1
|
Fang Y, Shen F, Huang R, Lin Y, Wu Y, Li Q, Xie Z, Yang X, Zhang Z, Jin X, Fan X, Shen J. Manganese-Doped Nanoparticles with Hypoxia-Inducible Factor 2α Inhibitor That Elicit Innate Immune Responses against von Hippel-Lindau Protein-Deficient Tumors. ACS NANO 2025. [PMID: 40255080 DOI: 10.1021/acsnano.4c14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene product, pVHL, is frequently deficient in a variety of human cancers. In addressing the treatment of pVHL-deficient tumors, hypoxia-inducible factor 2α (HIF-2α) has risen as a promising therapeutic target, culminating in the development of specific inhibitors like PT2385 and its analogues. Nonetheless, the absence of targeted delivery capabilities in these inhibitors heightens the risk of on-target toxicities. To mitigate these limitations, we have engineered a nanoparticle, termed PMMF (PT/MMSN@DSPE-PEG-FA), capable of delivering both a HIF-2α antagonist (PT2385) and manganese directly to tumor sites. PMMF has shown effective targeting of pVHL-deficient clear-cell renal cell carcinoma and melanoma, leading to significant therapeutic benefits and alleviating hypoxic and immunosuppressive traits of the tumor microenvironment. Functionally, PMMF boosts the cyclic GMP-AMP synthase-stimulator of interferon genes signaling pathway, which, in turn, stimulates a robust innate immune response. This response activates natural killer (NK) cells and CD8+ T lymphocytes while curbing the infiltration of regulatory T cells. Notably, the therapeutic efficacy of PMMF is markedly reduced when NK cells are blocked but not affected by neutrophil blockade, highlighting the critical role of NK cells in PMMF-induced antitumor immunity. Additionally, the safety profile of PMMF showed minimal systemic post-treatment cytotoxicity. In summary, our findings position PMMF as a promising platform for treating tumors with pVHL deficiency and underscore the therapeutic potential of metalloimmunotherapy.
Collapse
Affiliation(s)
- Yan Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feiyang Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Lin
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijia Wu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Qian Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhu Xie
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Jiang Q, Braun DA, Clauser KR, Ramesh V, Shirole NH, Duke-Cohan JE, Nabilsi N, Kramer NJ, Forman C, Lippincott IE, Klaeger S, Phulphagar KM, Chea V, Kim N, Vanasse AP, Saad E, Parsons T, Carr-Reynolds M, Carulli I, Pinjusic K, Jiang Y, Li R, Syamala S, Rachimi S, Verzani EK, Stevens JD, Lane WJ, Camp SY, Meli K, Pappalardi MB, Herbert ZT, Qiu X, Cejas P, Long HW, Shukla SA, Van Allen EM, Choueiri TK, Churchman LS, Abelin JG, Gurer C, MacBeath G, Childs RW, Carr SA, Keskin DB, Wu CJ, Kaelin WG. HIF regulates multiple translated endogenous retroviruses: Implications for cancer immunotherapy. Cell 2025; 188:1807-1827.e34. [PMID: 40023154 PMCID: PMC11988688 DOI: 10.1016/j.cell.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC), despite having a low mutational burden, is considered immunogenic because it occasionally undergoes spontaneous regressions and often responds to immunotherapies. The signature lesion in ccRCC is inactivation of the VHL tumor suppressor gene and consequent upregulation of the HIF transcription factor. An earlier case report described a ccRCC patient who was cured by an allogeneic stem cell transplant and later found to have donor-derived T cells that recognized a ccRCC-specific peptide encoded by a HIF-responsive endogenous retrovirus (ERV), ERVE-4. We report that ERVE-4 is one of many ERVs that are induced by HIF, translated into HLA-bound peptides in ccRCCs, and capable of generating antigen-specific T cell responses. Moreover, ERV expression can be induced in non-ccRCC tumors with clinical-grade HIF stabilizers. These findings have implications for leveraging ERVs for cancer immunotherapy.
Collapse
Affiliation(s)
- Qinqin Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David A Braun
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Yale Center of Cellular and Molecular Oncology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vijyendra Ramesh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nitin H Shirole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph E Duke-Cohan
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Nicholas J Kramer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Cleo Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Isabelle E Lippincott
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kshiti M Phulphagar
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vipheaviny Chea
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nawoo Kim
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Allison P Vanasse
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Eddy Saad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Isabel Carulli
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Katarina Pinjusic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yijia Jiang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jonathan D Stevens
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - William J Lane
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Sabrina Y Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kevin Meli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachet A Shukla
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | | | | | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Computer Science, Metropolitan College, Boston University, Boston, MA 02215, USA; Section for Bioinformatics, Department of Health Technology, Technical University of Denmark 2800 Lyngby, Denmark.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
3
|
Li J, Huang K, Thakur M, McBride F, Sadagopan A, Gallant DS, Khanna P, Laimon YN, Li B, Mohanna R, Ge M, Weiss CN, Achom M, Xu Q, Matar S, Lee GSM, Huang K, Gui M, Wu CL, Cornejo KM, Choueiri TK, Ryback BA, Signoretti S, Bar-Peled L, Viswanathan SR. Oncogenic TFE3 fusions drive OXPHOS and confer metabolic vulnerabilities in translocation renal cell carcinoma. Nat Metab 2025; 7:478-492. [PMID: 39915638 DOI: 10.1038/s42255-025-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/09/2025] [Indexed: 02/12/2025]
Abstract
Translocation renal cell carcinoma (tRCC) is an aggressive subtype of kidney cancer driven by TFE3 gene fusions, which act via poorly characterized downstream mechanisms. Here we report that TFE3 fusions transcriptionally rewire tRCCs toward oxidative phosphorylation (OXPHOS), contrasting with the highly glycolytic nature of most other renal cancers. Reliance on this TFE3 fusion-driven OXPHOS programme renders tRCCs vulnerable to NADH reductive stress, a metabolic stress induced by an imbalance of reducing equivalents. Genome-scale CRISPR screening identifies tRCC-selective vulnerabilities linked to this metabolic state, including EGLN1, which hydroxylates HIF-1α and targets it for proteolysis. Inhibition of EGLN1 compromises tRCC cell growth by stabilizing HIF-1α and promoting metabolic reprogramming away from OXPHOS, thus representing a vulnerability for OXPHOS-dependent tRCC cells. Our study defines tRCC as being dependent on a mitochondria-centred metabolic programme driven by TFE3 fusions and nominates EGLN1 inhibition as a therapeutic strategy in this cancer.
Collapse
Affiliation(s)
- Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kaimeng Huang
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Meha Thakur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fiona McBride
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prateek Khanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Razan Mohanna
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Cary N Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sayed Matar
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kun Huang
- Molecular Imaging Core and Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Miao Gui
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Kristine M Cornejo
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Birgitta A Ryback
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Liron Bar-Peled
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Bischoff ME, Shamsaei B, Yang J, Secic D, Vemuri B, Reisz JA, D’Alessandro A, Bartolacci C, Adamczak R, Schmidt L, Wang J, Martines A, Venkat J, Tcheuyap VT, Biesiada J, Behrmann CA, Vest KE, Brugarolas J, Scaglioni PP, Plas DR, Patra KC, Gulati S, Landero Figueroa JA, Meller J, Cunningham JT, Czyzyk-Krzeska MF. Copper Drives Remodeling of Metabolic State and Progression of Clear Cell Renal Cell Carcinoma. Cancer Discov 2025; 15:401-426. [PMID: 39476412 PMCID: PMC11803400 DOI: 10.1158/2159-8290.cd-24-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/02/2024]
Abstract
SIGNIFICANCE The work establishes a requirement for glucose-dependent coordination between energy production and redox homeostasis, which is fundamental for the survival of cancer cells that accumulate Cu and contributes to tumor growth.
Collapse
Affiliation(s)
- Megan E. Bischoff
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Behrouz Shamsaei
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Juechen Yang
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dina Secic
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bhargav Vemuri
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Caterina Bartolacci
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rafal Adamczak
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Lucas Schmidt
- Trace Elements Group, Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Amelia Martines
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jahnavi Venkat
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vanina Toffessi Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Catherine A. Behrmann
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katherine E. Vest
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pier Paolo Scaglioni
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Krushna C. Patra
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shuchi Gulati
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Oncology and Hematology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Julio A. Landero Figueroa
- Trace Elements Group, Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jarek Meller
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
- Department of Computer Science, University of Cincinnati College of Engineering and Applied Sciences, Cincinnati, Ohio
| | - John T. Cunningham
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Veterans Affairs, Veteran Affairs Medical Center, Cincinnati, Ohio
- Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
5
|
McDermott A, Tavassoli A. Hypoxia-inducible transcription factors: architects of tumorigenesis and targets for anticancer drug discovery. Transcription 2025; 16:86-117. [PMID: 39470609 PMCID: PMC11970764 DOI: 10.1080/21541264.2024.2417475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play a pivotal role as master regulators of tumor survival and growth, controlling a wide array of cellular processes in response to hypoxic stress. Clinical data correlates upregulated HIF-1 and HIF-2 levels with an aggressive tumor phenotype and poor patient outcome. Despite extensive validation as a target in cancer, pharmaceutical targeting of HIFs, particularly the interaction between α and βsubunits that forms the active transcription factor, has proved challenging. Nonetheless, many indirect inhibitors of HIFs have been identified, targeting diverse parts of this pathway. Significant strides have also been made in the development of direct inhibitors of HIF-2, exemplified by the FDA approval of Belzutifan for the treatment of metastatic clear cell renal carcinoma. While efforts to target HIF-1 using various therapeutic modalities have shown promise, no clinical candidates have yet emerged. This review aims to provide insights into the intricate and extensive role played by HIFs in cancer, and the ongoing efforts to develop therapeutic agents against this target.
Collapse
Affiliation(s)
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Lombardi O, Li R, Jabbar F, Evans H, Halim S, Lima JDCC, Browning L, Byrne HM, Choudhry H, Ratcliffe PJ, Mole DR. Conserved patterns of transcriptional dysregulation, heterogeneity, and cell states in clear cell kidney cancer. Cell Rep 2025; 44:115169. [PMID: 39792555 DOI: 10.1016/j.celrep.2024.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Clear cell kidney cancers are characterized both by conserved oncogenic driver events and by marked intratumor genetic and phenotypic heterogeneity, which help drive tumor progression, metastasis, and resistance to therapy. How these are reflected in transcriptional programs within the cancer and stromal cell components remains an important question with the potential to drive novel therapeutic approaches to treating cancer. To better understand these programs, we perform single-cell transcriptomics on 75 multi-regional biopsies from kidney tumors and normal kidney. We identify conserved patterns of transcriptional dysregulation and their upstream regulators within the tumor and associated vasculature. We describe recurrent subclonal transcriptional consequences of Chr14q loss linked to metastatic potential. We identify prognostically significant conserved patterns of intratumor transcriptional heterogeneity. These reflect co-existing cell states found in both cancer cells and normal kidney cells, indicating that rather than arising from genetic heterogeneity they are a consequence of lineage plasticity.
Collapse
Affiliation(s)
- Olivia Lombardi
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Ran Li
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Faiz Jabbar
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Hannah Evans
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Silvia Halim
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Joanna D C C Lima
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK; Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Headington, Oxford OX3 9DU, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK; Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, Center of Innovation in Personalized Medicine, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah 3270, Saudi Arabia
| | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David R Mole
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK.
| |
Collapse
|
7
|
Zhao W, Kim B, Coffey NJ, Bowers S, Jiang Y, Bowman CE, Noji M, Jang C, Simon MC, Arany Z, Kim B. HIF2α inhibits glutaminase clustering in mitochondria to sustain growth of clear cell Renal Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.04.592520. [PMID: 38746132 PMCID: PMC11092754 DOI: 10.1101/2024.05.04.592520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clear cell renal cell carcinomas (ccRCC) are largely driven by HIF2α and are avid consumers of glutamine. However, inhibitors of glutaminase1 (GLS1), the first step in glutaminolysis, have not shown benefit in phase III trials, and HIF2α inhibition, recently FDA-approved for treatment of ccRCC, shows great but incomplete benefits, underscoring the need to better understand the roles of glutamine and HIF2α in ccRCC. Here, we report that glutamine deprivation rapidly redistributes GLS1 into isolated clusters within mitochondria across diverse cell types, but not in ccRCC. GLS1 clustering is rapid (1-3 hours) and reversible, is specifically driven by reduced intracellular glutamate, and is mediated by mitochondrial fission. Clustered GLS1 markedly enhances glutaminase activity and promotes cell death under glutamine-deprived conditions. HIF2α prevents GLS1 clustering, independently of its transcriptional activity, thereby protecting ccRCC cells from cell death induced by glutamine deprivation. Reversing this protection, by genetic expression of GLS1 mutants that constitutively cluster, enhances ccRCC cell death in culture and suppresses ccRCC growth in vivo. These findings provide multiple insights into cellular glutamine handling, including a novel metabolic pathway by which HIF2α promotes ccRCC, and reveals a potential therapeutic avenue to synergize with HIF2α inhibition in the treatment of ccRCC.
Collapse
Affiliation(s)
- Wencao Zhao
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boyoung Kim
- McAllister Heart Institute, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Nathan J Coffey
- The Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Schuyler Bowers
- McAllister Heart Institute, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yanqing Jiang
- The Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael Noji
- The Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - M. Celeste Simon
- The Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Arany
- Department of Medicine, Cardiovascular Institute, and Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boa Kim
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, Nutrition Obesity Research Center, and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Zhang J, Yao M, Xia S, Zeng F, Liu Q. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cell Mol Biol Lett 2025; 30:2. [PMID: 39757165 DOI: 10.1186/s11658-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Mingxuan Yao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shiting Xia
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Valdés A, Pizarro G, González-Montero J, Rojas C, Burotto M. Targeting HIF-2α: the role of belzutifan in clear cell renal carcinoma management. Expert Rev Clin Pharmacol 2025; 18:17-27. [PMID: 39670660 DOI: 10.1080/17512433.2024.2436433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Belzutifan is a first-in-class hypoxia-inducible factor-2 alpha (HIF-2α) inhibitor. It targets the von Hippel-Lindau protein (pVHL)-HIF-vascular endothelial growth factor (VEGF) pathway, which is crucial in cellular responses to hypoxia. By inhibiting HIF-2α, belzutifan disrupts the transcription of genes involved in tumor growth and angiogenesis. AREAS COVERED In this review, we describe the pVHL-HIF-VEGF pathway and how it led to the development of HIF inhibitors, including belzutifan. A search was conducted for trials involving Belzutifan, including phase I-III trials. We describe the relevant toxicity, with emphasis on hypoxia and anemia. EXPERT OPINION Belzutifan is a relatively safe drug, with manageable adverse events, including anemia and hypoxia as on-target toxicity. Ongoing trials are studying its benefit in overall survival for RCC in first-line treatment and its potential in other malignancies. The LITESPARK-005 trial reported the benefit of belzutifan in progression-free survival (PFS) compared to everolimus in later lines of treatment, with improvement in quality-of-life outcomes. Given its different mechanism of action to currently available treatments, belzutifan is expected to play a prominent role in the treatment of clear cell renal carcinoma and other cancers.
Collapse
Affiliation(s)
- Alejandro Valdés
- Department of Medical Oncology, Bradford Hill Clinical Research Center, Santiago, Chile
- Department of Medical Oncology, Instituto Nacional del Cáncer, Santiago, Chile
| | - Gonzalo Pizarro
- Department of Medical Oncology, Bradford Hill Clinical Research Center, Santiago, Chile
- Department of Medical Oncology, Hospital Sótero del Río, Santiago, Chile
| | | | - Carlos Rojas
- Department of Medical Oncology, Bradford Hill Clinical Research Center, Santiago, Chile
| | - Mauricio Burotto
- Department of Medical Oncology, Bradford Hill Clinical Research Center, Santiago, Chile
| |
Collapse
|
10
|
Roviello G, De Gennaro I, Vascotto I, Venturi G, D’Angelo A, Winchler C, Guarino A, Cacioppo S, Modesti M, Mela MM, Francini E, Doni L, Rossi V, Gambale E, Giorgione R, Antonuzzo L, Nesi G, Catalano M. Hypoxia-Inducible Factor in Renal Cell Carcinoma: From Molecular Insights to Targeted Therapies. Genes (Basel) 2024; 16:6. [PMID: 39858553 PMCID: PMC11764647 DOI: 10.3390/genes16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Mutations of the von Hippel-Lindau (VHL) tumor suppressor gene occur frequently in clear cell renal cell carcinoma (RCC), the predominant histology of kidney cancer, and have been associated with its pathogenesis and progression. Alterations of VHL lead to impaired degradation of hypoxia-inducible factor 1α (HIF1α) and HIF2α promoting neoangiogenesis, which is pivotal for cancer growth. As such, targeting the VHL-HIF axis holds relevant potential for therapeutic purposes. Belzutifan, an HIF-2α inhibitor, has been recently indicated for metastatic RCC and other antiangiogenic drugs directed against HIF-2α are currently under investigation. Further, clinical and preclinical studies of combination approaches for metastatic RCC including belzutifan with cyclin-dependent kinase 4-6 inhibitors, tyrosine kinase inhibitors, or immune checkpoint inhibitors achieved promising results or are ongoing. This review aims to summarize the existing evidence regarding the VHL/HIF pathway, and the approved and emerging treatment strategies that target this pivotal molecular axis and their mechanisms of resistance.
Collapse
Affiliation(s)
| | - Irene De Gennaro
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Ismaela Vascotto
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Giulia Venturi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Alberto D’Angelo
- Department of Medicine, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Costanza Winchler
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Adriana Guarino
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Salvatore Cacioppo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Mikol Modesti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Marinella Micol Mela
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Edoardo Francini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Laura Doni
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Virginia Rossi
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Elisabetta Gambale
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Roberta Giorgione
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Gabriella Nesi
- Department of Health Sciences, Section of Anatomic Pathology, University of Florence, 50139 Florence, Italy;
| | - Martina Catalano
- Department of Health Science, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
11
|
You H, Zhang H, Jin X, Yan Z. Dysregulation of ubiquitination modification in renal cell carcinoma. Front Genet 2024; 15:1453191. [PMID: 39748950 PMCID: PMC11693700 DOI: 10.3389/fgene.2024.1453191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor of the renal tubular epithelial cells with a relatively high incidence rate worldwide. A large number of studies have indicated that dysregulation of the ubiquitination, including ubiquitination and dysregulation, is associated with the occurrence and development of RCC. This review focuses on several abnormal signaling pathways caused by E3 ligases and deubiquitinases. Additionally, we discuss research progress in RCC treatment by targeting key enzymes related to ubiquitination modifications.
Collapse
Affiliation(s)
| | | | - Xiaofeng Jin
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, China
| | - Zejun Yan
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Shang J, Zhou X, Liu B, Hu S, Wang X. Novel serous effusion-related risk models and biomarkers for predicting prognosis in T-cell lymphoma patients. Ann Hematol 2024:10.1007/s00277-024-06109-9. [PMID: 39604596 DOI: 10.1007/s00277-024-06109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
T-cell lymphomas (TCLs) are a cluster of lymphoproliferative diseases with high heterogeneity, which lack accurate prognostic models and standard treatment regimen at present. Serous effusion (SE) is a relatively common manifestation and poses more challenges for risk stratification in TCLs. In this study, entire of 518 newly diagnosed TCLs patients were included. SE was found to be tightly correlated to clinical characteristics and prognosis in TCL patients, and SE volume (SEV) > 1000 ml was identified as a potential prognostic factor. Novel AEBS risk model, including age > 60, ECOG PS > 1, β2-microglobulin (BMG) > 3.0 mg/L and SEV > 1000 ml, which exerted superior efficacy for risk stratification compared to the current risk systems in TCL patients with SE. Besides, multiple RNA-seq datasets were used for the identification and function analysis of SE-related genes (SERGs). TCL patients in different SERGs-associated subgroups exhibited discrepancy in the infiltration of immunocytes and the expression of immune checkpoints. SERGs signature, including HIF1A, FERMT2, NFATC1 and COL1A1, was established and demonstrated to have distinguishing capacity for predicting prognosis in TCL patients. Moreover, immunohistochemistry revealed that SE-related molecule HIF1A was reductively expressed and related to inferior prognosis in TCL patients, especially in SE group. Pan-cancer analysis found HIF1A expression was decreased in several tumors, and chemosensitivity analysis revealed that HIF1A was associated with sensitivity of several anti-tumor drugs, such as Sorafenib, Navitoclax, and Venetoclax. Our findings provide evidence for identifying high-risk population and facilitating individualized treatment in TCL patients with SE.
Collapse
Affiliation(s)
- Juanjuan Shang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaoli Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
13
|
Liao C, Hu L, Zhang Q. Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma. Nat Rev Urol 2024; 21:662-675. [PMID: 38698165 DOI: 10.1038/s41585-024-00876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The distinct pathological and molecular features of kidney cancer in adaptation to oxygen homeostasis render this malignancy an attractive model for investigating hypoxia signalling and potentially developing potent targeted therapies. Hypoxia signalling has a pivotal role in kidney cancer, particularly within the most prevalent subtype, known as renal cell carcinoma (RCC). Hypoxia promotes various crucial pathological processes, such as hypoxia-inducible factor (HIF) activation, angiogenesis, proliferation, metabolic reprogramming and drug resistance, all of which contribute to kidney cancer development, growth or metastasis formation. A substantial portion of kidney cancers, in particular clear cell RCC (ccRCC), are characterized by a loss of function of Von Hippel-Lindau tumour suppressor (VHL), leading to the accumulation of HIF proteins, especially HIF2α, a crucial driver of ccRCC. Thus, therapeutic strategies targeting pVHL-HIF signalling have been explored in ccRCC, culminating in the successful development of HIF2α-specific antagonists such as belzutifan (PT2977), an FDA-approved drug to treat VHL-associated diseases including advanced-stage ccRCC. An increased understanding of hypoxia signalling in kidney cancer came from the discovery of novel VHL protein (pVHL) targets, and mechanisms of synthetic lethality with VHL mutations. These breakthroughs can pave the way for the development of innovative and potent combination therapies in kidney cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
14
|
Kang L, Chen X, Qi P, Ma Z, Han D, Zhang X, Shang P. Research progress on the correlation between obesity and the occurrence and development of kidney cancer: a narrative review. Transl Cancer Res 2024; 13:5678-5690. [PMID: 39525017 PMCID: PMC11543094 DOI: 10.21037/tcr-24-744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
Background and Objective Obesity is an important risk factor for the onset of kidney cancer, and the mechanism of obesity leading to the occurrence and development of kidney cancer has been further studied and confirmed in the past decade. The emergence of the "obesity paradox" phenomenon has made the correlation between obesity and the prognosis of kidney cancer survival controversial. This review summarizes the association between obesity and the occurrence and development of kidney cancer based on newly discovered evidence in the past 10 years, in order to provide reference for follow-up research. Methods A comprehensive, non-systematic review of the latest literature was carried out in order to investigate the progress of the correlation between obesity and kidney cancer. PubMed, Web of Science and Embase were being examined and the last run was on July 15, 2024. Key Content and Findings The correlation between obesity and the occurrence and development of kidney cancer was discussed in this review, and the newly discovered evidence of epidemiology and related mechanisms in the past 10 years was summarized. The latest evidence suggests that obesity is an important risk factor for the development of kidney cancer. Perirenal fat plays an important role in promoting kidney cancer progression and prognosis. Conclusions Epidemiology shows that the high rates of kidney cancer and obesity coincide in terms of region and ethnicity. The underlying mechanisms associated with obesity in promoting the occurrence and development of kidney cancer mainly include: abnormal expression of adipocytokines, abnormal lipid metabolism, abnormalities in the insulin-like growth factor-I (IGF-I) axis and hyperinsulinemia/insulin resistance, hypoxia and inflammation. As adipose tissue is adjacent to the kidney, the effect of perirenal adipose tissue on the prognosis of kidney cancer is controversial, and some evidence supports the idea of the "obesity paradox".
Collapse
Affiliation(s)
- Le Kang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Peng Qi
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhongwei Ma
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dali Han
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xingxing Zhang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Panfeng Shang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
15
|
Stransky LA, Gao W, Schmidt LS, Bi K, Ricketts CJ, Ramesh V, James A, Difilippantonio S, Ileva L, Kalen JD, Karim B, Jeon A, Morgan T, Warner AC, Turan S, Unite J, Tran B, Choudhari S, Zhao Y, Linn DE, Yun C, Dhandapani S, Parab V, Pinheiro EM, Morris N, He L, Vigeant SM, Pignon JC, Sticco-Ivins M, Signoretti S, Van Allen EM, Linehan WM, Kaelin WG. Toward a CRISPR-based mouse model of Vhl-deficient clear cell kidney cancer: Initial experience and lessons learned. Proc Natl Acad Sci U S A 2024; 121:e2408549121. [PMID: 39365820 PMCID: PMC11474080 DOI: 10.1073/pnas.2408549121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
CRISPR is revolutionizing the ability to do somatic gene editing in mice for the purpose of creating new cancer models. Inactivation of the VHL tumor suppressor gene is the signature initiating event in the most common form of kidney cancer, clear cell renal cell carcinoma (ccRCC). Such tumors are usually driven by the excessive HIF2 activity that arises when the VHL gene product, pVHL, is defective. Given the pressing need for a robust immunocompetent mouse model of human ccRCC, we directly injected adenovirus-associated viruses (AAVs) encoding sgRNAs against VHL and other known/suspected ccRCC tumor suppressor genes into the kidneys of C57BL/6 mice under conditions where Cas9 was under the control of one of two different kidney-specific promoters (Cdh16 or Pax8) to induce kidney tumors. An AAV targeting Vhl, Pbrm1, Keap1, and Tsc1 reproducibly caused macroscopic ccRCCs that partially resembled human ccRCC tumors with respect to transcriptome and cell of origin and responded to a ccRCC standard-of-care agent, axitinib. Unfortunately, these tumors, like those produced by earlier genetically engineered mouse ccRCCs, are HIF2 independent.
Collapse
Affiliation(s)
- Laura A. Stransky
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Wenhua Gao
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Kevin Bi
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Vijyendra Ramesh
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Amy James
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Simone Difilippantonio
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Lilia Ileva
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Albert Jeon
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Tamara Morgan
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Andrew C. Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Sevilay Turan
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Joanne Unite
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Bao Tran
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Sulbha Choudhari
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Yongmei Zhao
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | | | - Changhong Yun
- Pharmacokinetics, Merck & Co., Inc., Boston, MA02115
| | | | - Vaishali Parab
- Pharmacokinetics, Merck & Co., Inc., South San Francisco, CA94080
| | | | - Nicole Morris
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Lixia He
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Sean M. Vigeant
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Jean-Christophe Pignon
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
| | - Maura Sticco-Ivins
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Eliezer M. Van Allen
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - William G. Kaelin
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
16
|
Dong X, Zhang D, Zhang X, Liu Y, Liu Y. Network modeling links kidney developmental programs and the cancer type-specificity of VHL mutations. NPJ Syst Biol Appl 2024; 10:114. [PMID: 39362887 PMCID: PMC11449910 DOI: 10.1038/s41540-024-00445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
Elucidating the molecular dependencies behind the cancer-type specificity of driver mutations may reveal new therapeutic opportunities. We hypothesized that developmental programs would impact the transduction of oncogenic signaling activated by a driver mutation and shape its cancer-type specificity. Therefore, we designed a computational analysis framework by combining single-cell gene expression profiles during fetal organ development, latent factor discovery, and information theory-based differential network analysis to systematically identify transcription factors that selectively respond to driver mutations under the influence of organ-specific developmental programs. After applying this approach to VHL mutations, which are highly specific to clear cell renal cell carcinoma (ccRCC), we revealed important regulators downstream of VHL mutations in ccRCC and used their activities to cluster patients with ccRCC into three subtypes. This classification revealed a more significant difference in prognosis than the previous mRNA profile-based method and was validated in an independent cohort. Moreover, we found that EP300, a key epigenetic factor maintaining the regulatory network of the subtype with the worst prognosis, can be targeted by a small inhibitor, suggesting a potential treatment option for a subset of patients with ccRCC. This work demonstrated an intimate relationship between organ development and oncogenesis from the perspective of systems biology, and the method can be generalized to study the influence of other biological processes on cancer driver mutations.
Collapse
Affiliation(s)
- Xiaobao Dong
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Donglei Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xian Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yuanyuan Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Wang J, Bi W, Lv R, Wang Z, Xin Q, Li K, Chen Y, Liu Q, Zhang X. SMEK1 promotes clear cell renal cell carcinoma progression via EGFR tyrosine-kinase dependent pathway. Cancer Lett 2024; 601:217148. [PMID: 39098759 DOI: 10.1016/j.canlet.2024.217148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Studying the mechanisms underlying clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, may address an unmet need in ccRCC-targeted drug research. Growing evidences indicate that protein phosphatase 4 (PP4) plays an important role in cancer biology. Here, we characterized the upregulation of PP4 core component SMEK1 in ccRCC using tissue microarrays and revealed that its high expression is closely associated with reduced patient survival. We then conducted cell function experiments and animal experiments to prove the tumor-promoting effect of SMEK1. Next, RNA-seq was performed to explore its underlying mechanism, and the results revealed that SMEK1-regulated genes were extensively involved in cell motility, and the canonical tyrosine kinase receptor EGFR was one of its targets. Moreover, we verified the regulatory effect of SMEK1 on EGFR and its downstream MAPK and AKT pathway through molecular experiments, in which erlotinib, a tyrosine kinase inhibitor, can partially block this regulation, demonstrating that SMEK1 mediates its effects dependent on the tyrosine kinase activity of EGFR. Mechanistically, SMEK1 bond to PRMT5 and facilitated PRMT5-mediated histone methylation to promote the transcription of EGFR. Furthermore, we studied the upstream regulators of SMEK1 and demonstrated that the transcription factor E2F1 could directly bind to the SMEK1 promoter by chromatin immunoprecipitation. Functionally, E2F1 could also induce ccRCC progression by manipulating the expression of SMEK1. Collectively, our findings demonstrate the overexpression of SMEK1 in ccRCC, and reveal a novel E2F1/SMEK1/PRMT5/EGFR-tyrosine-kinase-dependent pathway for ccRCC progression.
Collapse
Affiliation(s)
- Jue Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Institute of Medical Sciences, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Wenhao Bi
- Department of Urology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Urology, Zibo 148 Hospital, Zibo, Shandong, 255300, China
| | - Renguang Lv
- Department of Urology, Jinan Seventh People's Hospital, Jinan, Shandong, 251400, China
| | - Zekun Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qian Xin
- Institute of Medical Sciences, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Kailin Li
- Institute of Medical Sciences, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yuan Chen
- Institute of Medical Sciences, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China; NHC Key Laboratory of Birth Defects Prevention, Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, Henan, China.
| | - Xiang Zhang
- Department of Urology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
18
|
Surguta SE, Baranyi M, Svajda L, Cserepes M, Ranđelović I, Tátrai E, Hegedűs B, Tóvári J. Differential effects of hypoxia on motility using various in vitro models of lung adenocarcinoma. Sci Rep 2024; 14:20482. [PMID: 39227650 PMCID: PMC11372077 DOI: 10.1038/s41598-024-70769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related death globally. Metastasis is the most common reason of mortality in which hypoxia is suggested to have a pivotal role. However, the effect of hypoxia on the metastatic potential and migratory activity of cancer cells is largely unexplored and warrants detailed scientific investigations. Accordingly, we analyzed changes on cell proliferation and migratory activity both in single-cell migration and invasion under normoxic and hypoxic conditions in lung adenocarcinoma cell lines. Alterations in crucial genes and proteins associated with cellular response to hypoxia, epithelial-mesenchymal transition, proliferation and apoptosis were also analyzed. Generally, we observed no change in proliferation upon hypoxic conditions and no detectable induction of apoptosis. Interestingly, we observed that single-cell motility was generally reduced while invasion under confluent conditions using scratch assay was enhanced by hypoxia in most of the cell lines. Furthermore, we detected changes in the expression of EMT markers that are consistent with enhanced motility and metastasis-promoting effect of hypoxia. In summary, our study indicated cell line-, time of exposure- and migrational type-dependent effects of hypoxia in cellular proliferation, motility and gene expression. Our results contribute to better understanding and tackling cancer metastasis.
Collapse
Affiliation(s)
- Sára Eszter Surguta
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary.
- School of Ph.D. Studies, Semmelweis University, Budapest, 1085, Hungary.
| | - Marcell Baranyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, 1091, Hungary
| | - Laura Svajda
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, 1085, Hungary
| | - Mihály Cserepes
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Enikő Tátrai
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Balázs Hegedűs
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, 1091, Hungary
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, University Duisburg-Essen, 45239, Essen, Germany
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, 1085, Hungary
| |
Collapse
|
19
|
Li J, Huang K, McBride F, Sadagopan A, Gallant DS, Thakur M, Khanna P, Li B, Ge M, Weiss CN, Achom M, Xu Q, Huang K, Ryback BA, Gui M, Bar-Peled L, Viswanathan SR. TFE3 fusions direct an oncogenic transcriptional program that drives OXPHOS and unveils vulnerabilities in translocation renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607311. [PMID: 39149323 PMCID: PMC11326252 DOI: 10.1101/2024.08.09.607311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Translocation renal cell carcinoma (tRCC) is an aggressive subtype of kidney cancer driven by TFE3 gene fusions, which act via poorly characterized downstream mechanisms. Here we report that TFE3 fusions transcriptionally rewire tRCCs toward oxidative phosphorylation (OXPHOS), contrasting with the highly glycolytic metabolism of most other renal cancers. This TFE3 fusion-driven OXPHOS program, together with heightened glutathione levels found in renal cancers, renders tRCCs sensitive to reductive stress - a metabolic stress state induced by an imbalance of reducing equivalents. Genome-scale CRISPR screening identifies tRCC-selective vulnerabilities linked to this metabolic state, including EGLN1, which hydroxylates HIF-1α and targets it for proteolysis. Inhibition of EGLN1 compromises tRCC cell growth by stabilizing HIF-1a and promoting metabolic reprogramming away from OXPHOS, thus representing a vulnerability to OXPHOS-dependent tRCC cells. Our study defines a distinctive tRCC-essential metabolic program driven by TFE3 fusions and nominates EGLN1 inhibition as a therapeutic strategy to counteract fusion-induced metabolic rewiring.
Collapse
Affiliation(s)
- Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Kaimeng Huang
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fiona McBride
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Daniel. S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Meha Thakur
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Prateek Khanna
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Cary N. Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Kun Huang
- Molecular Imaging Core and Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Birgitta A. Ryback
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China; Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Liron Bar-Peled
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA, USA
| |
Collapse
|
20
|
Buckley M, Terwagne C, Ganner A, Cubitt L, Brewer R, Kim DK, Kajba CM, Forrester N, Dace P, De Jonghe J, Shepherd STC, Sawyer C, McEwen M, Diederichs S, Neumann-Haefelin E, Turajlic S, Ivakine EA, Findlay GM. Saturation genome editing maps the functional spectrum of pathogenic VHL alleles. Nat Genet 2024; 56:1446-1455. [PMID: 38969834 PMCID: PMC11250436 DOI: 10.1038/s41588-024-01800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/13/2024] [Indexed: 07/07/2024]
Abstract
To maximize the impact of precision medicine approaches, it is critical to identify genetic variants underlying disease and to accurately quantify their functional effects. A gene exemplifying the challenge of variant interpretation is the von Hippel-Lindautumor suppressor (VHL). VHL encodes an E3 ubiquitin ligase that regulates the cellular response to hypoxia. Germline pathogenic variants in VHL predispose patients to tumors including clear cell renal cell carcinoma (ccRCC) and pheochromocytoma, and somatic VHL mutations are frequently observed in sporadic renal cancer. Here we optimize and apply saturation genome editing to assay nearly all possible single-nucleotide variants (SNVs) across VHL's coding sequence. To delineate mechanisms, we quantify mRNA dosage effects and compare functional effects in isogenic cell lines. Function scores for 2,268 VHL SNVs identify a core set of pathogenic alleles driving ccRCC with perfect accuracy, inform differential risk across tumor types and reveal new mechanisms by which variants impact function. These results have immediate utility for classifying VHL variants encountered clinically and illustrate how precise functional measurements can resolve pleiotropic and dosage-dependent genotype-phenotype relationships across complete genes.
Collapse
Affiliation(s)
- Megan Buckley
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Chloé Terwagne
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Athina Ganner
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Cubitt
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Reid Brewer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dong-Kyu Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christina M Kajba
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Nicole Forrester
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Phoebe Dace
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Joachim De Jonghe
- The Genome Function Laboratory, The Francis Crick Institute, London, UK
| | - Scott T C Shepherd
- The Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Chelsea Sawyer
- Scientific Computing, The Francis Crick Institute, London, UK
| | - Mairead McEwen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, A Partnership Between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Samra Turajlic
- The Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Gregory M Findlay
- The Genome Function Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
21
|
Bacigalupa ZA, Arner EN, Vlach LM, Wolf MM, Brown WA, Krystofiak ES, Ye X, Hongo RA, Landis M, Amason EK, Beckermann KE, Rathmell WK, Rathmell JC. HIF-2α expression and metabolic signaling require ACSS2 in clear cell renal cell carcinoma. J Clin Invest 2024; 134:e164249. [PMID: 38941296 PMCID: PMC11178540 DOI: 10.1172/jci164249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/01/2024] [Indexed: 06/30/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is an aggressive cancer driven by VHL loss and aberrant HIF-2α signaling. Identifying means to regulate HIF-2α thus has potential therapeutic benefit. Acetyl-CoA synthetase 2 (ACSS2) converts acetate to acetyl-CoA and is associated with poor patient prognosis in ccRCC. Here we tested the effects of ACSS2 on HIF-2α and cancer cell metabolism and growth in ccRCC models and clinical samples. ACSS2 inhibition reduced HIF-2α levels and suppressed ccRCC cell line growth in vitro, in vivo, and in cultures of primary ccRCC patient tumors. This treatment reduced glycolytic signaling, cholesterol metabolism, and mitochondrial integrity, all of which are consistent with loss of HIF-2α. Mechanistically, ACSS2 inhibition decreased chromatin accessibility and HIF-2α expression and stability. While HIF-2α protein levels are widely regulated through pVHL-dependent proteolytic degradation, we identify a potential pVHL-independent pathway of degradation via the E3 ligase MUL1. We show that MUL1 can directly interact with HIF-2α and that overexpression of MUL1 decreased HIF-2α levels in a manner partially dependent on ACSS2. These findings identify multiple mechanisms to regulate HIF-2α stability and ACSS2 inhibition as a strategy to complement HIF-2α-targeted therapies and deplete pathogenically stabilized HIF-2α.
Collapse
Affiliation(s)
- Zachary A. Bacigalupa
- Department of Medicine
- Department of Pathology, Microbiology, and Immunology, and
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emily N. Arner
- Department of Medicine
- Department of Pathology, Microbiology, and Immunology, and
| | | | - Melissa M. Wolf
- Department of Medicine
- Department of Pathology, Microbiology, and Immunology, and
| | | | - Evan S. Krystofiak
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, and
| | - Rachel A. Hongo
- Department of Medicine
- Department of Pathology, Microbiology, and Immunology, and
| | - Madelyn Landis
- Department of Medicine
- Department of Pathology, Microbiology, and Immunology, and
| | | | | | - W. Kimryn Rathmell
- Department of Medicine
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, and
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
23
|
Li J, Cao Q, Tong M. Deciphering anoikis resistance and identifying prognostic biomarkers in clear cell renal cell carcinoma epithelial cells. Sci Rep 2024; 14:12044. [PMID: 38802480 PMCID: PMC11130322 DOI: 10.1038/s41598-024-62978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
This study tackles the persistent prognostic and management challenges of clear cell renal cell carcinoma (ccRCC), despite advancements in multimodal therapies. Focusing on anoikis, a critical form of programmed cell death in tumor progression and metastasis, we investigated its resistance in cancer evolution. Using single-cell RNA sequencing from seven ccRCC patients, we assessed the impact of anoikis-related genes (ARGs) and identified differentially expressed genes (DEGs) in Anoikis-related epithelial subclusters (ARESs). Additionally, six ccRCC RNA microarray datasets from the GEO database were analyzed for robust DEGs. A novel risk prognostic model was developed through LASSO and multivariate Cox regression, validated using BEST, ULCAN, and RT-PCR. The study included functional enrichment, immune infiltration analysis in the tumor microenvironment (TME), and drug sensitivity assessments, leading to a predictive nomogram integrating clinical parameters. Results highlighted dynamic ARG expression patterns and enhanced intercellular interactions in ARESs, with significant KEGG pathway enrichment in MYC + Epithelial subclusters indicating enhanced anoikis resistance. Additionally, all ARESs were identified in the spatial context, and their locational relationships were explored. Three key prognostic genes-TIMP1, PECAM1, and CDKN1A-were identified, with the high-risk group showing greater immune infiltration and anoikis resistance, linked to poorer prognosis. This study offers a novel ccRCC risk signature, providing innovative approaches for patient management, prognosis, and personalized treatment.
Collapse
Affiliation(s)
- Junyi Li
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Qingfei Cao
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ming Tong
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
24
|
Urrutia AA, Mesa-Ciller C, Guajardo-Grence A, Alkan HF, Soro-Arnáiz I, Vandekeere A, Ferreira Campos AM, Igelmann S, Fernández-Arroyo L, Rinaldi G, Lorendeau D, De Bock K, Fendt SM, Aragonés J. HIF1α-dependent uncoupling of glycolysis suppresses tumor cell proliferation. Cell Rep 2024; 43:114103. [PMID: 38607920 PMCID: PMC11063627 DOI: 10.1016/j.celrep.2024.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.
Collapse
Affiliation(s)
- Andrés A Urrutia
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Claudia Mesa-Ciller
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Andrea Guajardo-Grence
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Inés Soro-Arnáiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Ana Margarida Ferreira Campos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sebastian Igelmann
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Lucía Fernández-Arroyo
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Doriane Lorendeau
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
25
|
Zhang C, Yu M, Hepperla AJ, Zhang Z, Raj R, Zhong H, Zhou J, Hu L, Fang J, Liu H, Liang Q, Jia L, Liao C, Xi S, Simon JM, Xu K, Liu Z, Nam Y, Kapur P, Zhang Q. Von Hippel Lindau tumor suppressor controls m6A-dependent gene expression in renal tumorigenesis. J Clin Invest 2024; 134:e175703. [PMID: 38618952 PMCID: PMC11014668 DOI: 10.1172/jci175703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Miaomiao Yu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Austin J. Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, Neuroscience Center and
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, UNC, Chapel Hill, North Carolina, USA
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rishi Raj
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center and
| | - Hua Zhong
- Department of Pathology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Fang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hongyi Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liwei Jia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, Neuroscience Center and
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, UNC, Chapel Hill, North Carolina, USA
| | - Kexin Xu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yunsun Nam
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center and
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, Department of Urology
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Gui M, Wu C, Qi R, Zeng Y, Huang P, Cao J, Chen T, Chen K, Lin L, Han Q, He P, Fu R, Wu Q, Yuan Q, Zhang T, Xia N, Wang G, Chen Y. Swine pseudorabies virus attenuated vaccine reprograms the kidney cancer tumor microenvironment and synergizes with PD-1 blockade. J Med Virol 2024; 96:e29568. [PMID: 38549430 DOI: 10.1002/jmv.29568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/27/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024]
Abstract
The global incidence rate of kidney cancer (KC) has been steadily increasing over the past 30 years. With the aging global population, kidney cancer has become an escalating concern that necessitates vigilant surveillance. Nowadays, surgical intervention remains the optimal therapeutic approach for kidney cancer, while the availability of efficacious treatments for advanced tumors remains limited. Oncolytic viruses, an emerging form of immunotherapy, have demonstrated encouraging anti-neoplastic properties and are progressively garnering public acceptance. However, research on oncolytic viruses in kidney cancer is relatively limited. Furthermore, given the high complexity and heterogeneity of kidney cancer, it is crucial to identify an optimal oncolytic virus agent that is better suited for its treatment. The present study investigates the oncolytic activity of the Pseudorabies virus live attenuated vaccine (PRV-LAV) against KC. The findings clearly demonstrate that PRV-LAV exhibits robust oncolytic activity targeting KC cell lines. Furthermore, the therapeutic efficacy of PRV-LAV was confirmed in both a subcutaneous tumor-bearing nude mouse model and a syngeneic mouse model of KC. Combined RNA-seq analysis and flow cytometry revealed that PRV-LAV treatment substantially enhances the infiltration of a diverse range of lymphocytes, including T cells, B cells, macrophages, and NK cells. Additionally, PRV-LAV treatment enhances T cell activation and exerts antitumor effects. Importantly, the combination of PRV-LAV with anti-PD-1 antibodies, an approved drug for KC treatment, synergistically enhances the efficacy against KC. Overall, the discovery of PRV-LAV as an effective oncolytic virus holds significant importance for improving the treatment efficacy and survival rates of KC patients.
Collapse
Affiliation(s)
- Mengxuan Gui
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Chongxin Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ruoyao Qi
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Yue Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Pengfei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Jiali Cao
- Department of Laboratory Medicine, Fujian Key Clinical Specialty of Laboratory Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen
| | - Tian Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Kaiyun Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Lina Lin
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Qiangyuan Han
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Peiqing He
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Rao Fu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Qian Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Guosong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
27
|
Pang S, Zhao S, Dongye Y, Fan Y, Liu J. Identification and validation of m6A-associated ferroptosis genes in renal clear cell carcinoma. Cell Biol Int 2024. [PMID: 38440906 DOI: 10.1002/cbin.12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 02/17/2024] [Indexed: 03/06/2024]
Abstract
Urinary cancer is synonymous with clear cell renal cell carcinoma (ccRCC). Unfortunately, existing treatments for this illness are ineffective and unpromising. Finding novel ccRCC biomarkers is crucial to creating successful treatments. The Cancer Genome Atlas provided clear cell renal cell carcinoma transcriptome data. Functional enrichment analysis was performed on ccRCC and control samples' differentially expressed N6-methyladenosine RNA methylation and ferroptosis-related genes (DEMFRGs). Machine learning was used to find and model ccRCC patients' predicted genes. A nomogram was created for clear cell renal cell carcinoma patients. Prognostic genes were enriched. We examined patients' immune profiles by risk score. Our prognostic genes predicted ccRCC treatment drugs. We found 37 DEMFRGs by comparing 1913 differentially expressed ccRCC genes to 202 m6A RNA methylation FRGs. Functional enrichment analysis showed that hypoxia-induced cell death and metabolism pathways were the most differentially expressed methylation functional regulating genes. Five prognostic genes were found by machine learning: TRIB3, CHAC1, NNMT, EGFR, and SLC1A4. An advanced renal cell carcinoma nomogram with age and risk score accurately predicted the outcome. These five prognostic genes were linked to various cancers. Immunological cell number and checkpoint expression differed between high- and low-risk groups. The risk model successfully predicted immunotherapy outcome, showing high-risk individuals had poor results. NIACIN, TAE-684, ROCILETINIB, and others treat ccRCC. We found ccRCC prognostic genes that work. This discovery may lead to new ccRCC treatments.
Collapse
Affiliation(s)
- Shuo Pang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong, P.R. China
| | - Shuo Zhao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Yuxi Dongye
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong, P.R. China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
28
|
Jia L, Cowell LG, Kapur P. Understanding Factors that Influence Prognosis and Response to Therapy in Clear Cell Renal Cell Carcinoma. Adv Anat Pathol 2024; 31:96-104. [PMID: 38179997 DOI: 10.1097/pap.0000000000000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this review, we highlight and contextualize emerging morphologic prognostic and predictive factors in renal cell carcinoma. We focus on clear cell renal cell carcinoma (ccRCC), the most common histologic subtype. Our understanding of the molecular characterization of ccRCC has dramatically improved in the last decade. Herein, we highlight how these discoveries have laid the foundation for new approaches to prognosis and therapeutic decision-making for patients with ccRCC. We explore the clinical relevance of common mutations, established gene expression signatures, intratumoral heterogeneity, sarcomatoid/rhabdoid morphology and PD-L1 expression, and discuss their impact on predicting response to therapy.
Collapse
Affiliation(s)
| | - Lindsay G Cowell
- Peter O'Donnell School of Public Health
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, Dallas, TX
| | - Payal Kapur
- Department of Pathology
- Department of Urology, University of Texas Southwestern Medical Center
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, Dallas, TX
| |
Collapse
|
29
|
Shi J, Lv Q, Miao D, Xiong Z, Wei Z, Wu S, Tan D, Wang K, Zhang X. HIF2α Promotes Cancer Metastasis through TCF7L2-Dependent Fatty Acid Synthesis in ccRCC. RESEARCH (WASHINGTON, D.C.) 2024; 7:0322. [PMID: 38390305 PMCID: PMC10882601 DOI: 10.34133/research.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Recent studies have highlighted the notable involvement of the crosstalk between hypoxia-inducible factor 2 alpha (HIF2α) and Wnt signaling components in tumorigenesis. However, the cellular function and precise regulatory mechanisms of HIF2α and Wnt signaling interactions in clear cell renal cell carcinoma (ccRCC) remain elusive. To analyze the correlation between HIF2α and Wnt signaling, we utilized the Cancer Genome Atlas - Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) public database, HIF2α RNA sequencing data, and conducted luciferase reporter assays. A Wnt-related gene set was employed to identify key regulators of Wnt signaling controlled by HIF2α in ccRCC. Furthermore, we assessed the biological effects of TCF7L2 on ccRCC metastasis and lipid metabolism in both in vivo and in vitro settings. Our outcomes confirm TCF7L2 as a key gene involved in HIF2α-mediated regulation of the canonical Wnt pathway. Functional studies demonstrate that TCF7L2 promotes metastasis in ccRCC. Mechanistic investigations reveal that HIF2α stabilizes TCF7L2 mRNA in a method based on m6A by transcriptionally regulating METTL3. Up-regulation of TCF7L2 enhances cellular fatty acid oxidation, which promotes histone acetylation. This facilitates the transcription of genes connected to epithelial-mesenchymal transition and ultimately enhances metastasis of ccRCC. These outcomes offer a novel understanding into the involvement of lipid metabolism in the signaling pathway regulation, offering valuable implications for targeted treatment in ccRCC.
Collapse
Affiliation(s)
- Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Songming Wu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| |
Collapse
|
30
|
Hu L, Zhang Y, Guo L, Zhong H, Xie L, Zhou J, Liao C, Yao H, Fang J, Liu H, Zhang C, Zhang H, Zhu X, Luo M, von Kriegsheim A, Li B, Luo W, Zhang X, Chen X, Mendell JT, Xu L, Kapur P, Baldwin AS, Brugarolas J, Zhang Q. Kinome-wide siRNA screen identifies a DCLK2-TBK1 oncogenic signaling axis in clear cell renal cell carcinoma. Mol Cell 2024; 84:776-790.e5. [PMID: 38211588 PMCID: PMC10922811 DOI: 10.1016/j.molcel.2023.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/23/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a potential therapeutic target in multiple cancers, including clear cell renal cell carcinoma (ccRCC). However, targeting TBK1 in clinical practice is challenging. One approach to overcome this challenge would be to identify an upstream TBK1 regulator that could be targeted therapeutically in cancer specifically. In this study, we perform a kinome-wide small interfering RNA (siRNA) screen and identify doublecortin-like kinase 2 (DCLK2) as a TBK1 regulator in ccRCC. DCLK2 binds to and directly phosphorylates TBK1 on Ser172. Depletion of DCLK2 inhibits anchorage-independent colony growth and kidney tumorigenesis in orthotopic xenograft models. Conversely, overexpression of DCLK2203, a short isoform that predominates in ccRCC, promotes ccRCC cell growth and tumorigenesis in vivo. Mechanistically, DCLK2203 elicits its oncogenic signaling via TBK1 phosphorylation and activation. Taken together, these results suggest that DCLK2 is a TBK1 activator and potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanfeng Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hua Zhong
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jin Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongwei Yao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Fang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongyi Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maowu Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Bufan Li
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - James Brugarolas
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
31
|
Xiao H, Qu Y, Li H, Zhang Y, Fei M, Liang C, Yang H, Zhang X. HIF-2α/LINC02609/APOL1-mediated lipid storage promotes endoplasmic reticulum homeostasis and regulates tumor progression in clear-cell renal cell carcinoma. J Exp Clin Cancer Res 2024; 43:29. [PMID: 38263248 PMCID: PMC10804485 DOI: 10.1186/s13046-023-02940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The VHL-HIF pathway and lipid droplet accumulation are the main characteristics of clear cell renal cell carcinoma (ccRCC). However, the connection between the two features is largely unknown. METHODS We used transcriptional sequencing and TCGA database analysis to identify APOL1 as a novel therapeutic target for ccRCC. The oncogenic functions of APOL1 were investigated by cell proliferation, colony formation, migration and invasion assays in ccRCC cells in vitro and xenografts derived from ccRCC cells in vivo. Oil red O staining and quantification were used to detect lipid droplets. Chromatin immunoprecipitation (ChIP) assays and luciferase reporter assays were carried out to identify HIF-2α bound to the promoter of APOL1 and lncRNA LINC02609. RNA-FISH and luciferase reporter assays were performed to determine that LncRNA LINC02609 functions as a competing endogenous RNA to regulate APOL1 expression by sponging miR-149-5p. FINDINGS RNA-seq data revealed that HIF2α can regulate APOL1 and lncRNA LINC02609 expression. We also found that HIF-2α can bind to the promoter of APOL1 and lncRNA LINC02609 and transcriptionally regulate their expression directly. We further demonstrated that LncRNA LINC02609 functions as a competing endogenous RNA to regulate APOL1 expression by sponging miR-149-5p in ccRCC. Mechanistically, APOL1-dependent lipid storage is required for endoplasmic reticulum (ER) homeostasis and cell viability and metastasis in ccRCC. We also showed that high APOL1 expression correlated with worse clinical outcomes, and knockdown of APOL1 inhibited tumor cell lipid droplet formation, proliferation, metastasis and xenograft tumor formation abilities. Together, our studies identify that HIF2α can regulate the expression of the lipid metabolism related gene APOL1 by direct and indirect means, which are essential for ccRCC tumorigenesis. INTERPRETATION Based on the experimental data, in ccRCC, the HIF-2α/LINC02609/APOL1 axis can regulate the expression of APOL1, thus interfering with lipid storage, promoting endoplasmic reticulum homeostasis and regulating tumor progression in ccRCC. Together, our findings provide potential biomarkers and novel therapeutic targets for future studies in ccRCC.
Collapse
Affiliation(s)
- Haibing Xiao
- Department of Urology, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Qu
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Haolin Li
- Department of Urology, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Yi Zhang
- Department of Urology, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Mintian Fei
- Department of Urology, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Chaozhao Liang
- Department of Urology, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China.
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaoping Zhang
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China.
| |
Collapse
|
32
|
Bischoff ME, Shamsaei B, Yang J, Secic D, Vemuri B, Reisz JA, D'Alessandro A, Bartolacci C, Adamczak R, Schmidt L, Wang J, Martines A, Biesiada J, Vest KE, Scaglioni PP, Plas DR, Patra KC, Gulati S, Figueroa JAL, Meller J, Cunningham JT, Czyzyk-Krzeska MF. Copper drives remodeling of metabolic state and progression of clear cell renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575895. [PMID: 38293110 PMCID: PMC10827129 DOI: 10.1101/2024.01.16.575895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Copper (Cu) is an essential trace element required for mitochondrial respiration. Late-stage clear cell renal cell carcinoma (ccRCC) accumulates Cu and allocates it to mitochondrial cytochrome c oxidase. We show that Cu drives coordinated metabolic remodeling of bioenergy, biosynthesis and redox homeostasis, promoting tumor growth and progression of ccRCC. Specifically, Cu induces TCA cycle-dependent oxidation of glucose and its utilization for glutathione biosynthesis to protect against H 2 O 2 generated during mitochondrial respiration, therefore coordinating bioenergy production with redox protection. scRNA-seq determined that ccRCC progression involves increased expression of subunits of respiratory complexes, genes in glutathione and Cu metabolism, and NRF2 targets, alongside a decrease in HIF activity, a hallmark of ccRCC. Spatial transcriptomics identified that proliferating cancer cells are embedded in clusters of cells with oxidative metabolism supporting effects of metabolic states on ccRCC progression. Our work establishes novel vulnerabilities with potential for therapeutic interventions in ccRCC. Accumulation of copper is associated with progression and relapse of ccRCC and drives tumor growth.Cu accumulation and allocation to cytochrome c oxidase (CuCOX) remodels metabolism coupling energy production and nucleotide biosynthesis with maintenance of redox homeostasis.Cu induces oxidative phosphorylation via alterations in the mitochondrial proteome and lipidome necessary for the formation of the respiratory supercomplexes. Cu stimulates glutathione biosynthesis and glutathione derived specifically from glucose is necessary for survival of Cu Hi cells. Biosynthesis of glucose-derived glutathione requires activity of glutamyl pyruvate transaminase 2, entry of glucose-derived pyruvate to mitochondria via alanine, and the glutamate exporter, SLC25A22. Glutathione derived from glucose maintains redox homeostasis in Cu-treated cells, reducing Cu-H 2 O 2 Fenton-like reaction mediated cell death. Progression of human ccRCC is associated with gene expression signature characterized by induction of ETC/OxPhos/GSH/Cu-related genes and decrease in HIF/glycolytic genes in subpopulations of cancer cells. Enhanced, concordant expression of genes related to ETC/OxPhos, GSH, and Cu characterizes metabolically active subpopulations of ccRCC cells in regions adjacent to proliferative subpopulations of ccRCC cells, implicating oxidative metabolism in supporting tumor growth.
Collapse
|
33
|
Yoshikawa K, Hagimoto H, Nakamura E. [The development of innovative therapeutic drugs targeting hypoxia responses]. Nihon Yakurigaku Zasshi 2024; 159:160-164. [PMID: 38692880 DOI: 10.1254/fpj.23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The 2019 Nobel Prize in Physiology or Medicine was awarded to Dr. William G. Kaelin Jr, Dr. Peter J. Ratcliffe, and Dr. Gregg L. Semenza for their elucidation of new physiological mechanisms "How cells sense and adapt to oxygen availability". Moreover, two different drugs, HIF-PH inhibitors and HIF-2 inhibitors were also developed based on the discovery. Interestingly, those three doctors have different backgrounds as a medical oncologist, a nephrologist, and a pediatrician, respectively. They have started the research based on their own unique perspectives and eventually merged as "the elucidation of the response mechanism of living organisms to hypoxic environments". In this review, we will explain how the translational research that has begun to solve unmet clinical needs successfully contributed to the development of innovative therapeutic drugs.
Collapse
Affiliation(s)
- Kiyotsugu Yoshikawa
- Laboratory of Pharmacotherapy, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | | | | |
Collapse
|
34
|
Golijanin B, Malshy K, Khaleel S, Lagos G, Amin A, Cheng L, Golijanin D, Mega A. Evolution of the HIF targeted therapy in clear cell renal cell carcinoma. Cancer Treat Rev 2023; 121:102645. [PMID: 37879247 DOI: 10.1016/j.ctrv.2023.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer, affecting hundreds of thousands of people worldwide and can affect people of any age. The pathogenesis of ccRCC is most commonly due to biallelic loss of the tumor suppressor gene VHL. VHL is the recognition subunit of an E3-ubiquitin-ligase-complex essential for degradation of the hypoxia-inducible factors (HIF) 1α and 2α. Dysfunctional degradation of HIF results in overaccumulation, which is particularly concerning with the HIF2α subunit. This leads to nuclear translocation, dimerization, and transactivation of numerous HIF-regulated genes responsible for cell survival and proliferation in ccRCC. FDA-approved therapies for RCC have primarily focused on targeting downstream effectors of HIF, then incorporated immunotherapeutics, and now, novel approaches are moving back to HIF with a focus on interfering with upstream targets. This review summarizes the role of HIF in the pathogenesis of ccRCC, novel HIF2α-focused therapeutic approaches, and opportunities for ccRCC treatment.
Collapse
Affiliation(s)
- Borivoj Golijanin
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States.
| | - Kamil Malshy
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Sari Khaleel
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Galina Lagos
- Lifespan Cancer Institute, Department of Hematology and Oncology, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Dragan Golijanin
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Anthony Mega
- Lifespan Cancer Institute, Department of Hematology and Oncology, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| |
Collapse
|
35
|
Dovrolis N, Katifelis H, Grammatikaki S, Zakopoulou R, Bamias A, Karamouzis MV, Souliotis K, Gazouli M. Inflammation and Immunity Gene Expression Patterns and Machine Learning Approaches in Association with Response to Immune-Checkpoint Inhibitors-Based Treatments in Clear-Cell Renal Carcinoma. Cancers (Basel) 2023; 15:5637. [PMID: 38067341 PMCID: PMC10705515 DOI: 10.3390/cancers15235637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer. Despite the rapid evolution of targeted therapies, immunotherapy with checkpoint inhibition (ICI) as well as combination therapies, the cure of metastatic ccRCC (mccRCC) is infrequent, while the optimal use of the various novel agents has not been fully clarified. With the different treatment options, there is an essential need to identify biomarkers to predict therapeutic efficacy and thus optimize therapeutic approaches. This study seeks to explore the diversity in mRNA expression profiles of inflammation and immunity-related circulating genes for the development of biomarkers that could predict the effectiveness of immunotherapy-based treatments using ICIs for individuals with mccRCC. Gene mRNA expression was tested by the RT2 profiler PCR Array on a human cancer inflammation and immunity crosstalk kit and analyzed for differential gene expression along with a machine learning approach for sample classification. A number of mRNAs were found to be differentially expressed in mccRCC with a clinical benefit from treatment compared to those who progressed. Our results indicate that gene expression can classify these samples with high accuracy and specificity.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Hector Katifelis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Stamatiki Grammatikaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Roubini Zakopoulou
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.Z.); (A.B.)
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.Z.); (A.B.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Kyriakos Souliotis
- School of Social and Education Policy, University of Peloponnese, 22100 Corinth, Greece;
- Health Policy Institute, 15123 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| |
Collapse
|
36
|
White G, Nonaka D, Chung TT, Oakey RJ, Izatt L. Somatic EPAS1 Variants in Pheochromocytoma and Paraganglioma in Patients With Sickle Cell Disease. J Clin Endocrinol Metab 2023; 108:3302-3310. [PMID: 37285480 PMCID: PMC10655516 DOI: 10.1210/clinem/dgad311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
CONTEXT Somatic EPAS1 variants account for 5% to 8% of all pheochromocytoma and paragangliomas (PPGL) but are detected in over 90% of PPGL in patients with congenital cyanotic heart disease, where hypoxemia may select for EPAS1 gain-of-function variants. Sickle cell disease (SCD) is an inherited hemoglobinopathy associated with chronic hypoxia and there are isolated reports of PPGL in patients with SCD, but a genetic link between the conditions has yet to be established. OBJECTIVE To determine the phenotype and EPAS1 variant status of patients with PPGL and SCD. METHODS Records of 128 patients with PPGL under follow-up at our center from January 2017 to December 2022 were screened for SCD diagnosis. For identified patients, clinical data and biological specimens were obtained, including tumor, adjacent non-tumor tissue and peripheral blood. Sanger sequencing of exons 9 and 12 of EPAS1, followed by amplicon next-generation sequencing of identified variants was performed on all samples. RESULTS Four patients with both PPGL and SCD were identified. Median age at PPGL diagnosis was 28 years. Three tumors were abdominal paragangliomas and 1 was a pheochromocytoma. No germline pathogenic variants in PPGL-susceptibility genes were identified in the cohort. Genetic testing of tumor tissue detected unique EPAS1 variants in all 4 patients. Variants were not detected in the germline, and 1 variant was detected in lymph node tissue of a patient with metastatic disease. CONCLUSION We propose that somatic EPAS1 variants may be acquired through exposure to chronic hypoxia in SCD and drive PPGL development. Future work is needed to further characterize this association.
Collapse
Affiliation(s)
- Gemma White
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Department of Clinical Genetics, Guy's and St Thomas’ NHS Foundation Trust, London, SE1 9RT, UK
| | - Daisuke Nonaka
- Department of Pathology, Guy's and St Thomas’ NHS Foundation Trust, London, SE1 7EH, UK
- Department of Cellular Pathology, King's College London, London, SE1 1UL, UK
| | - Teng-Teng Chung
- Department of Endocrinology, University College London Hospital NHS Foundation Trust, London, NW1 2BU, UK
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Louise Izatt
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Department of Clinical Genetics, Guy's and St Thomas’ NHS Foundation Trust, London, SE1 9RT, UK
| |
Collapse
|
37
|
Sellner F, Compérat E, Klimpfinger M. Genetic and Epigenetic Characteristics in Isolated Pancreatic Metastases of Clear-Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:16292. [PMID: 38003482 PMCID: PMC10671160 DOI: 10.3390/ijms242216292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Isolated pancreatic metastases of renal cell carcinoma (IsPMRCC) are a rare manifestation of metastatic, clear-cell renal cell carcinoma (RCC) in which distant metastases occur exclusively in the pancreas. In addition to the main symptom of the isolated occurrence of pancreatic metastases, the entity surprises with additional clinical peculiarities: (a) the unusually long interval of about 9 years between the primary RCC and the onset of pancreatic metastases; (b) multiple pancreatic metastases occurring in 36% of cases; (c) favourable treatment outcomes with a 75% 5-year survival rate; and (d) volume and growth-rate dependent risk factors generally accepted to be relevant for overall survival in metastatic surgery are insignificant in isPMRCC. The genetic and epigenetic causes of exclusive pancreatic involvement have not yet been investigated and are currently unknown. Conversely, according to the few available data in the literature, the following genetic and epigenetic peculiarities can already be identified as the cause of the protracted course: 1. high genetic stability of the tumour cell clones in both the primary tumour and the pancreatic metastases; 2. a low frequency of copy number variants associated with aggressiveness, such as 9p, 14q and 4q loss; 3. in the chromatin-modifying genes, a decreased rate of PAB1 (3%) and an increased rate of PBRM1 (77%) defects are seen, a profile associated with a favourable course; 4. an increased incidence of KDM5C mutations, which, in common with increased PBRM1 alterations, is also associated with a favourable outcome; and 5. angiogenetic biomarkers are increased in tumour tissue, while inflammatory biomarkers are decreased, which explains the good response to TKI therapy and lack of sensitivity to IT.
Collapse
Affiliation(s)
- Franz Sellner
- Department of General, Visceral and Vascular Surgery, Clinic Favoriten Vienna, Kaiser Franz Josef Hospital, 1100 Vienna, Austria
| | - Eva Compérat
- Clinical Institute of Pathology, Medical University Vienna, 1090 Vienna, Austria
| | - Martin Klimpfinger
- Clinical Institute of Pathology, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
38
|
Li L, Bao H, Xu Y, Yang W, Zhang Z, Ma K, Zhang K, Zhou J, Gong Y, Ci W, Gong K. Preliminary Study of Whole-Genome Bisulfite Sequencing and Transcriptome Sequencing in VHL Disease-Associated ccRCC. Mol Diagn Ther 2023; 27:741-752. [PMID: 37587253 DOI: 10.1007/s40291-023-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary tumor syndrome with an incidence of approximately 1/36,000. VHL disease-associated clear cell renal cell carcinoma (ccRCC) is the most common congenital RCC. Although recent advances in treating RCC have improved the long-term prognosis of patients with VHL disease, kidney cancer is still the leading cause of death in these patients. Therefore, finding new targets for diagnosing and treating VHL disease-associated ccRCC is still essential. METHODS In this study, we collected matched tumor tissues and normal samples from 25 patients with VHL disease-associated ccRCC, diagnosed and surgically treated in the Department of Urology, Peking University First Hospital. After screening, we performed whole genome bisulfite sequencing (WGBS) on 23 pairs of tissues and RNA-seq on 6 pairs of tissues. And we also compared the VHL disease-associated ccRCC transcriptome data with the sporadic ccRCC transcriptome data from the The Cancer Genome Atlas (TCGA) public database RESULTS: We found that the methylation level of VHL disease-associated ccRCC tumor tissues was significantly lower than that of normal tissues. The tumor tissues showed a difference in the copy number of 3p loss and 5q and 7q gain compared with normal tissues. We integrated RNA-seq and WGBS data to reveal methylation candidate genes associated with VHL disease-associated ccRCC; our results showed 124 hypermethylated and downregulated genes, and 245 hypomethylated and upregulated genes. By comparing the VHL disease-associated ccRCC transcriptome data with the sporadic ccRCC transcriptome data from the TCGA public database, we found that the major pathways of differential gene enrichment differed between them. CONCLUSIONS Our study mapped the multiomics of copy number variation, methylation and mRNA level changes in tumor and normal tissues of clear cell renal cell carcinoma with VHL syndrome, which provides a solid foundation for the mechanistic study, biomarker screening, and therapeutic target discovery of clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Lei Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Hainan Bao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawei Xu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Kaifang Ma
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomingxiang Street, Dongcheng District, Beijing, 100730, China
| | - Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institution of Urology, Peking University, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
| | - Weimin Ci
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
- Institution of Urology, Peking University, Beijing, 100034, China.
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China.
- National Urological Cancer Center, Beijing, 100034, China.
| |
Collapse
|
39
|
Chen D, Yin Z, Chen Y, Bai Y, You B, Sun Y, Wu Y. Validation of prognostic signature and exploring the immune-related mechanisms for NR3C2 in clear cell renal cell carcinoma. Transl Cancer Res 2023; 12:2518-2532. [PMID: 37969386 PMCID: PMC10643972 DOI: 10.21037/tcr-23-846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/22/2023] [Indexed: 11/17/2023]
Abstract
Background Previous studies have verified that NR3C2 inhibits tumor cell proliferation, invasion, and migration. However, there is a lack of independent validation cohorts for verifying the prognostic value of NR3C2 in clear cell renal cell carcinoma (ccRCC), and its underlying antitumor mechanisms remain unclear. Methods We first obtained dates from the online public databases. Then R language or online public database was used for bioinformatics analyses to evaluate the effect of NR3C2 on the diagnosis, prognosis, and immune microenvironment in ccRCC patients. Finally, the results were verified by our own cohort and immunofluorescence (IF) staining. Results The present study yielded significant findings regarding the expression of NR3C2 in ccRCC compared to control tissues. Specifically, NR3C2 expression was found to be significantly reduced in ccRCC and was observed to be correlated with tumor stage. Additionally, patients with lower NR3C2 expression exhibited shorter overall survival (OS), disease-specific survival, and progress-free survival. Univariable and multivariate Cox analyses further identified NR3C2 expression as an independent prognostic factor for ccRCC. Receiver operating characteristic (ROC) analysis demonstrated that NR3C2 was a highly accurate marker for distinguishing tumors from normal kidney tissue, with an area under the curve (AUC) of 0.959. Further analyses using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that NR3C2 may play a role in various biological processes and pathways related to tumor immune microenvironment (TIM). The expression of NR3C2 exhibited significant positive correlations with the levels of infiltration of CD4+ and CD8+ T cells, as well as an association with immune checkpoints. Conclusions Our exploratory study suggested that NR3C2 could serve as a novel biomarker for predicting survival in patients with ccRCC and the molecular mechanisms owe partly to immune cell infiltration.
Collapse
Affiliation(s)
- Daoxun Chen
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Zhenjie Yin
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Yongmei Chen
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Yuanyuan Bai
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Bingyong You
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Yingming Sun
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| |
Collapse
|
40
|
Liu W, Fan X, Jian B, Wen D, Wang H, Liu Z, Li B. The signaling pathway of hypoxia inducible factor in regulating gut homeostasis. Front Microbiol 2023; 14:1289102. [PMID: 37965556 PMCID: PMC10641782 DOI: 10.3389/fmicb.2023.1289102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Hypoxia represent a condition in which an adequate amount of oxygen supply is missing in the body, and it could be caused by a variety of diseases, including gastrointestinal disorders. This review is focused on the role of hypoxia in the maintenance of the gut homeostasis and related treatment of gastrointestinal disorders. The effects of hypoxia on the gut microbiome and its role on the intestinal barrier functionality are also covered, together with the potential role of hypoxia in the development of gastrointestinal disorders, including inflammatory bowel disease and irritable bowel syndrome. Finally, we discussed the potential of hypoxia-targeted interventions as a novel therapeutic approach for gastrointestinal disorders. In this review, we highlighted the importance of hypoxia in the maintenance of the gut homeostasis and the potential implications for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Boshuo Jian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| |
Collapse
|
41
|
Vo TTT, Tran Q, Hong Y, Lee H, Cho H, Kim M, Park S, Kim C, Bayarmunkh C, Boldbaatar D, Kwon SH, Park J, Kim SH, Park J. AXL is required for hypoxia-mediated hypoxia-inducible factor-1 alpha function in glioblastoma. Toxicol Res 2023; 39:669-679. [PMID: 37779588 PMCID: PMC10541364 DOI: 10.1007/s43188-023-00195-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of central nervous system tumor. Molecular targeting may be important when developing efficient GBM treatment strategies. Sequencing of GBMs revealed that the receptor tyrosine kinase (RTK)/RAS/phosphatidylinositol-3-kinase pathway was altered in 88% of samples. Interestingly, AXL, a member of RTK, was proposed as a promising target in glioma therapy. However, the molecular mechanism of AXL modulation of GBM genesis and proliferation is still unclear. In this study, we investigated the expression and localization of hypoxia-inducible factor-1 alpha (HIF-1α) by AXL in GBM. Both AXL mRNA and protein are overexpressed in GBM. Short-interfering RNA knockdown of AXL in U251-MG cells reduced viability and migration. However, serum withdrawal reduced AXL expression, abolishing the effect on viability. AXL is also involved in hypoxia regulation. In hypoxic conditions, the reduction of AXL decreased the level and nuclear localization of HIF-1α. The co-expression of HIF-1α and AXL was found in human GBM samples but not normal tissue. This finding suggests a mechanism for GBM proliferation and indicates that targeting AXL may be a potential GBM therapeutic. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00195-z.
Collapse
Affiliation(s)
- Thuy-Trang T. Vo
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Quangdon Tran
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Youngeun Hong
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Hyunji Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Hyeonjeong Cho
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Minhee Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Sungjin Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Chaeyeong Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Choinyam Bayarmunkh
- Department of Graduate Education, Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
- Department of Physiology, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
| | - Damdindorj Boldbaatar
- Department of Graduate Education, Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
- Department of Physiology, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Jisoo Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Life Science, Hyehwa Liberal Arts College, LINC Plus Project Group, Daejeon University, Daejeon, 34520 Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| |
Collapse
|
42
|
Shirole NH, Kaelin WG. von-Hippel Lindau and Hypoxia-Inducible Factor at the Center of Renal Cell Carcinoma Biology. Hematol Oncol Clin North Am 2023; 37:809-825. [PMID: 37270382 PMCID: PMC11315268 DOI: 10.1016/j.hoc.2023.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The most common form of kidney cancer is clear cell renal cell carcinoma (ccRCC). Biallelic VHL tumor suppressor gene inactivation is the usual initiating event in both hereditary (VHL Disease) and sporadic ccRCCs. The VHL protein, pVHL, earmarks the alpha subunits of the HIF transcription factor for destruction in an oxygen-dependent manner. Deregulation of HIF2 drives ccRCC pathogenesis. Drugs inhibiting the HIF2-responsive growth factor VEGF are now mainstays of ccRCC treatment. A first-in-class allosteric HIF2 inhibitor was recently approved for treating VHL Disease-associated neoplasms and appears active against sporadic ccRCC in early clinical trials.
Collapse
Affiliation(s)
- Nitin H Shirole
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - William G Kaelin
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Brigham and Women's Hospital, Harvard Medical School; Howard Hughes Medical Institute.
| |
Collapse
|
43
|
Ahmed R, Ornstein MC. Targeting HIF-2 Alpha in Renal Cell Carcinoma. Curr Treat Options Oncol 2023; 24:1183-1198. [PMID: 37403008 DOI: 10.1007/s11864-023-01106-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 07/06/2023]
Abstract
OPINION STATEMENT Current treatment options for patients with metastatic renal cell carcinoma (mRCC) are limited to immunotherapy with checkpoint inhibitors and targeted therapies that inhibit the vascular endothelial growth factor receptors (VEFG-R) and the mammalian target of rapamycin (mTOR). Despite significantly improved outcomes over the last few decades, most patients with mRCC will ultimately develop resistance to these therapies, thus highlighting the critical need for novel treatment options. As part of the VHL-HIF-VEGF axis that rests at the foundation of RCC pathogenesis, hypoxia-inducible factor 2α (HIF-2α) has been identified as a rationale target for mRCC treatment. Indeed, one such agent (belzutifan) is already approved for VHL-associated RCC and other VHL-associated neoplasms. Early trials of belzutifan indicate encouraging efficacy and good tolerability in sporadic mRCC as well. The potential inclusion of belzutifan and other HIF-2α inhibitors into the mRCC treatment armamentarium either as a single agent or as combination therapy would be a welcome addition for patients with mRCC.
Collapse
Affiliation(s)
- Ramsha Ahmed
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 9200 W. Wisconsin Ave., Milwaukee, WI, 53226, USA
| | - Moshe C Ornstein
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, 9500 Euclid Ave, CA-60, Cleveland, OH, 44195, USA.
| |
Collapse
|
44
|
Dzhalilova DS, Zolotova NA, Mkhitarov VA, Kosyreva AM, Tsvetkov IS, Khalansky AS, Alekseeva AI, Fatkhudinov TH, Makarova OV. Morphological and molecular-biological features of glioblastoma progression in tolerant and susceptible to hypoxia Wistar rats. Sci Rep 2023; 13:12694. [PMID: 37542119 PMCID: PMC10403616 DOI: 10.1038/s41598-023-39914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
Hypoxia is a major pathogenetic factor in many cancers. Individual resistance to suboptimal oxygen availability is subject to broad variation and its possible role in tumorigenesis remains underexplored. This study aimed at specific characterization of glioblastoma progression in male tolerant and susceptible to hypoxia Wistar rats. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 13), 'normal', and 'susceptible to hypoxia' (n = 24). The 'normal' group was excluded from subsequent experiments. One month later, the animals underwent inoculation with rat glioblastoma 101.8 followed by monitoring of survival, body weight dynamics and neurological symptoms. The animals were sacrificed on post-inoculation days 11 (subgroup 1) and 15 (subgroup 2). Relative vessels number, necrosis areas and Ki-67 index were assessed microscopically; tumor volumes were determined by 3D reconstruction from histological images; serum levels of HIF-1α, IL-1β, and TNFα were determined by ELISA. None of the tolerant to hypoxia animals died of the disease during observation period, cf. 85% survival on day 11 and 55% survival on day 15 in the susceptible group. On day 11, proliferative activity of the tumors in the tolerant animals was higher compared with the susceptible group. On day 15, proliferative activity, necrosis area and volume of the tumors in the tolerant to hypoxia animals were higher compared with the susceptible group. ELISA revealed no dynamics in TNFα levels, elevated levels of IL-1β in the susceptible animals on day 15 in comparison with day 11 and tolerant ones. Moreover, there were elevated levels of HIF-1α in the tolerant animals on day 15 in comparison with day 11. Thus, the proliferative activity of glioblastoma cells and the content of HIF-1α were higher in tolerant to hypoxia rats, but the mortality associated with the tumor process and IL-1β level in them were lower than in susceptible animals. Specific features of glioblastoma 101.8 progression in tolerant and susceptible to hypoxia rats, including survival, tumor growth rates and IL-1β level, can become the basis of new personalized approaches for cancer diseases treatment in accordance to individual hypoxia resistance.
Collapse
Affiliation(s)
- D Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418.
| | - N A Zolotova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - V A Mkhitarov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - A M Kosyreva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya St, Moscow, Russia, 117198
| | - I S Tsvetkov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - A S Khalansky
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - A I Alekseeva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - T H Fatkhudinov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya St, Moscow, Russia, 117198
| | - O V Makarova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| |
Collapse
|
45
|
Lacher SE, Skon-Hegg C, Ruis BL, Krznarich J, Slattery M. An antioxidant response element regulates the HIF1α axis in breast cancer cells. Free Radic Biol Med 2023; 204:243-251. [PMID: 37179033 PMCID: PMC10321210 DOI: 10.1016/j.freeradbiomed.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The redox sensitive transcription factor NRF2 is a central regulator of the transcriptional response to reactive oxygen species (ROS). NRF2 is widely recognized for its ROS-responsive upregulation of antioxidant genes that are essential for mitigating the damaging effects of oxidative stress. However, multiple genome-wide approaches have suggested that NRF2's regulatory reach extends well beyond the canonical antioxidant genes, with the potential to regulate many noncanonical target genes. Recent work from our lab and others suggests HIF1A, which encodes the hypoxia-responsive transcription factor HIF1α, is one such noncanonical NRF2 target. These studies found that NRF2 activity is associated with high HIF1A expression in multiple cellular contexts, HIF1A expression is partially dependent on NRF2, and there is a putative NRF2 binding site (antioxidant response element, or ARE) approximately 30 kilobases upstream of HIF1A. These findings all support a model in which HIF1A is a direct target of NRF2, but did not confirm the functional importance of the upstream ARE in HIF1A expression. Here we use CRISPR/Cas9 genome editing to mutate this ARE in its genomic context and test the impact on HIF1A expression. We find that mutation of this ARE in a breast cancer cell line (MDA-MB-231) eliminates NRF2 binding and decreases HIF1A expression at the transcript and protein levels, and disrupts HIF1α target genes as well as phenotypes driven by these HIF1α targets. Taken together, these results indicate that this NRF2 targeted ARE plays an important role in the expression of HIF1A and activity of the HIF1α axis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sarah E Lacher
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| | - Cara Skon-Hegg
- Whiteside Institute for Clinical Research, St. Luke's Hospital, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Brian L Ruis
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Jennifer Krznarich
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| |
Collapse
|
46
|
Kao TW, Bai GH, Wang TL, Shih IM, Chuang CM, Lo CL, Tsai MC, Chiu LY, Lin CC, Shen YA. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res 2023; 42:171. [PMID: 37460927 DOI: 10.1186/s13046-023-02724-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy are established cancer treatment modalities that are widely used due to their demonstrated efficacy against tumors and favorable safety profiles or tolerability. Nevertheless, treatment resistance continues to be one of the most pressing unsolved conundrums in cancer treatment. Hypoxia-inducible factors (HIFs) are a family of transcription factors that regulate cellular responses to hypoxia by activating genes involved in various adaptations, including erythropoiesis, glucose metabolism, angiogenesis, cell proliferation, and apoptosis. Despite this critical function, overexpression of HIFs has been observed in numerous cancers, leading to resistance to therapy and disease progression. In recent years, much effort has been poured into developing innovative cancer treatments that target the HIF pathway. Combining HIF inhibitors with current cancer therapies to increase anti-tumor activity and diminish treatment resistance is one strategy for combating therapeutic resistance. This review focuses on how HIF inhibitors could be applied in conjunction with current cancer treatments, including those now being evaluated in clinical trials, to usher in a new era of cancer therapy.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, 100225, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, 112303, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| | - Li-Yun Chiu
- Department of General Medicine, Mackay Memorial Hospital, Taipei, 104217, Taiwan
| | - Chu-Chien Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
47
|
Hu CJ, Laux A, Gandjeva A, Wang L, Li M, Brown RD, Riddle S, Kheyfets VO, Tuder RM, Zhang H, Stenmark KR. The Effect of Hypoxia-inducible Factor Inhibition on the Phenotype of Fibroblasts in Human and Bovine Pulmonary Hypertension. Am J Respir Cell Mol Biol 2023; 69:73-86. [PMID: 36944195 PMCID: PMC10324042 DOI: 10.1165/rcmb.2022-0114oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/21/2023] [Indexed: 03/23/2023] Open
Abstract
Hypoxia-inducible factor (HIF) has received much attention as a potential pulmonary hypertension (PH) treatment target because inhibition of HIF reduces the severity of established PH in rodent models. However, the limitations of small-animal models of PH in predicting the therapeutic effects of pharmacologic interventions in humans PH are well known. Therefore, we sought to interrogate the role of HIFs in driving the activated phenotype of PH cells from human and bovine vessels. We first established that pulmonary arteries (PAs) from human and bovine PH lungs exhibit markedly increased expression of direct HIF target genes (CA9, GLUT1, and NDRG1), as well as cytokines/chemokines (CCL2, CSF2, CXCL12, and IL6), growth factors (FGF1, FGF2, PDGFb, and TGFA), and apoptosis-resistance genes (BCL2, BCL2L1, and BIRC5). The expression of the genes found in the intact PAs was determined in endothelial cells, smooth muscle cells, and fibroblasts cultured from the PAs. The data showed that human and bovine pulmonary vascular fibroblasts from patients or animals with PH (termed PH-Fibs) were the cell type that exhibited the highest level and the most significant increases in the expression of cytokines/chemokines and growth factors. In addition, we found that human, but not bovine, PH-Fibs exhibit consistent misregulation of HIFα protein stability, reduced HIF1α protein hydroxylation, and increased expression of HIF target genes even in cells grown under normoxic conditions. However, whereas HIF inhibition reduced the expression of direct HIF target genes, it had no impact on other "persistently activated" genes. Thus, our study indicated that HIF inhibition alone is not sufficient to reverse the persistently activated phenotype of human and bovine PH-Fibs.
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, and
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aya Laux
- Department of Craniofacial Biology, School of Dental Medicine, and
| | - Aneta Gandjeva
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Liyi Wang
- Department of Craniofacial Biology, School of Dental Medicine, and
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - R. Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vitaly O. Kheyfets
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rubin M. Tuder
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
48
|
Suárez C, Vieito M, Valdivia A, González M, Carles J. Selective HIF2A Inhibitors in the Management of Clear Cell Renal Cancer and Von Hippel-Lindau-Disease-Associated Tumors. Med Sci (Basel) 2023; 11:46. [PMID: 37489462 PMCID: PMC10366718 DOI: 10.3390/medsci11030046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Von Hippel-Lindau (VHL) loss is the hallmark event characterizing the clear cell renal cancer subtype (ccRCC). Carriers of germinal VHL mutations have an increased prevalence of kidney cysts and ccRCC as well as hemangioblastoma, pheochromocytoma and pancreatic neuroendocrine tumors. In both sporadic and inherited ccRCC, the primary mechanism of VHL-mediated carcinogenesis is the abnormal stabilization of hypoxia-inducible factors (HIF1A and HIF2A). While HIF1A acts as a tumor suppressor and is frequently lost through inactivating mutations/14q chromosome deletions, HIF2A acts as an oncogene promoting the expression of its target genes (VEGF, PDGF, CAIX Oct4, among others). Selective HIF2a inhibitors block the heterodimerization between HIF2A and ARNT, stopping HIF2A-induced transcription. Several HIF2A inhibitors have entered clinical trials, where they have shown a favorable toxicity profile, characterized by anemia, fatigue and edema and promising activity in heavily pretreated ccRCC patients. Belzutifan, a second-generation HIF2a inhibitor, was the first to receive FDA approval for the treatment of unresectable ccRCC in VHL syndrome. In this review, we recapitulate the rationale for HIF2a blockade in ccRCC, summarize the development of HIF2a inhibitors from preclinical models up to its introduction to the clinic with emphasis on Belzutifan, and discuss their role in VHL disease management.
Collapse
Affiliation(s)
- Cristina Suárez
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Maria Vieito
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Augusto Valdivia
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Macarena González
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Joan Carles
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
49
|
Zhang Y, Nguyen CC, Zhang NT, Fink NS, John JD, Venkatesh OG, Roe JD, Hoffman SC, Lesniak MS, Wolinsky JP, Horbinski C, Szymaniak BM, Buerki RA, Sosman JA, Shenoy NK, Lukas RV. Neurological applications of belzutifan in von Hippel-Lindau disease. Neuro Oncol 2023; 25:827-838. [PMID: 36215167 PMCID: PMC10158112 DOI: 10.1093/neuonc/noac234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/12/2022] Open
Abstract
Von Hippel-Lindau (VHL) disease is a tumor predisposition syndrome caused by mutations in the VHL gene that presents with visceral neoplasms and growths, including clear cell renal cell carcinoma, and central nervous system manifestations, such as hemangioblastomas of the brain and spine. The pathophysiology involves dysregulation of oxygen sensing caused by the inability to degrade HIFα, leading to the overactivation of hypoxic pathways. Hemangioblastomas are the most common tumors in patients with VHL and cause significant morbidity. Until recently, there were no systemic therapies available for patients that could effectively reduce the size of these lesions. Belzutifan, the first approved HIF-2α inhibitor, has demonstrated benefit in VHL-associated tumors, with a 30% response rate in hemangioblastomas and ~30%-50% reduction in their sizes over the course of treatment. Anemia is the most prominent adverse effect, affecting 76%-90% of participants and sometimes requiring dose reduction or transfusion. Other significant adverse events include hypoxia and fatigue. Overall, belzutifan is well tolerated; however, long-term data on dosing regimens, safety, and fertility are not yet available. Belzutifan holds promise for the treatment of neurological manifestations of VHL and its utility may influence the clinical management paradigms for this patient population.
Collapse
Affiliation(s)
- Yue Zhang
- Northwestern University, Feinberg School of Medicine, 420 E Superior St. Chicago, IL 60611USA
| | | | - Nigel T Zhang
- Northwestern University, Feinberg School of Medicine, 420 E Superior St. Chicago, IL 60611USA
| | - Nicolas S Fink
- Northwestern University, Feinberg School of Medicine, 420 E Superior St. Chicago, IL 60611USA
| | - Jordan D John
- Northwestern University, Feinberg School of Medicine, 420 E Superior St. Chicago, IL 60611USA
| | - Omkar G Venkatesh
- Northwestern University, Feinberg School of Medicine, 420 E Superior St. Chicago, IL 60611USA
| | - Jonathan D Roe
- Northwestern University, Feinberg School of Medicine, 420 E Superior St. Chicago, IL 60611USA
| | - Steven C Hoffman
- Northwestern University, Feinberg School of Medicine, 420 E Superior St. Chicago, IL 60611USA
| | - Maciej S Lesniak
- Lou & Jean Malnati Brain Tumor Institute, Chicago, Illinois 60611, USA
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois 60611, USA
| | - Jean-Paul Wolinsky
- Lou & Jean Malnati Brain Tumor Institute, Chicago, Illinois 60611, USA
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois 60611, USA
| | - Craig Horbinski
- Lou & Jean Malnati Brain Tumor Institute, Chicago, Illinois 60611, USA
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois 60611, USA
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | | | - Robin A Buerki
- Department of Neurology, Northwestern University, Chicago, Illinois 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, Illinois 60611, USA
| | - Jeffrey A Sosman
- Department of Internal Medicine, Division of Hematology and Oncology, Northwestern University, Chicago, Illinois 60611, USA
| | - Niraj K Shenoy
- Department of Internal Medicine, Division of Hematology and Oncology, Northwestern University, Chicago, Illinois 60611, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, Illinois 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, Illinois 60611, USA
| |
Collapse
|
50
|
Iliopoulos O. Diseases of Hereditary Renal Cell Cancers. Urol Clin North Am 2023; 50:205-215. [PMID: 36948667 DOI: 10.1016/j.ucl.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Germline mutations in tumor suppressor genes and oncogenes lead to hereditary renal cell carcinoma (HRCC) diseases, characterized by a high risk of RCC and extrarenal manifestations. Patients of young age, those with a family history of RCC, and/or those with a personal and family history of HRCC-related extrarenal manifestations should be referred for germline testing. Identification of a germline mutation will allow for testing of family members at risk, as well as personalized surveillance programs to detect the early onset of HRCC-related lesions. The latter allows for more targeted and therefore more effective therapy and better preservation of renal parenchyma.
Collapse
Affiliation(s)
- Othon Iliopoulos
- VHL Comprehensive Clinical Care Center and Hemangioblastoma Center; Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center, 149 13th Street, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|