2017.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023] Open
Abstract
PURPOSE: Inflammatory breast cancer (IBC) is arguably the deadliest form of breast cancer due to its rapid onset and highly invasive nature. IBC carries 5- and 10-year disease-free survival rates of ~45% and <20%, respectively. Multiple studies demonstrate that in comparison with conventional breast cancer, IBC has a unique molecular identity. Here, we have identified platelet-derived growth factor receptor alpha (PDGFRA) as being uniquely expressed and active in IBC patient tumor cells. EXPERIMENTAL DESIGN: Here we focus on characterizing and targeting PDGFRA in IBC. Using gene expression, we analyzed IBC patient samples and compared them with non-IBC patient samples. Further, using IBC cells in culture, we determined the effect of small molecules inhibitors in both in vitro and in vivo assays. RESULTS: In IBC patients, we show more frequent PDGFRA activation signature than non-IBC samples. In addition, the PDGFRA activation signature is associated with shorter metastasis-free survival in both uni- and multivariate analyses. We also demonstrate that IBC cells express active PDGFRA. Finally, we show that PDGFRA targeting by crenolanib (CP-868-596), but not imatinib (STI571), two small molecule inhibitors, interferes with IBC cell growth and emboli formation in vitro and tumor growth in vivo. CONCLUSIONS: Our data suggest that PDGFRA may be a promising target for therapy in IBC.
Collapse
Affiliation(s)
- Madhura Joglekar-Javadekar
- The Laboratory for Cytoskeletal Physiology, Department of Biological Sciences, The University of Delaware, Newark, DE; The Center for Translational Cancer Research, The University of Delaware, Newark, DE
| | - Steven Van Laere
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Michael Bourne
- The Laboratory for Cytoskeletal Physiology, Department of Biological Sciences, The University of Delaware, Newark, DE; The Center for Translational Cancer Research, The University of Delaware, Newark, DE
| | - Manal Moalwi
- The Laboratory for Cytoskeletal Physiology, Department of Biological Sciences, The University of Delaware, Newark, DE; The Center for Translational Cancer Research, The University of Delaware, Newark, DE
| | - Pascal Finetti
- Department of Molecular Oncology, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Peter B Vermeulen
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Daniel Birnbaum
- Department of Molecular Oncology, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Luc Y Dirix
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Naoto Ueno
- Breast Cancer Translational Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Breast Medical Oncology, Morgan Welch Inflammatory Breast Cancer Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Francois Bertucci
- Department of Molecular Oncology, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Kenneth L van Golen
- The Laboratory for Cytoskeletal Physiology, Department of Biological Sciences, The University of Delaware, Newark, DE; The Center for Translational Cancer Research, The University of Delaware, Newark, DE; The Helen F. Graham Cancer Center, Newark, DE.
| |
Collapse
|
29
|
He H, Wei Z, Du F, Meng C, Zheng D, Lai Y, Yao H, Zhou H, Wang N, Luo XG, Ma W, Zhang TC. Transcription of HOTAIR is regulated by RhoC-MRTF-A-SRF signaling pathway in human breast cancer cells. Cell Signal 2017; 31:87-95. [PMID: 28069441 DOI: 10.1016/j.cellsig.2017.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
Abstract
HOTAIR is a long non-coding RNA highly expressed in cancer tissues and is a negative prognostic factor, whereas the mechanism by which HOTAIR expression is upregulated in cancers remains elusive. In the present study, the regulation of HOTAIR transcription was investigated in breast cancer cells MCF7 and T47D. We found that, when the RhoC-ROCK signaling was disturbed by specific siRNAs or chemical inhibitors, the expression of HOTAIR would be down-regulated. Further, MRTF-A and SRF were found to affect HOTAIR expression. HOTAIR promoter activity was demonstrated to be regulated by the RhoC-MRTF-A-SRF signaling in a CArG-box-dependent manner. Moreover, MRTF-A was identified to physically interact with HOTAIR promoter, and RNA polymerase II association on HOTAIR promoter was enhanced by MRTF-A overexpression. Taken together, our results suggest that HOTAIR is regulated by the RhoC-MRTF-A-SRF signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Hongpeng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhaoqiang Wei
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fu Du
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chao Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Deliang Zheng
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yongwei Lai
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hailin Yao
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hao Zhou
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wenjian Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.; College of Life Sciences, Wuhan University of Science and Technology, Wuhan 430081, PR China..
| |
Collapse
|
30
|
Ross NL, Sullivan MO. Overexpression of caveolin-1 in inflammatory breast cancer cells enables IBC-specific gene delivery and prodrug conversion using histone-targeted polyplexes. Biotechnol Bioeng 2016; 113:2686-2697. [PMID: 27241022 PMCID: PMC5268818 DOI: 10.1002/bit.26022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022]
Abstract
Gene therapy platforms offer a variety of potentially effective solutions for development of targeted agents that can be exploited for cancer treatment. The physicochemical properties of nanocarriers can be tuned to enhance their localization in tumors, and cell specificity can also be increased by appropriate selection of gene targets. A relatively underexploited approach to enhance therapeutic selectivity in cancer tissues is the use of nanocarriers whose nuclear targeting and uptake are triggered by the altered expression of specific endomembrane trafficking proteins in cancer cells. Previously, we showed that histone 3 (H3) peptide-targeted DNA polyplexes traffic to the nucleus efficiently through caveolar endocytosis followed by transfer through the Golgi and endoplasmic reticulum (ER). We hypothesized that these polyplexes would exhibit enhanced activity in inflammatory breast cancer (IBC) cells, which overexpress caveolin-1 as part of their invasive phenotype, and we also posited that this targeting effect could be exploited to facilitate IBC-specific transfection and prodrug conversion in the presence of normal breast epithelial cells. Using cellular transfection experiments, function-blocking assays, and confocal imaging in both IBC SUM149 cell monocultures and IBC SUM149 co-cultures with MCF10A normal breast epithelial cells, we found that our H3-targeted polyplexes selectively transfected IBC SUM149 cells at a 4-fold higher level than normal breast epithelial cells. This selectivity and increased transfection were caused by a 2.2-fold overexpression of caveolin-1 in IBC SUM149 cells, which led to increased polyplex trafficking to the nucleus through the Golgi and ER. We also saw similar enhancements in cell selectivity and transfection when cells were transfected with a suicide gene/prodrug combination, as the increased expression of the suicide gene in IBC SUM149 cells led to a 55% decrease in viability in IBC SUM149 cells as compared to a 25% decrease in MCF10A cells. These findings demonstrate that differences in the expression of the endocytic membrane protein caveolin-1 can be exploited for cell-selective gene delivery, and ultimately, these gene-based targeting approaches may be useful in potential treatments for aggressive cancer types. Biotechnol. Bioeng. 2016;113: 2686-2697. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nikki L Ross
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716.
| |
Collapse
|
31
|
Abstract
Rho GTPases regulate cytoskeletal and cell adhesion dynamics and thereby coordinate a wide range of cellular processes, including cell migration, cell polarity and cell cycle progression. Most Rho GTPases cycle between a GTP-bound active conformation and a GDP-bound inactive conformation to regulate their ability to activate effector proteins and to elicit cellular responses. However, it has become apparent that Rho GTPases are regulated by post-translational modifications and the formation of specific protein complexes, in addition to GTP-GDP cycling. The canonical regulators of Rho GTPases - guanine nucleotide exchange factors, GTPase-activating proteins and guanine nucleotide dissociation inhibitors - are regulated similarly, creating a complex network of interactions to determine the precise spatiotemporal activation of Rho GTPases.
Collapse
Affiliation(s)
- Richard G Hodge
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
32
|
Gilani RA, Phadke S, Bao LW, Lachacz EJ, Dziubinski ML, Brandvold KR, Steffey ME, Kwarcinski FE, Graveel CR, Kidwell KM, Merajver SD, Soellner MB. UM-164: A Potent c-Src/p38 Kinase Inhibitor with In Vivo Activity against Triple-Negative Breast Cancer. Clin Cancer Res 2016; 22:5087-5096. [DOI: 10.1158/1078-0432.ccr-15-2158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/16/2016] [Indexed: 11/16/2022]
|
33
|
Suárez-Arroyo IJ, Rios-Fuller TJ, Feliz-Mosquea YR, Lacourt-Ventura M, Leal-Alviarez DJ, Maldonado-Martinez G, Cubano LA, Martínez-Montemayor MM. Ganoderma lucidum Combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib Synergize to Reduce Inflammatory Breast Cancer Progression. J Cancer 2016; 7:500-11. [PMID: 26958085 PMCID: PMC4780125 DOI: 10.7150/jca.13599] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/12/2015] [Indexed: 01/06/2023] Open
Abstract
The high incidence of resistance to Tyrosine Kinase Inhibitors (TKIs) targeted against EGFR and downstream pathways has increased the necessity to identify agents that may be combined with these therapies to provide a sustained response for breast cancer patients. Here, we investigate the therapeutic potential of Ganoderma lucidum extract (GLE) in breast cancer, focusing on the regulation of the EGFR signaling cascade when treated with the EGFR TKI, Erlotinib. SUM-149, or intrinsic Erlotinib resistant MDA-MB-231 cells, and a successfully developed Erlotinib resistant cell line, rSUM-149 were treated with increasing concentrations of Erlotinib, GLE, or their combination (Erlotinib/GLE) for 72h. Treatment effects were tested on cell viability, cell proliferation, cell migration and invasion. To determine tumor progression, severe combined immunodeficient mice were injected with SUM-149 cells and then treated with Erlotinib/GLE or Erlotinib for 13 weeks. We assessed the protein expression of ERK1/2 and AKT in in vitro and in vivo models. Our results show that GLE synergizes with Erlotinib to sensitize SUM-149 cells to drug treatment, and overcomes intrinsic and developed Erlotinib resistance. Also, Erlotinib/GLE decreases SUM-149 cell viability, proliferation, migration and invasion. GLE increases Erlotinib sensitivity by inactivating AKT and ERK signaling pathways in our models. We conclude that a combinatorial therapeutic approach may be the best way to increase prognosis in breast cancer patients with EGFR overexpressing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luis A Cubano
- 1. Universidad Central del Caribe-School of Medicine, Bayamón, P.R
| | | |
Collapse
|
34
|
Joglekar M, Elbezanti WO, Weitzman MD, Lehman HL, van Golen KL. Caveolin-1 mediates inflammatory breast cancer cell invasion via the Akt1 pathway and RhoC GTPase. J Cell Biochem 2016; 116:923-33. [PMID: 25559359 DOI: 10.1002/jcb.25025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
With a propensity to invade the dermal lymphatic vessels of the skin overlying the breast and readily metastasize, inflammatory breast cancer (IBC) is arguably the deadliest form of breast cancer. We previously reported that caveolin-1 is overexpressed in IBC and that RhoC GTPase is a metastatic switch responsible for the invasive phenotype. RhoC-driven invasion requires phosphorylation by Akt1. Using a reliable IBC cell line we set out to determine if caveolin-1 expression affects RhoC-mediated IBC invasion. Caveolin-1 was down regulated by introduction of siRNA or a caveolin scaffolding domain. The ability of the cells to invade was tested and the status of Akt1 and RhoC GTPase examined. IBC cell invasion is significantly decreased when caveolin-1 is down regulated. Activation of Akt1 is decreased when caveolin-1 is down regulated, leading to decreased phosphorylation of RhoC GTPase. Thus, we report here that caveolin-1 overexpression mediates IBC cell invasion through activation Akt1, which phosphorylates RhoC GTPase.
Collapse
Affiliation(s)
- Madhura Joglekar
- Department of Biological Sciences, The Center for Translational Cancer Research, The University of Delaware, Newark, Delaware; The Helen F. Graham Cancer Center, Newark, Delaware
| | | | | | | | | |
Collapse
|
35
|
Schaefer A, Reinhard NR, Hordijk PL. Toward understanding RhoGTPase specificity: structure, function and local activation. Small GTPases 2015; 5:6. [PMID: 25483298 DOI: 10.4161/21541248.2014.968004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cell adhesion and migration are regulated through the concerted action of cytoskeletal dynamics and adhesion proteins, the activity of which is governed by RhoGTPases. Specific RhoGTPase signaling requires spatio-temporal activation and coordination of subsequent protein-protein and protein-lipid interactions. The nature, location and duration of these interactions are dependent on polarized extracellular triggers, such as cell-cell contact, and intracellular modifying events, such as phosphorylation. RhoA, RhoB, and RhoC are highly homologous GTPases that, however, succeed in generating specific intracellular responses. Here, we discuss the key features that contribute to this specificity. These not only include the well-studied switch regions, the conformation of which is nucleotide-dependent, but also additional regions and seemingly small differences in primary sequence that also contribute to specific interactions. These differences translate into differential surface charge distribution, local exposure of amino acid side-chains and isoform-specific post-translational modifications. The available evidence supports the notion that multiple regions in RhoA/B/C cooperate to provide specificity in binding to regulators and effectors. These specific interactions are highly regulated in time and space. We therefore subsequently discuss current approaches means to visualize and analyze localized GTPase activation using biosensors that allow imaging of isoform-specific, localized regulation.
Collapse
Affiliation(s)
- Antje Schaefer
- a Department of Molecular Cell Biology Sanquin Research and Landsteiner Laboratory; Academic Medical Center; Swammerdam Institute for Life Sciences ; University of Amsterdam ; Amsterdam , The Netherlands
| | | | | |
Collapse
|
36
|
Xie SL, Zhu MG, Chen GF, Wang GY, Lv GY. Effects of Ras homolog gene family, member C gene silencing combined with rapamycin on hepatocellular carcinoma cell growth. Mol Med Rep 2015; 12:5077-85. [PMID: 26165487 PMCID: PMC4581818 DOI: 10.3892/mmr.2015.4056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the combined effects of inhibiting the Ras homolog gene family, member C (RhoC)/Rho kinase and phosphoinositide 3 kinase/Akt/mammalian target of rapamycin (mTOR) pathways on hepatocellular carcinoma cell growth. The RhoC gene was silenced by RNA interference (RNAi) and mTOR was inhibited by rapamycin (RAPA). Subsequently, an MTT assay for cell growth detection, western blot analysis for gene expression analysis, silver nitrate staining for cell proliferation, Wright's staining for analysis of the apoptotic rate analysis, soft agar clonogenic assay for the determination of cell growth characteristics and a Transwell assay for cell migration were performed. RhoC expression in hepatoma cell lines was lower than that in the HL7702 normal human liver cell line. The level of cell proliferation in the RNAi + RAPA group was lower than that in the RNAi, RAPA and Scramble groups. The levels of cyclin‑dependent kinase 2 in the RNAi + RAPA group were lower than those in the other groups, while the levels of P16 in the RNAi + RAPA group were higher than those in the other experimental groups. No significant difference was found between the RNAi + RAPA and the normal HL7702 group. The number of silver nitrate‑stained particles was reduced in the RNAi + RAPA group compared with that in the other groups. No significant difference was found between the RNAi + RAPA and HL7702 groups. Wright's staining for apoptosis demonstrated that apoptosis in the Scramble group was rare, while the RAPA and RNAi groups contained a large number of apoptotic cells, which displayed nuclear condensation, fragmentation, deepened staining, as well as a wrinkled membrane. B‑cell lymphoma‑2 (Bcl‑2) expression in the RNAi + RAPA group was lower than that in the other groups, while the gene expression of Bcl‑2‑associated X protein in the RNAi + RAPA group was increased compared with that in the other groups. No cell colony formation was observed in the soft agar cloning experiment in the RNAi + RAPA and HL7702 group, while in the other groups, visible cell clones appeared. In the Transwell assay the number of migrated cells in the RNAi + RAPA group was lower than that in the other groups. The gene expression of matrix metalloproteinase (MMP)2, MMP‑9 and vascular endothelial growth factor in the RNAi + RAPA group was lower than that in the other experimental groups. In conclusion, RhoC gene silencing combined with RAPA was able to significantly inhibit the growth of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Shu-Li Xie
- Department of General Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ming-Guang Zhu
- Department of Immunology, Basic Medical College of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guo-Fu Chen
- Department of General Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Yi Wang
- Department of General Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guo-Yue Lv
- Department of General Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
37
|
Chen YC, Allen SG, Ingram PN, Buckanovich R, Merajver SD, Yoon E. Single-cell Migration Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations. Sci Rep 2015; 5:9980. [PMID: 25984707 PMCID: PMC4435023 DOI: 10.1038/srep09980] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/20/2015] [Indexed: 12/16/2022] Open
Abstract
Tumor cell migration toward and intravasation into capillaries is an early and key event in cancer metastasis, yet not all cancer cells are imbued with the same capability to do so. This heterogeneity within a tumor is a fundamental property of cancer. Tools to help us understand what molecular characteristics allow a certain subpopulation of cells to spread from the primary tumor are thus critical for overcoming metastasis. Conventional in vitro migration platforms treat populations in aggregate, which leads to a masking of intrinsic differences among cells. Some migration assays reported recently have single-cell resolution, but these platforms do not provide for selective retrieval of the distinct migrating and non-migrating cell populations for further analysis. Thus, to study the intrinsic differences in cells responsible for chemotactic heterogeneity, we developed a single-cell migration platform so that individual cells' migration behavior can be studied and the heterogeneous population sorted based upon chemotactic phenotype. Furthermore, after migration, the highly chemotactic and non-chemotactic cells were retrieved and proved viable for later molecular analysis of their differences. Moreover, we modified the migration channel to resemble lymphatic capillaries to better understand how certain cancer cells are able to move through geometrically confining spaces.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Steven G. Allen
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI
| | - Patrick N. Ingram
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Ronald Buckanovich
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Sofia D. Merajver
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Buchheit CL, Angarola BL, Steiner A, Weigel KJ, Schafer ZT. Anoikis evasion in inflammatory breast cancer cells is mediated by Bim-EL sequestration. Cell Death Differ 2014; 22:1275-86. [PMID: 25526094 DOI: 10.1038/cdd.2014.209] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and highly invasive type of breast cancer, and patients diagnosed with IBC often face a very poor prognosis. IBC is characterized by the lack of primary tumor formation and the rapid accumulation of cancerous epithelial cells in the dermal lymphatic vessels. Given that normal epithelial cells require attachment to the extracellular matrix (ECM) for survival, a comprehensive examination of the molecular mechanisms underlying IBC cell survival in the lymphatic vessels is of paramount importance to our understanding of IBC pathogenesis. Here we demonstrate that, in contrast to normal mammary epithelial cells, IBC cells evade ECM-detachment-induced apoptosis (anoikis). ErbB2 and EGFR knockdown in KPL-4 and SUM149 cells, respectively, causes decreased colony growth in soft agar and increased caspase activation following ECM detachment. ERK/MAPK signaling was found to operate downstream of ErbB2 and EGFR to protect cells from anoikis by facilitating the formation of a protein complex containing Bim-EL, LC8, and Beclin-1. This complex forms as a result of Bim-EL phosphorylation on serine 59, and thus Bim-EL cannot localize to the mitochondria and cause anoikis. These results reveal a novel mechanism that could be targeted with innovative therapeutics to induce anoikis in IBC cells.
Collapse
Affiliation(s)
- C L Buchheit
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - B L Angarola
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - A Steiner
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - K J Weigel
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Z T Schafer
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
39
|
Hamdi K, Goerlitz D, Stambouli N, Islam M, Baroudi O, Neili B, Benayed F, Chivi S, Loffredo C, Jillson IA, Benammar Elgaaied A, Blancato JK, Marrakchi R. miRNAs in Sera of Tunisian patients discriminate between inflammatory breast cancer and non-inflammatory breast cancer. SPRINGERPLUS 2014; 3:636. [PMID: 26034677 PMCID: PMC4447743 DOI: 10.1186/2193-1801-3-636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 01/04/2023]
Abstract
In recent years, circulating miRNAs have attracted interest as stable, non-invasive biomarkers for various pathological conditions. Here, we investigated their potential to serve as minimally invasive, early detection markers for inflammatory breast cancer (IBC) and non-inflammatory breast cancer (non-IBC) in serum. miRNA profiling was performed on serum from 20 patients with non-IBC, 20 with IBC, and 20 normal control subjects. Real-time reverse transcription-polymerase chain reaction (qRT-PCR) was applied to measure the level of 12 candidate miRNAs previously identified in other research(miR-342-5p, miR-342--3p, miR-320, miR-30b, miR-29a, miR-24, miR-15a, miR-548d-5p, miR-486-3p, miR-451, miR-337-5p, miR-335).We found that 4 miRNAs (miR-24, miR-342-3p, miR-337-5p and miR-451) were differentially expressed in serum of IBC patients compared to non-IBC, and 3 miRNAs (miR-337-5p ,miR-451and miR-30b) were differentially expressed in IBC and non-IBC patients combined compared to healthy controls. miR-24, miR-342-3p, miR-337-5p and miR-451 were found to be significantly down-regulated in IBC patients compared to non-IBC. Likewise, the expression level of mir-451 showed significant down-regulation in IBC serum, while mir-30b and miR-337-5p were up-regulated in non-IBC serum comparatively to normal controls. Using receiver operational curve (ROC) analysis, we show that dysregulated miRNAs can discriminate patients with IBC and non-IBC from healthy controls with sensitivity ranging from 76 to 81% and specificity from 66 to 80%, for three separate miRNAs. In conclusion, our data suggest that circulating miRNAs are potential biomarkers for classifying IBC and non-IBC, and may also be candidates for early detection of breast cancer.
Collapse
Affiliation(s)
- Khouloud Hamdi
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - David Goerlitz
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Neila Stambouli
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Mohammed Islam
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Olfa Baroudi
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Bilel Neili
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Farhat Benayed
- Department of Medical Oncology, Hannibal International Clinic, Les Berges du Lac 2, Tunis, Tunisia
| | - Simon Chivi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Christopher Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Irene A Jillson
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Jan K Blancato
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Raja Marrakchi
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| |
Collapse
|
40
|
Mohamed HT, El-Shinawi M, Nouh MA, Bashtar AR, Elsayed ET, Schneider RJ, Mohamed MM. Inflammatory breast cancer: high incidence of detection of mixed human cytomegalovirus genotypes associated with disease pathogenesis. Front Oncol 2014; 4:246. [PMID: 25309872 PMCID: PMC4160966 DOI: 10.3389/fonc.2014.00246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly metastatic, aggressive, and fatal form of breast cancer. Patients presenting with IBC are characterized by a high number of axillary lymph node metastases. Recently, we found that IBC carcinoma tissues contain significantly higher levels of human cytomegalovirus (HCMV) DNA compared to other breast cancer tissues that may regulate cell signaling pathways. In fact, HCMV pathogenesis and clinical outcome can be statistically associated with multiple HCMV genotypes within IBC. Thus, in the present study, we established the incidence and types of HCMV genotypes present in carcinoma tissues of infected non-IBC versus IBC patients. We also assessed the correlation between detection of mixed genotypes of HCMV and disease progression. Genotyping of HCMV in carcinoma tissues revealed that glycoprotein B (gB)-1 and glycoprotein N (gN)-1 were the most prevalent HCMV genotypes in both non-IBC and IBC patients with no significant difference between patients groups. IBC carcinoma tissues, however, showed statistically significant higher incidence of detection of the gN-3b genotype compared to non-IBC patients. The incidence of detection of mixed genotypes of gB showed that gB-1 + gB-3 was statistically significantly higher in IBC than non-IBC patients. Similarly, the incidence of detection of mixed genotypes of gN showed that gN-1 + gN-3b and gN-3 + gN-4b/c were statistically significant higher in the carcinoma tissues of IBC than non-IBC. Mixed presence of different HCMV genotypes was found to be significantly correlated with the number of metastatic lymph nodes in non-IBC but not in IBC patients. In IBC, detection of mixed HCMV different genotypes significantly correlates with lymphovascular invasion and formation of dermal lymphatic emboli, which was not found in non-IBC patients.
Collapse
Affiliation(s)
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University , Cairo , Egypt
| | - M Akram Nouh
- Department of Pathology, National Cancer Institute, Cairo University , Giza , Egypt
| | | | | | - Robert J Schneider
- Department of Microbiology, School of Medicine, New York University , New York, NY , USA
| | | |
Collapse
|
41
|
Malissein E, Meunier E, Lajoie-Mazenc I, Médale-Giamarchi C, Dalenc F, Doisneau-Sixou SF. RhoA and RhoC differentially modulate estrogen receptor α recruitment, transcriptional activities, and expression in breast cancer cells (MCF-7). J Cancer Res Clin Oncol 2013; 139:2079-88. [PMID: 24096540 DOI: 10.1007/s00432-013-1533-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/24/2013] [Indexed: 01/14/2023]
Abstract
PURPOSE RhoA and RhoC are closely related, small GTPases that are clearly involved in breast cancer tumorigenesis. Nonetheless, their specific roles in the control of estrogen receptor alpha (ERα) activities have not been elucidated. METHODS We used siRNA sequences to specifically down-regulate RhoA and RhoC expression in ERα-positive breast adenocarcinoma MCF-7 cells. We then analyzed the consequences of down-regulation on ERα expression, ERα recruitment to the promoters of four target genes, and the mRNA levels of those genes. RESULTS We demonstrated that RhoA and RhoC clearly and similarly modulated ERα recruitment to the vitellogenin estrogen responsive element (ERE) present in a luciferase reporter gene and to the promoters of progesterone receptor (PR), cathepsin D, and pS2 genes. Besides, RhoA up-regulated the ERE-luciferase reporter gene activity and PR mRNA expression and tended to down-regulate cathepsin D and pS2 mRNA expression. Conversely, RhoC inhibition had no significant effect at the mRNA level. Furthermore, RhoA inhibition, and to a lesser extent RhoC inhibition, increased ERα expression. No alteration in ERα mRNA levels was observed, suggesting potential post-translational control. CONCLUSIONS Taken together, our results strongly suggest that RhoA and RhoC play different, but clear, roles in ERα signaling. These GTPases are definitely involved, along with RhoB, in ERα recruitment and, to some extent, ERα cofactor balance. We hypothesize a differential role of RhoA in breast cancer tumors that depend on hormone status.
Collapse
Affiliation(s)
- Emilie Malissein
- INSERM U563 and UMR1037, Institut Claudius Regaud, 20-24 rue du pont St Pierre, 31052, Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Masuda H, Baggerly KA, Wang Y, Iwamoto T, Brewer T, Pusztai L, Kai K, Kogawa T, Finetti P, Birnbaum D, Dirix L, Woodward WA, Reuben JM, Krishnamurthy S, Symmans W, Van Laere SJ, Bertucci F, Hortobagyi GN, Ueno NT. Comparison of molecular subtype distribution in triple-negative inflammatory and non-inflammatory breast cancers. Breast Cancer Res 2013; 15:R112. [PMID: 24274653 PMCID: PMC3978878 DOI: 10.1186/bcr3579] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 11/01/2013] [Indexed: 01/26/2023] Open
Abstract
Introduction Because of its high rate of metastasis, inflammatory breast cancer (IBC) has a poor prognosis compared with non-inflammatory types of breast cancer (non-IBC). In a recent study, Lehmann and colleagues identified seven subtypes of triple-negative breast cancer (TNBC). We hypothesized that the distribution of TNBC subtypes differs between TN-IBC and TN-non-IBC. We determined the subtypes and compared clinical outcomes by subtype in TN-IBC and TN-non-IBC patients. Methods We determined TNBC subtypes in a TNBC cohort from the World IBC Consortium for which IBC status was known (39 cases of TN-IBC; 49 cases of TN-non-IBC). We then determined the associations between TNBC subtypes and IBC status and compared clinical outcomes between TNBC subtypes. Results We found the seven subtypes exist in both TN-IBC and TN-non-IBC. We found no association between TNBC subtype and IBC status (P = 0.47). TNBC subtype did not predict recurrence-free survival. IBC status was not a significant predictor of recurrence-free or overall survival in the TNBC cohort. Conclusions Our data show that, like TN-non-IBC, TN-IBC is a heterogeneous disease. Although clinical characteristics differ significantly between IBC and non-IBC, no unique IBC-specific TNBC subtypes were identified by mRNA gene-expression profiles of the tumor. Studies are needed to identify the subtle molecular or microenvironmental differences that contribute to the differing clinical behaviors between TN-IBC and TN-non-IBC.
Collapse
|
43
|
Abstract
Tumorigenesis is the process by which normal cells evolve the capacity to evade and overcome the constraints usually placed upon their growth and survival. To ensure the integrity of organs and tissues, the balance of cell proliferation and cell death is tightly maintained. The proteins controlling this balance are either considered oncogenes, which promote tumorigenesis, or tumor suppressors, which prevent tumorigenesis. Phosphoinositide 3-kinase enhancer (PIKE) is a family of GTP-binding proteins that possess anti-apoptotic functions and play an important role in the central nervous system. Notably, accumulating evidence suggests that PIKE is a proto-oncogene involved in tumor progression. The PIKE gene (CENTG1) is amplified in a variety of human cancers, leading to the resistance against apoptosis and the enhancement of invasion. In this review, we will summarize the functions of PIKE proteins in tumorigenesis and discuss their potential implications in cancer therapy.
Collapse
|
44
|
Garofalo M, Jeon YJ, Nuovo GJ, Middleton J, Secchiero P, Joshi P, Alder H, Nazaryan N, Di Leva G, Romano G, Crawford M, Nana-Sinkam P, Croce CM. MiR-34a/c-Dependent PDGFR-α/β Downregulation Inhibits Tumorigenesis and Enhances TRAIL-Induced Apoptosis in Lung Cancer. PLoS One 2013; 8:e67581. [PMID: 23805317 PMCID: PMC3689725 DOI: 10.1371/journal.pone.0067581] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 05/23/2013] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality in the world today. Although some advances in lung cancer therapy have been made, patient survival is still poor. MicroRNAs (miRNAs) can act as oncogenes or tumor-suppressor genes in human malignancy. The miR-34 family consists of tumor-suppressive miRNAs, and its reduced expression has been reported in various cancers, including non-small cell lung cancer (NSCLC). In this study, we found that miR-34a and miR-34c target platelet-derived growth factor receptor alpha and beta (PDGFR-α and PDGFR-β), cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer. MiR-34a and miR-34c were downregulated in lung tumors compared to normal tissues. Moreover, we identified an inverse correlation between PDGFR-α/β and miR-34a/c expression in lung tumor samples. Finally, miR-34a/c overexpression or downregulation of PDGFR-α/β by siRNAs, strongly augmented the response to TNF-related apoptosis inducing ligand (TRAIL) while reducing migratory and invasive capacity of NSCLC cells.
Collapse
Affiliation(s)
- Michela Garofalo
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, United States of America
| | - Young-Jun Jeon
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, United States of America
| | - Gerard J. Nuovo
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, United States of America
- Phylogeny, Inc., Columbus, Ohio, United States of America
| | - Justin Middleton
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, United States of America
| | - Paola Secchiero
- Department of Morphology and Embryology, Human Anatomy Section, University of Ferrara, Ferrara, Italy
| | - Pooja Joshi
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, United States of America
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, United States of America
| | - Natalya Nazaryan
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, United States of America
| | - Gianpiero Di Leva
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, United States of America
| | - Giulia Romano
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, United States of America
| | - Melissa Crawford
- Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Patrick Nana-Sinkam
- Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
45
|
Zhao Y, Zheng HC, Chen S, Gou WF, Xiao LJ, Niu ZF. The role of RhoC in ovarian epithelial carcinoma: a marker for carcinogenesis, progression, prognosis, and target therapy. Gynecol Oncol 2013; 130:570-8. [PMID: 23764197 DOI: 10.1016/j.ygyno.2013.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/02/2013] [Accepted: 06/05/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ras homolog gene family member C (RhoC) is a small G protein/guanosine triphosphatase involved in tumor mobility, invasion, and metastasis. METHODS After RhoC siRNA transfection, we measured the changes in phenotypes and some relevant molecules in ovarian carcinoma cell, OVCAR3. The mRNA and protein expression of RhoC was detected in ovarian tumors. RESULTS RhoC siRNA transfection resulted in low growth, G1 arrest, and apoptotic induction in the OVCAR3 in comparison with the control and mock. Following RhoC knockdown, there was reduced mRNA or protein expression of protein kinase B (Akt), signal transducer and activator of transcription 3 (stat3), bcl-xL, surviving and phosphorylated p70S6 kinase (p-p70s6k), while the converse was true for Bax and caspase-3. Lovastatin induced apoptosis, suppressed proliferation, migration and invasion, and disrupted lamellipodia formation in OVCAR3. Lovastatin exposure induced lower RhoC, bcl-2, matrix metalloproteinase-9 (MMP-9), survivin, Akt, bcl-xL, vascular endothelial growth factor (VEGF), and p-p70s6k expression in OVCAR3 compared to the control, but higher caspase-3 and Bax expression. RhoC mRNA and protein expression was significantly higher in ovarian carcinoma than in benign tumors and normal ovary tissue (p<0.05) and was positively associated with dedifferentiation, FIGO staging and p-p70s6k expression of ovarian carcinoma (p<0.05). CONCLUSIONS The up-regulated RhoC expression may affect ovarian carcinogenesis and should be considered a good biomarker for the differentiation and progression of ovarian carcinoma. RhoC plays an important role in apoptosis by modulating the relevant genes and the phosphorylation of downstream p70s6k.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis/drug effects
- Apoptosis/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial
- Caspase 3/metabolism
- Cell Differentiation
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Female
- G1 Phase Cell Cycle Checkpoints/genetics
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Inhibitor of Apoptosis Proteins/metabolism
- Lovastatin/pharmacology
- Matrix Metalloproteinase 9/metabolism
- Middle Aged
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovary/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- STAT3 Transcription Factor/metabolism
- Survivin
- Tissue Array Analysis
- Transfection
- Vascular Endothelial Growth Factor A/metabolism
- Young Adult
- bcl-2-Associated X Protein/metabolism
- bcl-X Protein/metabolism
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- rhoC GTP-Binding Protein
Collapse
Affiliation(s)
- Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | | | | | | | | | | |
Collapse
|
46
|
Lehman HL, Dashner EJ, Lucey M, Vermeulen P, Dirix L, Van Laere S, van Golen KL. Modeling and characterization of inflammatory breast cancer emboli grown in vitro. Int J Cancer 2012; 132:2283-94. [PMID: 23129218 DOI: 10.1002/ijc.27928] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/10/2012] [Indexed: 12/11/2022]
Abstract
Inflammatory breast cancer (IBC) is the deadliest form of breast cancer, presenting as intralymphatic emboli. Emboli within the dermal lymphatic vessels are thought to contribute to rapid metastasis. The lack of appropriate in vitro models has made it difficult to accurately study how IBC emboli metastasize. To date, attempts at creating IBC tumor emboli in vitro have used 3D culture on a solid layer of Matrigel(TM) , which does not resemble the physical properties of the lymphatic system. Dermal lymphatic fluid produces oscillatory fluid shear forces and is 1.5-1.7-fold more viscous than water with a pH range of 7.5-7.7. We have established a method for forming tumor emboli by culturing the IBC cell lines in suspension with either polyethylene glycol- or hyaluronic acid-containing medium and oscillatory fluid shear forces. Non-IBC cells do not form emboli under identical conditions. In vitro IBC emboli were analyzed for expression of markers associated with patient emboli and their ability to undergo invasion. In a direct comparison, the in vitro IBC emboli closely resemble IBC patient emboli with respect to size, composition and E-cadherin expression. Further, cells from the emboli are able to invade in clusters via RhoC GTPase-dependent amoeboid movement. Invasion by clusters of IBC cells is disrupted by exposure to TGFβ. This study provides a biologically relevant in vitro model to accurately grow and study inflammatory breast cancer biology and metastasis.
Collapse
Affiliation(s)
- Heather L Lehman
- Laboratory for Cytoskeletal Physiology, Department of Biological Sciences, The University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | |
Collapse
|