1
|
Bolig TC, Yeldandi AV, Dematte JE, Esposito AJ. A Gain-of-Function Mutation in Mechanistic Target of Rapamycin Results in a Tuberous Sclerosis Complex-Like Manifestation of Parenchymal Lung Disease. Chest 2025; 167:e109-e112. [PMID: 40210315 PMCID: PMC12001810 DOI: 10.1016/j.chest.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 04/12/2025] Open
Abstract
Dysregulation of the mechanistic target of rapamycin (mTOR) signaling pathway rarely results in parenchymal lung disease, prototypically multifocal multinodular pneumocyte hyperplasia (MMPH) and lymphangioleiomyomatosis (LAM). Although LAM can occur sporadically, to our knowledge, MMPH has not previously been described independent of tuberous sclerosis complex (TSC), a syndrome caused by germline mutations in the tumor suppressor genes TSC1 or TSC2. We report the case of a man with a history of multiple malignancies who presented with incidental chest imaging findings of innumerable ground-glass nodules and several air-filled cysts, offering a diagnostic challenge. Histopathologic findings on lung biopsy identified nodular foci of pneumocyte hyperplasia with negative Human Melanoma Black-45 staining. Next-generation DNA sequencing of the tissue showed a previously described gain-of-function mutation in MTOR. We propose that this patient's TSC-like pulmonary disease is a direct result of this mutation, a novel finding that underscores the role of Next-generation DNA sequencing in cryptic histopathology.
Collapse
Affiliation(s)
- Thomas C Bolig
- Department of Medicine, Northwestern University Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, IL
| | - Anjana V Yeldandi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jane E Dematte
- Department of Medicine, Northwestern University Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, IL
| | - Anthony J Esposito
- Department of Medicine, Northwestern University Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, IL.
| |
Collapse
|
2
|
Czechowicz P, Więch-Walów A, Sławski J, Collawn JF, Bartoszewski R. Old drugs, new challenges: reassigning drugs for cancer therapies. Cell Mol Biol Lett 2025; 30:27. [PMID: 40038587 DOI: 10.1186/s11658-025-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
The "War on Cancer" began with the National Cancer Act of 1971 and despite more than 50 years of effort and numerous successes, there still remains much more work to be done. The major challenge remains the complexity and intrinsic polygenicity of neoplastic diseases. Furthermore, the safety of the antitumor therapies still remains a concern given their often off-target effects. Although the amount of money invested in research and development required to introduce a novel FDA-approved drug has continuously increased, the likelihood for a new cancer drug's approval remains limited. One interesting alternative approach, however, is the idea of repurposing of old drugs, which is both faster and less costly than developing new drugs. Repurposed drugs have the potential to address the shortage of new drugs with the added benefit that the safety concerns are already established. That being said, their interactions with other new drugs in combination therapies, however, should be tested. In this review, we discuss the history of repurposed drugs, some successes and failures, as well as the multiple challenges and obstacles that need to be addressed in order to enhance repurposed drugs' potential for new cancer therapies.
Collapse
Affiliation(s)
- Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - Anna Więch-Walów
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland.
| |
Collapse
|
3
|
Bian Y, Wu H, Jiang W, Kong X, Xiong Y, Zeng L, Zhang F, Song J, Wang C, Yang Y, Zhang X, Zhang Y, Pang P, Duo T, Wang Z, Pan T, Yang B. Anti-b diminishes hyperlipidaemia and hepatic steatosis in hamsters and mice by suppressing the mTOR/PPARγ and mTOR/SREBP1 signalling pathways. Br J Pharmacol 2025; 182:1254-1272. [PMID: 39614407 DOI: 10.1111/bph.17397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND AND PURPOSE As a chronic metabolic syndrome, hyperlipidaemia is manifested as aberrantly elevated cholesterol and triglyceride (TG) levels, primarily attributed to disorders in lipid metabolism. Despite the promising outlook for hyperlipidaemia treatment, the need persists for the development of lipid-lowering agents with heightened efficiency and minimal toxicity. This investigation aims to elucidate the lipid-lowering effects and potential pharmacodynamic mechanisms of Anti-b, a novel low MW compound. EXPERIMENTAL APPROACH We employed high-fat diet (HFD) in hamsters and mice or oleic acid (OA) in cultures of HepG2 cells and LO2 cells to induce hyperlipidaemia models. We administered Anti-b to assess its therapeutic effects on dyslipidaemia and hepatic steatosis. We used western blotting, RNA sequencing, GO and KEGG analysis, oil red O staining, along with molecular docking and molecular dynamics simulation to elucidate the mechanisms underlying the effects of Anti-b. KEY RESULTS Anti-b exhibited a substantial reduction in HFD-induced elevation of blood lipids, liver weight to body weight ratio, liver diameter and hepatic fat accumulation. Moreover, Anti-b demonstrated therapeutic effects in alleviating total cholesterol (TC), TG levels, and lipid accumulation derived from OA in HepG2 cells and LO2 cells. Mechanistically, Anti-b selectively bound to the mTOR kinase protein and increased mTOR thermal stability, resulting in downregulation of phosphorylation level. Notably, Anti-b exerted anti-hyperlipidaemia effects by modulating PPARγ and SREBP1 signalling pathways and reducing the expression level of mSREBP1 and PPARγ proteins. CONCLUSION AND IMPLICATIONS In conclusion, our study has provided initial data of a novel low MW compound, Anti-b, designed and synthesised to target mTOR protein directly. Our results indicate that Anti-b may represent a novel class of drugs for the treatment of hyperlipidemia and hepatic steatosis.
Collapse
Affiliation(s)
- Yu Bian
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Han Wu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Weitao Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Kong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuting Xiong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Linghua Zeng
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feng Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jinglun Song
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chunlei Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuning Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ping Pang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tianqi Duo
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhuo Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tengfei Pan
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
4
|
Liu Y, Zhang W, Jang H, Nussinov R. mTOR Variants Activation Discovers PI3K-like Cryptic Pocket, Expanding Allosteric, Mutant-Selective Inhibitor Designs. J Chem Inf Model 2025; 65:966-980. [PMID: 39792006 DOI: 10.1021/acs.jcim.4c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
mTOR plays a crucial role in PI3K/AKT/mTOR signaling. We hypothesized that mTOR activation mechanisms driving oncogenesis can advise effective therapeutic designs. To test this, we combined cancer genomic analysis with extensive molecular dynamics simulations of mTOR oncogenic variants. We observed that conformational changes within mTOR kinase domain are associated with multiple mutational activation events. The mutations disturb the α-packing formed by the kαAL, kα3, kα9, kα9b, and kα10 helices in the kinase domain, creating cryptic pocket. Its opening correlates with opening of the catalytic cleft, including active site residues realignment, favoring catalysis. The cryptic pocket created by disrupted α-packing coincides with the allosteric pocket in PI3Kα can be harmoniously fitted by the PI3Kα allosteric inhibitor RLY-2608, suggesting that analogous drugs designed based on RLY-2608 can restore the packed α-structure, resulting in mTOR inactive conformation. Our results exemplify that knowledge of detailed kinase activation mechanisms can inform innovative allosteric inhibitor development.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Deckwirth V, Hundi S, Hytönen MK, Hannula S, Ellonen P, Björkenheim P, Sukura A, Lohi H. Differential somatic coding variant landscapes between laser microdissected luminal epithelial cells from canine mammary invasive ductal solid carcinoma and comedocarcinoma. BMC Cancer 2024; 24:1524. [PMID: 39696035 DOI: 10.1186/s12885-024-13239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women. Likewise, canine mammary tumors (CMT) represent the most common cancer in intact female dogs and develop in the majority spontaneously. Similarities exist in clinical presentation, histopathology, biomarkers, and treatment. However, CMT subtype-specific genomic background is less investigated. Here, we assess the genetic etiology of two histomorphological (HM) subtypes with BC counterparts, the CMT invasive ductal simple solid carcinoma (SC) and comedocarcinoma (CC), and compare the results with BC data. METHODS Groups of 11-13 transformed ductal luminal epithelial cells were laser-capture microdissected from snap-frozen invasive mammary SC and CC subtypes of one intact female dog. HM unaffected lobular luminal epithelial cells were controls. Single-cell whole genome libraries were generated using PicoPLEX and sequenced to compare the subtypes' somatic coding variant landscapes with each other and with BC data available in COSMIC-CGC and KEGG. Furthermore, HM and immunohistochemical (IHC) subtype characteristics were compared with the genomic results. RESULTS The CC had six times more variants than the SC. The SC showed variants in adherens junction genes and genes of the MAPK, mTOR and NF-kappa-B signaling pathways. In the CC, the extracellular matrix (ECM) receptor interaction, cell adhesion, PI3K-Akt and cGMP-PKG pathways were enriched, reflecting the higher cellular malignancy. Affected pathways in both CMT subtypes overlapped with BC pathways in KEGG. Additionally, we identified ATP6V1C2, GLYATL3, CARMIL3, GATAD2B, OBSCN, SIX2, CPEB3 and ZNF521 as potential new subtype-distinct driver genes. Furthermore, our results revealed biomarker alterations in IHC in the basal/myoepithelial cell layer without respective genetic mutations, suggesting changes to their complex signaling pathways, disturbed regulative feedback loops or other silencing mechanisms. CONCLUSIONS This study contributes to understanding the subtype-specific molecular mechanisms in the canine mammary invasive ductal simple SC and CC, and revealed subtype-specific molecular complexity for phenotypically similar characteristics. Several affected genes and signaling pathways overlapped with BC indicating the potential use of CMT as model for BC. Our findings emphasize the need for thorough characterization of cancer specimens with respect to translational cancer research, but also how insight into tumor heterogeneity will be crucial for the development of targeted prognostics and therapeutic interventions.
Collapse
Affiliation(s)
- Vivi Deckwirth
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sruthi Hundi
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Sari Hannula
- Institute for Molecular Medicine Finland FIMM, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland FIMM, Helsinki, Finland
| | - Pia Björkenheim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Sukura
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
6
|
Singh SK, Kapoor D, Shukla D. HerpDock: A GUI-based gateway to HSV-1 molecular docking insights. Comput Struct Biotechnol J 2024; 23:3692-3701. [PMID: 39507821 PMCID: PMC11539079 DOI: 10.1016/j.csbj.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Herpes Simplex Virus 1 (HSV-1) is a member of the alpha-Herpesviridae family, with over 60 % of the global population being seropositive. HSV-1 can cause a range of symptoms, from mild discomfort to severe, life-threatening complications. The emergence of HSV-1-resistant strains and the diminishing effectiveness of current antiviral treatments highlight the urgent need for new antiviral drugs. Computational molecular docking studies can offer valuable insights for the development of novel antiviral compounds targeting HSV-1. To address this need, we have developed HerpDock, an open-source Graphical User Interface (GUI) program designed for molecular docking, high-throughput virtual screening, and absorption, distribution, metabolism, and elimination (ADME) studies. HerpDock stands out as a unique, user-friendly pipeline that extends beyond the capabilities of existing docking programs based on AutoDock Vina. It requires only the ligand name or structure from the user, as it already includes optimized structures of numerous HSV-1 viral proteins and relevant host proteins. With just a few clicks, HerpDock performs comprehensive docking studies, result analysis, and visualization, making it particularly valuable for Herpes researchers without a bioinformatics background. HerpDock is freely available at https://github.com/Sudhk24/Herpdock.
Collapse
Affiliation(s)
- Sudhanshu Kumar Singh
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Divya Kapoor
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Zwakenberg S, Westland D, van Es RM, Rehmann H, Anink J, Ciapaite J, Bosma M, Stelloo E, Liv N, Sobrevals Alcaraz P, Verhoeven-Duif NM, Jans JJM, Vos HR, Aronica E, Zwartkruis FJT. mTORC1 restricts TFE3 activity by auto-regulating its presence on lysosomes. Mol Cell 2024; 84:4368-4384.e6. [PMID: 39486419 DOI: 10.1016/j.molcel.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
To stimulate cell growth, the protein kinase complex mTORC1 requires intracellular amino acids for activation. Amino-acid sufficiency is relayed to mTORC1 by Rag GTPases on lysosomes, where growth factor signaling enhances mTORC1 activity via the GTPase Rheb. In the absence of amino acids, GATOR1 inactivates the Rags, resulting in lysosomal detachment and inactivation of mTORC1. We demonstrate that in human cells, the release of mTORC1 from lysosomes depends on its kinase activity. In accordance with a negative feedback mechanism, activated mTOR mutants display low lysosome occupancy, causing hypo-phosphorylation and nuclear localization of the lysosomal substrate TFE3. Surprisingly, mTORC1 activated by Rheb does not increase the cytoplasmic/lysosomal ratio of mTORC1, indicating the existence of mTORC1 pools with distinct substrate specificity. Dysregulation of either pool results in aberrant TFE3 activity and may explain nuclear accumulation of TFE3 in epileptogenic malformations in focal cortical dysplasia type II (FCD II) and tuberous sclerosis (TSC).
Collapse
Affiliation(s)
- Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Denise Westland
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Holger Rehmann
- Department of Energy and Life Science, Flensburg University of Applied Sciences, Flensburg, Germany
| | - Jasper Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jolita Ciapaite
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Marjolein Bosma
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Ellen Stelloo
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Paula Sobrevals Alcaraz
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Cui Z, Esposito A, Napolitano G, Ballabio A, Hurley JH. Structural basis for growth factor and nutrient signal integration on the lysosomal membrane by mTORC1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623810. [PMID: 39605743 PMCID: PMC11601357 DOI: 10.1101/2024.11.15.623810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1), which consists of mTOR, Raptor, and mLST8, receives signaling inputs from growth factor signals and nutrients. These signals are mediated by the Rheb and Rag small GTPases, respectively, which activate mTORC1 on the cytosolic face of the lysosome membrane. We biochemically reconstituted the activation of mTORC1 on membranes by physiological submicromolar concentrations of Rheb, Rags, and Ragulator. We determined the cryo-EM structure and found that Raptor and mTOR directly interact with the membrane at anchor points separated by up to 230 Å across the membrane surface. Full engagement of the membrane anchors is required for maximal activation, which is brought about by alignment of the catalytic residues in the mTOR kinase active site. The observations show at the molecular and atomic scale how converging signals from growth factors and nutrients drive mTORC1 recruitment to and activation on the lysosomal membrane in a three-step process, consisting of (1) Rag-Ragulator-driven recruitment to within ∼100 Å of the lysosomal membrane, (2) Rheb-driven recruitment to within ∼40 Å, and finally (3) direct engagement of mTOR and Raptor with the membrane. The combination of Rheb and membrane engagement leads to full catalytic activation, providing a structural explanation for growth factor and nutrient signal integration at the lysosome.
Collapse
|
9
|
Jiang C, Tan X, Liu N, Yan P, Hou T, Wei W. Nutrient sensing of mTORC1 signaling in cancer and aging. Semin Cancer Biol 2024; 106-107:1-12. [PMID: 39153724 DOI: 10.1016/j.semcancer.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is indispensable for preserving cellular and organismal homeostasis by balancing the anabolic and catabolic processes in response to various environmental cues, such as nutrients, growth factors, energy status, oxygen levels, and stress. Dysregulation of mTORC1 signaling is associated with the progression of many types of human disorders including cancer, age-related diseases, neurodegenerative disorders, and metabolic diseases. The way mTORC1 senses various upstream signals and converts them into specific downstream responses remains a crucial question with significant impacts for our perception of the related physiological and pathological process. In this review, we discuss the recent molecular and functional insights into the nutrient sensing of the mTORC1 signaling pathway, along with the emerging role of deregulating nutrient-mTORC1 signaling in cancer and age-related disorders.
Collapse
Affiliation(s)
- Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ning Liu
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Hou
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Lai A, Soucy A, Yang E, Yu T, Poduri A. Response to Horta et al. Genet Med 2024; 26:101215. [PMID: 39011767 DOI: 10.1016/j.gim.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Affiliation(s)
- Abbe Lai
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Aubrie Soucy
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Timothy Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Annapurna Poduri
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| |
Collapse
|
11
|
Hale AT, Liu S, Huang F, Song Y, Crowley MR, Crossman DK, Caudill C, Arynchyna-Smith A, Chapman L, Feldman MJ, Saccomano BW, Rocque BG, Rozzelle CJ, Blount JP, Johnston JM, Chong Z, Jones JG. Endoluminal Biopsy for Vein of Galen Malformation. Neurosurgery 2024; 95:1082-1088. [PMID: 38747605 PMCID: PMC11449423 DOI: 10.1227/neu.0000000000002986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Vein of Galen malformation (VOGM), the result of arteriovenous shunting between choroidal and/or subependymal arteries and the embryologic prosencephalic vein, is among the most severe cerebrovascular disorders of childhood. We hypothesized that in situ analysis of the VOGM lesion using endoluminal tissue sampling (ETS) is feasible and may advance our understanding of VOGM genetics, pathogenesis, and maintenance. METHODS We collected germline DNA (cheek swab) from patients and their families for genetic analysis. In situ VOGM "endothelial" cells (ECs), defined as CD31 + and CD45 - , were obtained from coils through ETS during routine endovascular treatment. Autologous peripheral femoral ECs were also collected from the access sheath. Single-cell RNA sequencing of both VOGM and peripheral ECs was performed to demonstrate feasibility to define the transcriptional architecture. Comparison was also made with a published normative cerebrovascular transcriptome atlas. A subset of VOGM ECs was reserved for future DNA sequencing to assess for somatic and second-hit mutations. RESULTS Our cohort contains 6 patients who underwent 10 ETS procedures from arterial and/or venous access during routine VOGM treatment (aged 12 days to ∼6 years). No periprocedural complications attributable to ETS occurred. Six unique coil types were used. ETS captured 98 ± 88 (mean ± SD; range 17-256) experimental ECs (CD31 + and CD45 - ). There was no discernible correlation between cell yield and coil type or route of access. Single-cell RNA sequencing demonstrated hierarchical clustering and unique cell populations within the VOGM EC compartment compared with peripheral EC controls when annotated using a publicly available cerebrovascular cell atlas. CONCLUSION ETS may supplement investigations aimed at development of a molecular-genetic taxonomic classification scheme for VOGM. Moreover, results may eventually inform the selection of personalized pharmacologic or genetic therapies for VOGM and cerebrovascular disorders more broadly.
Collapse
Affiliation(s)
- Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shanrun Liu
- Single Cell and Flow Cytometry Core, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fengyuan Huang
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuwei Song
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael R. Crowley
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K. Crossman
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Caroline Caudill
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Anastasia Arynchyna-Smith
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Lindsey Chapman
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Michael J. Feldman
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Benjamin W. Saccomano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brandon G. Rocque
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Curtis J. Rozzelle
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Jeffrey P. Blount
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - James M. Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Zechen Chong
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jesse G. Jones
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Palizban F, Sarbishegi M, Kavousi K, Mehrmohamadi M. Predicting somatic mutation origins in cell-free DNA by semi-supervised GAN models. Heliyon 2024; 10:e39379. [PMID: 39492904 PMCID: PMC11530920 DOI: 10.1016/j.heliyon.2024.e39379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024] Open
Abstract
Motivation Distinguishing between pathogenic cancer-associated mutations and other somatic variants present in cell-free DNA (cfDNA) is one of the challenges in the field of liquid biopsy. This distinction is critical, since the misclassification of mutations stemming from clonal hematopoiesis (CH) as tumor-derived and vice versa could result in inaccurate diagnoses and inappropriate therapeutic interventions for patients. Results We addressed this by developing a specialized machine learning technique to differentiate tumor- or CH-related mutations in cfDNA. We established a comprehensive in-house reference catalog, comprising approximately 25,000 single nucleotide variants (SNVs), each linked to either tumor or CH origin. This reference serves as a foundation for training a deep learning model, which is structured on the semi-supervised generative adversarial network (SSGAN) architecture. By analyzing genomic coordinates and nucleotide composition of cfDNA variants, our model attains 95 % area under the curve (AUC) in classifying uncharacterized variants as CH or tumor-derived. In conclusion, our research emphasizes the potential of genomic feature prediction, using cfDNA data, to stand as a robust alternative to conventional multi-analyte sequencing methods. This approach not only enhances the accuracy of distinguishing CH from tumor mutations in liquid biopsy data, but also highlights the potential of advanced data analysis techniques and machine learning in genomics and personalized medicine. Availability: https://github.com/FPalizban/SSGAN.
Collapse
Affiliation(s)
- Fahimeh Palizban
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahya Mehrmohamadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Liu AC, Shen Y, Serbinski CR, He H, Roman D, Endale M, Aschbacher-Smith L, King KA, Granadillo JL, López I, Krueger DA, Dye TJ, Smith DF, Hogenesch JB, Prada CE. Clinical and functional studies of MTOR variants in Smith-Kingsmore syndrome reveal deficits of circadian rhythm and sleep-wake behavior. HGG ADVANCES 2024; 5:100333. [PMID: 39030910 PMCID: PMC11342114 DOI: 10.1016/j.xhgg.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Heterozygous de novo or inherited gain-of-function mutations in the MTOR gene cause Smith-Kingsmore syndrome (SKS). SKS is a rare autosomal dominant condition, and individuals with SKS display macrocephaly/megalencephaly, developmental delay, intellectual disability, and seizures. A few dozen individuals are reported in the literature. Here, we report a cohort of 28 individuals with SKS that represent nine MTOR pathogenic variants. We conducted a detailed natural history study and found pathophysiological deficits among individuals with SKS in addition to the common neurodevelopmental symptoms. These symptoms include sleep-wake disturbance, hyperphagia, and hyperactivity, indicative of homeostatic imbalance. To characterize these variants, we developed cell models and characterized their functional consequences. We showed that these SKS variants display a range of mechanistic target of rapamycin (mTOR) activities and respond to the mTOR inhibitor, rapamycin, differently. For example, the R1480_C1483del variant we identified here and the previously known C1483F are more active than wild-type controls and less responsive to rapamycin. Further, we showed that SKS mutations dampened circadian rhythms and low-dose rapamycin improved the rhythm amplitude, suggesting that optimal mTOR activity is required for normal circadian function. As SKS is caused by gain-of-function mutations in MTOR, rapamycin was used to treat several patients. While higher doses of rapamycin caused delayed sleep-wake phase disorder in a subset of patients, optimized lower doses improved sleep. Our study expands the clinical and molecular spectrum of SKS and supports further studies for mechanism-guided treatment options to improve sleep-wake behavior and overall health.
Collapse
Affiliation(s)
- Andrew C Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Yang Shen
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Carolyn R Serbinski
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Genetics, Genomics & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Hongzhi He
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Destino Roman
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mehari Endale
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lindsey Aschbacher-Smith
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine A King
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Isabel López
- Pediatric Neurology Unit, Department of Neurology, Clínica Las Condes, Santiago, Chile
| | - Darcy A Krueger
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas J Dye
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David F Smith
- Divisions of Pediatric Otolaryngology and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Otolaryngology Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - John B Hogenesch
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carlos E Prada
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Genetics, Genomics & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Pacyna CN, Anandapadamanaban M, Loudon KW, Hay IM, Perisic O, Li R, Byrne M, Allen L, Roberts K, Hooks Y, Warren AY, Stewart GD, Clatworthy MR, Teichmann SA, Behjati S, Campbell PJ, Williams RL, Mitchell TJ. Multifocal, multiphenotypic tumours arising from an MTOR mutation acquired in early embryogenesis. Oncogene 2024; 43:3268-3276. [PMID: 39271965 PMCID: PMC11518995 DOI: 10.1038/s41388-024-03137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Embryogenesis is a vulnerable time. Mutations in developmental cells can result in the wide dissemination of cells predisposed to disease within mature organs. We characterised the evolutionary history of four synchronous renal tumours from a 14-year-old girl using whole genome sequencing alongside single cell and bulk transcriptomic sequencing. Phylogenetic reconstruction timed the origin of all tumours to a multipotent embryonic cell committed to the right kidney, around 4 weeks post-conception. Biochemical and structural analysis of their shared MTOR mutation, absent from normal tissues, demonstrates enhanced protein flexibility, enabling a FAT domain hinge to dramatically increase activity of mTORC1 and mTORC2. Developmental mutations, not usually detected in traditional genetic screening, have vital clinical importance in guiding prognosis, targeted treatment, and family screening decisions for paediatric tumours.
Collapse
Affiliation(s)
- Clarissa N Pacyna
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Kevin W Loudon
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Iain M Hay
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ruoyan Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew Byrne
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Laura Allen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kirsty Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Yvette Hooks
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anne Y Warren
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Grant D Stewart
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Thomas J Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK.
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
15
|
Christen D, Lauinger M, Brunner M, Dengjel J, Brummer T. The mTOR pathway controls phosphorylation of BRAF at T401. Cell Commun Signal 2024; 22:428. [PMID: 39223665 PMCID: PMC11370054 DOI: 10.1186/s12964-024-01808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BRAF serves as a gatekeeper of the RAS/RAF/MEK/ERK pathway, which plays a crucial role in homeostasis. Since aberrant signalling of this axis contributes to cancer and other diseases, it is tightly regulated by crosstalk with the PI3K/AKT/mTOR pathway and ERK mediated feedback loops. For example, ERK limits BRAF signalling through phosphorylation of multiple residues. One of these, T401, is widely considered as an ERK substrate following acute pathway activation by growth factors. Here, we demonstrate that prominent T401 phosphorylation (pT401) of endogenous BRAF is already observed in the absence of acute stimulation in various cell lines of murine and human origin. Importantly, the BRAF/RAF1 inhibitor naporafenib, the MEK inhibitor trametinib and the ERK inhibitor ulixertinib failed to reduce pT401 levels in these settings, supporting an alternative ERK-independent pathway to T401 phosphorylation. In contrast, the mTOR inhibitor torin1 and the dual-specific PI3K/mTOR inhibitor dactolisib significantly suppressed pT401 levels in all investigated cell types, in both a time and concentration dependent manner. Conversely, genetic mTOR pathway activation by oncogenic RHEB (Q64L) and mTOR (S2215Y and R2505P) mutants substantially increased pT401, an effect that was reverted by dactolisib and torin1 but not by trametinib. We also show that shRNAmir mediated depletion of the mTORC1 complex subunit Raptor significantly enhanced the suppression of T401 phosphorylation by a low torin1 dose, while knockdown of the mTORC2 complex subunit Rictor was less effective. Using mass spectrometry, we provide further evidence that torin1 suppresses the phosphorylation of T401, S405 and S409 but not of other important regulatory phosphorylation sites such as S446, S729 and S750. In summary, our data identify the mTOR axis and its inhibitors of (pre)clinical relevance as novel modulators of BRAF phosphorylation at T401.
Collapse
Affiliation(s)
- Daniel Christen
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany
| | - Manuel Lauinger
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Brunner
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
16
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
17
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Raynes Y, Santiago JC, Lemieux FA, Darwin L, Rand DM. Sex, tissue, and mitochondrial interactions modify the transcriptional response to rapamycin in Drosophila. BMC Genomics 2024; 25:766. [PMID: 39107687 PMCID: PMC11304892 DOI: 10.1186/s12864-024-10647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Many common diseases exhibit uncontrolled mTOR signaling, prompting considerable interest in the therapeutic potential of mTOR inhibitors, such as rapamycin, to treat a range of conditions, including cancer, aging-related pathologies, and neurological disorders. Despite encouraging preclinical results, the success of mTOR interventions in the clinic has been limited by off-target side effects and dose-limiting toxicities. Improving clinical efficacy and mitigating side effects require a better understanding of the influence of key clinical factors, such as sex, tissue, and genomic background, on the outcomes of mTOR-targeting therapies. RESULTS We assayed gene expression with and without rapamycin exposure across three distinct body parts (head, thorax, abdomen) of D. melanogaster flies, bearing either their native melanogaster mitochondrial genome or the mitochondrial genome from a related species, D. simulans. The fully factorial RNA-seq study design revealed a large number of genes that responded to the rapamycin treatment in a sex-dependent and tissue-dependent manner, and relatively few genes with the transcriptional response to rapamycin affected by the mitochondrial background. Reanalysis of an earlier study confirmed that mitochondria can have a temporal influence on rapamycin response. CONCLUSIONS We found significant and wide-ranging effects of sex and body part, alongside a subtle, potentially time-dependent, influence of mitochondria on the transcriptional response to rapamycin. Our findings suggest a number of pathways that could be crucial for predicting potential side effects of mTOR inhibition in a particular sex or tissue. Further studies of the temporal response to rapamycin are necessary to elucidate the effects of the mitochondrial background on mTOR and its inhibition.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| | - John C Santiago
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Faye A Lemieux
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA
| | - Leah Darwin
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
| | - David M Rand
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
19
|
Wilson ML, Romano SN, Khatri N, Aharon D, Liu Y, Kaufman OH, Draper BW, Marlow FL. Rbpms2 promotes female fate upstream of the nutrient sensing Gator2 complex component Mios. Nat Commun 2024; 15:5248. [PMID: 38898112 PMCID: PMC11187175 DOI: 10.1038/s41467-024-49613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary biased. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.
Collapse
Affiliation(s)
- Miranda L Wilson
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020, New York, NY, USA
| | - Shannon N Romano
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020, New York, NY, USA
| | - Nitya Khatri
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020, New York, NY, USA
| | - Devora Aharon
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020, New York, NY, USA
| | - Yulong Liu
- Department of Molecular and Cellular Biology. University of California. 1 Shields Ave, Davis, CA, USA
| | - Odelya H Kaufman
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bruce W Draper
- Department of Molecular and Cellular Biology. University of California. 1 Shields Ave, Davis, CA, USA
| | - Florence L Marlow
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020, New York, NY, USA.
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
20
|
Malakar S, Chatterjee S, Das M, Pal DK. Genetic variants in the mTOR pathway with renal cancer risk and subtypes in East Indian population. Urologia 2024; 91:270-275. [PMID: 38205940 DOI: 10.1177/03915603231222081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Renal Cell Carcinoma (RCC), which accounts for 2%-3% of all adult malignant neoplasms with a male-to-female predominance of 1.9 to 1 with typical presentation between 55 and 75 years. The phosphoinositide-3-kinase-protein kinase B/Akt (PI3KPKB/Akt) pathway is a main pathway in control of cell growth. mTOR pathway plays a key role in the pathogenesis of RCC. MATERIAL AND METHODS Its a prospective observational study. Tissue samples were collected and processed and DNA isolation and sequencing was done to see for any association and expression. RESULTS AND ANALYSIS Polymorphism analysis of the sequence of three genes MTOR, AKT1, and PIK3CA done and found an intronic variant of the MTOR gene (rs3737611) and AKT1 gene (rs2498797) to be significantly associated with clear cell Renal Cell Carcinoma tumor samples. DISCUSSION This study will help to understand the pathogenesis better and the information can be used to develop new drugs and personalized treatment strategies that are tailored to an individual's genetic makeup. The study identify individuals who are at heightened risk for developing renal cancer and could benefit from targeted screening or preventative measures. Some sample size and definite geographical sample pool remains the main limitation of the study which may not be externally validate the study results.
Collapse
Affiliation(s)
- Subhajit Malakar
- Department of Urology, IPGME&R and SSKM Hospital, Kolkata, West Bengal, India
| | | | - Madhusudhan Das
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Dilip Kumar Pal
- Department of Urology, IPGME&R and SSKM Hospital, Kolkata, West Bengal, India
| |
Collapse
|
21
|
Feng R, Liu F, Li R, Zhou Z, Lin Z, Lin S, Deng S, Li Y, Nong B, Xia Y, Li Z, Zhong X, Yang S, Wan G, Ma W, Wu S, Songyang Z. The rapid proximity labeling system PhastID identifies ATP6AP1 as an unconventional GEF for Rheb. Cell Res 2024; 34:355-369. [PMID: 38448650 PMCID: PMC11061317 DOI: 10.1038/s41422-024-00938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Rheb is a small G protein that functions as the direct activator of the mechanistic target of rapamycin complex 1 (mTORC1) to coordinate signaling cascades in response to nutrients and growth factors. Despite extensive studies, the guanine nucleotide exchange factor (GEF) that directly activates Rheb remains unclear, at least in part due to the dynamic and transient nature of protein-protein interactions (PPIs) that are the hallmarks of signal transduction. Here, we report the development of a rapid and robust proximity labeling system named Pyrococcus horikoshii biotin protein ligase (PhBPL)-assisted biotin identification (PhastID) and detail the insulin-stimulated changes in Rheb-proximity protein networks that were identified using PhastID. In particular, we found that the lysosomal V-ATPase subunit ATP6AP1 could dynamically interact with Rheb. ATP6AP1 could directly bind to Rheb through its last 12 amino acids and utilizes a tri-aspartate motif in its highly conserved C-tail to enhance Rheb GTP loading. In fact, targeting the ATP6AP1 C-tail could block Rheb activation and inhibit cancer cell proliferation and migration. Our findings highlight the versatility of PhastID in mapping transient PPIs in live cells, reveal ATP6AP1's role as an unconventional GEF for Rheb, and underscore the importance of ATP6AP1 in integrating mTORC1 activation signals through Rheb, filling in the missing link in Rheb/mTORC1 activation.
Collapse
Affiliation(s)
- Ran Feng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhifen Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuoheng Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shengcheng Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingying Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baoting Nong
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Xia
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiyi Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoqin Zhong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhan Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gang Wan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Su Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Guo JR, He KY, Yuan JL, An W, Yin WT, Li QT, Lu LY, Yang JY, Liu MJ, Li YJ, Zhao Y, Yang Q, Lei XY, Gao F, Zhang L, Wu DH, Li JQ, Zhao ZL, Liu H, Zhu LJ, Xiang XY, Sun QH, Jian YP, Xu ZX. HMGA1 sensitizes esophageal squamous cell carcinoma to mTOR inhibitors through the ETS1-FKBP12 axis. Int J Biol Sci 2024; 20:2640-2657. [PMID: 38725843 PMCID: PMC11077367 DOI: 10.7150/ijbs.95595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
23
|
Khorasani ABS, Hafezi N, Sanaei MJ, Jafari-Raddani F, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/AKT/mTOR signaling pathway in breast cancer: Review of clinical trials and latest advances. Cell Biochem Funct 2024; 42:e3998. [PMID: 38561964 DOI: 10.1002/cbf.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer mortality in women. As the phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a wide range of physiological functions of cells including growth, proliferation, motility, and angiogenesis, any alteration in this axis could induce oncogenic features; therefore, numerous preclinical and clinical studies assessed agents able to inhibit the components of this pathway in BC patients. To the best of our knowledge, this is the first study that analyzed all the registered clinical trials investigating safety and efficacy of the PI3K/AKT/mTOR axis inhibitors in BC. Of note, we found that the trends of PI3K inhibitors in recent years were superior as compared with the inhibitors of either AKT or mTOR. However, most of the trials entering phase III and IV used mTOR inhibitors (majorly Everolimus) followed by PI3K inhibitors (majorly Alpelisib) leading to the FDA approval of these drugs in the BC context. Despite favorable efficacies, our analysis shows that the majority of trials are utilizing PI3K pathway inhibitors in combination with hormone therapy and chemotherapy; implying monotherapy cannot yield huge clinical benefits, at least partly, due to the activation of compensatory mechanisms. To emphasize the beneficial effects of these inhibitors in combined-modal strategies, we also reviewed recent studies which investigated the conjugation of nanocarriers with PI3K inhibitors to reduce harmful toxicities, increase the local concentration, and improve their efficacies in the context of BC therapy.
Collapse
Affiliation(s)
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Gómez Tejeda Zañudo J, Barroso-Sousa R, Jain E, Jin Q, Li T, Buendia-Buendia JE, Pereslete A, Abravanel DL, Ferreira AR, Wrabel E, Helvie K, Hughes ME, Partridge AH, Overmoyer B, Lin NU, Tayob N, Tolaney SM, Wagle N. Exemestane plus everolimus and palbociclib in metastatic breast cancer: clinical response and genomic/transcriptomic determinants of resistance in a phase I/II trial. Nat Commun 2024; 15:2446. [PMID: 38503755 PMCID: PMC10951222 DOI: 10.1038/s41467-024-45835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
The landscape of cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) resistance is still being elucidated and the optimal subsequent therapy to overcome resistance remains uncertain. Here we present the final results of a phase Ib/IIa, open-label trial (NCT02871791) of exemestane plus everolimus and palbociclib for CDK4/6i-resistant metastatic breast cancer. The primary objective of phase Ib was to evaluate safety and tolerability and determine the maximum tolerated dose/recommended phase II dose (100 mg palbociclib, 5 mg everolimus, 25 mg exemestane). The primary objective of phase IIa was to determine the clinical benefit rate (18.8%, n = 6/32), which did not meet the predefined endpoint (65%). Secondary objectives included pharmacokinetic profiling (phase Ib), objective response rate, disease control rate, duration of response, and progression free survival (phase IIa), and correlative multi-omics analysis to investigate biomarkers of resistance to CDK4/6i. All participants were female. Multi-omics data from the phase IIa patients (n = 24 tumor/17 blood biopsy exomes; n = 27 tumor transcriptomes) showed potential mechanisms of resistance (convergent evolution of HER2 activation, BRAFV600E), identified joint genomic/transcriptomic resistance features (ESR1 mutations, high estrogen receptor pathway activity, and a Luminal A/B subtype; ERBB2/BRAF mutations, high RTK/MAPK pathway activity, and a HER2-E subtype), and provided hypothesis-generating results suggesting that mTOR pathway activation correlates with response to the trial's therapy. Our results illustrate how genome and transcriptome sequencing may help better identify patients likely to respond to CDK4/6i therapies.
Collapse
Affiliation(s)
- Jorge Gómez Tejeda Zañudo
- Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Romualdo Barroso-Sousa
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Oncology Center, Hospital Sírio-Libanês, Brasília, Brazil
| | - Esha Jain
- Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Repare Therapeutics, Cambridge, MA, USA
| | - Qingchun Jin
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA
| | - Tianyu Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA
| | - Jorge E Buendia-Buendia
- Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cellarity, Somerville, MA, USA
| | | | - Daniel L Abravanel
- Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Arlindo R Ferreira
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Unit, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Eileen Wrabel
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karla Helvie
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Ann H Partridge
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Beth Overmoyer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy U Lin
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nabihah Tayob
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA
| | - Sara M Tolaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nikhil Wagle
- Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
25
|
Arslan S, Schmidt J, Bass C, Mehrotra D, Geraldes A, Singhal S, Hense J, Li X, Raharja-Liu P, Maiques O, Kather JN, Pandya P. A systematic pan-cancer study on deep learning-based prediction of multi-omic biomarkers from routine pathology images. COMMUNICATIONS MEDICINE 2024; 4:48. [PMID: 38491101 PMCID: PMC10942985 DOI: 10.1038/s43856-024-00471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The objective of this comprehensive pan-cancer study is to evaluate the potential of deep learning (DL) for molecular profiling of multi-omic biomarkers directly from hematoxylin and eosin (H&E)-stained whole slide images. METHODS A total of 12,093 DL models predicting 4031 multi-omic biomarkers across 32 cancer types were trained and validated. The study included a broad range of genetic, transcriptomic, and proteomic biomarkers, as well as established prognostic markers, molecular subtypes, and clinical outcomes. RESULTS Here we show that 50% of the models achieve an area under the curve (AUC) of 0.644 or higher. The observed AUC for 25% of the models is at least 0.719 and exceeds 0.834 for the top 5%. Molecular profiling with image-based histomorphological features is generally considered feasible for most of the investigated biomarkers and across different cancer types. The performance appears to be independent of tumor purity, sample size, and class ratio (prevalence), suggesting a degree of inherent predictability in histomorphology. CONCLUSIONS The results demonstrate that DL holds promise to predict a wide range of biomarkers across the omics spectrum using only H&E-stained histological slides of solid tumors. This paves the way for accelerating diagnosis and developing more precise treatments for cancer patients.
Collapse
Affiliation(s)
| | | | | | - Debapriya Mehrotra
- Panakeia Technologies, London, UK
- Department of Pathology, Barking, Havering and Redbridge University NHS Trust, Romford, UK
| | | | - Shikha Singhal
- Panakeia Technologies, London, UK
- Department of Pathology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | | | - Xiusi Li
- Panakeia Technologies, London, UK
| | | | - Oscar Maiques
- Cytoskeleton and Cancer Metastasis Group, Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, London, UK
| | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | | |
Collapse
|
26
|
Sztankovics D, Moldvai D, Petővári G, Dankó T, Szalai F, Miyaura R, Varga V, Nagy N, Papp G, Pápay J, Krencz I, Sebestyén A. mTOR hyperactivity and RICTOR amplification as targets for personalized treatments in malignancies. Pathol Oncol Res 2024; 30:1611643. [PMID: 38515456 PMCID: PMC10954904 DOI: 10.3389/pore.2024.1611643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
The increasing knowledge of molecular alterations in malignancies, including mutations and regulatory failures in the mTOR (mechanistic target of rapamycin) signaling pathway, highlights the importance of mTOR hyperactivity as a validated target in common and rare malignancies. This review summarises recent findings on the characterization and prognostic role of mTOR kinase complexes (mTORC1 and mTORC2) activity regarding differences in their function, structure, regulatory mechanisms, and inhibitor sensitivity. We have recently identified new tumor types with RICTOR (rapamycin-insensitive companion of mTOR) amplification and associated mTORC2 hyperactivity as useful potential targets for developing targeted therapies in lung cancer and other newly described malignancies. The activity of mTOR complexes is recommended to be assessed and considered in cancers before mTOR inhibitor therapy, as current first-generation mTOR inhibitors (rapamycin and analogs) can be ineffective in the presence of mTORC2 hyperactivity. We have introduced and proposed a marker panel to determine tissue characteristics of mTOR activity in biopsy specimens, patient materials, and cell lines. Ongoing phase trials of new inhibitors and combination therapies are promising in advanced-stage patients selected by genetic alterations, molecular markers, and/or protein expression changes in the mTOR signaling pathway. Hopefully, the summarized results, our findings, and the suggested characterization of mTOR activity will support therapeutic decisions.
Collapse
|
27
|
Ghosh C, Hu J. Importance of targeting various cell signaling pathways in solid cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:101-155. [PMID: 38663958 DOI: 10.1016/bs.ircmb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, CA, Unites States.
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, Unites States
| |
Collapse
|
28
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. mTOR Signaling: Recent Progress. Int J Mol Sci 2024; 25:2587. [PMID: 38473834 DOI: 10.3390/ijms25052587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
In the intricate landscape of human biology, the mechanistic target of rapamycin (mTOR) emerges as a key regulator, orchestrating a vast array of processes in health and disease [...].
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biopathology, 'Eginition' Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A Papavassiliou
- 'Sotiria' Hospital, Medical School, First University Department of Respiratory Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
29
|
Simonelli V, Ferrari AR, Battini R, Brovedani P, Bartolini E. Midline non-ictal rhythmic waveforms as possible electroencephalographic biomarkers of Smith-Klingsmore syndrome in children. Clin Neurophysiol Pract 2024; 9:102-105. [PMID: 38495955 PMCID: PMC10940733 DOI: 10.1016/j.cnp.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Pathogenic variants of the MTOR gene result in the Smith-Kingsmore syndrome, whose phenotypical spectrum includes facial dysmorphisms and neurological features. Expressivity is variable, patients exhibit a combination of intellectual disability, macrocephaly and epilepsy. The diagnosis can be missed, failing to detect the causative pathogenic mutation in patients with somatic mosaicism or even skipping to analyze MTOR when the phenotype is not completely expressed. Case study Herein, we report two children harboring the same MTOR recurring mutation (c.5395G>A/p.Glu1799Lys) whose EEG displayed a peculiar combination of midline rhythmic waveforms and asynchronous spike-and-wave discharges with anterior fast activity in sleep and wake. Conclusion: We suggest these features might be considered as possible hallmarks of the syndrome and could aid to expedite the diagnosis when the phenotype is incomplete.
Collapse
Affiliation(s)
- Valerio Simonelli
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
| | - Anna Rita Ferrari
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Brovedani
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
| | - Emanuele Bartolini
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
- Tuscany PhD Programme in Neurosciences, University of Florence, Italy
| |
Collapse
|
30
|
Balle CM, Kassentoft CG, van Heusden JI, Knudsen M, Raaby L, Gravholt CH. Rare Case of a Turner Syndrome Patient with Metastatic Dysgerminoma and No Y-Chromosomal Material with Pathogenic Variants Found in KIT and MTOR. Sex Dev 2024; 17:203-210. [PMID: 38281483 DOI: 10.1159/000536236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION The presence of Y-chromosomal material in females with Turner syndrome (TS) is a well-established risk factor for developing gonadoblastoma and malignant transformations thereof. However, these events are rarely seen in TS patients with no Y-chromosomal material. Thus, it is the current understanding that parts of the Y-chromosome are essential for the malignant transformation of gonadoblastoma in the dysgenetic gonad. METHODS We report a case of a TS female with an apparent 46,X,idic(Xq) karyotype, who was diagnosed with a metastatic dysgerminoma. Whole exome sequencing of the tumor and blood, along with RNA sequencing of the tumor, was performed to comprehensively search for cryptic Y-chromosomal material and pathogenic variants. RESULTS No Y-chromosomal material was detected in either tumor or blood. Whole exome-sequencing of DNA and RNA revealed a pathogenic somatic gain-of-function mutation in KIT and a pathogenic missense mutation in MTOR. The patient underwent total hysterectomy with bilateral salpingo-oophorectomy, followed by adjuvant chemotherapy. Unfortunately, she died due to chemotherapy-induced pneumonitis 7 months after the initial diagnosis. CONCLUSION Females with TS can develop metastatic dysgerminoma even in the absence of Y-chromosomal material. This questions the current understanding of Y-chromosomal material being essential for the malignant transformation of a gonadoblastoma in the dysgenetic gonad.
Collapse
Affiliation(s)
- Camilla Mains Balle
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Michael Knudsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Line Raaby
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Højbjerg Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Szalai F, Sztankovics D, Krencz I, Moldvai D, Pápay J, Sebestyén A, Khoor A. Rictor-A Mediator of Progression and Metastasis in Lung Cancer. Cancers (Basel) 2024; 16:543. [PMID: 38339294 PMCID: PMC10854599 DOI: 10.3390/cancers16030543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Lung carcinoma is one of the most common cancer types for both men and women. Despite recent breakthroughs in targeted therapy and immunotherapy, it is characterized by a high metastatic rate, which can significantly affect quality of life and prognosis. Rictor (encoded by the RICTOR gene) is known as a scaffold protein for the multiprotein complex mTORC2. Among its diverse roles in regulating essential cellular functions, mTORC2 also facilitates epithelial-mesenchymal transition and metastasis formation. Amplification of the RICTOR gene and subsequent overexpression of the Rictor protein can result in the activation of mTORC2, which promotes cell survival and migration. Based on recent studies, RICTOR amplification or Rictor overexpression can serve as a marker for mTORC2 activation, which in turn provides a promising druggable target. Although selective inhibitors of Rictor and the Rictor-mTOR association are only in a preclinical phase, they seem to be potent novel approaches to reduce tumor cell migration and metastasis formation. Here, we summarize recent advances that support an important role for Rictor and mTORC2 as potential therapeutic targets in the treatment of lung cancer. This is a traditional (narrative) review based on Pubmed and Google Scholar searches for the following keywords: Rictor, RICTOR amplification, mTORC2, Rictor complexes, lung cancer, metastasis, progression, mTOR inhibitors.
Collapse
Affiliation(s)
- Fatime Szalai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Andras Khoor
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
32
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
33
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
34
|
Wilson ML, Romano SN, Khatri N, Aharon D, Liu Y, Kaufman OH, Draper BW, Marlow FL. Rbpms2 promotes female fate upstream of the nutrient sensing Gator2 complex component, Mios. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577235. [PMID: 38328218 PMCID: PMC10849709 DOI: 10.1101/2024.01.25.577235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary in character. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.
Collapse
Affiliation(s)
- Miranda L. Wilson
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Shannon N. Romano
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Nitya Khatri
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Devora Aharon
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Yulong Liu
- Department of Molecular and Cellular Biology. University of California. 1 Shields Ave, Davis, CA 95616
| | - Odelya H. Kaufman
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine. 1300 Morris Park Avenue, Bronx, NY 10461
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology. University of California. 1 Shields Ave, Davis, CA 95616
| | - Florence L. Marlow
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine. 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
35
|
Raevsky A, Kovalenko O, Bulgakov E, Sharifi M, Volochnyuk D, Tukalo M. Developing a comprehensive solution aimed to disrupt LARS1/RagD protein-protein interaction. J Biomol Struct Dyn 2024; 42:747-758. [PMID: 36995308 DOI: 10.1080/07391102.2023.2194996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Aminoacyl-tRNA synthetases are crucial enzymes involved in protein synthesis and various cellular physiological reactions. Aside from their standard role in linking amino acids to the corresponding tRNAs, they also impact protein homeostasis by controlling the level of soluble amino acids within the cell. For instance, leucyl-tRNA synthetase (LARS1) acts as a leucine sensor for the mammalian target of rapamycin complex 1 (mTORC1), and may also function as a probable GTPase-activating protein (GAP) for the RagD subunit of the heteromeric activator of mTORC1. In turn, mTORC1 regulates cellular processes, such as protein synthesis, autophagy, and cell growth, and is implicated in various human diseases including cancer, obesity, diabetes, and neurodegeneration. Hence, inhibitors of mTORC1 or a deregulated mTORC1 pathway may offer potential cancer therapies. In this study, we investigated the structural requirements for preventing the sensing and signal transmission from LARS to mTORC1. Building upon recent studies on mTORC1 regulation activation by leucine, we lay the foundation for the development of chemotherapeutic agents against mTORC1 that can overcome resistance to rapamycin. Using a combination of in-silico approaches to develop and validate an alternative interaction model, discussing its benefits and advancements. Finally, we identified a set of compounds ready for testing to prevent LARS1/RagD protein-protein interactions. We establish a basis for creating chemotherapeutic drugs targeting mTORC1, which can conquer resistance to rapamycin. We utilize in-silico methods to generate and confirm an alternative interaction model, outlining its advantages and improvements, and pinpoint a group of novel substances that can prevent LARS1/RagD interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alexey Raevsky
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Enamine Ltd, Kyiv, Ukraine
| | - Oksana Kovalenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Elijah Bulgakov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Dmityi Volochnyuk
- Enamine Ltd, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Michael Tukalo
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
36
|
Ihlamur M, Akgul B, Zengin Y, Korkut ŞV, Kelleci K, Abamor EŞ. The mTOR Signaling Pathway and mTOR Inhibitors in Cancer: Next-generation Inhibitors and Approaches. Curr Mol Med 2024; 24:478-494. [PMID: 37165594 DOI: 10.2174/1566524023666230509161645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/12/2023]
Abstract
mTOR is a serine/threonine kinase that plays various roles in cell growth, proliferation, and metabolism. mTOR signaling in cancer becomes irregular. Therefore, drugs targeting mTOR have been developed. Although mTOR inhibitors rapamycin and rapamycin rapalogs (everolimus, rapamycin, temsirolimus, deforolimus, etc.) and new generation mTOR inhibitors (Rapalink, Dual PI3K/mTOR inhibitors, etc.) are used in cancer treatments, mTOR resistance mechanisms may inhibit the efficacy of these drugs. Therefore, new inhibition approaches are developed. Although these new inhibition approaches have not been widely investigated in cancer treatment, the use of nanoparticles has been evaluated as a new treatment option in a few types of cancer. This review outlines the functions of mTOR in the cancer process, its resistance mechanisms, and the efficiency of mTOR inhibitors in cancer treatment. Furthermore, it discusses the next-generation mTOR inhibitors and inhibition strategies created using nanoparticles. Since mTOR resistance mechanisms prevent the effects of mTOR inhibitors used in cancer treatments, new inhibition strategies should be developed. Inhibition approaches are created using nanoparticles, and one of them offers a promising treatment option with evidence supporting its effectiveness.
Collapse
Affiliation(s)
- Murat Ihlamur
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- Department of Electronics and Automation, Biruni University, Istanbul, Turkey
| | - Busra Akgul
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Yağmur Zengin
- Biomedical Engineering Institute, Department of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Şenay Vural Korkut
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Kübra Kelleci
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- Department of Medical Services and Techniques, Beykoz University, Istanbul, Turkey
| | - Emrah Şefik Abamor
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
37
|
Zhang HL, Li Y. The Patent Landscape of mTOR and PTEN Targets. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:104-118. [PMID: 37132311 DOI: 10.2174/2772434418666230427164556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND PTEN and mTOR signaling have many roles, including antiinflammatory, immunosuppressant and cancer. OBJECTIVE US patents were retrieved to show the current landscape of the mTOR and PTEN targets. METHODS PTEN and mTOR targets were analyzed by patent analysis. The U.S. granted patents from January 2003 to July 2022 were performed and analyzed. RESULTS The results showed that the mTOR target was more attractive in drug discovery than the PTEN target. Our findings indicated that most large global pharmaceutical companies focused the drug discovery related to the mTOR target. The present study demonstrated that mTOR and PTEN targets showed more applications in biological approaches compared to BRAF and KRAS targets. The chemical structures of the inhibitors of the mTOR target demonstrated some similar features to those of the inhibitors of KRAS targets. CONCLUSION At this stage, the PTEN target may not be an ideal target subjected to new drug discovery. The present study was the first one which demonstrated that the group of O=S=O may play a critical role in the chemical structures of mTOR inhibitors. It was the first time to show that a PTEN target may be suitably subjected to new therapeutic discovery efforts related to biological applications. Our findings provide a recent insight into therapeutic development for mTOR and PTEN targets.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Central International Intellectual Property (Baotou) Co., Ltd, Baotou, China
| | - Yongxia Li
- Central International Intellectual Property (Baotou) Co., Ltd, Baotou, China
| |
Collapse
|
38
|
Stark J, Tőke J, Huszty G, Nagy P, Bedics G, Bödör C, Tímár J, Tóth M. Parathyroid cancer with MTOR gene mutation: Case report and review of the literature. ANNALES D'ENDOCRINOLOGIE 2023; 84:761-763. [PMID: 37500361 DOI: 10.1016/j.ando.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Júlia Stark
- Department of Internal Medicine and Oncology, ENDO-ERN HCP, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Tőke
- Department of Internal Medicine and Oncology, ENDO-ERN HCP, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Huszty
- Department of Surgery, Transplantation and Gastroenterology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Nagy
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Bedics
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Tóth
- Department of Internal Medicine and Oncology, ENDO-ERN HCP, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
39
|
Khalil MI, Ali MM, Holail J, Houssein M. Growth or death? Control of cell destiny by mTOR and autophagy pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:39-55. [PMID: 37944568 DOI: 10.1016/j.pbiomolbio.2023.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
One of the central regulators of cell growth, proliferation, and metabolism is the mammalian target of rapamycin, mTOR, which exists in two structurally and functionally different complexes: mTORC1 and mTORC2; unlike m TORC2, mTORC1 is activated in response to the sufficiency of nutrients and is inhibited by rapamycin. mTOR complexes have critical roles not only in protein synthesis, gene transcription regulation, proliferation, tumor metabolism, but also in the regulation of the programmed cell death mechanisms such as autophagy and apoptosis. Autophagy is a conserved catabolic mechanism in which damaged molecules are recycled in response to nutrient starvation. Emerging evidence indicates that the mTOR signaling pathway is frequently activated in tumors. In addition, dysregulation of autophagy was associated with the development of a variety of human diseases, such as cancer and aging. Since mTOR can inhibit the induction of the autophagic process from the early stages of autophagosome formation to the late stage of lysosome degradation, the use of mTOR inhibitors to regulate autophagy could be considered a potential therapeutic option. The present review sheds light on the mTOR and autophagy signaling pathways and the mechanisms of regulation of mTOR-autophagy.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon; Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon.
| |
Collapse
|
40
|
Caliò A, Marletta S, Settanni G, Rizzo M, Gobbo S, Pedron S, Stefanizzi L, Munari E, Brunelli M, Marcolini L, Pesci A, Fratoni S, Pierconti F, Raspollini MR, Marchetti A, Doglioni C, Amin MB, Porta C, Martignoni G. mTOR eosinophilic renal cell carcinoma: a distinctive tumor characterized by mTOR mutation, loss of chromosome 1, cathepsin-K expression, and response to target therapy. Virchows Arch 2023; 483:821-833. [PMID: 37938323 PMCID: PMC10700445 DOI: 10.1007/s00428-023-03688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
In the spectrum of oncocytic renal neoplasms, a subset of tumors with high-grade-appearing histologic features harboring pathogenic mutations in mammalian target of rapamycin (mTOR) and hitherto clinical indolent behavior has been described. Three cases (2F,1 M) with histologically documented metastases (lymph node, skull, and liver) were retrieved and extensively investigated by immunohistochemistry, FISH, and next-generation sequencing. Tumors were composed of eosinophilic cells with prominent nucleoli (G3 by ISUP/WHO) arranged in solid to nested architecture. Additionally, there were larger cells with perinuclear cytoplasmic shrinkage and sparse basophilic Nissl-like granules, superficially resembling the so-called spider cells of cardiac rhabdomyomas. The renal tumors, including the skull and liver metastases, showed immunoexpression PAX8, CK8-18, and cathepsin-K, and negativity for vimentin. NGS identified mTOR genetic alterations in the three cases, including the skull and liver metastases. One patient was then treated with Everolimus (mTOR inhibitors) with clinical response (metastatic tumor shrinkage). We present a distinct renal tumor characterized by high-grade eosinophilic cells, cathepsin-K immunohistochemical expression, and harboring mTOR gene mutations demonstrating a malignant potential and showing responsiveness to mTOR inhibitors.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - Stefano Marletta
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Giulio Settanni
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Mimma Rizzo
- Division of Medical Oncology, A.O.U. Consorziale Policlinico Di Bari, Bari, Italy
| | - Stefano Gobbo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Serena Pedron
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | | | - Enrico Munari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - Lisa Marcolini
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Anna Pesci
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Stefano Fratoni
- Division of Anatomic Pathology, S. Eugenio Hospital, Rome, Italy
| | - Francesco Pierconti
- Division of Anatomic Pathology and Histology, Foundation "A. Gemelli" University Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Rosaria Raspollini
- Histopathology and Molecular Diagnostics, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Antonio Marchetti
- Division of Anatomic Pathology and Histology, Ospedale Clinicizzato "SS. Annunziata" Università Di Chieti, Chieti, Italy
| | | | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science, Memphis, TN, USA
- Department of Urology, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "A. Moro, Bari, Italy
| | - Guido Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy.
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy.
| |
Collapse
|
41
|
Fu Z, Xu H, Yue L, Zheng W, Pan L, Gao F, Liu X. Immunosenescence and cancer: Opportunities and challenges. Medicine (Baltimore) 2023; 102:e36045. [PMID: 38013358 PMCID: PMC10681516 DOI: 10.1097/md.0000000000036045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
As individuals age, cancer becomes increasingly common. This continually rising risk can be attributed to various interconnected factors that influence the body's susceptibility to cancer. Among these factors, the accumulation of senescent cells in tissues and the subsequent decline in immune cell function and proliferative potential are collectively referred to as immunosenescence. Reduced T-cell production, changes in secretory phenotypes, increased glycolysis, and the generation of reactive oxygen species are characteristics of immunosenescence that contribute to cancer susceptibility. In the tumor microenvironment, senescent immune cells may promote the growth and spread of tumors through multiple pathways, thereby affecting the effectiveness of immunotherapy. In recent years, immunosenescence has gained increasing attention due to its critical role in tumor development. However, our understanding of how immunosenescence specifically impacts cancer immunotherapy remains limited, primarily due to the underrepresentation of elderly patients in clinical trials. Furthermore, there are several age-related intervention methods, including metformin and rapamycin, which involve genetic and pharmaceutical approaches. This article aims to elucidate the defining characteristics of immunosenescence and its impact on malignant tumors and immunotherapy. We particularly focus on the future directions of cancer treatment, exploring the complex interplay between immunosenescence, cancer, and potential interventions.
Collapse
Affiliation(s)
- Zhibin Fu
- Weifang Hospital of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Hailong Xu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Lanping Yue
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Weiwei Zheng
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Linkang Pan
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Fangyi Gao
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xingshan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
42
|
Zhang S, Dong P, Pan Z, Chen Q, Zhu J, Mao Z. Comparison of gene mutation profile in different lung adenocarcinoma subtypes by targeted next-generation sequencing. Med Oncol 2023; 40:349. [PMID: 37935925 DOI: 10.1007/s12032-023-02206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Disease prognosis after resection of lung cancer could be affected by pathological subtypes. In this study, we investigated the difference of gene variation and significantly altered pathways between adenocarcinoma in situ (AIS)/microinvasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) subtypes to reveal the molecular mechanism of prognosis differences. METHODS Sixty one tumor tissues were subjected to DNA extraction and customized 136 gene targeted next-generation sequencing. Comparisons between groups were performed with two-sided Fisher's exact test for categorical variables and two-tailed unpaired t test for numerical variables. RESULTS A total of 402 somatic mutations involved in 70 genes were detected in all these samples, and 74.29% of these genes were mutated in at least two samples. PMS2, ARID1A, EGFR, and POLE were the most frequently mutated genes. ALK_EML4 fusion was observed in one IAC patient and RET_ KIF5B fusion in one AIS patient. A significant higher proportion of patients with TP53 gene mutation was observed in the IAC group (P = 0.0057). The average onset age in IAC group is 62.48 years, which is greater than other subtypes (P = 0.0166). It revealed that mutations in genes involved in the mTOR signaling pathway (56.52% vs 26.32%, P = 0.0288) and Hippo signaling pathway (34.78% vs 10.53%, P = 0.0427) were significantly enriched in IAC subtypes, suggesting the key involvement of mTOR and Hippo signaling pathways in lung tumor development and malignant progression. CONCLUSIONS This study revealed the heterogeneity of gene mutations and significantly altered pathways between different lung cancer subtypes, suggesting the potential mechanism of different prognosis.
Collapse
Affiliation(s)
- Shaowen Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Ping Dong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Zongwei Pan
- Department of Medical Equipment, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Qian Chen
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Junqi Zhu
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Zhangfan Mao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
43
|
Wehle DT, Bass CS, Sulc J, Mirzaa G, Smith SEP. Protein interaction network analysis of mTOR signaling reveals modular organization. J Biol Chem 2023; 299:105271. [PMID: 37741456 PMCID: PMC10594569 DOI: 10.1016/j.jbc.2023.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine-threonine kinase that acts as a central mediator of translation and plays important roles in cell growth, synaptic plasticity, cancer, and a wide range of developmental disorders. The signaling cascade linking lipid kinases (phosphoinositide 3-kinases), protein kinases (AKT), and translation initiation complexes (EIFs) to mTOR has been extensively modeled, but does not fully describe mTOR system behavior. Here, we use quantitative multiplex coimmunoprecipitation to monitor a protein interaction network (PIN) composed of 300+ binary interactions among mTOR-related proteins. Using a simple model system of serum-deprived or fresh-media-fed mouse 3T3 fibroblasts, we observed extensive PIN remodeling involving 27+ individual protein interactions after 1 h, despite phosphorylation changes observed after only 5 min. Using small molecule inhibitors of phosphoinositide 3-kinase, AKT, mTOR, MEK and ERK, we define subsets of the PIN, termed "modules", that respond differently to each inhibitor. Using primary fibroblasts from individuals with overgrowth disorders caused by pathogenic PIK3CA or MTOR variants, we find that hyperactivation of mTOR pathway components is reflected in a hyperactive PIN. Our data define a "modular" organization of the mTOR PIN in which coordinated groups of interactions respond to the activation or inhibition of distinct nodes, and demonstrate that kinase inhibitors affect the modular network architecture in a complex manner, inconsistent with simple linear models of signal transduction.
Collapse
Affiliation(s)
- Devin T Wehle
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Carter S Bass
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Josef Sulc
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA; Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Stephen E P Smith
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
44
|
Chen J, Zhang X, Tan X, Liu P. Somatic gain-of-function mutations in BUD13 promote oncogenesis by disrupting Fbw7 function. J Exp Med 2023; 220:e20222056. [PMID: 37382881 PMCID: PMC10309187 DOI: 10.1084/jem.20222056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Somatic mutations occurring on key enzymes are extensively studied and targeted therapies are developed with clinical promises. However, context-dependent enzyme function through distinct substrates complicated targeting a given enzyme. Here, we develop an algorithm to elucidate a new class of somatic mutations occurring on enzyme-recognizing motifs that cancer may hijack to facilitate tumorigenesis. We validate BUD13-R156C and -R230Q mutations evading RSK3-mediated phosphorylation with enhanced oncogenicity in promoting colon cancer growth. Further mechanistic studies reveal BUD13 as an endogenous Fbw7 inhibitor that stabilizes Fbw7 oncogenic substrates, while cancerous BUD13-R156C or -R230Q interferes with Fbw7Cul1 complex formation. We also find this BUD13 regulation plays a critical role in responding to mTOR inhibition, which can be used to guide therapy selections. We hope our studies reveal the landscape of enzyme-recognizing motif mutations with a publicly available resource and provide novel insights for somatic mutations cancer hijacks to promote tumorigenesis with the potential for patient stratification and cancer treatment.
Collapse
Affiliation(s)
- Jianfeng Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xinyi Zhang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xianming Tan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
45
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 245] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
46
|
Fagin JA, Krishnamoorthy GP, Landa I. Pathogenesis of cancers derived from thyroid follicular cells. Nat Rev Cancer 2023; 23:631-650. [PMID: 37438605 PMCID: PMC10763075 DOI: 10.1038/s41568-023-00598-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The genomic simplicity of differentiated cancers derived from thyroid follicular cells offers unique insights into how oncogenic drivers impact tumour phenotype. Essentially, the main oncoproteins in thyroid cancer activate nodes in the receptor tyrosine kinase-RAS-BRAF pathway, which constitutively induces MAPK signalling to varying degrees consistent with their specific biochemical mechanisms of action. The magnitude of the flux through the MAPK signalling pathway determines key elements of thyroid cancer biology, including differentiation state, invasive properties and the cellular composition of the tumour microenvironment. Progression of disease results from genomic lesions that drive immortalization, disrupt chromatin accessibility and cause cell cycle checkpoint dysfunction, in conjunction with a tumour microenvironment characterized by progressive immunosuppression. This Review charts the genomic trajectories of these common endocrine tumours, while connecting them to the biological states that they confer.
Collapse
Affiliation(s)
- James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
47
|
Wehle DT, Bass CS, Sulc J, Mirzaa G, Smith SEP. Protein interaction network analysis of mTOR signaling reveals modular organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552011. [PMID: 37577705 PMCID: PMC10418199 DOI: 10.1101/2023.08.04.552011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a serine-threonine kinase that acts as a central mediator of translation, and plays important roles in cell growth, synaptic plasticity, cancer, and a wide range of developmental disorders. The signaling cascade linking lipid kinases (PI3Ks), protein kinases (AKT) and translation initiation complexes (EIFs) to mTOR has been extensively modeled, but does not fully describe mTOR system behavior. Here, we use quantitative multiplex co-immunoprecipitation to monitor a protein interaction network (PIN) composed of 300+ binary interactions among mTOR-related proteins. Using a simple model system of serum deprived or fresh-media-fed mouse 3T3 fibroblasts, we observed extensive PIN remodeling involving 27+ individual protein interactions after one hour, despite phosphorylation changes observed after only five minutes. Using small molecule inhibitors of PI3K, AKT, mTOR, MEK and ERK, we define subsets of the PIN, termed 'modules', that respond differently to each inhibitor. Using primary fibroblasts from individuals with overgrowth disorders caused by pathogenic PIK3CA or MTOR variants, we find that hyperactivation of mTOR pathway components is reflected in a hyperactive PIN. Our data define a "modular" organization of the mTOR PIN in which coordinated groups of interactions respond to activation or inhibition of distinct nodes, and demonstrate that kinase inhibitors affect the modular network architecture in a complex manner, inconsistent with simple linear models of signal transduction.
Collapse
Affiliation(s)
- Devin T Wehle
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Carter S Bass
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Josef Sulc
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Stephen E P Smith
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
48
|
Pan Z, Zhang H, Dokudovskaya S. The Role of mTORC1 Pathway and Autophagy in Resistance to Platinum-Based Chemotherapeutics. Int J Mol Sci 2023; 24:10651. [PMID: 37445831 DOI: 10.3390/ijms241310651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum I) is a platinum-based drug, the mainstay of anticancer treatment for numerous solid tumors. Since its approval by the FDA in 1978, the drug has continued to be used for the treatment of half of epithelial cancers. However, resistance to cisplatin represents a major obstacle during anticancer therapy. Here, we review recent findings on how the mTORC1 pathway and autophagy can influence cisplatin sensitivity and resistance and how these data can be applicable for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zhenrui Pan
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Hanxiao Zhang
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
49
|
Quinn LM, Haldenby S, Antzcak P, Fowler A, Bullock K, Kenny J, Gilbert T, Andrews T, Diaz-Nieto R, Fenwick S, Jones R, Costello-Goldring E, Poston G, Greenhalf W, Palmer D, Malik H, Goldring C. Genomic profiling of idiopathic peri-hilar cholangiocarcinoma reveals new targets and mutational pathways. Sci Rep 2023; 13:6681. [PMID: 37095160 PMCID: PMC10126102 DOI: 10.1038/s41598-023-33096-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Peri-hilar cholangiocarcinoma (pCCA) is chemorefractory and limited genomic analyses have been undertaken in Western idiopathic disease. We undertook comprehensive genomic analyses of a U.K. idiopathic pCCA cohort to characterize its mutational profile and identify new targets. Whole exome and targeted DNA sequencing was performed on forty-two resected pCCA tumors and normal bile ducts, with Gene Set Enrichment Analysis (GSEA) using one-tailed testing to generate false discovery rates (FDR). 60% of patients harbored one cancer-associated mutation, with two mutations in 20%. High frequency somatic mutations in genes not typically associated with cholangiocarcinoma included mTOR, ABL1 and NOTCH1. We identified non-synonymous mutation (p.Glu38del) in MAP3K9 in ten tumors, associated with increased peri-vascular invasion (Fisher's exact, p < 0.018). Mutation-enriched pathways were primarily immunological, including innate Dectin-2 (FDR 0.001) and adaptive T-cell receptor pathways including PD-1 (FDR 0.007), CD4 phosphorylation (FDR 0.009) and ZAP70 translocation (FDR 0.009), with overlapping HLA genes. We observed cancer-associated mutations in over half of our patients. Many of these mutations are not typically associated with cholangiocarcinoma yet may increase eligibility for contemporary targeted trials. We also identified a targetable MAP3K9 mutation, in addition to oncogenic and immunological pathways hitherto not described in any cholangiocarcinoma subtype.
Collapse
Affiliation(s)
- Leonard M Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Sherrington Building, University of Liverpool, Liverpool, UK.
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Philip Antzcak
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Anna Fowler
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Katie Bullock
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Sherrington Building, University of Liverpool, Liverpool, UK
| | - John Kenny
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Timothy Gilbert
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Sherrington Building, University of Liverpool, Liverpool, UK
| | - Timothy Andrews
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | | - Stephen Fenwick
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Robert Jones
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Eithne Costello-Goldring
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Sherrington Building, University of Liverpool, Liverpool, UK
| | - Graeme Poston
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - William Greenhalf
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Sherrington Building, University of Liverpool, Liverpool, UK
| | - Daniel Palmer
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Sherrington Building, University of Liverpool, Liverpool, UK
| | - Hassan Malik
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Chris Goldring
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Sherrington Building, University of Liverpool, Liverpool, UK.
| |
Collapse
|
50
|
Chen M, Lan H, Yao S, Jin K, Chen Y. Metabolic Interventions in Tumor Immunity: Focus on Dual Pathway Inhibitors. Cancers (Basel) 2023; 15:cancers15072043. [PMID: 37046703 PMCID: PMC10093048 DOI: 10.3390/cancers15072043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The metabolism of tumors and immune cells in the tumor microenvironment (TME) can affect the fate of cancer and immune responses. Metabolic reprogramming can occur following the activation of metabolic-related signaling pathways, such as phosphoinositide 3-kinases (PI3Ks) and the mammalian target of rapamycin (mTOR). Moreover, various tumor-derived immunosuppressive metabolites following metabolic reprogramming also affect antitumor immune responses. Evidence shows that intervention in the metabolic pathways of tumors or immune cells can be an attractive and novel treatment option for cancer. For instance, administrating inhibitors of various signaling pathways, such as phosphoinositide 3-kinases (PI3Ks), can improve T cell-mediated antitumor immune responses. However, dual pathway inhibitors can significantly suppress tumor growth more than they inhibit each pathway separately. This review discusses the latest metabolic interventions by dual pathway inhibitors as well as the advantages and disadvantages of this therapeutic approach.
Collapse
Affiliation(s)
- Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huanrong Lan
- Department of Surgical Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang 312500, China
| |
Collapse
|