1
|
Li H, Li G, Gao X, Chen C, Cui Z, Cao X, Su J. Development of a reliable risk prognostic model for lung adenocarcinoma based on the genes related to endotheliocyte senescence. Sci Rep 2025; 15:12604. [PMID: 40221448 PMCID: PMC11993614 DOI: 10.1038/s41598-025-95551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Cellular senescence is a hallmark for cancers, particularly in lung adenocarcinoma (LUAD). This study developed a risk model using senescence signature genes for LUAD patients. Based on the RNA-seq, clinical information and mutation data of LUAD patients collected from the TCGA and GEO database, we obtained 102 endotheliocyte senescence-related genes. The "ConsensusClusterPlus" R package was employed for unsupervised cluster analysis, and the "limma" was used for the differentially expressed gene (DEG) analysis. A prognosis model was created by univariate and multivariate Cox regression analysis combined with Lasso regression utilizing the "survival" and "glmnet" packages. KM survival and receiver operator characteristic curve analyses were conducted applying the "survival" and "timeROC" packages. "MCPcounter" package was used for immune infiltration analysis. Immunotherapy response analysis was performed based on the IMvigor210 and GSE78220 cohort, and drug sensitivity was predicted by the "pRRophetic" package. Cell invasion and migration were tested by carrying out Transwell and wound healing assays. According to the results, a total of 32 genes related to endotheliocyte senescence were screened to assign patients into C1 and C2 subtypes. The C2 subtype showed a significantly worse prognosis and an overall higher somatic mutation frequency, which was associated with increased activation of cancer pathways, including Myc_targets2 and angiogenesis. Then, based on the DEGs between the two subtypes, we constructed a five-gene RiskScore model with a strong classification effectiveness for short- and long-term OS prediction. High- and low-risk groups of LUAD patients were classified by the RiskScore. High-risk patients, characterized by lower immune infiltration, had poorer outcomes in both training and validation datasets. The RiskScore was associated with the immunotherapy response in LUAD. Finally, we found that potential drugs such as Cisplatin can benefit high-risk LUAD patients. In-vitro experiments demonstrated that silencing of Angiopoietin-like 4 (ANGPTL4), Gap Junction Protein Beta 3 (GJB3), Family with sequence similarity 83-member A (FAM83A), and Anillin (ANLN) reduced the number of invasive cells and the wound healing rate, while silencing of solute carrier family 34 member 2 (SLC34A2) had the opposite effect. This study, collectively speaking, developed a prognosis model with senescence signature genes to facilitate the diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- Hongzhi Li
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China.
| | - Guangming Li
- Department of Infectious Diseases and Hepatology, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Xian Gao
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Chengde Chen
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Zhongfeng Cui
- Department of Clinical Laboratory, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Xiaojiu Cao
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Jing Su
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| |
Collapse
|
2
|
Guo J, Jiang X, Tian Y, Yan S, Liu J, Xie J, Zhang F, Yao C, Hao E. Therapeutic Potential of Cinnamon Oil: Chemical Composition, Pharmacological Actions, and Applications. Pharmaceuticals (Basel) 2024; 17:1700. [PMID: 39770541 PMCID: PMC11677886 DOI: 10.3390/ph17121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical and industrial fields. By systematically searching and evaluating studies from major scientific databases including Web of Science, PubMed, and ScienceDirect, we provide a comprehensive analysis of the therapeutic potential of cinnamon oil. Research indicates that cinnamon oil possesses a wide range of pharmacological activities, covering antibacterial, anti-inflammatory, anti-tumor, and hypoglycemic effects. It is currently an active ingredient in over 500 patented medicines. Cinnamon oil has demonstrated significant inhibitory effects against various pathogens comprising Staphylococcus aureus, Salmonella, and Escherichia coli. Its mechanisms of action include disrupting cell membranes, inhibiting ATPase activity, and preventing biofilm formation, suggesting its potential as a natural antimicrobial agent. Its anti-inflammatory properties are evidenced by its ability to suppress inflammatory markers like vascular cell adhesion molecules and macrophage colony-stimulating factors. Moreover, cinnamon oil has shown positive effects in lowering blood pressure and improving metabolism in diabetic patients by enhancing glucose uptake and increasing insulin sensitivity. The main active components of cinnamon oil include cinnamaldehyde, cinnamic acid, and eugenol, which play key roles in its pharmacological effects. Recently, the applications of cinnamon oil in industrial fields, including food preservation, cosmetics, and fragrances, have also become increasingly widespread. Despite the extensive research supporting its medicinal value, more clinical trials are needed to determine the optimal dosage, administration routes, and possible side effects of cinnamon oil. Additionally, exploring the interactions between cinnamon oil and other drugs, as well as its safety in different populations, is crucial. Considering the current increase in antibiotic resistance and the demand for sustainable and effective medical treatments, this review emphasizes the necessity for further research into the mechanisms and safety of cinnamon oil to confirm its feasibility as a basis for new drug development. In summary, as a versatile natural product, cinnamon oil holds broad application prospects and is expected to play a greater role in future medical research and clinical practice.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xinya Jiang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
| | - Yu Tian
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiaojiao Liu
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Chun Yao
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
3
|
Kulkarni A, Mohan V, Tang TT, Post L, Chan YC, Manning M, Thio N, Parker BL, Dawson MA, Rosenbluh J, Vissers JH, Harvey KF. Identification of resistance mechanisms to small-molecule inhibition of TEAD-regulated transcription. EMBO Rep 2024; 25:3944-3969. [PMID: 39103676 PMCID: PMC11387499 DOI: 10.1038/s44319-024-00217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
The Hippo tumor suppressor pathway controls transcription by regulating nuclear abundance of YAP and TAZ, which activate transcription with the TEAD1-TEAD4 DNA-binding proteins. Recently, several small-molecule inhibitors of YAP and TEADs have been reported, with some entering clinical trials for different cancers with Hippo pathway deregulation, most notably, mesothelioma. Using genome-wide CRISPR/Cas9 screens we reveal that mutations in genes from the Hippo, MAPK, and JAK-STAT signaling pathways all modulate the response of mesothelioma cell lines to TEAD palmitoylation inhibitors. By exploring gene expression programs of mutant cells, we find that MAPK pathway hyperactivation confers resistance to TEAD inhibition by reinstating expression of a subset of YAP/TAZ target genes. Consistent with this, combined inhibition of TEAD and the MAPK kinase MEK, synergistically blocks proliferation of multiple mesothelioma and lung cancer cell lines and more potently reduces the growth of patient-derived lung cancer xenografts in vivo. Collectively, we reveal mechanisms by which cells can overcome small-molecule inhibition of TEAD palmitoylation and potential strategies to enhance the anti-tumor activity of emerging Hippo pathway targeted therapies.
Collapse
Affiliation(s)
- Aishwarya Kulkarni
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Varshini Mohan
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Tracy T Tang
- Vivace Therapeutics Inc., San Mateo, CA, 94404, USA
| | - Leonard Post
- Vivace Therapeutics Inc., San Mateo, CA, 94404, USA
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Murray Manning
- Department of Biochemistry, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph Rosenbluh
- Department of Biochemistry, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Joseph Ha Vissers
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
4
|
Kruschel RD, Barbosa MG, Almeida MJ, Xavier CPR, Vasconcelos MH, McCarthy FO. Discovery of Potent Isoquinolinequinone N-Oxides to Overcome Cancer Multidrug Resistance. J Med Chem 2024; 67:13909-13924. [PMID: 39093920 PMCID: PMC11345829 DOI: 10.1021/acs.jmedchem.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Multidrug resistance (MDR) of human tumors has resulted in an immediate need to develop appropriate new drugs. This work outlines the development of 20 potent IQQ N-oxide derivatives in two isomeric families, both exhibiting nanomolar GI50 against human tumor cell lines. Preliminary NCI-60 tumor screening sees the C(6) isomers achieve a mean GI50 > 2 times lower than the corresponding C(7) isomers. MDR evaluation of nine selected compounds reveals that each presents lower GI50 concentrations in two MDR tumor cell lines. Four of the series display nanomolar GI50 values against MDR cells, having selectivity ratios up to 2.7 versus the sensitive (parental) cells. The most potent compound 25 inhibits the activity of drug efflux pumps in MDR cells, causes significant ROS accumulation, and potently inhibits cell proliferation, causing alterations in the cell cycle profile. Our findings are confirmed by 3D spheroid models, providing new candidates for studies against MDR cancers.
Collapse
Affiliation(s)
- Ryan D. Kruschel
- School
of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| | - Mélanie
A. G. Barbosa
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
- FFUP−Faculty
of Pharmacy of the University of Porto, 4050-313 Porto Portugal
| | - Maria João Almeida
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
| | - Cristina P. R. Xavier
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
| | - M. Helena Vasconcelos
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
- FFUP−Faculty
of Pharmacy of the University of Porto, 4050-313 Porto Portugal
| | - Florence O. McCarthy
- School
of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
5
|
Strzempek W, Menaszek E, Papież M, Gil B. Slowing Down the "Magic Bullet": Encapsulation of Imatinib in Fe-MOF for Cardiotoxicity Reduction and Improvement in Anticancer Activity. Molecules 2024; 29:3818. [PMID: 39202897 PMCID: PMC11357391 DOI: 10.3390/molecules29163818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Imatinib, a small molecule kinase inhibitor, is used as a cancer growth blocker. However, one of its most serious side effects is congestive cardiac failure. Reducing drug toxicity may be achieved through the use of drug delivery systems. Biocompatible metal-organic framework (MOF) materials, namely FeMIL-100 and FeMIL-101-NH2, were employed as potential imatinib carriers. They efficiently delivered the drug as an anticancer agent while minimizing cardiotoxicity. Notably, the release of imatinib from FeMIL-100 was rapid in acidic conditions and slower in pH-neutral environments, allowing targeted delivery to cancer cells. The carrier's pH-dependent stability governed the drug release mechanism. Two release models-Korsmeyer-Peppas and Weibull-were fitted to the experimental data and discussed in terms of drug release from a rigid microporous matrix. Cytotoxicity tests were conducted on two cell lines: HL60 (a model cell line for acute myeloid leukemia) and H9c2 (a cell line for cardiomyocytes). Overall, the metal-organic framework (MOF) carriers mitigated imatinib's adverse effects without compromising its effectiveness.
Collapse
Affiliation(s)
- Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Elżbieta Menaszek
- Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland; (E.M.); (M.P.)
| | - Monika Papież
- Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland; (E.M.); (M.P.)
| | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
6
|
Pervanidis KA, D'Angelo GD, Weisner J, Brandherm S, Rauh D. Akt Inhibitor Advancements: From Capivasertib Approval to Covalent-Allosteric Promises. J Med Chem 2024; 67:6052-6063. [PMID: 38592948 DOI: 10.1021/acs.jmedchem.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Akt kinase is vital in cell growth, survival, metabolism, and migration. Dysregulation of Akt signaling is implicated in cancer and metabolic disorders. In the context of cancer, overactive Akt promotes cell survival and proliferation. This has spurred extensive research into developing Akt inhibitors as potential therapeutic agents to disrupt aberrant Akt signaling. Akt inhibitors are classified into three main types: ATP-competitive, allosteric, and covalent-allosteric inhibitors (CAAIs). ATP-competitive inhibitors compete with ATP for binding to Akt, allosteric inhibitors interact with the Pleckstrin homology (PH) domain, and covalent-allosteric inhibitors form covalent bonds, making them more potent and selective. Notably, capivasertib (AZD5363), a potent ATP-competitive Akt inhibitor, received FDA approval in November 2023 for use in combination with the estrogen receptor degrader fulvestrant to treat breast cancer. Challenges remain, including improving selectivity, identifying biomarkers to tailor treatments, and enhancing therapeutic efficacy while minimizing adverse effects. Particularly covalent-allosteric inhibitors hold promise for future more effective and personalized treatments.
Collapse
Affiliation(s)
- Kosmas Alexandros Pervanidis
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Giovanni Danilo D'Angelo
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Jörn Weisner
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- KyDo Therapeutics, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Sven Brandherm
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- KyDo Therapeutics, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
7
|
Lin CJ, Jin X, Ma D, Chen C, Ou-Yang Y, Pei YC, Zhou CZ, Qu FL, Wang YJ, Liu CL, Fan L, Hu X, Shao ZM, Jiang YZ. Genetic interactions reveal distinct biological and therapeutic implications in breast cancer. Cancer Cell 2024; 42:701-719.e12. [PMID: 38593782 DOI: 10.1016/j.ccell.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.
Collapse
Affiliation(s)
- Cai-Jin Lin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ding Ma
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Chen
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ou-Yang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Chen Pei
- Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chao-Zheng Zhou
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fei-Lin Qu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yun-Jin Wang
- Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Fan
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Zhang Z, Li X, Liu W, Chen G, Liu J, Ma Q, Hou P, Liang L, Liu C. Polyphenol nanocomplex modulates lactate metabolic reprogramming and elicits immune responses to enhance cancer therapeutic effect. Drug Resist Updat 2024; 73:101060. [PMID: 38309140 DOI: 10.1016/j.drup.2024.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Cancer lactate metabolic reprogramming induces an elevated level of extracellular lactate and H+, leading to an acidic immunosuppressive tumor microenvironment (TEM). High lactic acid level may affect the metabolic programs of various cells that comprise an antitumor immune response, therefore, restricting immune-mediated tumor destruction, and leading to therapeutic resistance and unsatisfactory prognosis. Here, we report a metal-phenolic coordination-based nanocomplex loaded with a natural polyphenol galloflavin, which inhibits the function of lactate dehydrogenase, reducing the production of lactic acid, and alleviating the acidic immunosuppressive TME. Besides, the co-entrapped natural polyphenol carnosic acid and the synthetic PEG-Ce6 polyphenol derivative (serving as a photosensitizer) could induce immunogenic cancer cell death upon laser irradiation, which further activates immune system and promotes immune cell recruitment and infiltration in tumor tissues. We demonstrated that this nanocomplex-based combinational therapy could reshape the TME and elicit immune responses in a murine breast cancer model, which provides a promising strategy to enhance the therapeutic efficiency of drug-resistant breast cancer.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China; Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shenyang, China
| | - Xinnan Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China; Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shenyang, China
| | - Weiqiang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China; Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shenyang, China
| | - Guanglei Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinchi Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China; Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shenyang, China
| | - Qingtian Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China; Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shenyang, China
| | - Pengjie Hou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lu Liang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China; Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China; Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shenyang, China.
| |
Collapse
|
9
|
Chakraborty S, Ahler E, Simon JJ, Fang L, Potter ZE, Sitko KA, Stephany JJ, Guttman M, Fowler DM, Maly DJ. Profiling of drug resistance in Src kinase at scale uncovers a regulatory network coupling autoinhibition and catalytic domain dynamics. Cell Chem Biol 2024; 31:207-220.e11. [PMID: 37683649 PMCID: PMC10902203 DOI: 10.1016/j.chembiol.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
Kinase inhibitors are effective cancer therapies, but resistance often limits clinical efficacy. Despite the cataloging of numerous resistance mutations, our understanding of kinase inhibitor resistance is still incomplete. Here, we comprehensively profiled the resistance of ∼3,500 Src tyrosine kinase mutants to four different ATP-competitive inhibitors. We found that ATP-competitive inhibitor resistance mutations are distributed throughout Src's catalytic domain. In addition to inhibitor contact residues, residues that participate in regulating Src's phosphotransferase activity were prone to the development of resistance. Unexpectedly, we found that a resistance-prone cluster of residues located on the top face of the N-terminal lobe of Src's catalytic domain contributes to autoinhibition by reducing catalytic domain dynamics, and mutations in this cluster led to resistance by lowering inhibitor affinity and promoting kinase hyperactivation. Together, our studies demonstrate how drug resistance profiling can be used to define potential resistance pathways and uncover new mechanisms of kinase regulation.
Collapse
Affiliation(s)
- Sujata Chakraborty
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Ethan Ahler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Jessica J Simon
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Linglan Fang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Zachary E Potter
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Katherine A Sitko
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jason J Stephany
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Gong X, Du J, Peng RW, Chen C, Yang Z. CRISPRing KRAS: A Winding Road with a Bright Future in Basic and Translational Cancer Research. Cancers (Basel) 2024; 16:460. [PMID: 38275900 PMCID: PMC10814442 DOI: 10.3390/cancers16020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Once considered "undruggable" due to the strong affinity of RAS proteins for GTP and the structural lack of a hydrophobic "pocket" for drug binding, the development of proprietary therapies for KRAS-mutant tumors has long been a challenging area of research. CRISPR technology, the most successful gene-editing tool to date, is increasingly being utilized in cancer research. Here, we provide a comprehensive review of the application of the CRISPR system in basic and translational research in KRAS-mutant cancer, summarizing recent advances in the mechanistic understanding of KRAS biology and the underlying principles of drug resistance, anti-tumor immunity, epigenetic regulatory networks, and synthetic lethality co-opted by mutant KRAS.
Collapse
Affiliation(s)
- Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Jianting Du
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland;
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
11
|
Ding W, Yang P, Zhao X, Wang X, Liu H, Su Q, Wang X, Li J, Gong Z, Zhang D, Wang X. Unraveling EGFR-TKI resistance in lung cancer with high PD-L1 or TMB in EGFR-sensitive mutations. Respir Res 2024; 25:40. [PMID: 38238740 PMCID: PMC10797755 DOI: 10.1186/s12931-023-02656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Although EGFR-TKI resistance mechanisms in non-small cell lung cancer (NSCLC) have been extensively studied, certain patient subgroups remain with unclear mechanisms. This retrospective study analysed mutation data of NSCLC patients with EGFR-sensitive mutations and high programmed death-ligand 1 (PD-L1) expression or high TMB to identify primary resistance mechanisms. METHODS Hybrid capture-based next-generation sequencing (NGS) was used to analyse mutations in 639 genes in tumor tissues and blood samples from 339 NSCLC patients. PD-L1 immunohistochemical staining was also performed on the same cell blocks. Molecular and pathway profiles were compared among patient subgroups. RESULTS TMB was significantly higher in lung cancer patients with EGFR-sensitive mutations and high PD-L1 expression. Compared with the high-expression PD-L1 or high TMB and low-expression or TMB groups, the top 10 genes exhibited differences in both gene types and mutation rates. Pathway analysis revealed a significant mutations of the PI3K signaling pathway in the EGFR-sensitive mutation group with high PD-L1 expression (38% versus 12%, p < 0.001) and high TMB group (31% versus 13%, p < 0.05). Notably, PIK3CA and PTEN mutations emerged as the most important differentially mutated genes within the PI3K signaling pathway. CONCLUSIONS Our findings reveal that the presence of PI3K signaling pathway mutations may be responsible for inducing primary resistance to EGFR-TKIs in NSCLC patients with EGFR-sensitive mutations along with high PD-L1 expression or high TMB. This finding is of great significance in guiding subsequent precision treatments in NSCLC.
Collapse
Affiliation(s)
- Wuwu Ding
- Department of Pathology, Deyang Pelple's Hospital, No.173 Taishan Road, Jingyang District, Deyang City, Sichuan Province, 618300, China
| | - Pengmin Yang
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd, Jiaxing, 314000, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Building 5, 3556 Linggongtang Road, Nanhu District, Jiaxing, Zhejiang, 314000, China
| | - Xiaokai Zhao
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd, Jiaxing, 314000, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Building 5, 3556 Linggongtang Road, Nanhu District, Jiaxing, Zhejiang, 314000, China
| | - Xiaozhi Wang
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd, Jiaxing, 314000, China
| | - Huaqing Liu
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd, Jiaxing, 314000, China
| | - Qing Su
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd, Jiaxing, 314000, China
| | - Xintao Wang
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Building 5, 3556 Linggongtang Road, Nanhu District, Jiaxing, Zhejiang, 314000, China
| | - Jieyi Li
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd, Jiaxing, 314000, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Building 5, 3556 Linggongtang Road, Nanhu District, Jiaxing, Zhejiang, 314000, China
| | - Ziying Gong
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd, Jiaxing, 314000, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Building 5, 3556 Linggongtang Road, Nanhu District, Jiaxing, Zhejiang, 314000, China
| | - Daoyun Zhang
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd, Jiaxing, 314000, China.
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Building 5, 3556 Linggongtang Road, Nanhu District, Jiaxing, Zhejiang, 314000, China.
| | - Xinwei Wang
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, No.42 Baiziting, Xuanwu District, Nanjing, 210009, China.
| |
Collapse
|
12
|
Koraboina CP, Maddipati VC, Annadurai N, Gurská S, Džubák P, Hajdúch M, Das V, Gundla R. Synthesis and Biological Evaluation of Oxindole Sulfonamide Derivatives as Bruton's Tyrosine Kinase Inhibitors. ChemMedChem 2024; 19:e202300511. [PMID: 37916435 DOI: 10.1002/cmdc.202300511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a promising molecular target for several human B-cell-related autoimmune disorders, inflammation, and haematological malignancies. The pathogenic alterations in various cancer tissues depend on mutant BTK for cell proliferation and survival, and BTK is also overexpressed in a range of hematopoietic cells. Due to this, BTK is emerging as a potential drug target to treat various human diseases, and several reversible and irreversible inhibitors have been developed and are being developed. As a result, BTK inhibition, clinically validated as an anticancer treatment, is finding great interest in B-cell malignancies and solid tumours. This study focuses on the design and synthesis of new oxindole sulfonamide derivatives as promising inhibitors of BTK with negligible off-target effects. The most cytotoxic compounds with greater basicity were PID-4 (2.29±0.52 μM), PID-6 (9.37±2.47 μM), and PID-19 (2.64±0.88 μM). These compounds caused a selective inhibition of Burkitt's lymphoma RAMOS cells without significant cytotoxicity in non-BTK cancerous and non-cancerous cell lines. Further, PID-4 showed promising activity in inhibiting BTK and downstream signalling cascades. As a potent inhibitor of Burkitt's lymphoma cells, PID-4 is a promising lead for developing novel chemotherapeutics.
Collapse
Affiliation(s)
- Chandra Prakash Koraboina
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
| | | | - Narendran Annadurai
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
| |
Collapse
|
13
|
Stevens MM, Kimmerling RJ, Olcum S, Vacha M, LaBella R, Minnah A, Katsis K, Fujii J, Shaheen Z, Sundaresan S, Criscitiello J, Niesvizky R, Raje N, Branagan A, Krishnan A, Jagannath S, Parekh S, Sperling AS, Rosenbaum CA, Munshi N, Luskin MR, Tamrazi A, Reid CA. Cellular Mass Response to Therapy Correlates With Clinical Response for a Range of Malignancies. JCO Precis Oncol 2024; 8:e2300349. [PMID: 38237098 PMCID: PMC10805426 DOI: 10.1200/po.23.00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024] Open
Abstract
PURPOSE Cancer patients with advanced-stage disease have poor prognosis, typically having limited options for efficacious treatment, and genomics-based therapy guidance continues to benefit only a fraction of patients. Next-generation ex vivo approaches, such as cell mass-based response testing (MRT), offer an alternative precision medicine approach for a broader population of patients with cancer, but validation of clinical feasibility and potential impact remain necessary. MATERIALS AND METHODS We evaluated the clinical feasibility and accuracy of using live-cell MRT to predict patient drug sensitivity. Using a unified measurement workflow with a 48-hour result turnaround time, samples were subjected to MRT after treatment with a panel of drugs in vitro. After completion of therapeutic course, clinical response data were correlated with MRT-based predictions of outcome. Specimens were collected from 104 patients with solid (n = 69) and hematologic (n = 35) malignancies, using tissue formats including needle biopsies, malignant fluids, bone marrow aspirates, and blood samples. Of the 81 (78%) specimens qualified for MRT, 41 (51%) patients receiving physician-selected therapies had treatments matched to MRT. RESULTS MRT demonstrated high concordance with clinical responses with an odds ratio (OR) of 14.80 (P = .0003 [95% CI, 2.83 to 102.9]). This performance held for both solid and hematologic malignances with ORs of 20.67 (P = .0128 [95% CI, 1.45 to 1,375.57]) and 8.20 (P = .045 [95% CI, 0.77 to 133.56]), respectively. Overall, these results had a predictive accuracy of 80% (P = .0026 [95% CI, 65 to 91]). CONCLUSION MRT showed highly significant correlation with clinical response to therapy. Routine clinical use is technically feasible and broadly applicable to a wide range of samples and malignancy types, supporting the need for future validation studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juanita Fujii
- Department of Clinical Research, Dignity Health, Sequoia Hospital, Redwood City, CA
| | - Zayna Shaheen
- Department of Clinical Research, Dignity Health, Sequoia Hospital, Redwood City, CA
| | - Srividya Sundaresan
- Department of Clinical Research, Dignity Health, Sequoia Hospital, Redwood City, CA
| | | | | | | | | | | | - Sundar Jagannath
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samir Parekh
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adam S. Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
| | | | - Nikhil Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Anobel Tamrazi
- Division of Vascular and Interventional Radiology, Palo Alto Medical Foundation, Redwood City, CA
| | | |
Collapse
|
14
|
Pandey P, Garg A, Singh V, Rai G, Mishra N. Clinical Trials and Future Prospects of Autophagy and ROS in Cancer. CANCER DRUG DISCOVERY AND DEVELOPMENT 2024:337-369. [DOI: 10.1007/978-3-031-66421-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Ebrahimi N, Manavi MS, Nazari A, Momayezi A, Faghihkhorasani F, Rasool Riyadh Abdulwahid AH, Rezaei-Tazangi F, Kavei M, Rezaei R, Mobarak H, Aref AR, Fang W. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology. ENVIRONMENTAL RESEARCH 2023; 239:117263. [PMID: 37797672 DOI: 10.1016/j.envres.2023.117263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
RNA interference (RNAi) is a unique treatment approach used to decrease a disease's excessive gene expression, including cancer. SiRNAs may find and destroy homologous mRNA sequences within the cell thanks to RNAi processes. However, difficulties such poor cellular uptake, off-target effects, and susceptibility to destruction by serum nucleases in the bloodstream restrict the therapeutic potential of siRNAs. Since some years ago, siRNA-based therapies have been in the process of being translated into the clinic. Therefore, the primary emphasis of this work is on sophisticated nanocarriers that aid in the transport of siRNA payloads, their administration in combination with anticancer medications, and their use in the treatment of cancer. The research looks into molecular manifestations, difficulties with siRNA transport, the design and development of siRNA-based delivery methods, and the benefits and drawbacks of various nanocarriers. The trapping of siRNA in endosomes is a challenge for the majority of delivery methods, which affects the therapeutic effectiveness. Numerous techniques for siRNA release, including as pH-responsive release, membrane fusion, the proton sponge effect, and photochemical disruption, have been studied to overcome this problem. The present state of siRNA treatments in clinical trials is also looked at in order to give a thorough and systematic evaluation of siRNA-based medicines for efficient cancer therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | | | - Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Amirali Momayezi
- School of Chemical Engineering, Iran University of Science, and Technology, Tehran, Iran
| | | | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Mohammed Kavei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Roya Rezaei
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Zavareh VA, Gharibi S, Hosseini Rizi M, Nekookar A, Mirhendi H, Rahimmalek M, Szumny A. Satureja bachtiarica Induces Cancer Cell Death in Breast and Glioblastoma Cancer in 2D/3D Models and Suppresses Breast Cancer Stem Cells. Cells 2023; 12:2713. [PMID: 38067141 PMCID: PMC10706021 DOI: 10.3390/cells12232713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Overcoming drug resistance and specifically targeting cancer stem cells (CSCs) are critical challenges in improving cancer therapy. Nowadays, the use of novel and native medicinal plants can provide new sources for further investigations for this purpose. The aim of this study was to assess the potential of S. bachtiarica, an endemic plant with diverse medicinal applications, in suppressing and targeting cancer and cancer stem cells in glioblastoma and breast cancer. The effect of S. bachtiarica on viability, migration, invasion, and clonogenic potential of MDAMB-231 and U87-MG cells was assessed in both two- and three-dimensional cell culture models. Additionally, we evaluated its effects on the self-renewal capacity of mammospheres. The experimental outcomes indicated that S. bachtiarica decreased the viability and growth rate of cells and spheroids by inducing apoptosis and inhibited colony formation, migration, and invasion of cells and spheroids. Additionally, colony and sphere-forming ability, as well as the expression of genes associated with EMT and stemness were reduced in mammospheres treated with S. bachtiarica. In conclusion, this study provided valuable insights into the anti-cancer effects of S. bachtiarica, particularly in relation to breast CSCs. Therefore, S. bachtiarica may be a potential adjuvant for the treatment of cancer.
Collapse
Affiliation(s)
- Vajihe Azimian Zavareh
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (V.A.Z.); (S.G.); (M.H.R.); (A.N.); (H.M.)
| | - Shima Gharibi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (V.A.Z.); (S.G.); (M.H.R.); (A.N.); (H.M.)
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Mahnaz Hosseini Rizi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (V.A.Z.); (S.G.); (M.H.R.); (A.N.); (H.M.)
| | - Abdolhossein Nekookar
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (V.A.Z.); (S.G.); (M.H.R.); (A.N.); (H.M.)
| | - Hossein Mirhendi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (V.A.Z.); (S.G.); (M.H.R.); (A.N.); (H.M.)
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
17
|
Aljohani AKB, El Zaloa WAZ, Alswah M, Seleem MA, Elsebaei MM, Bayoumi AH, El-Morsy AM, Almaghrabi M, Awaji AA, Hammad A, Alsulaimany M, Ahmed HEA. Development of Novel Class of Phenylpyrazolo[3,4- d]pyrimidine-Based Analogs with Potent Anticancer Activity and Multitarget Enzyme Inhibition Supported by Docking Studies. Int J Mol Sci 2023; 24:15026. [PMID: 37834474 PMCID: PMC10573254 DOI: 10.3390/ijms241915026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Phenylpyrazolo[3,4-d]pyrimidine is considered a milestone scaffold known to possess various biological activities such as antiparasitic, antifungal, antimicrobial, and antiproliferative activities. In addition, the urgent need for selective and potent novel anticancer agents represents a major route in the drug discovery process. Herein, new aryl analogs were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines: MCF-7, HCT116, and HePG-2. Some of these compounds showed potent cytotoxicity, with variable degrees of potency and cell line selectivity in antiproliferative assays with low resistance. As the analogs carry the pyrazolopyrimidine scaffold, which looks structurally very similar to tyrosine and receptor kinase inhibitors, the potent compounds were evaluated for their inhibitory effects on three essential cancer targets: EGFRWT, EGFRT790M, VGFR2, and Top-II. The data obtained revealed that most of these compounds were potent, with variable degrees of target selectivity and dual EGFR/VGFR2 inhibitors at the IC50 value range, i.e., 0.3-24 µM. Among these, compound 5i was the most potent non-selective dual EGFR/VGFR2 inhibitor, with inhibitory concentrations of 0.3 and 7.60 µM, respectively. When 5i was tested in an MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibited cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Molecular docking studies were performed to explore the binding mode and mechanism of such compounds on protein targets and mapped with reference ligands. The results of our studies indicate that the newly discovered phenylpyrazolo[3,4-d]pyrimidine-based multitarget inhibitors have significant potential for anticancer treatment.
Collapse
Affiliation(s)
- Ahmed K. B. Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia; (A.K.B.A.); (M.A.); (M.A.)
| | - Waheed Ali Zaki El Zaloa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Mohamed A. Seleem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Mohamed M. Elsebaei
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Ahmed M. El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia; (A.K.B.A.); (M.A.); (M.A.)
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ali Hammad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Marwa Alsulaimany
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia; (A.K.B.A.); (M.A.); (M.A.)
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| |
Collapse
|
18
|
Kelley ME, Berman AY, Stirling DR, Cimini BA, Han Y, Singh S, Carpenter AE, Kapoor TM, Way GP. High-content microscopy reveals a morphological signature of bortezomib resistance. eLife 2023; 12:e91362. [PMID: 37753907 PMCID: PMC10584373 DOI: 10.7554/elife.91362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, that is, possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system, indicating specificity for mechanisms of resistance to bortezomib. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.
Collapse
Affiliation(s)
- Megan E Kelley
- Laboratory of Chemistry and Cell Biology, The Rockefeller UniversityNew York CityUnited States
| | - Adi Y Berman
- Laboratory of Chemistry and Cell Biology, The Rockefeller UniversityNew York CityUnited States
| | | | - Beth A Cimini
- Imaging Platform, Broad InstituteCambridgeUnited States
| | - Yu Han
- Imaging Platform, Broad InstituteCambridgeUnited States
| | | | | | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller UniversityNew York CityUnited States
| | - Gregory P Way
- Imaging Platform, Broad InstituteCambridgeUnited States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
19
|
Marrocco I, Giri S, Simoni-Nieves A, Gupta N, Rudnitsky A, Haga Y, Romaniello D, Sekar A, Zerbib M, Oren R, Lindzen M, Fard D, Tsutsumi Y, Lauriola M, Tamagnone L, Yarden Y. L858R emerges as a potential biomarker predicting response of lung cancer models to anti-EGFR antibodies: Comparison of osimertinib vs. cetuximab. Cell Rep Med 2023; 4:101142. [PMID: 37557179 PMCID: PMC10439256 DOI: 10.1016/j.xcrm.2023.101142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
EGFR-specific tyrosine kinase inhibitors (TKIs), especially osimertinib, have changed lung cancer therapy, but secondary mutations confer drug resistance. Because other EGFR mutations promote dimerization-independent active conformations but L858R strictly depends on receptor dimerization, we herein evaluate the therapeutic potential of dimerization-inhibitory monoclonal antibodies (mAbs), including cetuximab. This mAb reduces viability of cells expressing L858R-EGFR and blocks the FOXM1-aurora survival pathway, but other mutants show no responses. Unlike TKI-treated patient-derived xenografts, which relapse post osimertinib treatment, cetuximab completely prevents relapses of L858R+ tumors. We report that osimertinib's inferiority associates with induction of mutagenic reactive oxygen species, whereas cetuximab's superiority is due to downregulation of adaptive survival pathways (e.g., HER2) and avoidance of mutation-prone mechanisms that engage AXL, RAD18, and the proliferating cell nuclear antigen. These results identify L858R as a predictive biomarker, which may pave the way for relapse-free mAb monotherapy relevant to a large fraction of patients with lung cancer.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Suvendu Giri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Arturo Simoni-Nieves
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nitin Gupta
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anna Rudnitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuya Haga
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Donatella Romaniello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Arunachalam Sekar
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mirie Zerbib
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshit Lindzen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Damon Fard
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Gemelli - IRCCS, 00168 Rome, Italy
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
20
|
Zhang X, Liu SS, Ma J, Qu W. Secretory leukocyte protease inhibitor (SLPI) in cancer pathophysiology: Mechanisms of action and clinical implications. Pathol Res Pract 2023; 248:154633. [PMID: 37356220 DOI: 10.1016/j.prp.2023.154633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Cancer is a multifaceted disorder frequently linked to the dysregulation of several biological processes. The SLPI is a multifunctional protein involved in the modulation of immunological response and the inhibition of protease activities. SLPI acts as an inhibitor of proteases, exerts antibacterial properties, and suppresses the transcription of proinflammatory genes through the nuclear factor-kappa B (NF-κB) pathway. The role of this protein as a regulatory agent has been implicated in various types of cancer. Recent research has revealed that SLPI upregulation in cancer cells enhances the metastatic capacity of epithelial malignancies, indicating the deleterious effects of this protein. Furthermore, SLPI interacts intricately with other cancer-promoting factors, including matrix metalloproteinase-2 (MMP-2), MMP-9, the NF-κB and Akt pathways, and the p53-upregulated modulator of apoptosis (PUMA). This review provides an overview of the role of SLPI in cancer pathophysiology, emphasizing its expression in cancer cells and tissues, its potential as a prognostic biomarker, and its therapeutic promise as a target in cancer treatment. The mechanisms of SLPI action in cancer, including its anti-inflammatory effects, regulation of cell proliferation and angiogenesis, and modulation of the tumor microenvironment, have been investigated. The clinical implications of SLPI in cancer have been discussed, including its potential as a diagnostic and prognostic biomarker, its role in chemoresistance, and its therapeutic potential in several types of cancer, such as hepatocellular carcinoma (HCC), colorectal cancer (CRC), pancreatic cancer, head and neck squamous cell carcinoma (HNSCC), ovarian cancer (OvCa), prostate cancer (PC), gastric cancer (GC), breast cancer, and other cancers. In addition, we emphasized the significance of SLPI in cancer, which offers fresh perspectives on potential targets for cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Shan Shan Liu
- Department of General Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Wei Qu
- Department of General Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
21
|
Cetin AE, Topkaya SN, Yazici ZA, Yalcin-Ozuysal O. Plasmonic Functional Assay Platform Determines the Therapeutic Profile of Cancer Cells. ACS Sens 2023. [PMID: 37339338 DOI: 10.1021/acssensors.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Functional assay platforms could identify the biophysical properties of cells and their therapeutic response to drug treatments. Despite their strong ability to assess cellular pathways, functional assays require large tissue samples, long-term cell culture, and bulk measurements. Even though such a drawback is still valid, these limitations did not hinder the interest in these platforms for their capacity to reveal drug susceptibility. Some of the limitations could be overcome with single-cell functional assays by identifying subpopulations using small sample volumes. Along this direction, in this article, we developed a high-throughput plasmonic functional assay platform to identify the growth profile of cells and their therapeutic profile under therapies using mass and growth rate statistics of individual cells. Our technology could determine populations' growth profiles using the growth rate data of multiple single cells of the same population. Evaluating spectral variations based on the plasmonic diffraction field intensity images in real time, we could simultaneously monitor the mass change for the cells within the field of view of a camera with the capacity of > ∼500 cells/h scanning rate. Our technology could determine the therapeutic profile of cells under cancer drugs within few hours, while the classical techniques require days to show reduction in viability due to antitumor effects. The platform could reveal the heterogeneity within the therapeutic profile of populations and determine subpopulations showing resistance to drug therapies. As a proof-of-principle demonstration, we studied the growth profile of MCF-7 cells and their therapeutic behavior to standard-of-care drugs that have antitumor effects as shown in the literature, including difluoromethylornithine (DFMO), 5-fluorouracil (5-FU), paclitaxel (PTX), and doxorubicin (Dox). We successfully demonstrated the resistant behavior of an MCF-7 variant that could survive in the presence of DFMO. More importantly, we could precisely identify synergic and antagonistic effects of drug combinations based on the order of use in cancer therapy. Rapidly assessing the therapeutic profile of cancer cells, our plasmonic functional assay platform could be used to reveal personalized drug therapies for cancer patients.
Collapse
Affiliation(s)
- Arif E Cetin
- Izmir Biomedicine and Genome Center, Balcova, 35330 Izmir, Turkey
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, 35620 Izmir, Turkey
| | - Ziya Ata Yazici
- Department of Computer Engineering, Faculty of Computer and Informatics Engineering, Istanbul Technical University, Sariyer, 34467 Istanbul, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| |
Collapse
|
22
|
Kelley ME, Berman AY, Stirling DR, Cimini BA, Han Y, Singh S, Carpenter AE, Kapoor TM, Way GP. High-content microscopy reveals a morphological signature of bortezomib resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539137. [PMID: 37205516 PMCID: PMC10187224 DOI: 10.1101/2023.05.02.539137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Drug resistance is a challenge in anticancer therapy, particularly with targeted therapeutics and cytotoxic compounds. In many cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug sensitivity prior to treatment. We therefore isolated clonal cell lines that were either sensitive or resistant to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features typically different between resistant and sensitive clones. These features were compiled to generate a morphological signature of bortezomib resistance, which correctly predicted the bortezomib treatment response in seven of ten cell lines not included in the training dataset. This signature of resistance was specific to bortezomib over other drugs targeting the ubiquitin-proteasome system. Our results provide evidence that intrinsic morphological features of drug resistance exist and establish a framework for their identification.
Collapse
Affiliation(s)
- M E Kelley
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - A Y Berman
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - D R Stirling
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - B A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Y Han
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - S Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - A E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - T M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - G P Way
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
23
|
Mohanty SK, Lobo A, Mishra SK, Cheng L. Precision Medicine in Bladder Cancer: Present Challenges and Future Directions. J Pers Med 2023; 13:jpm13050756. [PMID: 37240925 DOI: 10.3390/jpm13050756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Bladder cancer (BC) is characterized by significant histopathologic and molecular heterogeneity. The discovery of molecular pathways and knowledge of cellular mechanisms have grown exponentially and may allow for better disease classification, prognostication, and development of novel and more efficacious noninvasive detection and surveillance strategies, as well as selection of therapeutic targets, which can be used in BC, particularly in a neoadjuvant or adjuvant setting. This article outlines recent advances in the molecular pathology of BC with a better understanding and deeper focus on the development and deployment of promising biomarkers and therapeutic avenues that may soon make a transition into the domain of precision medicine and clinical management for patients with BC.
Collapse
Affiliation(s)
- Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute and CORE Diagnostics, Gurgaon 122016, India
| | - Anandi Lobo
- Department of Pathology and Laboratory Medicine, Kapoor Center for Pathology and Urology, Raipur 490042, India
| | - Sourav K Mishra
- Department of Medical Oncology, All India Institute of Medical Sciences, Bhubaneswar 750017, India
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, 593 Eddy Street, APC 12-105, Providence, RI 02903, USA
| |
Collapse
|
24
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
25
|
David P, Mittelstädt A, Kouhestani D, Anthuber A, Kahlert C, Sohn K, Weber GF. Current Applications of Liquid Biopsy in Gastrointestinal Cancer Disease-From Early Cancer Detection to Individualized Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071924. [PMID: 37046585 PMCID: PMC10093361 DOI: 10.3390/cancers15071924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastrointestinal (GI) cancers account for a significant amount of cancer-related mortality. Tests that allow an early diagnosis could lead to an improvement in patient survival. Liquid biopsies (LBs) due to their non-invasive nature as well as low risk are the current focus of cancer research and could be a promising tool for early cancer detection. LB involves the sampling of any biological fluid (e.g., blood, urine, saliva) to enrich and analyze the tumor's biological material. LBs can detect tumor-associated components such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and circulating tumor cells (CTCs). These components can reflect the status of the disease and can facilitate clinical decisions. LBs offer a unique and new way to assess cancers at all stages of treatment, from cancer screenings to prognosis to management of multidisciplinary therapies. In this review, we will provide insights into the current status of the various types of LBs enabling early detection and monitoring of GI cancers and their use in in vitro diagnostics.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dina Kouhestani
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Kahlert
- Department of Surgery, Carl Gustav Carus University Hospital, 01307 Dresden, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
26
|
Yang K, Ma K, Yang M, Lv Y, Pei Y, Pei Z. Supramolecular nanoprodrug based on a chloride channel blocker and glycosylated pillar[5]arenes for targeted chemoresistance cancer therapy. Chem Commun (Camb) 2023; 59:3779-3782. [PMID: 36912355 DOI: 10.1039/d3cc00233k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A supramolecular nanoprodrug (DOX@GP5⊃Pro-NFA) was constructed based on the host-guest complexation of chloride channel blocker prodrug (Pro-NFA) and glycosylated pillar[5]arene (GP5), which could target tumor cells via galactose and release DOX/NFA responsively under esterase stimulation. In vitro studies revealed that this supramolecular nanoprodrug can overcome drug resistance through inhibiting chloride channels as well as inhibiting the migration of HepG2/ADR cells. This strategy can therefore achieve enhanced potency in chemotherapy through reverse chemoresistance.
Collapse
Affiliation(s)
- Ke Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ke Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Manman Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yinghua Lv
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| |
Collapse
|
27
|
Nusrat M, Yaeger R. KRAS inhibition in metastatic colorectal cancer: An update. Curr Opin Pharmacol 2023; 68:102343. [PMID: 36638742 PMCID: PMC9908842 DOI: 10.1016/j.coph.2022.102343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 01/13/2023]
Abstract
About half of colorectal cancers harbor mutations in the KRAS gene. The presence of these mutations is associated with worse prognosis and, until now, the absence of matched targeted therapy options. In this review, we discuss clinical efforts to target KRAS in colorectal cancer from studies of downstream inhibitors to recent direct inhibitors of KRASG12C and other KRAS mutants. Early clinical trial data, however, suggest more limited activity for these novel inhibitors in colorectal cancer compared to other cancer types, and we discuss the role of receptor tyrosine kinase signaling and parallel signaling pathways in modulating response to these inhibitors. We also review the effect of KRAS mutations on the tumor-immune microenvironment and efforts to induce an immune response against these tumors.
Collapse
Affiliation(s)
- Maliha Nusrat
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Rona Yaeger
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
28
|
Luo J, Li Y, Zhang T, Xv T, Chen C, Li M, Qiu Q, Song Y, Wan S. Extrachromosomal circular DNA in cancer drug resistance and its potential clinical implications. Front Oncol 2023; 12:1092705. [PMID: 36793345 PMCID: PMC9923117 DOI: 10.3389/fonc.2022.1092705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
Chemotherapy is widely used to treat patients with cancer. However, resistance to chemotherapeutic drugs remains a major clinical concern. The mechanisms of cancer drug resistance are extremely complex and involve such factors such as genomic instability, DNA repair, and chromothripsis. A recently emerging area of interest is extrachromosomal circular DNA (eccDNA), which forms owing to genomic instability and chromothripsis. eccDNA exists widely in physiologically healthy individuals but also arises during tumorigenesis and/or treatment as a drug resistance mechanism. In this review, we summarize the recent progress in research regarding the role of eccDNA in the development of cancer drug resistance as well as the mechanisms thereof. Furthermore, we discuss the clinical applications of eccDNA and propose some novel strategies for characterizing drug-resistant biomarkers and developing potential targeted cancer therapies.
Collapse
Affiliation(s)
- Juanjuan Luo
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China,China Medical University, Shenyang, China, Ganzhou, China
| | - Ying Li
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Tangxuan Zhang
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Tianhan Xv
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Chao Chen
- Department of Interventional Radiology, The People’s Hospital of Ganzhou City, Ganzhou, China
| | - Mengting Li
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Qixiang Qiu
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yusheng Song
- Department of Interventional Radiology, The People’s Hospital of Ganzhou City, Ganzhou, China,*Correspondence: Shaogui Wan, ; Yusheng Song,
| | - Shaogui Wan
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China,China Medical University, Shenyang, China, Ganzhou, China,*Correspondence: Shaogui Wan, ; Yusheng Song,
| |
Collapse
|
29
|
Cockrell C, Axelrod DE. Combination Chemotherapy of Multidrug-resistant Early-stage Colon Cancer: Determining Optimal Dose Schedules by High-performance Computer Simulation. CANCER RESEARCH COMMUNICATIONS 2023; 3:21-30. [PMID: 36685168 PMCID: PMC9851383 DOI: 10.1158/2767-9764.crc-22-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The goal of this project was to utilize mechanistic simulation to demonstrate a methodology that could determine drug combination dose schedules and dose intensities that would be most effective in eliminating multidrug resistant cancer cells in early-stage colon cancer. An agent-based model of cell dynamics in human colon crypts was calibrated using measurements of human biopsy specimens. Mutant cancer cells were simulated as cells that were resistant to each of two drugs when the drugs were used separately. The drugs, 5-flurouracil and sulindac, have different mechanisms of action. An artificial neural network was used to generate nearly two hundred thousand two-drug dose schedules. A high-performance computer simulated each dose schedule as a in silico clinical trial and evaluated each dose schedule for its efficiency to cure (eliminate) multidrug resistant cancer cells and its toxicity to the host, as indicated by continued crypt function. Among the dose schedules that were generated, 2430 dose schedules were found to cure all multidrug resistant mutants in each of the 50 simulated trials and retained colon crypt function. One dose schedule was optimal; it eliminated multidrug resistant cancer cells with the minimum toxicity and had a time schedule that would be practical for implementation in the clinic. These results demonstrate a procedure to identify which combination drug dose schedules could be most effective in eliminating drug resistant cancer cells. This was accomplished using a calibrated agent-based model of a human tissue, and a high-performance computer simulation of clinical trials.
Collapse
Affiliation(s)
- Chase Cockrell
- Department of Surgery, University of Vermont College of Medicine, Burlington, Vermont
| | - David E. Axelrod
- Department of Genetics, and Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey
- Corresponding Author: David E. Axelrod, Rutgers University, Nelson Biolabs, 604 Allison Rd, Piscataway, NJ 08854-8082. Phone: 848-445-2011; E-mail:
| |
Collapse
|
30
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Ampomah-Wireko M, Pervaiz W, Sangmor A, Ma X, Li J, Liu HM, Zhang P. Epigenetic compounds targeting pharmacological target lysine specific demethylase 1 and its impact on immunotherapy, chemotherapy and radiotherapy for treatment of tumor recurrence and resistance. Biomed Pharmacother 2023; 157:113934. [PMID: 36395607 DOI: 10.1016/j.biopha.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
It has been proven that metastatic recurrence and therapeutic resistance are linked. Due to the variability of individuals and tumors, as well as the tumor's versatility in avoiding therapies, therapy resistance is more difficult to treat. Therapy resistance has significantly restricted the clinical feasibility and efficacy of tumor therapy, despite the discovery of novel compounds and therapy combinations with increasing efficacy. In several tumors, lysine specific demethylase 1 (LSD1) has been associated to metastatic recurrence and therapeutic resistance. For researchers to better comprehend how LSD1-mediated tumor therapy resistance occurs and how to overcome it in various tumors, this study focused on the role of LSD1 in tumor recurrence and therapeutic resistance. The importance of therapeutically targeted LSD1 was also discussed. Most gene pathway signatures are related to LSD1 inhibitor sensitivity. However, some gene pathway signatures, especially in AML, negatively correlate with LSD1 inhibitor sensitivity, but targeting LSD1 makes the therapy-resistant tumor sensitive to physiological doses of conventional therapy. We propose that combining LSD1 inhibitor with traditional tumor therapy can help patients attain a complete response and prevent cancer relapse.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Emmanuel Kwateng Drokow
- Department of Oncology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | | | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Augustina Sangmor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China.
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan province, PR China 450008.
| |
Collapse
|
31
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
32
|
Manzano-Muñoz A, Yeste J, Ortega MA, Martín F, López A, Rosell J, Castro S, Serrano C, Samitier J, Ramón-Azcón J, Montero J. Microfluidic-based dynamic BH3 profiling predicts anticancer treatment efficacy. NPJ Precis Oncol 2022; 6:90. [PMID: 36456699 PMCID: PMC9715649 DOI: 10.1038/s41698-022-00333-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022] Open
Abstract
Precision medicine is starting to incorporate functional assays to evaluate anticancer agents on patient-isolated tissues or cells to select for the most effective. Among these new technologies, dynamic BH3 profiling (DBP) has emerged and extensively been used to predict treatment efficacy in different types of cancer. DBP uses synthetic BH3 peptides to measure early apoptotic events ('priming') and anticipate therapy-induced cell death leading to tumor elimination. This predictive functional assay presents multiple advantages but a critical limitation: the cell number requirement, that limits drug screening on patient samples, especially in solid tumors. To solve this problem, we developed an innovative microfluidic-based DBP (µDBP) device that overcomes tissue limitations on primary samples. We used microfluidic chips to generate a gradient of BIM BH3 peptide, compared it with the standard flow cytometry based DBP, and tested different anticancer treatments. We first examined this new technology's predictive capacity using gastrointestinal stromal tumor (GIST) cell lines, by comparing imatinib sensitive and resistant cells, and we could detect differences in apoptotic priming and anticipate cytotoxicity. We then validated µDBP on a refractory GIST patient sample and identified that the combination of dactolisib and venetoclax increased apoptotic priming. In summary, this new technology could represent an important advance for precision medicine by providing a fast, easy-to-use and scalable microfluidic device to perform DBP in situ as a routine assay to identify the best treatment for cancer patients.
Collapse
Grants
- Ramon y Cajal Programme, Ministerio de Economia y Competitividad grant RYC-2015-18357. (JM) Ministerio de Ciencia, Innovación y Universidades grant RTI2018-094533-A-I00 (JM) CELLEX foundation (JM, AM). Beca Trienal Fundación Mari Paz Jiménez Casado (JM)
- Fundación Cellex (Cellex Foundation)
- Networking Biomedical Research Center (CIBER). CIBER is an initiative funded by the VI National R & D &i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and the Instituto de Salud Carlos III (RD16/0006/0012), with the support of the European Regional Development Fund (JS). Generalitat de Catalunya. CERCA Programme 2017-SGR-1079 (JR-A, JS)
- European Research Council, grant ERC-StG-DAMOC 714317 (JR-A) European Research Council, H2020 EU framework FET-open BLOC 863037 (JR-A) Spanish Ministry of Economy and Competitiveness, "Severo Ochoa" Program for Centers of Excellence in R&D SEV-2020-2023 (JR-A) Generalitat de Catalunya. CERCA Programme 2017-SGR-1079 (JR-A, JS) Fundación Bancaria "la Caixa"- Obra Social "la Caixa" (project IBEC-La Caixa Health Ageing) (JR-A)
Collapse
Affiliation(s)
- Albert Manzano-Muñoz
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - José Yeste
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - María A Ortega
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vitala Technologies, Barcelona, Spain
| | - Fernando Martín
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Anna López
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jordi Rosell
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Castro
- Surgical Oncology Division, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institució Catalana de Reserca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010, Barcelona, Spain
| | - Joan Montero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain.
| |
Collapse
|
33
|
Channathodiyil P, May K, Segonds-Pichon A, Smith PD, Cook S, Houseley J. Escape from G1 arrest during acute MEK inhibition drives the acquisition of drug resistance. NAR Cancer 2022; 4:zcac032. [PMID: 36267209 PMCID: PMC9575185 DOI: 10.1093/narcan/zcac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations and gene amplifications that confer drug resistance emerge frequently during chemotherapy, but their mechanism and timing are poorly understood. Here, we investigate BRAFV600E amplification events that underlie resistance to the MEK inhibitor selumetinib (AZD6244/ARRY-142886) in COLO205 cells, a well-characterized model for reproducible emergence of drug resistance, and show that BRAF amplifications acquired de novo are the primary cause of resistance. Selumetinib causes long-term G1 arrest accompanied by reduced expression of DNA replication and repair genes, but cells stochastically re-enter the cell cycle during treatment despite continued repression of pERK1/2. Most DNA replication and repair genes are re-expressed as cells enter S and G2; however, mRNAs encoding a subset of factors important for error-free replication and chromosome segregation, including TIPIN, PLK2 and PLK3, remain at low abundance. This suggests that DNA replication following escape from G1 arrest in drug is more error prone and provides a potential explanation for the DNA damage observed under long-term RAF-MEK-ERK1/2 pathway inhibition. To test the hypothesis that escape from G1 arrest in drug promotes de novo BRAF amplification, we exploited the combination of palbociclib and selumetinib. Combined treatment with selumetinib and a dose of palbociclib sufficient to reinforce G1 arrest in selumetinib-sensitive cells, but not to impair proliferation of resistant cells, delays the emergence of resistant colonies, meaning that escape from G1 arrest is critical in the formation of resistant clones. Our findings demonstrate that acquisition of MEK inhibitor resistance often occurs through de novo gene amplification and can be suppressed by impeding cell cycle entry in drug.
Collapse
Affiliation(s)
| | - Kieron May
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 4NT, UK
| | | | - Paul D Smith
- Oncology R&D, AstraZeneca CRUK Cambridge Institute, Cambridge, CB2 0AA, UK
| | - Simon J Cook
- Signalling Programme, Babraham Institute, Cambridge, CB22 4NT, UK
| | | |
Collapse
|
34
|
Zhang Q, Kandasamy K, Alyami NM, Alyami HM, Natarajan N, Elayappan PK. Influence of Padina gymnospora on Apoptotic Proteins of Oral Cancer Cells-a Proteome-Wide Analysis. Appl Biochem Biotechnol 2022; 194:5945-5962. [PMID: 35849254 DOI: 10.1007/s12010-022-04045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Oral carcinoma is one of the most vicious forms of cancer with a very low survival rate, as its patients often respond poorly to conventional chemotherapy. Presently several researchers are attempting to pursue an alternative to this therapy using natural products. Considering the promising strategy and induction of apoptosis to target the cancer cells, we evaluated the influence of a seaweed Padina gymnospora (15 µg/ml and 20 µg/ml) in enhancing apoptosis of oral cancer cells (KB-CHR-8-5) after 24-h incubation. The morphological changes indicating apoptosis were primarily assessed using a light microscope after which the apoptosis was confirmed by performing AO/EB staining method. Subsequently, MMP and ROS levels in the cells were assessed using Rh 123 and DCFH-DA staining procedures, respectively. All the above tests confirmed the ability of P. gymnospora to accelerate apoptosis in the oral cancer cells. As a next step, wide proteome analysis was performed where the proteins from P. gymnospora-treated cells were separated using the 2D electrophoresis technique and compared with that of control cells to isolate the differentially expressed proteins. This procedure resulted in the isolation of 10 proteins which were identified using MALDI-TOF/TOF MS, which established that most of the isolated proteins were part of the apoptotic process of the cell. The proteins identified are part of huge and complex pathways where it gets linked with many more genes which are also associated with apoptosis. Bioinformatics of these identified proteins was analyzed using STRING and PANTHER databases. These proteins contribute to cell apoptosis by affecting various functions, biological processes, and the synthesis of cellular components. PANTHER also demonstrated that these proteins belong to the classes of proteins that take part in several vital pathways of the cell among which the apoptotic pathway is the predominant one.
Collapse
Affiliation(s)
- Qian Zhang
- School of Stomatology, QiLu Medical University, No.1678, Renmin West Road, Zibo City, 255300, China
| | - Kavitha Kandasamy
- Department of Biochemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Tiruchengode, Namakkal, 637205, India
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Hanadi M Alyami
- Dental Administration, King Fahad Medical City, Riyadh, 11451, Saudi Arabia
| | - Nandakumar Natarajan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Poorni Kaliyappan Elayappan
- Department of Biochemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Tiruchengode, Namakkal, 637205, India.
| |
Collapse
|
35
|
Kimmerling RJ, Stevens MM, Olcum S, Minnah A, Vacha M, LaBella R, Ferri M, Wasserman SC, Fujii J, Shaheen Z, Sundaresan S, Ribadeneyra D, Jayabalan DS, Agte S, Aleman A, Criscitiello JA, Niesvizky R, Luskin MR, Parekh S, Rosenbaum CA, Tamrazi A, Reid CA. A pipeline for malignancy and therapy agnostic assessment of cancer drug response using cell mass measurements. Commun Biol 2022; 5:1295. [PMID: 36435843 PMCID: PMC9701192 DOI: 10.1038/s42003-022-04270-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
Functional precision medicine offers a promising complement to genomics-based cancer therapy guidance by testing drug efficacy directly on a patient's tumor cells. Here, we describe a workflow that utilizes single-cell mass measurements with inline brightfield imaging and machine-learning based image classification to broaden the clinical utility of such functional testing for cancer. Using these image-curated mass measurements, we characterize mass response signals for 60 different drugs with various mechanisms of action across twelve different cell types, demonstrating an improved ability to detect response for several slow acting drugs as compared with standard cell viability assays. Furthermore, we use this workflow to assess drug responses for various primary tumor specimen formats including blood, bone marrow, fine needle aspirates (FNA), and malignant fluids, all with reports generated within two days and with results consistent with patient clinical responses. The combination of high-resolution measurement, broad drug and malignancy applicability, and rapid return of results offered by this workflow suggests that it is well-suited to performing clinically relevant functional assessment of cancer drug response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juanita Fujii
- Department of Clinical Research, Dignity Health, Sequoia Hospital, Redwood City, CA, USA
| | - Zayna Shaheen
- Department of Clinical Research, Dignity Health, Sequoia Hospital, Redwood City, CA, USA
| | - Srividya Sundaresan
- Department of Clinical Research, Dignity Health, Sequoia Hospital, Redwood City, CA, USA
| | | | | | - Sarita Agte
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Aleman
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Marlise R Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samir Parekh
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Anobel Tamrazi
- Division of Vascular and Interventional Radiology, Palo Alto Medical Foundation, Redwood City, CA, USA
| | | |
Collapse
|
36
|
Noronha A, Belugali Nataraj N, Lee JS, Zhitomirsky B, Oren Y, Oster S, Lindzen M, Mukherjee S, Will R, Ghosh S, Simoni-Nieves A, Verma A, Chatterjee R, Borgoni S, Robinson W, Sinha S, Brandis A, Kerr DL, Wu W, Sekar A, Giri S, Chung Y, Drago-Garcia D, Danysh BP, Lauriola M, Fiorentino M, Ardizzoni A, Oren M, Blakely CM, Ezike J, Wiemann S, Parida L, Bivona TG, Aqeilan RI, Brugge JS, Regev A, Getz G, Ruppin E, Yarden Y. AXL and Error-Prone DNA Replication Confer Drug Resistance and Offer Strategies to Treat EGFR-Mutant Lung Cancer. Cancer Discov 2022; 12:2666-2683. [PMID: 35895872 PMCID: PMC9627128 DOI: 10.1158/2159-8290.cd-22-0111] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
Abstract
Anticancer therapies have been limited by the emergence of mutations and other adaptations. In bacteria, antibiotics activate the SOS response, which mobilizes error-prone factors that allow for continuous replication at the cost of mutagenesis. We investigated whether the treatment of lung cancer with EGFR inhibitors (EGFRi) similarly engages hypermutators. In cycling drug-tolerant persister (DTP) cells and in EGFRi-treated patients presenting residual disease, we observed upregulation of GAS6, whereas ablation of GAS6's receptor, AXL, eradicated resistance. Reciprocally, AXL overexpression enhanced DTP survival and accelerated the emergence of T790M, an EGFR mutation typical to resistant cells. Mechanistically, AXL induces low-fidelity DNA polymerases and activates their organizer, RAD18, by promoting neddylation. Metabolomics uncovered another hypermutator, AXL-driven activation of MYC, and increased purine synthesis that is unbalanced by pyrimidines. Aligning anti-AXL combination treatments with the transition from DTPs to resistant cells cured patient-derived xenografts. Hence, similar to bacteria, tumors tolerate therapy by engaging pharmacologically targetable endogenous mutators. SIGNIFICANCE EGFR-mutant lung cancers treated with kinase inhibitors often evolve resistance due to secondary mutations. We report that in similarity to the bacterial SOS response stimulated by antibiotics, endogenous mutators are activated in drug-treated cells, and this heralds tolerance. Blocking the process prevented resistance in xenograft models, which offers new treatment strategies. This article is highlighted in the In This Issue feature, p. 2483.
Collapse
Affiliation(s)
- Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Joo Sang Lee
- Cancer Data Science Lab, NCI, NIH, Bethesda, Maryland.,Next-Gen Medicine Lab, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | | | - Yaara Oren
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Sara Oster
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rainer Will
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Soma Ghosh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Arturo Simoni-Nieves
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Aakanksha Verma
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rishita Chatterjee
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sanju Sinha
- Cancer Data Science Lab, NCI, NIH, Bethesda, Maryland
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - D. Lucas Kerr
- Department of Medicine, University of California, San Francisco, California
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, California
| | - Arunachalam Sekar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suvendu Giri
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Youngmin Chung
- Next-Gen Medicine Lab, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Diana Drago-Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Brian P. Danysh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Medical Oncology IRCCS Azienda Ospedaliero, University of Bologna, Bologna, Italy
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Collin M. Blakely
- Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jideofor Ezike
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laxmi Parida
- Thomas J. Watson Research Center, IBM Research, Yorktown Heights, New York
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Aviv Regev
- Genentech Inc., South San Francisco, California
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Cancer Center and Department of Pathology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Eytan Ruppin
- Cancer Data Science Lab, NCI, NIH, Bethesda, Maryland
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Corresponding Author: Yosef Yarden, Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel. Phone: 972-8-934-3974; Fax: 972-8-934-2488; E-mail:
| |
Collapse
|
37
|
Solimando AG, Malerba E, Leone P, Prete M, Terragna C, Cavo M, Racanelli V. Drug resistance in multiple myeloma: Soldiers and weapons in the bone marrow niche. Front Oncol 2022; 12:973836. [PMID: 36212502 PMCID: PMC9533079 DOI: 10.3389/fonc.2022.973836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is still an incurable disease, despite considerable improvements in treatment strategies, as resistance to most currently available agents is not uncommon. In this study, data on drug resistance in MM were analyzed and led to the following conclusions: resistance occurs via intrinsic and extrinsic mechanisms, including intraclonal heterogeneity, drug efflux pumps, alterations of drug targets, the inhibition of apoptosis, increased DNA repair and interactions with the bone marrow (BM) microenvironment, cell adhesion, and the release of soluble factors. Since MM involves the BM, interactions in the MM-BM microenvironment were examined as well, with a focus on the cross-talk between BM stromal cells (BMSCs), adipocytes, osteoclasts, osteoblasts, endothelial cells, and immune cells. Given the complex mechanisms that drive MM, next-generation treatment strategies that avoid drug resistance must target both the neoplastic clone and its non-malignant environment. Possible approaches based on recent evidence include: (i) proteasome and histone deacetylases inhibitors that not only target MM but also act on BMSCs and osteoclasts; (ii) novel peptide drug conjugates that target both the MM malignant clone and angiogenesis to unleash an effective anti-MM immune response. Finally, the role of cancer stem cells in MM is unknown but given their roles in the development of solid and hematological malignancies, cancer relapse, and drug resistance, their identification and description are of paramount importance for MM management.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
- Istituto di ricovero e cura a carattere scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’ of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Carolina Terragna
- ’Seràgnoli’ Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Michele Cavo
- ’Seràgnoli’ Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
- *Correspondence: Vito Racanelli,
| |
Collapse
|
38
|
Lou X, Qin Y, Xu X, Yu X, Ji S. Spatiotemporal heterogeneity and clinical challenge of pancreatic neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188782. [PMID: 36028148 DOI: 10.1016/j.bbcan.2022.188782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
Abstract
During the course of pancreatic neuroendocrine tumors (NETs), they generally become more heterogeneous with individual cells exhibiting distinct molecular fingerprints. This heterogeneity manifests itself through an unequal distribution of genetically-variant, tumor cell subpopulations within disease locations (i.e., spatial heterogeneity) or changes in the genomic landscape over time (i.e., temporal heterogeneity); these characteristics complicate clinical diagnosis and treatment. Effective, feasible tumor heterogeneity detection and eradication methods are essential to overcome the clinical challenges of pancreatic NETs. This review explores the molecular fingerprints of pancreatic NETs and the spectrum of tumoral heterogeneity. We then describe the challenges of assessing heterogeneity by liquid biopsies and imaging modalities and the therapeutic challenges for pancreatic NETs. In general, navigating these challenges, refining approaches for translational research, and ultimately improving patient care are available once we have a better understanding of intratumoral spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Xin Lou
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiaowu Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
39
|
Alsehli M, Aljuhani A, Ihmaid SK, El-Messery SM, Othman DIA, El-Sayed AAAA, Ahmed HEA, Rezki N, Aouad MR. Design and Synthesis of Benzene Homologues Tethered with 1,2,4-Triazole and 1,3,4-Thiadiazole Motifs Revealing Dual MCF-7/HepG2 Cytotoxic Activity with Prominent Selectivity via Histone Demethylase LSD1 Inhibitory Effect. Int J Mol Sci 2022; 23:ijms23158796. [PMID: 35955929 PMCID: PMC9369007 DOI: 10.3390/ijms23158796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, an efficient multistep synthesis of novel aromatic tricyclic hybrids incorporating different biological active moieties, such as 1,3,4-thiadiazole and 1,2,4-triazole, was reported. These target scaffolds are characterized by having terminal lipophilic or hydrophilic parts, and their structures are confirmed by different spectroscopic methods. Further, the cytotoxic activities of the newly synthesized compounds were evaluated using in vitro MTT cytotoxicity screening assay against three different cell lines, including HepG-2, MCF-7, and HCT-116, compared with the reference drug Taxol. The results showed variable performance against cancer cell lines, exhibiting MCF-7 and HepG-2 selectivities by active analogs. Among these derivatives, 1,2,4-triazoles 11 and 13 and 1,3,4-thiadiazole 18 were found to be the most potent compounds against MCF-7 and HepG-2 cancer cells. Moreover, structure–activity relationship (SAR) studies led to the identification of some potent LSD1 inhibitors. The tested compounds showed good LSD1 inhibitory activities, with an IC50 range of 0.04–1.5 μM. Compounds 27, 23, and 22 were found to be the most active analogs with IC50 values of 0.046, 0.065, and 0.074 μM, respectively. In addition, they exhibited prominent selectivity against a MAO target with apparent cancer cell apoptosis, resulting in DNA fragmentation. This research provides some new aromatic-centered 1,2,4-triazole-3-thione and 1,3,4-thiadiazole analogs as highly effective anticancer agents with good LSD1 target selectivity.
Collapse
Affiliation(s)
- Mosa Alsehli
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Ateyatallah Aljuhani
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Saleh K. Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Shahenda M. El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Dina I. A. Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abdel-Aziz A. A. El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Hany E. A. Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 35511, Egypt
- Correspondence: (H.E.A.A.); (N.R.)
| | - Nadjet Rezki
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
- Correspondence: (H.E.A.A.); (N.R.)
| | - Mohamed R. Aouad
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| |
Collapse
|
40
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MFR, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 2022; 12:891652. [PMID: 35814435 PMCID: PMC9262248 DOI: 10.3389/fonc.2022.891652] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Several treatments are available for cancer treatment, but many treatment methods are ineffective against multidrug-resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective therapeutic interventions against cancer. This review describes the known MDR mechanisms in cancer cells and discusses ongoing laboratory approaches and novel therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in various cancer types. In this review, we discuss both intrinsic and acquired drug resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance mechanisms. Several factors, including individual genetic differences, such as mutations, altered epigenetics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular mechanisms, are responsible for the development of resistance against anticancer agents. Drug resistance can also depend on cellular autophagic and hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms that determine drug resistance are also discussed. Methods to circumvent MDR, including immunoprevention, the use of microparticles and nanomedicine might result in better strategies for fighting cancer.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud M Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
41
|
Interactions between EGFR and EphA2 promote tumorigenesis through the action of Ephexin1. Cell Death Dis 2022; 13:528. [PMID: 35668076 PMCID: PMC9170705 DOI: 10.1038/s41419-022-04984-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
The cell signaling factors EGFR, EphA2, and Ephexin1 are associated with lung and colorectal cancer and play an important role in tumorigenesis. Although the respective functional roles of EGFR and EphA2 are well known, interactions between these proteins and a functional role for the complex is not understood. Here, we showed that Ephexin1, EphA2, and EGFR are each expressed at higher levels in lung and colorectal cancer patient tissues, and binding of EGFR to EphA2 was associated with both increased tumor grade and metastatic cases in both cancer types. Treatment with Epidermal Growth Factor (EGF) induced binding of the RR domain of EGFR to the kinase domain of EphA2, and this binding was promoted by Ephexin1. Additionally, the AKT-mediated phosphorylation of EphA2 (at Ser897) promoted interactions with EGFR, pointing to the importance of this pathway. Two mutations in EGFR, L858R and T790M, that are frequently observed in lung cancer patients, promoted binding to EphA2, and this binding was dependent on Ephexin1. Our results indicate that the formation of a complex between EGFR, EphA2, and Ephexin1 plays an important role in lung and colorectal cancers, and that inhibition of this complex may be an effective target for cancer therapy.
Collapse
|
42
|
Schipper LJ, Zeverijn LJ, Garnett MJ, Voest EE. Can Drug Repurposing Accelerate Precision Oncology? Cancer Discov 2022; 12:1634-1641. [PMID: 35642948 DOI: 10.1158/2159-8290.cd-21-0612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Ongoing new insights in the field of cancer diagnostics, genomic profiling, and cancer behavior have raised the demand for novel, personalized cancer treatments. As the development of new cancer drugs is a challenging, costly, and time-consuming endeavor, drug repurposing is regarded as an attractive alternative to potentially accelerate this. In this review, we describe strategies for drug repurposing of anticancer agents, translation of preclinical findings in novel trial designs, and associated challenges. Furthermore, we provide suggestions to further utilize the potential of drug repurposing within precision oncology, with a focus on combinatorial approaches. SIGNIFICANCE Oncologic drug development is a timely and costly endeavor, with only few compounds progressing to meaningful therapy options. Although repurposing of existing agents for novel, oncologic indications provides an opportunity to accelerate this process, it is not without challenges.
Collapse
Affiliation(s)
- Luuk J Schipper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | | | - Emile E Voest
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
43
|
Spagnuolo A, Maione P, Gridelli C. The treatment of advanced non-small cell lung cancer harboring KRAS mutation: a new class of drugs for an old target-a narrative review. Transl Lung Cancer Res 2022; 11:1199-1216. [PMID: 35832439 PMCID: PMC9271439 DOI: 10.21037/tlcr-21-948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective The genetic nature of cancer provides the rationale to support the need for molecular diagnosis and patient selection for individualised antineoplastic treatments that are the best in both tolerability and efficacy for each cancer patient, including non-small cell lung cancer (NSCLC) patients. Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations represent the prevalent oncogenic driver in NSCLC, being detected in roughly one-third of cases and KRAS G12C is the most frequent mutation found in approximately 13% of patients. Methods This paper gives an overview of the numerous scientific efforts in recent decades aimed at KRAS inhibition. Key Content and Findings Sotorasib is the first approved KRAS G12C inhibitor that has been shown to provide a durable clinical benefit in patients with pre-treated NSCLC with KRAS G12C mutation. Together with the development of new targeted drugs, the development of strategies to control resistance mechanisms is one of the major drivers of research that is exploring the use of KRAS inhibitors not only alone, but also in combination with other targeted therapies, chemotherapy and immunotherapy. Conclusions This review will describe the major therapeutic developments in KRAS mutation-dependent NSCLC and will analyse future perspectives to maximise benefits for this group of patients.
Collapse
Affiliation(s)
- Alessia Spagnuolo
- Division of Medical Oncology, 'S. G. Moscati' Hospital, Avellino, Italy
| | - Paolo Maione
- Division of Medical Oncology, 'S. G. Moscati' Hospital, Avellino, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, 'S. G. Moscati' Hospital, Avellino, Italy
| |
Collapse
|
44
|
Pape VFS, Palkó R, Tóth S, Szabó MJ, Sessler J, Dormán G, Enyedy ÉA, Soós T, Szatmári I, Szakács G. Structure-Activity Relationships of 8-Hydroxyquinoline-Derived Mannich Bases with Tertiary Amines Targeting Multidrug-Resistant Cancer. J Med Chem 2022; 65:7729-7745. [PMID: 35613553 PMCID: PMC9189845 DOI: 10.1021/acs.jmedchem.2c00076] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
A recently proposed
strategy to overcome multidrug resistance (MDR)
in cancer is to target the collateral sensitivity of otherwise resistant
cells. We designed a library of 120 compounds to explore the chemical
space around previously identified 8-hydroxyquinoline-derived Mannich
bases with robust MDR-selective toxicity. We included compounds to
study the effect of halogen and alkoxymethyl substitutions in R5 in
combination with different Mannich bases in R7, a shift of the Mannich
base from R7 to R5, as well as the introduction of an aromatic moiety.
Cytotoxicity tests performed on a panel of parental and MDR cells
highlight a strong influence of experimentally determined pKa values of the donor atom moieties, indicating
that protonation and metal chelation are important factors modulating
the MDR-selective anticancer activity of the studied compounds. Our
results identify structural requirements increasing MDR-selective
anticancer activity, providing guidelines for the development of more
effective anticancer chelators targeting MDR cancer.
Collapse
Affiliation(s)
- Veronika F S Pape
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary.,Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Roberta Palkó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | | | - Judit Sessler
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - György Dormán
- TargetEx Ltd., Madách Imre u 31/2., H-2120 Dunakeszi, Hungary
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary.,Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| |
Collapse
|
45
|
Automated next-generation profiling of genomic alterations in human cancers. Nat Commun 2022; 13:2830. [PMID: 35595835 PMCID: PMC9123004 DOI: 10.1038/s41467-022-30380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
The lack of validated, distributed comprehensive genomic profiling assays for patients with cancer inhibits access to precision oncology treatment. To address this, we describe elio tissue complete, which has been FDA-cleared for examination of 505 cancer-related genes. Independent analyses of clinically and biologically relevant sequence changes across 170 clinical tumor samples using MSK-IMPACT, FoundationOne, and PCR-based methods reveals a positive percent agreement of >97%. We observe high concordance with whole-exome sequencing for evaluation of tumor mutational burden for 307 solid tumors (Pearson r = 0.95) and comparison of the elio tissue complete microsatellite instability detection approach with an independent PCR assay for 223 samples displays a positive percent agreement of 99%. Finally, evaluation of amplifications and translocations against DNA- and RNA-based approaches exhibits >98% negative percent agreement and positive percent agreement of 86% and 82%, respectively. These methods provide an approach for pan-solid tumor comprehensive genomic profiling with high analytical performance.
Collapse
|
46
|
Montero J, Haq R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov 2022; 12:1217-1232. [PMID: 35491624 PMCID: PMC9306285 DOI: 10.1158/2159-8290.cd-21-1334] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the antiapoptotic BCL2 antagonist venetoclax has finally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. SIGNIFICANCE Targeting antiapoptotic family members has proven efficacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.
Collapse
Affiliation(s)
- Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| |
Collapse
|
47
|
Wang F, Li S, Rosencrans WM, Cheng KW, Stott GM, Mroczkowski B, Chou TF. Sulforaphane is Synergistic with CB-5083 and Inhibits Colony Formation of CB-5083-Resistant HCT116 Cells. ChemMedChem 2022; 17:e202200030. [PMID: 35451199 DOI: 10.1002/cmdc.202200030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Human p97 is a potential drug target in oncology. Mutation-driven drug resistance is an obstacle to the long-term efficacy of targeted therapy. We found that the ATPase activity for one of the CB-5083-resistant p97 mutants was reduced, which also attenuated the degradation of K48 ubiquitinated proteins in cells. To understand how p97 mutant cells with significantly reduced ATPase activity can still grow, we discovered reduced levels of CHOP and NF-κB activation in the p97 mutant cells and these cellular changes can potentially protect HCT116 cells from death due to lowered p97 activity. In addition, the NF-kB inhibitor Sulforaphane reduces proliferation of CB-5083 resistant cells and acts synergistically with CB-5083 to block proliferation of the parental HCT116 cells. The combination of Sulforaphane and CB-5083 may be a useful treatment strategy to combat CB-5083 resistance.
Collapse
Affiliation(s)
- Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M Rosencrans
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gordon M Stott
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barbara Mroczkowski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
48
|
Li X, Dowling EK, Yan G, Dereli Z, Bozorgui B, Imanirad P, Elnaggar JH, Luna A, Menter DG, Pilié PG, Yap TA, Kopetz S, Sander C, Korkut A. Precision combination therapies based on recurrent oncogenic co-alterations. Cancer Discov 2022; 12:1542-1559. [PMID: 35412613 PMCID: PMC9524464 DOI: 10.1158/2159-8290.cd-21-0832] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/28/2021] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Cancer cells depend on multiple driver alterations whose oncogenic effects can be suppressed by drug combinations. Here, we provide a comprehensive resource of precision combination therapies tailored to oncogenic co-alterations that are recurrent across patient cohorts. To generate the resource, we developed Recurrent Features Leveraged for Combination Therapy (REFLECT), which integrates machine learning and cancer informatics algorithms. Using multi-omic data, the method maps recurrent co-alteration signatures in patient cohorts to combination therapies. We validated the REFLECT pipeline using data from patient-derived xenografts, in vitro drug screens, and a combination therapy clinical trial. These validations demonstrate that REFLECT-selected combination therapies have significantly improved efficacy, synergy, and survival outcomes. In patient cohorts with immunotherapy response markers, DNA repair aberrations, and HER2 activation, we have identified therapeutically actionable and recurrent co-alteration signatures. REFLECT provides a resource and framework to design combination therapies tailored to tumor cohorts in data-driven clinical trials and pre-clinical studies.
Collapse
Affiliation(s)
- Xubin Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gonghong Yan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zeynep Dereli
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behnaz Bozorgui
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Parisa Imanirad
- Department of Systems Biology, and The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Augustin Luna
- cBio Center, Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David G. Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick G. Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chris Sander
- cBio Center, Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Corresponding Author: Anil Korkut, Bioinformatics & Comp Biology, Phone: 718-300-0666, , 1515 Holcombe Blvd., Houston, Texas 77030-4009
| |
Collapse
|
49
|
Grinkevitch V, Wappett M, Crawford N, Price S, Lees A, McCann C, McAllister K, Prehn J, Young J, Bateson J, Gallagher L, Michaut M, Iyer V, Chatzipli A, Barthorpe S, Ciznadija D, Sloma I, Wesa A, Tice DA, Wessels L, Garnett M, Longley DB, McDermott U, McDade SS. Functional Genomic Identification of Predictors of Sensitivity and Mechanisms of Resistance to Multivalent Second-Generation TRAIL-R2 Agonists. Mol Cancer Ther 2022; 21:594-606. [PMID: 35086954 PMCID: PMC7612587 DOI: 10.1158/1535-7163.mct-21-0532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Multivalent second-generation TRAIL-R2 agonists are currently in late preclinical development and early clinical trials. Herein, we use a representative second-generation agent, MEDI3039, to address two major clinical challenges facing these agents: lack of predictive biomarkers to enable patient selection and emergence of resistance. Genome-wide CRISPR knockout screens were notable for the lack of resistance mechanisms beyond the canonical TRAIL-R2 pathway (caspase-8, FADD, BID) as well as p53 and BAX in TP53 wild-type models, whereas a CRISPR activatory screen identified cell death inhibitors MCL-1 and BCL-XL as mechanisms to suppress MEDI3039-induced cell death. High-throughput drug screening failed to identify genomic alterations associated with response to MEDI3039; however, transcriptomics analysis revealed striking association between MEDI3039 sensitivity and expression of core components of the extrinsic apoptotic pathway, most notably its main apoptotic effector caspase-8 in solid tumor cell lines. Further analyses of colorectal cell lines and patient-derived xenografts identified caspase-8 expression ratio to its endogenous regulator FLIP(L) as predictive of sensitivity to MEDI3039 in several major solid tumor types and a further subset indicated by caspase-8:MCL-1 ratio. Subsequent MEDI3039 combination screening of TRAIL-R2, caspase-8, FADD, and BID knockout models with 60 compounds with varying mechanisms of action identified two inhibitor of apoptosis proteins (IAP) that exhibited strong synergy with MEDI3039 that could reverse resistance only in BID-deleted models. In summary, we identify the ratios of caspase-8:FLIP(L) and caspase-8:MCL-1 as potential predictive biomarkers for second-generation TRAIL-R2 agonists and loss of key effectors such as FADD and caspase-8 as likely drivers of clinical resistance in solid tumors.
Collapse
Affiliation(s)
| | - Mark Wappett
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Nyree Crawford
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Stacey Price
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Andrea Lees
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Christopher McCann
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Katherine McAllister
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Jochen Prehn
- Royal College of Surgeons Ireland, Dublin, Ireland
| | - Jamie Young
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Jess Bateson
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Lewis Gallagher
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Magali Michaut
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vivek Iyer
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Syd Barthorpe
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Ido Sloma
- Champions Oncology Inc., Rockville, Maryland
| | - Amy Wesa
- Champions Oncology Inc., Rockville, Maryland
| | | | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Delft Bioinformatics Lab, TU Delft, Delft, the Netherlands
| | - Mathew Garnett
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Daniel B. Longley
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Ultan McDermott
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Simon S. McDade
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| |
Collapse
|
50
|
Investigation for anticancer activity of the newly synthesized p-Methoxyphenyl maleanilic acid and the diagnostic property of its 99mTc-analogue. Int J Radiat Biol 2022; 98:1344-1357. [PMID: 35254964 DOI: 10.1080/09553002.2022.2047819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The limitations of the current chemotherapeutics are the main rational to develop and/or explore new anticancer agents and radiolabeled analogues for cancer early diagnosis. MATERIALS AND METHODS The newly synthesized p-methoxyphenyl maleanilic acid (MPMA) was prepared, characterized and investigated for its anticancer activity. MPMA screened in-vitro against human hepatocellular carcinoma (HepG-2), human colon carcinoma (HCT-116) and human breast carcinoma (MCF-7) cell lines. Furthermore, the in-vivo screening was performed by radiolabeling of MPMA with technetium-99m (99mTc) and investigating its biological distribution in normal mice and solid tumor models. Moreover, MPMA and its radiolabeled analogue were docked to Y220C and Y220S mutants of p53 (p53Y220C and p53Y220S) in an effort to confirm their affinity to cancer as well as to investigate, virtually, the mechanism of action of MPMA. RESULTS The results revealed significant potency of MPMA against HepG-2 cell line (IC50 = 56.2 ± 1.5 µg/mL) if compared to HCT-116 (IC50 = 89.9 ± 1.8 µg/mL) and MCF-7 (IC50 = 104 ± 2.7 µg/mL) cell lines. The radiolabeling yield was optimized to be 90.2 ± 2.1%. The radiolabeled MPMA showed a good localization in the site of solid tumor (15.1 ± 1.6%ID/g) at 2 h post intravenous administration to the tumor bearing mice. CONCLUSIONS Collectively, the findings confirmed the potential anticancer activity of MPMA and the possible use of 99mTc-MPMA for cancer diagnosis and monitoring.
Collapse
|