1
|
Iorkula TH, Jude-Kelly Osayawe O, Odogwu DA, Ganiyu LO, Faderin E, Awoyemi RF, Akodu BO, Ifijen IH, Aworinde OR, Agyemang P, Onyinyechi OL. Advances in pyrazolo[1,5- a]pyrimidines: synthesis and their role as protein kinase inhibitors in cancer treatment. RSC Adv 2025; 15:3756-3828. [PMID: 39911541 PMCID: PMC11795850 DOI: 10.1039/d4ra07556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are a notable class of heterocyclic compounds with potent protein kinase inhibitor (PKI) activity, playing a critical role in targeted cancer therapy. Protein kinases, key regulators in cellular signalling, are frequently disrupted in cancers, making them important targets for small-molecule inhibitors. This review explores recent advances in pyrazolo[1,5-a]pyrimidine synthesis and their application as PKIs, with emphasis on inhibiting kinases such as CK2, EGFR, B-Raf, MEK, PDE4, BCL6, DRAK1, CDK1 and CDK2, Pim-1, among others. Several synthetic strategies have been developed for the efficient synthesis of pyrazolo[1,5-a]pyrimidines, including cyclization, condensation, three-component reactions, microwave-assisted methods, and green chemistry approaches. Palladium-catalyzed cross-coupling and click chemistry have enabled the introduction of diverse functional groups, enhancing the biological activity and structural diversity of these compounds. Structure-activity relationship (SAR) studies highlight the influence of substituent patterns on their pharmacological properties. Pyrazolo[1,5-a]pyrimidines act as ATP-competitive and allosteric inhibitors of protein kinases, with EGFR-targeting derivatives showing promise in non-small cell lung cancer (NSCLC) treatment. Their inhibitory effects on B-Raf and MEK kinases are particularly relevant in melanoma. Biological evaluations, including in vitro and in vivo studies, have demonstrated their cytotoxicity, kinase selectivity, and antiproliferative effects. Despite these advances, challenges such as drug resistance, off-target effects, and toxicity persist. Future research will focus on optimizing synthetic approaches, improving drug selectivity, and enhancing bioavailability to increase clinical efficacy.
Collapse
Affiliation(s)
- Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Daniel A Odogwu
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | - Busayo Odunayo Akodu
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | | | - Peter Agyemang
- Department of Chemistry, Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | | |
Collapse
|
2
|
Sealover NE, Hughes JM, Theard PL, Chatterjee D, Linke AJ, Finniff BA, Daley BR, Lewis RE, Kortum RL. Protocol for modeling acquired resistance to targeted therapeutics in adherent and suspension cancer cell lines via in situ resistance assay. STAR Protoc 2024; 5:103361. [PMID: 39369385 PMCID: PMC11491975 DOI: 10.1016/j.xpro.2024.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/11/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
Acquired resistance to oncogene-targeted therapies is the major driver of mortality for patients with cancer. Here, we present a 6-to-16-week assay to model the development of acquired resistance in adherent and suspension cancer cell lines. We describe steps for determining therapeutic dose, assaying acquired resistance, and testing combination therapies. This protocol is a high-throughput, cost-effective, and scalable method to model acquired drug resistance to established and newly developed therapies. For complete details on the use and execution of this protocol, please refer to Sealover et al.1 and Theard et al.2.
Collapse
Affiliation(s)
- Nancy E Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jacob M Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Patricia L Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Deepan Chatterjee
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda J Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bridget A Finniff
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Brianna R Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Robert E Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
3
|
Wang X, Zhu J, Li L, Zhao Q, Huang Y, Wen C, Chen D, Wu L. Utility of patient-derived xenografts to evaluate drug sensitivity and select optimal treatments for individual non-small-cell lung cancer patients. Mol Med 2024; 30:209. [PMID: 39528952 PMCID: PMC11556205 DOI: 10.1186/s10020-024-00934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) is currently considered a preferred preclinical model to evaluate drug sensitivity, explore drug resistance mechanisms, and select individualized treatment regimens. METHODS Histopathological examination, immunohistochemistry and whole-exome sequencing confirmed similarity between our PDX tumors and primary tumors in terms of morphology and genetic characteristics. The drug reactivity of the PDX tumor was validated in vivo. The mechanisms of acquired resistance to Osimertinib PDX tumors were investigated by WES and WB. RESULTS We successfully established 13 NSCLC-PDXs derived from 62 patients, including eight adenocarcinomas, four squamous-cell carcinoma, and one large-cell neuroendocrine carcinoma. Histological subtype and clinical stage were significant factors affecting the successful PDXs establishment. The treatment responses to conventional chemotherapy in PDXs were entirely consistent with that of their corresponding patients. According to the genetic status of tumors, more appropriate targeted agents were selected in PDXs for their corresponding patients as alternative treatment options. In addition, a PDX model with acquired resistance to osimertinib was induced, and the overactivation of RAS mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) signaling pathway caused by the dual-specificity phosphatase 6 (DUSP6) M62I mutation was found to play a key role in the development of osimertinib resistance. Trametinib, a specific inhibitor of the MAPK-ERK pathway significantly slowed down the tumor growth in osimertinib-resistant PDX models, providing an alternative treatment in patients after osimertinib failure.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Ju Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lingling Li
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qilin Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yutang Huang
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Chunjie Wen
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Lanxiang Wu
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Jiang Z, Gu Z, Yu X, Cheng T, Liu B. Research progress on the role of bypass activation mechanisms in resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Front Oncol 2024; 14:1447678. [PMID: 39582541 PMCID: PMC11581962 DOI: 10.3389/fonc.2024.1447678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 11/26/2024] Open
Abstract
The clinical application of small molecule tyrosine kinase inhibitors (TKIs) has significantly improved the quality of life and prognosis of patients with non-small cell lung cancer (NSCLC) carrying driver genes. However, resistance to TKI treatment is inevitable. Bypass signal activation is one of the important reasons for TKI resistance. Although TKI drugs inhibit downstream signaling pathways of driver genes, key signaling pathways within tumor cells can still be persistently activated through bypass routes such as MET gene amplification, EGFR gene amplification, and AXL activation. This continuous activation maintains tumor cell growth and proliferation, leading to TKI resistance. The fundamental strategy to treat TKI resistance mediated by bypass activation involves simultaneously inhibiting the activated bypass signals and the original driver gene signaling pathways. Some clinical trials based on this combined treatment approach have yielded promising preliminary results, offering more treatment options for NSCLC patients with TKI resistance. Additionally, early identification of resistance mechanisms through liquid biopsy, personalized targeted therapy against these mechanisms, and preemptive targeting of drug-tolerant persistent cells may provide NSCLC patients with more sustained and effective treatment.
Collapse
Affiliation(s)
- Ziyang Jiang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihan Gu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaomin Yu
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Chengdu, China
- Institute of Disaster Medicine, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, West China Hospital, Chengdu, China
| | - Tao Cheng
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bofu Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Lau V, Nurkolis F, Park MN, Heriyanto DS, Taslim NA, Tallei TE, Permatasari HK, Tjandrawinata RR, Moon S, Kim B. Green Seaweed Caulerpa racemosa as a Novel Non-Small Cell Lung Cancer Inhibitor in Overcoming Tyrosine Kinase Inhibitor Resistance: An Analysis Employing Network Pharmacology, Molecular Docking, and In Vitro Research. Mar Drugs 2024; 22:272. [PMID: 38921583 PMCID: PMC11204876 DOI: 10.3390/md22060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The marine environment provides a rich source of distinct creatures containing potentially revolutionary bioactive chemicals. One of these organisms is Caulerpa racemosa, a type of green algae known as green seaweed, seagrapes, or green caviar. This organism stands out because it has great promise for use in medicine, especially in the study of cancer. Through the utilization of computational modeling (in silico) and cellular laboratory experiments (in vitro), the chemical components included in the green seaweed C. racemosa were effectively analyzed, uncovering its capability to treat non-small cell lung cancer (NSCLC). The study specifically emphasized blocking SRC, STAT3, PIK3CA, MAPK1, EGFR, and JAK1 using molecular docking and in vitro. These proteins play a crucial role in the EGFR Tyrosine Kinase Inhibitor Resistance pathway in NSCLC. The chemical Caulersin (C2) included in C. racemosa extract (CRE) has been identified as a potent and effective agent in fighting against non-small cell lung cancer (NSCLC), both in silico and in vitro. CRE and C2 showed a level of inhibition similar to that of osimertinib (positive control/NSCLC drug).
Collapse
Affiliation(s)
- Vincent Lau
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia;
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia
- Division of Cardiac, Thoracic, and Vascular Surgery, Department of Surgery, Faculty of Medicine, Public Health, and Nursing/Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia
- Collaboration Research Center for Precision Oncology Based Omics—PKR PrOmics, Yogyakarta 55281, Indonesia
| | - Nurpudji Astuti Taslim
- Department of Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Happy Kurnia Permatasari
- Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Raymond R. Tjandrawinata
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Lara MS, Blakely CM, Riess JW. Targeting MEK in non-small cell lung cancer. Curr Probl Cancer 2024; 49:101065. [PMID: 38341356 DOI: 10.1016/j.currproblcancer.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The mitogen-activated protein kinase (MAPK or MEK) pathway modulates tumor cell survival and proliferation in non-small cell lung cancer (NSCLC). Unlike RAS or EGFR, activating mutations in MEK are exceedingly rare in NSCLC. Instead, enhanced activation of the MEK pathway is often linked to increased signaling by upstream oncogenic driver mutations. Thus far, MEK inhibitor monotherapy has shown little promise. However, treatment strategies involving MEK inhibition in combination with other targeted therapies in other oncogene-driven NSCLC has proven to be encouraging. For example, MEK inhibition - when combined with BRAF inhibition, - has shown strong anti-tumor activity in BRAF V600 mutated NSCLC. In this review, recent data on MEK inhibitor strategies in NSCLC are summarized. Furthermore, ongoing early phase trials investigating MEK inhibitor combination therapy with immunotherapy, chemotherapy and other oncogene drivers are highlighted. These and other studies could help inform future rational combination strategies of MEK-ERK inhibition in oncogene-driven NSCLC.
Collapse
Affiliation(s)
- Matthew S Lara
- University of California Davis Comprehensive Cancer Center and the UC Davis School of Medicine, Sacramento CA, USA
| | - Collin M Blakely
- University of California San Francisco Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jonathan W Riess
- University of California Davis Comprehensive Cancer Center and the UC Davis School of Medicine, Sacramento CA, USA.
| |
Collapse
|
7
|
Hayes TK, Aquilanti E, Persky NS, Yang X, Kim EE, Brenan L, Goodale AB, Alan D, Sharpe T, Shue RE, Westlake L, Golomb L, Silverman BR, Morris MD, Fisher TR, Beyene E, Li YY, Cherniack AD, Piccioni F, Hicks JK, Chi AS, Cahill DP, Dietrich J, Batchelor TT, Root DE, Johannessen CM, Meyerson M. Comprehensive mutational scanning of EGFR reveals TKI sensitivities of extracellular domain mutants. Nat Commun 2024; 15:2742. [PMID: 38548752 PMCID: PMC10978866 DOI: 10.1038/s41467-024-45594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/30/2024] [Indexed: 04/01/2024] Open
Abstract
The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function. We perform saturation mutagenesis of EGFR and assess function of ~22,500 variants in a human EGFR-dependent lung cancer cell line. This approach reveals enrichment of erlotinib-insensitive variants of known and unknown significance in the dimerization, transmembrane, and kinase domains. Multiple EGFR extracellular domain variants, not associated with approved targeted therapies, are sensitive to afatinib and dacomitinib in vitro. Two glioblastoma patients with somatic EGFR G598V dimerization domain mutations show responses to dacomitinib treatment followed by within-pathway resistance mutation in one case. In summary, this comprehensive screen expands the landscape of functional EGFR variants and suggests broader clinical investigation of EGFR inhibition for cancers harboring extracellular domain mutations.
Collapse
Affiliation(s)
- Tikvah K Hayes
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Elisa Aquilanti
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Nicole S Persky
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
- Aera Therapeutics, Cambridge, MA, USA
| | - Xiaoping Yang
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Erica E Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
| | - Lisa Brenan
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Amy B Goodale
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Douglas Alan
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Ted Sharpe
- Data Science Platform, The Broad Institute of M.I.T. and Harvard Cambridge, Cambridge, MA, USA
| | - Robert E Shue
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Lindsay Westlake
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Lior Golomb
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Brianna R Silverman
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
| | - Myshal D Morris
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, MA, USA
| | - Ty Running Fisher
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, MA, USA
| | - Eden Beyene
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, MA, USA
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Federica Piccioni
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
- Merck Research Laboratories, Cambridge, MA, USA
| | - J Kevin Hicks
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew S Chi
- Center for Neuro-Oncology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel P Cahill
- Center for Neuro-Oncology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - David E Root
- Genetic Perturbation Platform, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Cory M Johannessen
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
- Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA.
- Cancer Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA.
| |
Collapse
|
8
|
Sealover NE, Theard PT, Hughes JM, Linke AJ, Daley BR, Kortum RL. In situ modeling of acquired resistance to RTK/RAS-pathway-targeted therapies. iScience 2024; 27:108711. [PMID: 38226159 PMCID: PMC10788224 DOI: 10.1016/j.isci.2023.108711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Intrinsic and acquired resistance limit the window of effectiveness for oncogene-targeted cancer therapies. Here, we describe an in situ resistance assay (ISRA) that reliably models acquired resistance to RTK/RAS-pathway-targeted therapies across cell lines. Using osimertinib resistance in EGFR-mutated lung adenocarcinoma (LUAD) as a model system, we show that acquired osimertinib resistance can be significantly delayed by inhibition of proximal RTK signaling using SHP2 inhibitors. Isolated osimertinib-resistant populations required SHP2 inhibition to resensitize cells to osimertinib and reduce MAPK signaling to block the effects of enhanced activation of multiple parallel RTKs. We additionally modeled resistance to targeted therapies including the KRASG12C inhibitors adagrasib and sotorasib, the MEK inhibitor trametinib, and the farnesyl transferase inhibitor tipifarnib. These studies highlight the tractability of in situ resistance assays to model acquired resistance to targeted therapies and provide a framework for assessing the extent to which synergistic drug combinations can target acquired drug resistance.
Collapse
Affiliation(s)
- Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Patricia T. Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amanda J. Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
9
|
Fabbri L, Di Federico A, Astore M, Marchiori V, Rejtano A, Seminerio R, Gelsomino F, De Giglio A. From Development to Place in Therapy of Lorlatinib for the Treatment of ALK and ROS1 Rearranged Non-Small Cell Lung Cancer (NSCLC). Diagnostics (Basel) 2023; 14:48. [PMID: 38201357 PMCID: PMC10804309 DOI: 10.3390/diagnostics14010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Following the results of the CROWN phase III trial, the third-generation macrocyclic ALK inhibitor lorlatinib has been introduced as a salvage option after the failure of a first-line TKI in ALK-rearranged NSCLC, while its precise role in the therapeutic algorithm of ROS1 positive disease is still to be completely defined. The ability to overcome acquired resistance to prior generation TKIs (alectinib, brigatinib, ceritinib, and crizotinib) and the high intracranial activity in brain metastatic disease thanks to increased blood-brain barrier penetration are the reasons for the growing popularity and interest in this molecule. Nevertheless, the major vulnerability of this drug resides in a peculiar profile of related collateral events, with neurological impairment being the most conflicting and debated clinical issue. The cognitive safety concern, the susceptibility to heterogeneous resistance pathways, and the absence of a valid alternative in the second line are strongly jeopardizing a potential paradigm shift in this oncogene-addicted disease. So, when prescribing lorlatinib, clinicians must face two diametrically opposed characteristics: a great therapeutic potential without the intrinsic limitations of its precursor TKIs, a cytotoxic activity threatened by suboptimal tolerability, and the unavoidable onset of resistance mechanisms we cannot properly manage yet. In this paper, we give a critical point of view on the stepwise introduction of this promising drug into clinical practice, starting from its innovative molecular and biochemical properties to intriguing future developments, without forgetting its weaknesses.
Collapse
Affiliation(s)
- Laura Fabbri
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Alessandro Di Federico
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy;
| | - Martina Astore
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Virginia Marchiori
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Agnese Rejtano
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Renata Seminerio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
| | - Francesco Gelsomino
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy;
| | - Andrea De Giglio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (L.F.); (A.D.F.); (M.A.); (V.M.); (A.R.); (R.S.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
10
|
Takatsu F, Suzawa K, Tomida S, Thu YM, Sakaguchi M, Toji T, Ohki M, Tsudaka S, Date K, Matsuda N, Iwata K, Zhu Y, Nakata K, Shien K, Yamamoto H, Nakayama A, Okazaki M, Sugimoto S, Toyooka S. Periostin secreted by cancer-associated fibroblasts promotes cancer progression and drug resistance in non-small cell lung cancer. J Mol Med (Berl) 2023; 101:1603-1614. [PMID: 37831111 DOI: 10.1007/s00109-023-02384-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are important components in the tumor microenvironment, and we sought to identify effective therapeutic targets in CAFs for non-small cell lung cancer (NSCLC). In this study, we established fibroblast cell lines from the cancerous and non-cancerous parts of surgical lung specimens from patients with NSCLC and evaluated the differences in behaviors towards NSCLC cells. RNA sequencing analysis was performed to investigate the differentially expressed genes between normal fibroblasts (NFs) and CAFs, and we identified that the expression of periostin (POSTN), which is known to be overexpressed in various solid tumors and promote cancer progression, was significantly higher in CAFs than in NFs. POSTN increased cell proliferation via NSCLC cells' ERK pathway activation and induced epithelial-mesenchymal transition (EMT), which improved migration in vitro. In addition, POSTN knockdown in CAFs suppressed these effects, and in vivo experiments demonstrated that the POSTN knockdown improved the sensitivity of EGFR-mutant NSCLC cells for osimertinib treatment. Collectively, our results showed that CAF-derived POSTN is involved in tumor growth, migration, EMT induction, and drug resistance in NSCLC. Targeting CAF-secreted POSTN could be a potential therapeutic strategy for NSCLC. KEY MESSAGES: • POSTN is significantly upregulated in CAFs compared to normal fibroblasts in NCSLC. • POSTN increases cell proliferation via activation of the NSCLC cells' ERK pathway. • POSTN induces EMT in NSCLC cells and improves the migration ability. • POSTN knockdown improves the sensitivity for osimertinib in EGFR-mutant NSCLC cells.
Collapse
Affiliation(s)
- Fumiaki Takatsu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yin Min Thu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Tomohiro Toji
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Masayoshi Ohki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shimpei Tsudaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keiichi Date
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naoki Matsuda
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuma Iwata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yidan Zhu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kentaro Nakata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akiko Nakayama
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
11
|
Han X, Liang L, He C, Ren Q, Su J, Cao L, Zheng J. A real-world study and network pharmacology analysis of EGFR-TKIs combined with ZLJT to delay drug resistance in advanced lung adenocarcinoma. BMC Complement Med Ther 2023; 23:422. [PMID: 37990309 PMCID: PMC10664478 DOI: 10.1186/s12906-023-04213-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE This study aimed to explore the efficacy and safety of combining epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with ZiLongJin Tablet (ZLJT) in delaying acquired resistance in advanced EGFR-mutant lung adenocarcinoma (LUAD) patients. Furthermore, we employed network pharmacology and molecular docking techniques to investigate the underlying mechanisms. METHODS A retrospective comparative study was conducted on stage IIIc/IV LUAD patients treated with EGFR-TKIs alone or in combination with ZLJT at the Second Affiliated Hospital of the Air Force Medical University between January 1, 2017, and May 1, 2023. The study evaluated the onset of TKI resistance, adverse reaction rates, safety indicators (such as aspartate aminotransferase, alanine aminotransferase, and creatinine), and inflammatory markers (neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio) to investigate the impact of EGFR-TKI combined with ZLJT on acquired resistance and prognostic indicators. Additionally, we utilized the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine, PubChem, UniProt, and Swiss Target Prediction databases to identify the active ingredients and targets of ZLJT. We obtained differentially expressed genes related to EGFR-TKI sensitivity and resistance from the Gene Expression Omnibus database using the GSE34228 dataset, which included sensitive (n = 26) and resistant (n = 26) PC9 cell lines. The "limma" package in R software was employed to detect DEGs. Based on this, we constructed a protein‒protein interaction network, performed gene ontology and KEGG enrichment analyses, and conducted pathway network analysis to elucidate the correlation between the active ingredients in ZLJT and signaling pathways. Finally, molecular docking was performed using AutoDockVina, PYMOL 2.2.0, and Discovery Studio Client v19.1.0 software to simulate spatial and energy matching during the recognition process between predicted targets and their corresponding compounds. RESULTS (1) A total of 89 patients were included, with 40 patients in the EGFR-TKI combined with ZLJT group (combination group) and 49 patients in the EGFR-TKI alone group (monotherapy group). The baseline characteristics of the two groups were comparable. There was a significant difference in the onset of resistance between the combination group and the monotherapy group (P < 0.01). Compared to the monotherapy group, the combination group showed a prolongation of 3.27 months in delayed acquired resistance. There was also a statistically significant difference in the onset of resistance to first-generation TKIs between the two groups (P < 0.05). (2) In terms of safety analysis, the incidence of adverse reactions related to EGFR-TKIs was 12.5% in the combination group and 14.3% in the monotherapy group, but this difference was not statistically significant (P > 0.05). There were no statistically significant differences in serum AST, ALT, CREA, TBIL, ALB and BUN levels between the two groups after medication (P > 0.05). (3) Regarding inflammatory markers, there were no statistically significant differences in the changes in neutrophil-to-lymphocyte Ratio(NLR) and Platelet-to-lymphocyte Ratio(PLR) values before and after treatment between the two groups (P > 0.05). (4) Network pharmacology analysis identified 112 active ingredients and 290 target genes for ZLJT. From the GEO database, 2035 differentially expressed genes related to resistant LUAD were selected, and 39 target genes were obtained by taking the intersection. A "ZLJT-compound-target-disease" network was successfully constructed using Cytoscape 3.7.0. GO enrichment analysis revealed that ZLJT mainly affected biological processes such as adenylate cyclase-modulating G protein-coupled receptor. In terms of cellular components, ZLJT was associated with the cell projection membrane. The molecular function primarily focused on protein heterodimerization activity. KEGG enrichment analysis indicated that ZLJT exerted its antitumor and anti-drug resistance effects through pathways such as the PI3K-Akt pathway. Molecular docking showed that luteolin had good binding activity with FOS (-9.8 kJ/mol), as did tanshinone IIA with FOS (-9.8 kJ/mol) and quercetin with FOS (-8.7 kJ/mol). CONCLUSION ZLJT has potential antitumor progression effects. For patients with EGFR gene-mutated non-small cell LUAD, combining ZLJT with EGFR-TKI treatment can delay the occurrence of acquired resistance. The underlying mechanisms may involve altering signal transduction pathways, blocking the tumor cell cycle, inhibiting tumor activity, enhancing cellular vitality, and improving the bioavailability of combination therapy. The combination of EGFR-TKI and ZLJT represents an effective approach for the treatment of tumors using both Chinese and Western medicine.
Collapse
Affiliation(s)
- Xue Han
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Lan Liang
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
| | - Chenming He
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
| | - Qinyou Ren
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Jialin Su
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Liang Cao
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China.
| | - Jin Zheng
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Daley BR, Vieira HM, Rao C, Hughes JM, Beckley ZM, Huisman DH, Chatterjee D, Sealover NE, Cox K, Askew JW, Svoboda RA, Fisher KW, Lewis RE, Kortum RL. SOS1 and KSR1 modulate MEK inhibitor responsiveness to target resistant cell populations based on PI3K and KRAS mutation status. Proc Natl Acad Sci U S A 2023; 120:e2313137120. [PMID: 37972068 PMCID: PMC10666034 DOI: 10.1073/pnas.2313137120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
KRAS is the most commonly mutated oncogene. Targeted therapies have been developed against mediators of key downstream signaling pathways, predominantly components of the RAF/MEK/ERK kinase cascade. Unfortunately, single-agent efficacy of these agents is limited both by intrinsic and acquired resistance. Survival of drug-tolerant persister cells within the heterogeneous tumor population and/or acquired mutations that reactivate receptor tyrosine kinase (RTK)/RAS signaling can lead to outgrowth of tumor-initiating cells (TICs) and drive therapeutic resistance. Here, we show that targeting the key RTK/RAS pathway signaling intermediates SOS1 (Son of Sevenless 1) or KSR1 (Kinase Suppressor of RAS 1) both enhances the efficacy of, and prevents resistance to, the MEK inhibitor trametinib in KRAS-mutated lung (LUAD) and colorectal (COAD) adenocarcinoma cell lines depending on the specific mutational landscape. The SOS1 inhibitor BI-3406 enhanced the efficacy of trametinib and prevented trametinib resistance by targeting spheroid-initiating cells in KRASG12/G13-mutated LUAD and COAD cell lines that lacked PIK3CA comutations. Cell lines with KRASQ61 and/or PIK3CA mutations were insensitive to trametinib and BI-3406 combination therapy. In contrast, deletion of the RAF/MEK/ERK scaffold protein KSR1 prevented drug-induced SIC upregulation and restored trametinib sensitivity across all tested KRAS mutant cell lines in both PIK3CA-mutated and PIK3CA wild-type cancers. Our findings demonstrate that vertical inhibition of RTK/RAS signaling is an effective strategy to prevent therapeutic resistance in KRAS-mutated cancers, but therapeutic efficacy is dependent on both the specific KRAS mutant and underlying comutations. Thus, selection of optimal therapeutic combinations in KRAS-mutated cancers will require a detailed understanding of functional dependencies imposed by allele-specific KRAS mutations.
Collapse
Affiliation(s)
- Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Heidi M. Vieira
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Chaitra Rao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Zaria M. Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Dianna H. Huisman
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Deepan Chatterjee
- Department of Integrative Physiology and Molecular Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - James W. Askew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert A. Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert E. Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| |
Collapse
|
13
|
Bierbrier R, D’Aguanno K, Oliel S, Zeng Y, Esfahani K, Pehr K. An Analysis of Risk Factors for the Development of Acneiform Eruptions in Patients on Monoclonal Antibody Epidermal Growth Factor Receptor Inhibitors. J Cutan Med Surg 2023; 27:614-620. [PMID: 37942582 PMCID: PMC10714707 DOI: 10.1177/12034754231211326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/17/2023] [Indexed: 11/10/2023]
Abstract
Acneiform eruptions occur frequently and early in patients on epidermal growth factor receptor inhibitors (EGFRi). Identification of baseline patient risk factors would prompt earlier referral to dermatology to optimize prevention and management. The primary objective of this retrospective study is to determine the association between clinical and demographic characteristics and the development of acneiform eruptions. A retrospective chart review was conducted on patients diagnosed with colon and head and neck cancers who started EGFRi between January 2017 and December 2021. Patients were followed until death or September 2022. Baseline demographic and clinical parameters were documented and patients were followed from the time of diagnosis to most recent visit for the development and management of an acneiform eruption. Regression analyses were performed to determine the association between baseline characteristics and the development of acneiform eruptions. A total of 66 patients were treated with cetuximab or panitumumab between 2017-2021 were included in the analysis. Forty-seven of the sixty-six patients developed an acneiform eruption while on EGFRi therapy (71.2%). Combination cancer therapy with another chemotherapeutic agent was associated with a lower risk of acneiform eruption (OR 0.03, P = .027). No other baseline features were statistically associated with a lower risk of acneiform eruption. Acneiform eruptions are a common cutaneous adverse event of EGFRi therapy. Ongoing research is required to elucidate risk factors for the development of acneiform eruptions, to improve the quality of life of oncology patients.
Collapse
Affiliation(s)
- Rachel Bierbrier
- Division of Dermatology, McGill University, Montreal, QC, Canada
| | | | - Sarah Oliel
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Yixiao Zeng
- Quantitative Life Sciences Program, Interfaculty Studies, McGill University, Montréal, Qc, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Khashayar Esfahani
- St Mary’s Hospital, McGill University, Montreal, QC, Canada
- Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Kevin Pehr
- Division of Dermatology, McGill University, Montreal, QC, Canada
- Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Hara N, Ichihara E, Kano H, Ando C, Morita A, Nishi T, Okawa S, Nakasuka T, Hirabae A, Abe M, Asada N, Ninomiya K, Makimoto G, Fujii M, Kubo T, Ohashi K, Hotta K, Tabata M, Maeda Y, Kiura K. CDK4/6 signaling attenuates the effect of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer. Transl Lung Cancer Res 2023; 12:2098-2112. [PMID: 38025818 PMCID: PMC10654429 DOI: 10.21037/tlcr-23-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Background Epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletion and exon 21 L858R, are driver oncogenes of non-small cell lung cancer (NSCLC), with EGFR tyrosine kinase inhibitors (TKIs) being effective against EGFR-mutant NSCLC. However, the efficacy of EGFR-TKIs is transient and eventually leads to acquired resistance. Herein, we focused on the significance of cell cycle factors as a mechanism to attenuate the effect of EGFR-TKIs in EGFR-mutant NSCLC before the emergence of acquired resistance. Methods Using several EGFR-mutant cell lines, we investigated the significance of cell cycle factors to attenuate the effect of EGFR-TKIs in EGFR-mutant NSCLC. Results In several EGFR-mutant cell lines, certain cancer cells continued to proliferate without EGFR signaling, and the cell cycle regulator retinoblastoma protein (RB) was not completely dephosphorylated. Further inhibition of phosphorylated RB with cyclin-dependent kinase (CDK) 4/6 inhibitors, combined with the EGFR-TKI osimertinib, enhanced G0/G1 cell cycle accumulation and growth inhibition of the EGFR-mutant NSCLC in both in vitro and in vivo models. Furthermore, residual RB phosphorylation without EGFR signaling was maintained by extracellular signal-regulated kinase (ERK) signaling, and the ERK inhibition pathway showed further RB dephosphorylation. Conclusions Our study demonstrated that the CDK4/6-RB signal axis, maintained by the MAPK pathway, attenuates the efficacy of EGFR-TKIs in EGFR-mutant NSCLC, and targeting CDK4/6 enhances this efficacy. Thus, combining CDK4/6 inhibitors and EGFR-TKI could be a novel treatment strategy for TKI-naïve EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Naofumi Hara
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Hirohisa Kano
- Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital, Okayama, Japan
| | - Chihiro Ando
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ayako Morita
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuya Nishi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Sachi Okawa
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuko Hirabae
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaya Abe
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Kiichiro Ninomiya
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Go Makimoto
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Masanori Fujii
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshio Kubo
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsuyuki Hotta
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Masahiro Tabata
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
15
|
Chiang CY, Fan S, Zheng H, Guo W, Zheng Z, Sun Y, Zhong C, Zeng J, Li S, Zhang M, Xiao T, Zheng D. Methylation of KRAS by SETD7 promotes KRAS degradation in non-small cell lung cancer. Cell Rep 2023; 42:113003. [PMID: 37682707 DOI: 10.1016/j.celrep.2023.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/18/2023] [Accepted: 08/02/2023] [Indexed: 09/10/2023] Open
Abstract
Oncogenic KRAS mutations are a key driver for initiation and progression in non-small cell lung cancer (NSCLC). However, how post-translational modifications (PTMs) of KRAS, especially methylation, modify KRAS activity remain largely unclear. Here, we show that SET domain containing histone lysine methyltransferase 7 (SETD7) interacts with KRAS and methylates KRAS at lysines 182 and 184. SETD7-mediated methylation of KRAS leads to degradation of KRAS and attenuation of the RAS/MEK/ERK signaling cascade, endowing SETD7 with a potent tumor-suppressive role in NSCLC, both in vitro and in vivo. Mechanistically, RABGEF1, a ubiquitin E3 ligase of KRAS, is recruited and promotes KRAS degradation in a K182/K184 methylation-dependent manner. Notably, SETD7 is inversely correlated with KRAS at the protein level in clinical NSCLC tissues. Low SETD7 or RABGEF1 expression is associated with poor prognosis in lung adenocarcinoma patients. Altogether, our results define a tumor-suppressive function of SETD7 that operates via modulating KRAS methylation and degradation.
Collapse
Affiliation(s)
- Cheng-Yao Chiang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjun Guo
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Zehan Zheng
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Shuaihu Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Min Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Tian Xiao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China.
| | - Duo Zheng
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
16
|
Sada Del Real K, Rubio A. Discovering the mechanism of action of drugs with a sparse explainable network. EBioMedicine 2023; 95:104767. [PMID: 37633093 PMCID: PMC10474372 DOI: 10.1016/j.ebiom.2023.104767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Although Deep Neural Networks (DDNs) have been successful in predicting the efficacy of cancer drugs, the lack of explainability in their decision-making process is a significant challenge. Previous research proposed mimicking the Gene Ontology structure to allow for interpretation of each neuron in the network. However, these previous approaches require huge amount of GPU resources and hinder its extension to genome-wide models. METHODS We developed SparseGO, a sparse and interpretable neural network, for predicting drug response in cancer cell lines and their Mechanism of Action (MoA). To ensure model generalization, we trained it on multiple datasets and evaluated its performance using three cross-validation schemes. Its efficiency allows it to be used with gene expression. In addition, SparseGO integrates an eXplainable Artificial Intelligence (XAI) technique, DeepLIFT, with Support Vector Machines to computationally discover the MoA of drugs. FINDINGS SparseGO's sparse implementation significantly reduced GPU memory usage and training speed compared to other methods, allowing it to process gene expression instead of mutations as input data. SparseGO using expression improved the accuracy and enabled its use on drug repositioning. Furthermore, gene expression allows the prediction of MoA using 265 drugs to train it. It was validated on understudied drugs such as parbendazole and PD153035. INTERPRETATION SparseGO is an effective XAI method for predicting, but more importantly, understanding drug response. FUNDING The Accelerator Award Programme funded by Cancer Research UK [C355/A26819], Fundación Científica de la AECC and Fondazione AIRC, Project PIBA_2020_1_0055 funded by the Basque Government and the Synlethal Project (RETOS Investigacion, Spanish Government).
Collapse
Affiliation(s)
- Katyna Sada Del Real
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián 20018, Spain
| | - Angel Rubio
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián 20018, Spain; Instituto de Ciencia de Datos e Inteligencia Artificial (DATAI), Universidad de Navarra, Pamplona 31080, Spain.
| |
Collapse
|
17
|
de Miguel FJ, Gentile C, Feng WW, Silva SJ, Sankar A, Exposito F, Cai WL, Melnick MA, Robles-Oteiza C, Hinkley MM, Tsai JA, Hartley AV, Wei J, Wurtz A, Li F, Toki MI, Rimm DL, Homer R, Wilen CB, Xiao AZ, Qi J, Yan Q, Nguyen DX, Jänne PA, Kadoch C, Politi KA. Mammalian SWI/SNF chromatin remodeling complexes promote tyrosine kinase inhibitor resistance in EGFR-mutant lung cancer. Cancer Cell 2023; 41:1516-1534.e9. [PMID: 37541244 PMCID: PMC10957226 DOI: 10.1016/j.ccell.2023.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023]
Abstract
Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.
Collapse
Affiliation(s)
| | - Claudia Gentile
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William W Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Shannon J Silva
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Akshay Sankar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Wesley L Cai
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | | | - Camila Robles-Oteiza
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Madeline M Hinkley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeanelle A Tsai
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Antja-Voy Hartley
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jin Wei
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Laboratory Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Anna Wurtz
- Yale Cancer Center, New Haven, CT 06520, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, Laboratory of Epidemiology and Public Health, 60 College St, New Haven, CT 06510, USA
| | - Maria I Toki
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - David L Rimm
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Robert Homer
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Laboratory Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Andrew Z Xiao
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Qin Yan
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Don X Nguyen
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Katerina A Politi
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
Theard PL, Linke AJ, Sealover NE, Daley BR, Yang J, Cox K, Kortum RL. SOS2 regulates the threshold of mutant EGFR-dependent oncogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524989. [PMID: 37425733 PMCID: PMC10327037 DOI: 10.1101/2023.01.20.524989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Son of Sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic RTK-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR-TKI osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit PI3K/AKT pathway activation, oncogenic transformation, and survival. Bypass RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2 KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2 KO inhibited HGF-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long term in situ resistance assay, a majority of osimertinib resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2 KO cultures that became osimertinib resistant primarily underwent non-RTK dependent EMT. Since bypass RTK reactivation and/or tertiary EGFR mutations represent the majority of osimertinib-resistant cancers, these data suggest that targeting SOS2 has the potential to eliminate the majority of osimertinib resistance.
Collapse
Affiliation(s)
- Patricia L. Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Amanda J. Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Johnny Yang
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| |
Collapse
|
19
|
Sealover NE, Theard PL, Hughes JM, Linke AJ, Daley BR, Kortum RL. In situ modeling of acquired resistance to RTK/RAS pathway targeted therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525958. [PMID: 36747633 PMCID: PMC9901014 DOI: 10.1101/2023.01.27.525958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intrinsic and acquired resistance limit the window of effectiveness for oncogene-targeted cancer therapies. Preclinical studies that identify synergistic combinations enhance therapeutic efficacy to target intrinsic resistance, however, methods to study acquired resistance in cell culture are lacking. Here, we describe a novel in situ resistance assay (ISRA), performed in a 96-well culture format, that models acquired resistance to RTK/RAS pathway targeted therapies. Using osimertinib resistance in EGFR-mutated lung adenocarcinoma (LUAD) as a model system, we show acquired resistance can be reliably modeled across cell lines using objectively defined osimertinib doses. Similar to patient populations, isolated osimertinib-resistant populations showed resistance via enhanced activation of multiple parallel RTKs so that individual RTK inhibitors did not re-sensitize cells to osimertinib. In contrast, inhibition of proximal RTK signaling using the SHP2 inhibitor RMC-4550 both re-sensitized resistant populations to osimertinib and prevented the development of osimertinib resistance as a primary therapy. Similar, objectively defined drug doses were used to model resistance to additional RTK/RAS pathway targeted therapies including the KRASG12C inhibitors adagrasib and sotorasib, the MEK inhibitor trametinib, and the farnesyl transferase inhibitor tipifarnib. These studies highlight the tractability of in situ resistance assays to model acquired resistance to targeted therapies and provide a framework for assessing the extent to which synergistic drug combinations can target acquired drug resistance.
Collapse
|
20
|
Ning Y, Zheng H, Yang Y, Zang H, Wang W, Zhan Y, Wang H, Luo J, Wen Q, Peng J, Xiang J, Fan S. YAP1 synergize with YY1 transcriptional co-repress DUSP1 to induce osimertinib resistant by activating the EGFR/MAPK pathway and abrogating autophagy in non-small cell lung cancer. Int J Biol Sci 2023; 19:2458-2474. [PMID: 37215986 PMCID: PMC10197898 DOI: 10.7150/ijbs.79965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
YAP1 is a well-known core effector of the Hippo pathway in tumors, but its potential role in osimertinib resistance remained unexplored. Our study provides evidence that YAP1 acts as a potent promoter of osimertinib resistance. By inhibiting YAP1 with a novel inhibitor, CA3, and combining it with osimertinib, we observed a significant suppression of cell proliferation and metastasis, induction of apoptosis and autophagy, and a delay in the emergence of osimertinib resistance. Interestingly, CA3 combined with osimertinib executed its anti-metastasis and pro-tumor apoptosis in part through autophagy. Mechanistically, we found that YAP1, in collaboration with YY1, transcriptionally represses DUSP1, leading to the dephosphorylation of the EGFR/MEK/ERK pathway and YAP1 phosphorylation in osimertinib-resistant cells. Our results also validate that CA3, in combination with osimertinib, executes its anti-metastasis and pro-tumor apoptosis partly through autophagy and the YAP1/DUSP1/EGFR/MEK/ERK regulatory feedback loop in osimertinib-resistant cells. Remarkably, our findings illustrate that YAP1 protein is upregulated in patients after osimertinib treatment and osimertinib resistance. Overall, our study confirms that the YAP1 inhibitor CA3 increases DUSP1 with concomitant activation of the EGFR/MAPK pathway and induces autophagy to enhance the efficacy of third-generation EGFR-TKI treatments for NSCLC patients.
Collapse
Affiliation(s)
- Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiyuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haihua Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Tiedt R, King FJ, Stamm C, Niederst MJ, Delach S, Zumstein-Mecker S, Meltzer J, Mulford IJ, Labrot E, Engstler BS, Baltschukat S, Kerr G, Golji J, Wyss D, Schnell C, Ainscow E, Engelman JA, Sellers WR, Barretina J, Caponigro G, Porta DG. Integrated CRISPR screening and drug profiling identifies combination opportunities for EGFR, ALK, and BRAF/MEK inhibitors. Cell Rep 2023; 42:112297. [PMID: 36961816 DOI: 10.1016/j.celrep.2023.112297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/11/2022] [Accepted: 03/03/2023] [Indexed: 03/25/2023] Open
Abstract
Anti-tumor efficacy of targeted therapies is variable across patients and cancer types. Even in patients with initial deep response, tumors are typically not eradicated and eventually relapse. To address these challenges, we present a systematic screen for targets that limit the anti-tumor efficacy of EGFR and ALK inhibitors in non-small cell lung cancer and BRAF/MEK inhibitors in colorectal cancer. Our approach includes genome-wide CRISPR screens with or without drugs targeting the oncogenic driver ("anchor therapy"), and large-scale pairwise combination screens of anchor therapies with 351 other drugs. Interestingly, targeting of a small number of genes, including MCL1, BCL2L1, and YAP1, sensitizes multiple cell lines to the respective anchor therapy. Data from drug combination screens with EGF816 and ceritinib indicate that dasatinib and agents disrupting microtubules act synergistically across many cell lines. Finally, we show that a higher-order-combination screen with 26 selected drugs in two resistant EGFR-mutant lung cancer cell lines identified active triplet combinations.
Collapse
Affiliation(s)
- Ralph Tiedt
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Frederick J King
- Novartis Institutes for BioMedical Research, Genomics Institute of the Novartis Research Foundation, La Jolla, CA, USA
| | - Christelle Stamm
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Matthew J Niederst
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA.
| | - Scott Delach
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | | | - Jodi Meltzer
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Iain J Mulford
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Emma Labrot
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | | | - Sabrina Baltschukat
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Grainne Kerr
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Javad Golji
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Daniel Wyss
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Christian Schnell
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| | - Edward Ainscow
- Novartis Institutes for BioMedical Research, Genomics Institute of the Novartis Research Foundation, La Jolla, CA, USA
| | - Jeffrey A Engelman
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - William R Sellers
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Jordi Barretina
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Giordano Caponigro
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Diana Graus Porta
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland
| |
Collapse
|
22
|
Song X, Cao L, Ni B, Wang J, Qin X, Sun X, Xu B, Wang X, Li J. Challenges of EGFR-TKIs in NSCLC and the potential role of herbs and active compounds: From mechanism to clinical practice. Front Pharmacol 2023; 14:1090500. [PMID: 37089959 PMCID: PMC10120859 DOI: 10.3389/fphar.2023.1090500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations are the most common oncogenic driver in non-small cell lung cancer (NSCLC). Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are widely used in the treatment of lung cancer, especially in the first-line treatment of advanced NSCLC, and EGFR-TKIs monotherapy has achieved better efficacy and tolerability compared with standard chemotherapy. However, acquired resistance to EGFR-TKIs and associated adverse events pose a significant obstacle to targeted lung cancer therapy. Therefore, there is an urgent need to seek effective interventions to overcome these limitations. Natural medicines have shown potential therapeutic advantages in reversing acquired resistance to EGFR-TKIs and reducing adverse events, bringing new options and directions for EGFR-TKIs combination therapy. In this paper, we systematically demonstrated the resistance mechanism of EGFR-TKIs, the clinical strategy of each generation of EGFR-TKIs in the synergistic treatment of NSCLC, the treatment-related adverse events of EGFR-TKIs, and the potential role of traditional Chinese medicine in overcoming the resistance and adverse reactions of EGFR-TKIs. Herbs and active compounds have the potential to act synergistically through multiple pathways and multiple mechanisms of overall regulation, combined with targeted therapy, and are expected to be an innovative model for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaotong Song
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Department of Respiratory, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Xiaoyan Qin
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyue Sun
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Gao RF, Yang K, Qu YN, Wei X, Shi JR, Lv CY, Zhao YC, Sun XL, Xu YJ, Yang YQ. m 6A demethylase ALKBH5 attenuates doxorubicin-induced cardiotoxicity via posttranscriptional stabilization of Rasal3. iScience 2023; 26:106215. [PMID: 36876119 PMCID: PMC9982307 DOI: 10.1016/j.isci.2023.106215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The clinical application of anthracyclines such as doxorubicin (DOX) is limited due to their cardiotoxicity. N6-methyladenosine (m6A) plays an essential role in numerous biological processes. However, the roles of m6A and m6A demethylase ALKBH5 in DOX-induced cardiotoxicity (DIC) remain unclear. In this research, DIC models were constructed using Alkbh5-knockout (KO), Alkbh5-knockin (KI), and Alkbh5-myocardial-specific knockout (ALKBH5flox/flox, αMyHC-Cre) mice. Cardiac function and DOX-mediated signal transduction were investigated. As a result, both Alkbh5 whole-body KO and myocardial-specific KO mice had increased mortality, decreased cardiac function, and aggravated DIC injury with severe myocardial mitochondrial damage. Conversely, ALKBH5 overexpression alleviated DOX-mediated mitochondrial injury, increased survival, and improved myocardial function. Mechanistically, ALKBH5 regulated the expression of Rasal3 in an m6A-dependent manner through posttranscriptional mRNA regulation and reduced Rasal3 mRNA stability, thus activating RAS3, inhibiting apoptosis through the RAS/RAF/ERK signaling pathway, and alleviating DIC injury. These findings indicate the potential therapeutic effect of ALKBH5 on DIC.
Collapse
Affiliation(s)
- Ri-Feng Gao
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Kun Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Ya-Nan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Jia-Ran Shi
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Chun-Yu Lv
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 200240, China
| | - Yong-Chao Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Xiao-Lei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 518036, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Corresponding author
| |
Collapse
|
24
|
Larsen ME, Lyu H, Liu B. HER3-targeted therapeutic antibodies and antibody-drug conjugates in non-small cell lung cancer refractory to EGFR-tyrosine kinase inhibitors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:11-17. [PMID: 39170873 PMCID: PMC11332908 DOI: 10.1016/j.pccm.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 08/23/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3) is a unique member of the human epidermal growth factor receptor (HER/EGFR) family, since it has negligible kinase activity. Therefore, HER3 must interact with a kinase-proficient receptor to form a heterodimer, leading to the activation of signaling cascades. Overexpression of HER3 is observed in various human cancers, including non-small cell lung cancer (NSCLC), and correlates with poor clinical outcomes in patients. Studies on the underlying mechanism demonstrate that HER3-initiated signaling promotes tumor metastasis and causes treatment failure in human cancers. Upregulation of HER3 is frequently observed in EGFR-mutant NSCLC treated with EGFR-tyrosine kinase inhibitors (TKIs). Increased expression of HER3 triggers the so-called EGFR-independent mechanism via interactions with other receptors to activate "bypass signaling pathways", thereby resulting in resistance to EGFR-TKIs. To date, no HER3-targeted therapy has been approved for cancer treatment. In both preclinical and clinical studies, targeting HER3 with a blocking antibody (Ab) is the only strategy being examined. Recent evaluations of an anti-HER3 Ab-drug conjugate (ADC) show promising results in patients with EGFR-TKI-resistant NSCLC. Herein, we summarize our understanding of the unique biology of HER3 in NSCLC refractory to EGFR-TKIs, with a focus on its dimerization partners and subsequent activation of signaling pathways. We also discuss the latest development of the therapeutic Abs and ADCs targeting HER3 to abrogate EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Margaret E. Larsen
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Hui Lyu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
25
|
Sun SY. Taking early preventive interventions to manage the challenging issue of acquired resistance to third-generation EGFR inhibitors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:3-10. [PMID: 37609474 PMCID: PMC10442612 DOI: 10.1016/j.pccm.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 08/24/2023]
Abstract
Although the clinical efficacies of third-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) such as osimertinib in the treatment of non-small cell lung cancer (NSCLC) with EGFR-activating mutations are promising, drug-acquired resistance inevitably occurs whether they are used as first-line or second-line treatment. Therefore, managing the acquired resistance to third-generation EGFR-TKIs is crucial in the clinic for improving patient survival. Great efforts have been made to develop potentially effective strategies or regimens for the treatment of EGFR-mutant NSCLC patients after relapse following these TKIs therapies with the hope that patients will continue to benefit from treatment through overcoming acquired resistance. Although this approach, which aims to overcome drug-acquired resistance, is necessary and important, it is a passive practice. Taking preventive action early before disease progression to manage the unavoidable development of acquired resistance offers an equally important and efficient approach. We strongly believe that early preventive interventions using effective and tolerable combination regimens that interfere with the process of developing acquired resistance may substantially improve the outcomes of EGFR-mutant NSCLC treatment with third-generation EGFR-TKIs. Thus, this review focuses on discussing the scientific rationale and mechanism-driven strategies for delaying and even preventing the emergence of acquired resistance to third-generation EGFR-TKIs, particularly osimertinib.
Collapse
Affiliation(s)
- Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Zhong J, Bai H, Wang Z, Duan J, Zhuang W, Wang D, Wan R, Xu J, Fei K, Ma Z, Zhang X, Wang J. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front Med 2023; 17:18-42. [PMID: 36848029 DOI: 10.1007/s11684-022-0976-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/05/2022] [Indexed: 03/01/2023]
Abstract
With the improved understanding of driver mutations in non-small cell lung cancer (NSCLC), expanding the targeted therapeutic options improved the survival and safety. However, responses to these agents are commonly temporary and incomplete. Moreover, even patients with the same oncogenic driver gene can respond diversely to the same agent. Furthermore, the therapeutic role of immune-checkpoint inhibitors (ICIs) in oncogene-driven NSCLC remains unclear. Therefore, this review aimed to classify the management of NSCLC with driver mutations based on the gene subtype, concomitant mutation, and dynamic alternation. Then, we provide an overview of the resistant mechanism of target therapy occurring in targeted alternations ("target-dependent resistance") and in the parallel and downstream pathways ("target-independent resistance"). Thirdly, we discuss the effectiveness of ICIs for NSCLC with driver mutations and the combined therapeutic approaches that might reverse the immunosuppressive tumor immune microenvironment. Finally, we listed the emerging treatment strategies for the new oncogenic alternations, and proposed the perspective of NSCLC with driver mutations. This review will guide clinicians to design tailored treatments for NSCLC with driver mutations.
Collapse
Affiliation(s)
- Jia Zhong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Zhuang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
27
|
Meng Y, Lin W, Wang N, Wei X, Huang Q, Liao Y. Bazedoxifene-induced ROS promote mitochondrial dysfunction and enhance osimertinib sensitivity by inhibiting the p-STAT3/SOCS3 and KEAP1/NRF2 pathways in non-small cell lung cancer. Free Radic Biol Med 2023; 196:65-80. [PMID: 36646328 DOI: 10.1016/j.freeradbiomed.2023.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Although the advent of osimertinib has brought revolutionary changes to the treatment landscape of non-small cell lung cancer (NSCLC) patients, acquired resistance remains a major obstacle limiting long-term survival benefits for the treatment of cancer. The purpose of this study was to examine the mechanisms involved in the ability of bazedoxifene to synergistically enhance osimertinib sensitivity, which will aid in delaying and overcoming osimertinib resistance to improve patient outcomes. Here, we found that osimertinib increased the production of reactive oxygen species (ROS), promoted mitochondrial fission, diminished mitochondrial membrane potential, and activated cell apoptosis. Moreover, the p-STAT3/suppressor of cytokine signaling 3 (SOCS3) and KEAP1/NRF2 signaling pathways were activated to scavenge ROS and promote osimertinib resistance. Mechanistically, SOCS3 can directly bind to KEAP1 to prevent the degradation of NRF2, resulting in the activation of an NRF2-dependent transcriptional program. Furthermore, the osimertinib-induced mitochondrial dysfunction and apoptosis were enhanced by bazedoxifene, thereby delaying and overcoming osimertinib resistance by inhibiting these pathways in vitro and in vivo. These findings identified a new critical link in the p-STAT3/SOCS3 pathway, KEAP1/NRF2 pathway, mitochondrial dysfunction, and osimertinib resistance. The present study demonstrated that bazedoxifene can be used for delaying or overcoming osimertinib resistance in NSCLC.
Collapse
Affiliation(s)
- Yunchong Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Na Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Quanfu Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
28
|
Nilsson MB, Yang Y, Heeke S, Patel SA, Poteete A, Udagawa H, Elamin YY, Moran CA, Kashima Y, Arumugam T, Yu X, Ren X, Diao L, Shen L, Wang Q, Zhang M, Robichaux JP, Shi C, Pfeil AN, Tran H, Gibbons DL, Bock J, Wang J, Minna JD, Kobayashi SS, Le X, Heymach JV. CD70 is a therapeutic target upregulated in EMT-associated EGFR tyrosine kinase inhibitor resistance. Cancer Cell 2023; 41:340-355.e6. [PMID: 36787696 PMCID: PMC10259078 DOI: 10.1016/j.ccell.2023.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Effective therapeutic strategies are needed for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations that acquire resistance to EGFR tyrosine kinase inhibitors (TKIs) mediated by epithelial-to-mesenchymal transition (EMT). We investigate cell surface proteins that could be targeted by antibody-based or adoptive cell therapy approaches and identify CD70 as being highly upregulated in EMT-associated resistance. Moreover, CD70 upregulation is an early event in the evolution of resistance and occurs in drug-tolerant persister cells (DTPCs). CD70 promotes cell survival and invasiveness, and stimulation of CD70 triggers signal transduction pathways known to be re-activated with acquired TKI resistance. Anti-CD70 antibody drug conjugates (ADCs) and CD70-targeting chimeric antigen receptor (CAR) T cell and CAR NK cells show potent activity against EGFR TKI-resistant cells and DTPCs. These results identify CD70 as a therapeutic target for EGFR mutant tumors with acquired EGFR TKI resistance that merits clinical investigation.
Collapse
Affiliation(s)
- Monique B Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Yang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sonia A Patel
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alissa Poteete
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hibiki Udagawa
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cesar A Moran
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yukie Kashima
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Thiruvengadam Arumugam
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoxing Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoyang Ren
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minying Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacqulyne P Robichaux
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunhua Shi
- Department of Biologics Development, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Allyson N Pfeil
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jason Bock
- Department of Oncology Research BIT, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Chhouri H, Alexandre D, Grumolato L. Mechanisms of Acquired Resistance and Tolerance to EGFR Targeted Therapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15020504. [PMID: 36672453 PMCID: PMC9856371 DOI: 10.3390/cancers15020504] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
Non-small cell lung cancers (NSCLC) harboring activating mutations of the epidermal growth factor receptor (EGFR) are treated with specific tyrosine kinase inhibitors (EGFR-TKIs) of this receptor, resulting in clinically responses that can generally last several months. Unfortunately, EGFR-targeted therapy also favors the emergence of drug tolerant or resistant cells, ultimately resulting in tumor relapse. Recently, cellular barcoding strategies have arisen as a powerful tool to investigate the clonal evolution of these subpopulations in response to anti-cancer drugs. In this review, we provide an overview of the currently available treatment options for NSCLC, focusing on EGFR targeted therapy, and discuss the common mechanisms of resistance to EGFR-TKIs. We also review the characteristics of drug-tolerant persister (DTP) cells and the mechanistic basis of drug tolerance in EGFR-mutant NSCLC. Lastly, we address how cellular barcoding can be applied to investigate the response and the behavior of DTP cells upon EGFR-TKI treatment.
Collapse
|
30
|
Criscione SW, Martin MJ, Oien DB, Gorthi A, Miragaia RJ, Zhang J, Chen H, Karl DL, Mendler K, Markovets A, Gagrica S, Delpuech O, Dry JR, Grondine M, Hattersley MM, Urosevic J, Floc’h N, Drew L, Yao Y, Smith PD. The landscape of therapeutic vulnerabilities in EGFR inhibitor osimertinib drug tolerant persister cells. NPJ Precis Oncol 2022; 6:95. [PMID: 36575215 PMCID: PMC9794691 DOI: 10.1038/s41698-022-00337-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), including osimertinib, an irreversible EGFR-TKI, are important treatments for non-small cell lung cancer with EGFR-TKI sensitizing or EGFR T790M resistance mutations. While patients treated with osimertinib show clinical benefit, disease progression and drug resistance are common. Emergence of de novo acquired resistance from a drug tolerant persister (DTP) cell population is one mechanism proposed to explain progression on osimertinib and other targeted cancer therapies. Here we profiled osimertinib DTPs using RNA-seq and ATAC-seq to characterize the features of these cells and performed drug screens to identify therapeutic vulnerabilities. We identified several vulnerabilities in osimertinib DTPs that were common across models, including sensitivity to MEK, AURKB, BRD4, and TEAD inhibition. We linked several of these vulnerabilities to gene regulatory changes, for example, TEAD vulnerability was consistent with evidence of Hippo pathway turning off in osimertinib DTPs. Last, we used genetic approaches using siRNA knockdown or CRISPR knockout to validate AURKB, BRD4, and TEAD as the direct targets responsible for the vulnerabilities observed in the drug screen.
Collapse
Affiliation(s)
- Steven W. Criscione
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Matthew J. Martin
- grid.417815.e0000 0004 5929 4381Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Derek B. Oien
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Aparna Gorthi
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA ,grid.267309.90000 0001 0629 5880Department of Cell Systems & Anatomy, Greehey Children’s Cancer Research Institute, University of Texas at Health San Antonio, San Antonio, TX USA
| | - Ricardo J. Miragaia
- grid.417815.e0000 0004 5929 4381Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jingwen Zhang
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Huawei Chen
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Daniel L. Karl
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Kerrin Mendler
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Aleksandra Markovets
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Sladjana Gagrica
- grid.417815.e0000 0004 5929 4381Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Oona Delpuech
- grid.417815.e0000 0004 5929 4381Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jonathan R. Dry
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Michael Grondine
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Maureen M. Hattersley
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Jelena Urosevic
- grid.417815.e0000 0004 5929 4381Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Nicolas Floc’h
- grid.417815.e0000 0004 5929 4381Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Lisa Drew
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Yi Yao
- grid.418152.b0000 0004 0543 9493Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA USA
| | - Paul D. Smith
- grid.417815.e0000 0004 5929 4381Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
31
|
Yoshida R, Saigi M, Tani T, Springer BF, Shibata H, Kitajima S, Mahadevan NR, Campisi M, Kim W, Kobayashi Y, Thai TC, Haratani K, Yamamoto Y, Sundararaman SK, Knelson EH, Vajdi A, Canadas I, Uppaluri R, Paweletz CP, Miret JJ, Lizotte PH, Gokhale PC, Jänne PA, Barbie DA. MET-Induced CD73 Restrains STING-Mediated Immunogenicity of EGFR-Mutant Lung Cancer. Cancer Res 2022; 82:4079-4092. [PMID: 36066413 PMCID: PMC9627131 DOI: 10.1158/0008-5472.can-22-0770] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Immunotherapy has shown limited efficacy in patients with EGFR-mutated lung cancer. Efforts to enhance the immunogenicity of EGFR-mutated lung cancer have been unsuccessful to date. Here, we discover that MET amplification, the most common mechanism of resistance to third-generation EGFR tyrosine kinase inhibitors (TKI), activates tumor cell STING, an emerging determinant of cancer immunogenicity (1). However, STING activation was restrained by ectonucleosidase CD73, which is induced in MET-amplified, EGFR-TKI-resistant cells. Systematic genomic analyses and cell line studies confirmed upregulation of CD73 in MET-amplified and MET-activated lung cancer contexts, which depends on coinduction of FOSL1. Pemetrexed (PEM), which is commonly used following EGFR-TKI treatment failure, was identified as an effective potentiator of STING-dependent TBK1-IRF3-STAT1 signaling in MET-amplified, EGFR-TKI-resistant cells. However, PEM treatment also induced adenosine production, which inhibited T-cell responsiveness. In an allogenic humanized mouse model, CD73 deletion enhanced immunogenicity of MET-amplified, EGFR-TKI-resistant cells, and PEM treatment promoted robust responses regardless of CD73 status. Using a physiologic antigen recognition model, inactivation of CD73 significantly increased antigen-specific CD8+ T-cell immunogenicity following PEM treatment. These data reveal that combined PEM and CD73 inhibition can co-opt tumor cell STING induction in TKI-resistant EGFR-mutated lung cancers and promote immunogenicity. SIGNIFICANCE MET amplification upregulates CD73 to suppress tumor cell STING induction and T-cell responsiveness in TKI-resistant, EGFR-mutated lung cancer, identifying a strategy to enhance immunogenicity and improve treatment.
Collapse
Affiliation(s)
- Ryohei Yoshida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Respiratory Center, Asahikawa Medical University, Hokkaido, Japan.,Corresponding authors: David A. Barbie, M.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4115, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Pasi A Jänne, M.D. Ph.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4114, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Ryohei Yoshida, M.D. Ph.D., Respiratory Center, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan, , Tel: 81-166-69-3290
| | - Maria Saigi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Benjamin F Springer
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Hirofumi Shibata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - William Kim
- Jong Wook Kim Ph.D., University of California San Diego, School of Medicine, Moores Cancer Center
| | - Yoshihisa Kobayashi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Koji Haratani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Yurie Yamamoto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shriram K Sundararaman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Erik H Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Amir Vajdi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Israel Canadas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Cloud P Paweletz
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Juan J Miret
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Patrick H Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Corresponding authors: David A. Barbie, M.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4115, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Pasi A Jänne, M.D. Ph.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4114, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Ryohei Yoshida, M.D. Ph.D., Respiratory Center, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan, , Tel: 81-166-69-3290
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Corresponding authors: David A. Barbie, M.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4115, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Pasi A Jänne, M.D. Ph.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4114, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Ryohei Yoshida, M.D. Ph.D., Respiratory Center, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan, , Tel: 81-166-69-3290
| |
Collapse
|
32
|
Bain NT, Wang Y, Arulananda S. Minimal residual disease in EGFR-mutant non-small-cell lung cancer. Front Oncol 2022; 12:1002714. [PMID: 36212398 PMCID: PMC9533094 DOI: 10.3389/fonc.2022.1002714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 11/14/2022] Open
Abstract
Targeted therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is an effective treatment for EGFR-mutant non-small-cell lung cancer (NSCLC), however most patients invariably relapse after a period of minimal residual disease (MRD). This mini-review explores the mechanistic pathways leading to tumour dormancy, cellular senescence and epigenetic changes involving YAP/TEAD activation. We describe the various approaches of utilising TKIs in combination with agents to intensify initial depth of response, enhance apoptosis and target senescence-like dormancy. This mini-review will also highlight the potential novel therapies under development targeting MRD to improve outcomes for patients with EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Nathan T. Bain
- Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Yang Wang
- Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Surein Arulananda
- Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences, Faculty of Medicine, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- *Correspondence: Surein Arulananda,
| |
Collapse
|
33
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
34
|
Anti-EGF nanobodies enhance the antitumoral effect of osimertinib and overcome resistance in non-small cell lung cancer (NSCLC) cellular models. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:195. [PMID: 36071367 DOI: 10.1007/s12032-022-01800-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/15/2022] [Indexed: 10/14/2022]
Abstract
Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that is effective against the EGFR T790M mutation in patients with advanced non-small-cell lung cancer (NSCLC). However, acquired resistance appears invariably due to several mechanisms. The strategy of using EGF-targeted nanobodies (Nbs) to block the initial step of the EGFR pathway constitutes a new research area. Nbs offer several advantages compared to traditional mAbs, such as their reduced size, increased stability, and tissue penetration, which provide key advantages for targeting soluble tumoral growth factors. In this study we investigated the efficacy of anti-EGF Nbs to reduce Osimertinib resistance. Two anti-EGF Nbs, generated in our laboratory, were shown to inhibit cell viability and colony formation in PC9 and PC9-derived osimertinib-resistant cell lines. The combination of these Nbs with osimertinib improved the antitumor efficacy of this EGFR-TKI in cell viability and colony formation experiments. In a mechanistic study of the EGFR pathway, the combination treatment dampened the activation of downstream proteins such as Akt and Erk1/2 MAP kinases. In addition, it increased cellular apoptosis and decreased the expression of Hes1, a cancer stem cell marker involved in metastasis and osimertinib resistance. We conclude that the addition of anti-EGF nanobodies enhances the antitumor properties of osimertinib, thus representing a potentially effective strategy for NSCLC patients.
Collapse
|
35
|
Pecci F, Cantini L, Metro G, Ricciuti B, Lamberti G, Farooqi AA, Berardi R. Non-small-cell lung cancer: how to manage EGFR-mutated disease. Drugs Context 2022; 11:2022-4-1. [PMID: 35975029 PMCID: PMC9354708 DOI: 10.7573/dic.2022-4-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
The treatment of non-small-cell lung cancer (NSCLC) harbouring EGFR mutations has witnessed some major breakthroughs in the last years. On the one hand, the recent advent of the third-generation tyrosine kinase inhibitor (TKI) osimertinib has reshaped the therapeutic algorithm both in the first-line and adjuvant settings for patients with common activating Ex19del and L858R EGFR mutations. On the other hand, the availability of new comprehensive next-generation sequencing panels, to be used on tumour tissue or on liquid biopsy, has revealed the existence of uncommon as well as compound mutations that partially explain the onset of resistance. Nevertheless, dissecting the biological mechanisms underlying primary and secondary resistance to EGFR-TKIs is crucial to developing alternative therapeutic strategies and further improving patient outcomes. Herein, we provide an updated and comprehensive summary of the latest advancements in the quest for compounds targeting EGFR-mutant advanced non-small-cell lung cancer, discussing the biological rationale underlying the development of a forefront combination of TKI and/or new antibody-drug conjugates. We also suggest a treatment algorithm that could be followed considering the latest published data.
Collapse
Affiliation(s)
- Federica Pecci
- Department of Medical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| | - Luca Cantini
- Department of Medical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Biagio Ricciuti
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Lamberti
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | | | - Rossana Berardi
- Department of Medical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| |
Collapse
|
36
|
Fang DD, Tao R, Wang G, Li Y, Zhang K, Xu C, Zhai G, Wang Q, Wang J, Tang C, Min P, Xiong D, Chen J, Wang S, Yang D, Zhai Y. Discovery of a novel ALK/ROS1/FAK inhibitor, APG-2449, in preclinical non-small cell lung cancer and ovarian cancer models. BMC Cancer 2022; 22:752. [PMID: 35820889 PMCID: PMC9277925 DOI: 10.1186/s12885-022-09799-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are mainstays of cancer treatment. However, their clinical benefits are often constrained by acquired resistance. To overcome such outcomes, we have rationally engineered APG-2449 as a novel multikinase inhibitor that is highly potent against oncogenic alterations of anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), and focal adhesion kinase (FAK). Here we present the preclinical evaluation of APG-2449, which exhibits antiproliferative activity in cells carrying ALK fusion or secondary mutations. METHODS KINOMEscan® and LANCE TR-FRET were used to characterize targets and selectivity of APG-2449. Water-soluble tetrazolium salt (WST-8) viability assay and xenograft tumorigenicity were employed to evaluate therapeutic efficacy of monotherapy or drug combination in preclinical models of solid tumors. Western blot, pharmacokinetic, and flow cytometry analyses, as well as RNA sequencing were used to explore pharmacokinetic-pharmacodynamic correlations and the mechanism of actions driving drug combination synergy. RESULTS In mice bearing wild-type or ALK/ROS1-mutant non-small-cell lung cancer (NSCLC), APG-2449 demonstrates potent antitumor activity, with correlations between pharmacokinetics and pharmacodynamics in vivo. Through FAK inhibition, APG-2449 sensitizes ovarian xenograft tumors to paclitaxel by reducing CD44+ and aldehyde dehydrogenase 1-positive (ALDH1+) cancer stem cell populations, including ovarian tumors insensitive to carboplatin. In epidermal growth factor receptor (EGFR)-mutated NSCLC xenograft models, APG-2449 enhances EGFR TKI-induced tumor growth inhibition, while the ternary combination of APG-2449 with EGFR (osimertinib) and mitogen-activated extracellular signal-regulated kinase (MEK; trametinib) inhibitors overcomes osimertinib resistance. Mechanistically, phosphorylation of ALK, ROS1, and FAK, as well as their downstream components, is effectively inhibited by APG-2449. CONCLUSIONS Taken together, our studies demonstrate that APG-2449 exerts potent and durable antitumor activity in human NSCLC and ovarian tumor models when administered alone or in combination with other therapies. A phase 1 clinical trial has been initiated to evaluate the safety and preliminary efficacy of APG-2449 in patients with advanced solid tumors, including ALK+ NSCLC refractory to earlier-generation ALK inhibitors. TRIAL REGISTRATION Clinicaltrial.gov registration: NCT03917043 (date of first registration, 16/04/2019) and Chinese clinical trial registration: CTR20190468 (date of first registration, 09/04/2019).
Collapse
Affiliation(s)
- Douglas D Fang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Ran Tao
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Guangfeng Wang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Yuanbao Li
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Kaixiang Zhang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Chunhua Xu
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Guoqin Zhai
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Qixin Wang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Jingwen Wang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Chunyang Tang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Ping Min
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Dengkun Xiong
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Jianyong Chen
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Shaomeng Wang
- Pharmacology and Medicinal Chemistry, Michigan Center for Therapeutic Innovation, University of Michigan, 1600 Huron Parkway NCRC/Building 520 Room 1245, Ann Arbor, MI, 48109, USA.
| | - Dajun Yang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China. .,Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510275, China.
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China.
| |
Collapse
|
37
|
Early Steps of Resistance to Targeted Therapies in Non-Small-Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14112613. [PMID: 35681591 PMCID: PMC9179469 DOI: 10.3390/cancers14112613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Patients with lung cancer benefit from more effective treatments, such as targeted therapies, and the overall survival has increased in the past decade. However, the efficacy of targeted therapies is limited due to the emergence of resistance. Growing evidence suggests that resistances may arise from a small population of drug-tolerant persister (DTP) cells. Understanding the mechanisms underlying DTP survival is therefore crucial to develop therapeutic strategies to prevent the development of resistance. Herein, we propose an overview of the current scientific knowledge about the characterisation of DTP, and summarise the new therapeutic strategies that are tested to target these cells. Abstract Lung cancer is the leading cause of cancer-related deaths among men and women worldwide. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are effective therapies for advanced non-small-cell lung cancer (NSCLC) patients harbouring EGFR-activating mutations, but are not curative due to the inevitable emergence of resistances. Recent in vitro studies suggest that resistance to EGFR-TKI may arise from a small population of drug-tolerant persister cells (DTP) through non-genetic reprogramming, by entering a reversible slow-to-non-proliferative state, before developing genetically derived resistances. Deciphering the molecular mechanisms governing the dynamics of the drug-tolerant state is therefore a priority to provide sustainable therapeutic solutions for patients. An increasing number of molecular mechanisms underlying DTP survival are being described, such as chromatin and epigenetic remodelling, the reactivation of anti-apoptotic/survival pathways, metabolic reprogramming, and interactions with their micro-environment. Here, we review and discuss the existing proposed mechanisms involved in the DTP state. We describe their biological features, molecular mechanisms of tolerance, and the therapeutic strategies that are tested to target the DTP.
Collapse
|
38
|
Wu Y, Niu D, Deng S, Lei X, Xie Z, Yang X. Tumor-derived or non-tumor-derived exosomal noncodingRNAs and signaling pathways in tumor microenvironment. Int Immunopharmacol 2022; 106:108626. [DOI: 10.1016/j.intimp.2022.108626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
|
39
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
40
|
Ku BM, Heo JY, Kim J, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. ERK inhibitor ASN007 effectively overcomes acquired resistance to EGFR inhibitor in non-small cell lung cancer. Invest New Drugs 2022; 40:265-273. [PMID: 34973117 PMCID: PMC8993753 DOI: 10.1007/s10637-021-01121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
The emergence of acquired resistance limits the long-term efficacy of EGFR tyrosine kinase inhibitors (EGFR TKIs). Thus, development of effective strategies to overcome resistance to EGFR TKI is urgently needed. Multiple mechanisms to reactivate ERK signaling have been successfully demonstrated in acquired resistance models. We found that in EGFR mutant non-small cell lung cancer (NSCLC) patients, acquired resistance to EGFR TKIs was accompanied by increased activation of ERK. Increased ERK activation was also found in in vitro models of acquired EGFR TKI resistance. ASN007 is a potent selective ERK1/2 inhibitor with promising antitumor activity in cancers with BRAF and RAS mutations. ASN007 treatment impeded tumor cell growth and the cell cycle in EGFR TKI-resistant cells. In addition, combination treatment with ASN007 and EGFR TKIs significantly decreased the survival of resistant cells, enhanced induction of apoptosis, and effectively inhibited the growth of erlotinib-resistant xenografts, providing the preclinical rationale for testing combinations of ASN007 and EGFR TKIs in EGFR-mutated NSCLC patients. This study emphasizes the importance of targeting ERK signaling in maintaining the long-term benefits of EGFR TKIs by overcoming acquired resistance.
Collapse
Affiliation(s)
- Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Yeong Heo
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinchul Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jong-Mu Sun
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Se-Hoon Lee
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jin Seok Ahn
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Keunchil Park
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Myung-Ju Ahn
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| |
Collapse
|
41
|
Ali M, Lu M, Ang HX, Soderquist RS, Eyler CE, Hutchinson HM, Glass C, Bassil CF, Lopez OM, Kerr DL, Falcon CJ, Yu HA, Hata AN, Blakely CM, McCoach CE, Bivona TG, Wood KC. Small-molecule targeted therapies induce dependence on DNA double-strand break repair in residual tumor cells. Sci Transl Med 2022; 14:eabc7480. [PMID: 35353542 PMCID: PMC9516479 DOI: 10.1126/scitranslmed.abc7480] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Residual cancer cells that survive drug treatments with targeted therapies act as a reservoir from which eventual resistant disease emerges. Although there is great interest in therapeutically targeting residual cells, efforts are hampered by our limited knowledge of the vulnerabilities existing in this cell state. Here, we report that diverse oncogene-targeted therapies, including inhibitors of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), KRAS, and BRAF, induce DNA double-strand breaks and, consequently, ataxia-telangiectasia mutated (ATM)-dependent DNA repair in oncogene-matched residual tumor cells. This DNA damage response, observed in cell lines, mouse xenograft models, and human patients, is driven by a pathway involving the activation of caspases 3 and 7 and the downstream caspase-activated deoxyribonuclease (CAD). CAD is, in turn, activated through caspase-mediated degradation of its endogenous inhibitor, ICAD. In models of EGFR mutant non-small cell lung cancer (NSCLC), tumor cells that survive treatment with small-molecule EGFR-targeted therapies are thus synthetically dependent on ATM, and combined treatment with an ATM kinase inhibitor eradicates these cells in vivo. This led to more penetrant and durable responses in EGFR mutant NSCLC mouse xenograft models, including those derived from both established cell lines and patient tumors. Last, we found that rare patients with EGFR mutant NSCLC harboring co-occurring, loss-of-function mutations in ATM exhibit extended progression-free survival on first generation EGFR inhibitor therapy relative to patients with EGFR mutant NSCLC lacking deleterious ATM mutations. Together, these findings establish a rationale for the mechanism-based integration of ATM inhibitors alongside existing targeted therapies.
Collapse
Affiliation(s)
- Moiez Ali
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Min Lu
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Hazel Xiaohui Ang
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Ryan S. Soderquist
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Christine E. Eyler
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Haley M. Hutchinson
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Carolyn Glass
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Christopher F. Bassil
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Omar M. Lopez
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - D. Lucas Kerr
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina J. Falcon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Helena A. Yu
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Aaron N. Hata
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Collin M. Blakely
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Caroline E. McCoach
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Trever G. Bivona
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
42
|
Mangiapane LR, Nicotra A, Turdo A, Gaggianesi M, Bianca P, Di Franco S, Sardina DS, Veschi V, Signore M, Beyes S, Fagnocchi L, Fiori ME, Bongiorno MR, Lo Iacono M, Pillitteri I, Ganduscio G, Gulotta G, Medema JP, Zippo A, Todaro M, De Maria R, Stassi G. PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells. Gut 2022; 71:119-128. [PMID: 33436496 PMCID: PMC8666826 DOI: 10.1136/gutjnl-2020-323553] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cancer stem cells are responsible for tumour spreading and relapse. Human epidermal growth factor receptor 2 (HER2) expression is a negative prognostic factor in colorectal cancer (CRC) and a potential target in tumours carrying the gene amplification. Our aim was to define the expression of HER2 in colorectal cancer stem cells (CR-CSCs) and its possible role as therapeutic target in CRC resistant to anti- epidermal growth factor receptor (EGFR) therapy. DESIGN A collection of primary sphere cell cultures obtained from 60 CRC specimens was used to generate CR-CSC mouse avatars to preclinically validate therapeutic options. We also made use of the ChIP-seq analysis for transcriptional evaluation of HER2 activation and global RNA-seq to identify the mechanisms underlying therapy resistance. RESULTS Here we show that in CD44v6-positive CR-CSCs, high HER2 expression levels are associated with an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which promotes the acetylation at the regulatory elements of the Erbb2 gene. HER2 targeting in combination with phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase kinase (MEK) inhibitors induces CR-CSC death and regression of tumour xenografts, including those carrying Kras and Pik3ca mutation. Requirement for the triple targeting is due to the presence of cancer-associated fibroblasts, which release cytokines able to confer CR-CSC resistance to PI3K/AKT inhibitors. In contrast, targeting of PI3K/AKT as monotherapy is sufficient to kill liver-disseminating CR-CSCs in a model of adjuvant therapy. CONCLUSIONS While PI3K targeting kills liver-colonising CR-CSCs, the concomitant inhibition of PI3K, HER2 and MEK is required to induce regression of tumours resistant to anti-EGFR therapies. These data may provide a rationale for designing clinical trials in the adjuvant and metastatic setting.
Collapse
Affiliation(s)
- Laura Rosa Mangiapane
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Annalisa Nicotra
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Davide Stefano Sardina
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | | | - Sven Beyes
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luca Fagnocchi
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Micol Eleonora Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanita, Roma, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Irene Pillitteri
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Gloria Ganduscio
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Gaspare Gulotta
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands,Oncode Institute, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| | - Alessio Zippo
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Universita Cattolica del Sacro Cuore Facolta di Medicina e Chirurgia, Roma, Italy .,Policlinico A Gemelli, Roma, Lazio, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
43
|
Arnal-Estapé A, Foggetti G, Starrett JH, Nguyen DX, Politi K. Preclinical Models for the Study of Lung Cancer Pathogenesis and Therapy Development. Cold Spring Harb Perspect Med 2021; 11:a037820. [PMID: 34518338 PMCID: PMC8634791 DOI: 10.1101/cshperspect.a037820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimental preclinical models have been a cornerstone of lung cancer translational research. Work in these model systems has provided insights into the biology of lung cancer subtypes and their origins, contributed to our understanding of the mechanisms that underlie tumor progression, and revealed new therapeutic vulnerabilities. Initially patient-derived lung cancer cell lines were the main preclinical models available. The landscape is very different now with numerous preclinical models for research each with unique characteristics. These include genetically engineered mouse models (GEMMs), patient-derived xenografts (PDXs) and three-dimensional culture systems ("organoid" cultures). Here we review the development and applications of these models and describe their contributions to lung cancer research.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | - Don X Nguyen
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Katerina Politi
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
44
|
Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1877:188645. [PMID: 34793897 DOI: 10.1016/j.bbcan.2021.188645] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer causes the highest mortality compared to other cancers in the world according to the latest WHO reports. Non-small cell lung cancer (NSCLC) contributes about 85% of total lung cancer cases. An extensive number of risk factors are attributed to the progression of lung cancer. Epidermal growth factor receptor (EGFR), one of the most frequently mutant driver genes, is closely involved in the development of lung cancer through regulation of the PI3K/AKT and MAPK pathways. As a representative of precision medicine, EGFR-tyrosine kinase inhibitors (TKIs) targeted therapy significantly relieves the development of activating mutant EGFR-driven NSCLC. However, treatment with TKIs facilitates the emergence of acquired resistance that continues to pose a significant hurdle with respect to EGFR targeted therapy. In this review, the development of current approved EGFR-TKIs as well as the related supporting clinical trials are summarized and discussed. Mechanisms of action and resistance were addressed respectively, which serve as important guides to understanding acquired resistance. We also explored the corresponding combination treatment options according to different resistance mechanisms. Future challenges include more comprehensive characterization of unclear resistance mechanisms in different populations and the development of more efficient and precision synthetic therapeutic strategies.
Collapse
|
45
|
Serna-Blasco R, Sánchez-Herrero E, Sanz-Moreno S, Rodriguez-Festa A, García-Veros E, Casarrubios M, Sierra-Rodero B, Laza-Briviesca R, Cruz-Bermúdez A, Mielgo-Rubio X, Sánchez-Hernández A, Uribelarrea EA, Calvo V, Romero A, Provencio M. KRAS p.G12C mutation occurs in 1% of EGFR-mutated advanced non-small-cell lung cancer patients progressing on a first-line treatment with a tyrosine kinase inhibitor. ESMO Open 2021; 6:100279. [PMID: 34607284 PMCID: PMC8493588 DOI: 10.1016/j.esmoop.2021.100279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/28/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background KRAS is mutated in ∼30% of non-small-cell lung cancer (NSCLC) but it has also been identified as one of the mechanisms underlying resistance to tyrosine kinase inhibitors (TKIs) in EGFR-positive NSCLC patients. Novel KRAS inhibitors targeting KRAS p.G12C mutation have been developed recently with promising results. The proportion of EGFR-positive NSCLC tumours harbouring the KRAS p.G12C mutation upon disease progression is completely unexplored. Materials and methods Plasma samples from 512 EGFR-positive advanced NSCLC patients progressing on a first first-line treatment with a TKI were collected. The presence of KRAS p.G12C mutation was assessed by digital PCR. Results Overall, KRAS p.G12C mutation was detected in 1.17% of the samples (n = 6). In two of these cases, we could confirm that the KRAS p.G12C mutation was not present in the pre-treatment plasma samples, supporting its role as an acquired resistance mutation. According to our data, KRASG12C patients showed similar clinicopathological characteristics to those of the rest of the study cohort and no statistically significant associations between any clinical features and the presence of the mutation were found. However, two out of six KRASG12C tumours harboured less common EGFR driver mutations (p.G719X/p.L861Q). All KRASG12C patients tested negative for the presence of p.T790M resistance mutation. Conclusions The KRAS p.G12C mutation is detected in 1% of EGFR-positive NSCLC patients who progress on a first line with a TKI. All KRASG12C patients were negative for the presence of the p.T790M mutation and they did not show any distinctive clinical feature. Novel KRAS G12C inhibitors provide a new therapeutic opportunity for NSCLC patients. One percent of EGFR-mutated NSCLC tumours progressing on a first-line TKI harbour the KRAS p.G12C mutation.
Collapse
Affiliation(s)
- R Serna-Blasco
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain
| | - E Sánchez-Herrero
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain; Atrys Health, Barcelona, Spain
| | - S Sanz-Moreno
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain
| | - A Rodriguez-Festa
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain
| | - E García-Veros
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain
| | - M Casarrubios
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain
| | - B Sierra-Rodero
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain
| | - R Laza-Briviesca
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain
| | - A Cruz-Bermúdez
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain
| | - X Mielgo-Rubio
- Medical Oncology Department, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - A Sánchez-Hernández
- Medical Oncology Department, Hospital Provincial Centre de Castelló, Castellón de la Plana, Castellón, Spain
| | - E A Uribelarrea
- Medical Oncology Department, Hospital Universitario de Cruces, Barakaldo, Vizcaya, Spain
| | - V Calvo
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - A Romero
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain; Medical Oncology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain.
| | - M Provencio
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda University Hospital, Majadahonda, Spain; Medical Oncology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain.
| |
Collapse
|
46
|
Papini F, Sundaresan J, Leonetti A, Tiseo M, Rolfo C, Peters GJ, Giovannetti E. Hype or hope - Can combination therapies with third-generation EGFR-TKIs help overcome acquired resistance and improve outcomes in EGFR-mutant advanced/metastatic NSCLC? Crit Rev Oncol Hematol 2021; 166:103454. [PMID: 34455092 DOI: 10.1016/j.critrevonc.2021.103454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
Three generations of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs) have been developed for treating advanced/metastatic non-small cell lung cancer (NSCLC) patients harboring EGFR-activating mutations, while a fourth generation is undergoing preclinical assessment. Although initially effective, acquired resistance to EGFR-TKIs usually arises within a year due to the emergence of clones harboring multiple resistance mechanisms. Therefore, the combination of EGFR-TKIs with other therapeutic agents has emerged as a potential strategy to overcome resistance and improve clinical outcomes. However, results obtained so far are ambiguous and ideal therapies for patients who experience disease progression during treatment with EGFR-TKIs remain elusive. This review provides an updated landscape of EGFR-TKIs, along with a description of the mechanisms causing resistance to these drugs. Moreover, it discusses the current knowledge, limitations, and future perspective regarding the use of EGFR-TKIs in combination with other anticancer agents, supporting the need for bench-to-bedside approaches in selected populations.
Collapse
Affiliation(s)
- Filippo Papini
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy
| | - Janani Sundaresan
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Alessandro Leonetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Christian Rolfo
- The Center of Thoracic Oncology at the Tisch Cancer Institute, Mount Sinai, NYC, United States
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|
47
|
Alves CL, Ehmsen S, Terp MG, Portman N, Tuttolomondo M, Gammelgaard OL, Hundebøl MF, Kaminska K, Johansen LE, Bak M, Honeth G, Bosch A, Lim E, Ditzel HJ. Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun 2021; 12:5112. [PMID: 34433817 PMCID: PMC8387387 DOI: 10.1038/s41467-021-25422-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) combined with endocrine therapy have shown impressive efficacy in estrogen receptor-positive advanced breast cancer. However, most patients will eventually experience disease progression on this combination, underscoring the need for effective subsequent treatments or better initial therapies. Here, we show that triple inhibition with fulvestrant, CDK4/6i and AKT inhibitor (AKTi) durably impairs growth of breast cancer cells, prevents progression and reduces metastasis of tumor xenografts resistant to CDK4/6i-fulvestrant combination or fulvestrant alone. Importantly, switching from combined fulvestrant and CDK4/6i upon resistance to dual combination with AKTi and fulvestrant does not prevent tumor progression. Furthermore, triple combination with AKTi significantly inhibits growth of patient-derived xenografts resistant to combined CDK4/6i and fulvestrant. Finally, high phospho-AKT levels in metastasis of breast cancer patients treated with a combination of CDK4/6i and endocrine therapy correlates with shorter progression-free survival. Our findings support the clinical development of ER, CDK4/6 and AKT co-targeting strategies following progression on CDK4/6i and endocrine therapy combination, and in tumors exhibiting high phospho-AKT levels, which are associated with worse clinical outcome.
Collapse
Affiliation(s)
- Carla L Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Martina Tuttolomondo
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Monique F Hundebøl
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kamila Kaminska
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lene E Johansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Bak
- Department of Pathology, Sydvestjysk Sygehus, Esbjerg, Denmark
| | - Gabriella Honeth
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ana Bosch
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
48
|
Rosell R, Cardona AF, Arrieta O, Aguilar A, Ito M, Pedraz C, Codony-Servat J, Santarpia M. Coregulation of pathways in lung cancer patients with EGFR mutation: therapeutic opportunities. Br J Cancer 2021; 125:1602-1611. [PMID: 34373568 PMCID: PMC8351231 DOI: 10.1038/s41416-021-01519-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma are a frequent class of driver mutations. Single EGFR tyrosine kinase inhibitor (TKI) provides substantial clinical benefit, but almost nil radiographic complete responses. Patients invariably progress, although survival can reach several years with post-treatment therapies, including EGFR TKIs, chemotherapy or other procedures. Endeavours have been clinically oriented to manage the acquisition of EGFR TKI-resistant mutations; however, basic principles on cancer evolution have not been considered in clinical trials. For years, evidence has displayed rapidly adaptive mechanisms of resistance to selective monotherapy, posing several dilemmas for the practitioner. Strict adherence to non-small cell lung cancer (NSCLC) guidelines is not always practical for addressing the clinical progression that EGFR-mutant lung adenocarcinoma patients suffer. The purpose of this review is to highlight regulatory mechanisms and signalling pathways that cause therapy-induced resistance to EGFR TKIs. It suggests combinatorial therapies that target EGFR, as well as potential mechanisms underlying EGFR-mutant NSCLC, alerting the reader to clinical opportunities that may lead to a deeper and more durable response. Molecular reprogramming contributes to EGFR TKI resistance, and the compiled information is relevant in understanding the development of new combined targeted strategies in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Rafael Rosell
- Catalan Institute of Oncology, Badalona, Spain. .,Oncology Institute Dr Rosell, IOR, Barcelona, Spain.
| | - Andrés Felipe Cardona
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Institute of Oncologyt, Clínica del Country, Bogotá, Colombia
| | - Oscar Arrieta
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología, México City, México.,Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, México
| | | | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Carlos Pedraz
- Germans Trias i Pujol Research Institute, Badalona, Spain.,Biochemistry, Molecular Biology and Biomedicine Department, Universitat Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
49
|
Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA, Pittsenbarger J, Kaempf A, Gosline SJC, Wang YT, Hansen JR, Gritsenko MA, Hutchinson C, Weitz KK, Moon J, Cendali F, Fillmore TL, Tsai CF, Schepmoes AA, Shi T, Arshad OA, McDermott JE, Babur O, Watanabe-Smith K, Demir E, D'Alessandro A, Liu T, Tognon CE, Tyner JW, McWeeney SK, Rodland KD, Druker BJ, Traer E. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell 2021; 39:999-1014.e8. [PMID: 34171263 PMCID: PMC8686208 DOI: 10.1016/j.ccell.2021.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/22/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Our study details the stepwise evolution of gilteritinib resistance in FLT3-mutated acute myeloid leukemia (AML). Early resistance is mediated by the bone marrow microenvironment, which protects residual leukemia cells. Over time, leukemia cells evolve intrinsic mechanisms of resistance, or late resistance. We mechanistically define both early and late resistance by integrating whole-exome sequencing, CRISPR-Cas9, metabolomics, proteomics, and pharmacologic approaches. Early resistant cells undergo metabolic reprogramming, grow more slowly, and are dependent upon Aurora kinase B (AURKB). Late resistant cells are characterized by expansion of pre-existing NRAS mutant subclones and continued metabolic reprogramming. Our model closely mirrors the timing and mutations of AML patients treated with gilteritinib. Pharmacological inhibition of AURKB resensitizes both early resistant cell cultures and primary leukemia cells from gilteritinib-treated AML patients. These findings support a combinatorial strategy to target early resistant AML cells with AURKB inhibitors and gilteritinib before the expansion of pre-existing resistance mutations occurs.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Aurora Kinase B/genetics
- Aurora Kinase B/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Drug Resistance, Neoplasm
- Exome
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Metabolome
- Protein Kinase Inhibitors/pharmacology
- Proteome
- Pyrazines/pharmacology
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tamilla Nechiporuk
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Paul D Piehowski
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Janét Pittsenbarger
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua R Hansen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chelsea Hutchinson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas L Fillmore
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ozgun Babur
- Department of Computer Science, University of Massachusetts, Boston, MA, USA
| | - Kevin Watanabe-Smith
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
50
|
Kano H, Ichihara E, Watanabe H, Nishii K, Ando C, Nakasuka T, Ninomiya K, Kato Y, Kubo T, Rai K, Ohashi K, Hotta K, Tabata M, Maeda Y, Kiura K. SHP2 Inhibition Enhances the Effects of Tyrosine Kinase Inhibitors in Preclinical Models of Treatment-naïve ALK-, ROS1-, or EGFR-altered Non-small Cell Lung Cancer. Mol Cancer Ther 2021; 20:1653-1662. [PMID: 34158345 DOI: 10.1158/1535-7163.mct-20-0965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
After molecular-targeted therapy, some cancer cells may remain that are resistant to therapies targeting oncogene alterations, such as those in the genes encoding the EGFR and anaplastic lymphoma kinase (ALK) as well as c-ros oncogene 1 (ROS1). The mechanisms underlying this type of resistance are unknown. In this article, we report the potential role of Src homology 2 domain-containing phosphatase 2 (SHP2) in the residual cells of ALK/ROS1/EGFR-altered non-small cell lung cancer (NSCLC). Molecular-targeted therapies failed to inhibit the ERK signaling pathway in the residual cells, whereas the SHP2 inhibitor SHP099 abolished their remaining ERK activity. SHP099 administered in combination with molecular-targeted therapy resulted in marked growth inhibition of cancer cells both in vitro and in vivo Thus, treatment combining an SHP2 inhibitor and a tyrosine kinase inhibitor may be a promising therapeutic strategy for oncogene-driven NSCLC.
Collapse
Affiliation(s)
- Hirohisa Kano
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
| | - Hiromi Watanabe
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Chihiro Ando
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kiichiro Ninomiya
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuka Kato
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshio Kubo
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Kammei Rai
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsuyuki Hotta
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Masahiro Tabata
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|