1
|
Marciniak M, Stachowicz-Suhs M, Wagner M. The role of innate immune cells in modulating vascular dynamics in skin malignancies. Biochim Biophys Acta Rev Cancer 2025; 1880:189331. [PMID: 40280501 DOI: 10.1016/j.bbcan.2025.189331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
A developing tumor relies heavily on blood vessels to supply oxygen and nutrients. As a result, angiogenesis, the formation of new blood vessels, supports tumor growth and progression. Similarly, lymphangiogenesis, the formation of new lymphatic vessels, plays a critical role in metastatic dissemination by providing pathways for malignant cells to spread. The tumor microenvironment is crucial for establishing and maintaining these vascular networks, with innate immune cells playing a key regulatory role. Notably, immune cells are specifically enriched in barrier tissues, such as the skin, emphasizing their importance in skin malignancies. Therefore, understanding their role in regulating angiogenesis and lymphangiogenesis is essential for developing novel therapeutic strategies. This review article explores how innate immune cells influence tumor vasculature and highlights the therapeutic potential that may arise from this knowledge.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland; Department of Biochemistry and Immunochemistry, Wrocław Medical University, Wrocław, Poland
| | - Martyna Stachowicz-Suhs
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland.
| |
Collapse
|
2
|
Chinas NA, Kaliampou S, Nikolaou V. Unveiling the Role of the Cellular Tumor Microenvironment and the Therapeutic Targets it Provides in Cutaneous T-Cell Lymphoma. Curr Oncol Rep 2025; 27:415-430. [PMID: 40055269 PMCID: PMC11976352 DOI: 10.1007/s11912-025-01646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/09/2025]
Abstract
PURPOSE OF REVIEW Cutaneous T-Cell Lymphoma (CTCL) poses challenges both in diagnosis and prognosis. The purpose of this review is to address the role of profiling immune and non-immune cells in the tumor microenvironment (TME) as it provides information for better diagnosis, prognosis, biomarker discovery, and personalized treatment strategies. RECENT FINDINGS Recent evidence suggests that the progression of CTCL is closely linked to the Tumor Microenvironment (TME) which comprises various cell types including immune cells, stromal cells, blood vessels, and the extracellular matrix. Cell profiling within the TME demonstrates the perplexity of intracellular communication of the different cell fates and their mediators as the disease progresses. CTCL as a rare form of non-Hodgkin lymphoma often misdiagnosed due to its similarity to other skin conditions. It encompasses diseases like Mycosis fungoides (MF) and Sézary Syndrome (SS), with the latter being more severe. Advances in studying the TME have shown its pivotal role in CTCL progression, highlighting the need for comprehensive cell profiling to enhance diagnosis, prognosis, and treatment personalization.
Collapse
MESH Headings
- Humans
- Tumor Microenvironment/immunology
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/diagnosis
- Lymphoma, T-Cell, Cutaneous/therapy
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Skin Neoplasms/pathology
- Skin Neoplasms/immunology
- Skin Neoplasms/drug therapy
- Skin Neoplasms/therapy
- Prognosis
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Nikolaos A Chinas
- 1st Department of Dermatology-Venereology, Medical School, National and Kapodistrian University of Athens, "Andreas Sygros" Hospital for Skin & Venereal Diseases, Athens, Greece
| | - Stella Kaliampou
- 1st Department of Dermatology-Venereology, Medical School, National and Kapodistrian University of Athens, "Andreas Sygros" Hospital for Skin & Venereal Diseases, Athens, Greece
| | - Vasiliki Nikolaou
- 1st Department of Dermatology-Venereology, Medical School, National and Kapodistrian University of Athens, "Andreas Sygros" Hospital for Skin & Venereal Diseases, Athens, Greece.
| |
Collapse
|
3
|
Metwally H. STAT Signature Dish: Serving Immunity with a Side of Dietary Control. Biomolecules 2025; 15:487. [PMID: 40305224 PMCID: PMC12024614 DOI: 10.3390/biom15040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Immunity is a fundamental aspect of animal biology, defined as the host's ability to detect and defend against harmful pathogens and toxic substances to preserve homeostasis. However, immune defenses are metabolically demanding, requiring the efficient allocation of limited resources to balance immune function with other physiological and developmental needs. To achieve this balance, organisms have evolved sophisticated signaling networks that enable precise, context-specific responses to internal and external cues. These networks are essential for survival and adaptation in multicellular systems. Central to this regulatory architecture is the STAT (signal transducer and activator of Transcription) family, a group of versatile signaling molecules that govern a wide array of biological processes across eukaryotes. STAT signaling demonstrates remarkable plasticity, from orchestrating host defense mechanisms to regulating dietary metabolism. Despite its critical role, the cell-specific and context-dependent nuances of STAT signaling remain incompletely understood, highlighting a significant gap in our understanding. This review delves into emerging perspectives on immunity, presenting dynamic frameworks to explore the complexity and adaptability of STAT signaling and the underlying logic driving cellular decision-making. It emphasizes how STAT pathways integrate diverse physiological processes, from immune responses to dietary regulation, ultimately supporting organismal balance and homeostasis.
Collapse
Affiliation(s)
- Hozaifa Metwally
- Laboratory of Immune Regulation, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Woelk J, Hornsteiner F, Aschauer-Wallner S, Stoitzner P, Baier G, Hermann-Kleiter N. Regulation of NK cell development, maturation, and antitumor responses by the nuclear receptor NR2F6. Cell Death Dis 2025; 16:77. [PMID: 39920136 PMCID: PMC11806049 DOI: 10.1038/s41419-025-07407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Natural killer (NK) cell development and functionality rely on precise regulation by specific transcription factors (TFs). Our study demonstrates that the nuclear orphan receptor NR2F6 represses the expression of the activating receptor NKp46, an established key player in NK cell-mediated cytotoxicity during infection and tumor rejection. Despite normal NK cell development in the bone marrow, germline Nr2f6-deficient mice exhibit impaired terminal maturation of NK cells in the periphery. Short-term NK cell responses to lipopolysaccharide (LPS) activation, independent of NKp46, are subsequently reduced in Nr2f6-deficient mice. Conventional type 1 dendritic cells (cDC1) and macrophage populations are decreased in spleens of Nr2f6-deficient mice, subsequently, IL-15-dependent NK cell priming is limited. Administration of exogenous IL-15 in vitro and as IL-15 complex in vivo can compensate for these deficits, promoting terminal maturation of NK cells in Nr2f6-deficient mice. Subsequent transcriptome analysis reveals significant changes in gene expression profiles of NK cells from IL-15 complex treated Nr2f6-deficient mice, with notable alterations in essential NK genes such as Klrg1, Prdm1, Stat5a, Zeb2, and Prf1. Consequently, Nr2f6-deficient IL-15 complex-treated NK cells raise enhanced effector responses of IFNγ, Perforin, and Granzyme B upon ex vivo activation. Of importance, Nr2f6-deficient mice are protected against MHC-I negative B16-F10 melanoma lung metastasis formation, especially with IL-15 complex treatment, indicating the potential of NR2F6 to affect NKp46-dependent NK cell-mediated tumor surveillance. The therapeutic targeting of NR2F6 may be a promising strategy for boosting NKp46-dependent NK-cell-mediated tumor surveillance and metastasis.
Collapse
Affiliation(s)
- Johannes Woelk
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephanie Aschauer-Wallner
- Laboratory of Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, Medical University of Innsbruck, 6020, Innsbruck, Austria
- Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Perumalsamy H, Xiao X, Han HY, Oh JH, Yoon S, Heo MB, Lee TG, Kim HY, Yoon TH. Single-cell RNA sequencing uncovers heterogenous immune cell responses upon exposure to food additive (E171) titanium dioxide. J Nanobiotechnology 2024; 22:765. [PMID: 39696498 DOI: 10.1186/s12951-024-03036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
The prospective use of food additive titanium dioxide (E171 TiO2) in a variety of fields (food, pharmaceutics, and cosmetics) prompts proper cellular cytotoxicity and transcriptomic assessment. Interestingly, smaller-sized E171 TiO2 can translocate in bloodstream and induce a diverse immunological response by activating the immune system, which can be either pro-inflammatory or immune-suppressive. Nevertheless, their cellular or immunologic responses in a heterogeneous population of the immune system following exposure of food additive E171 TiO2 is yet to be elucidated. For this purpose, we have used male Sprague-Dawley rats to deliver E171 TiO2 (5 mg/kg bw per day) via non-invasive intratracheal instillation for 13 weeks. After the 4 weeks recovery period, 3 mL of blood samples from both treated and untreated groups were collected for scRNAseq analysis. Firstly, granulocyte G1 activated innate immune response through the upregulation of genes involved in pro-inflammatory cytokine mediated cytotoxicity. Whereas NK cells resulted in heterogeneity role depending on the subsets where NK1 significantly inhibited cytotoxicity, whereas NK2 and NK3 subsets activated pro-B cell population & inhibited T cell mediated cytotoxicity respectively. While NKT_1 activated innate inflammatory responses which was confirmed by cytotoxic CD8+ T killer cell suppression. Similarly, NKT_2 cells promote inflammatory response by releasing lytic granules and MHC-I complex inhibition to arrest cytotoxic T killer cell responses. Conversely, NKT_3 suppressed inflammatory response by release of anti-inflammatory cytokines suggesting the functional heterogeneity of NKT subset. The formation of MHC-I or MHC-II complexes with T-cell subsets resulted in neither B and T cell dysfunction nor cytotoxic T killer cell inhibition suppressing adaptive immune response. Overall, our research offers an innovative high-dimensional approach to reveal immunological and transcriptomic responses of each cell types at the single cell level in a complex heterogeneous cellular environment by reassuring a precise assessment of immunological response of E171 TiO2.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, South Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Xiao Xiao
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Min Beom Heo
- Nanosafety Metrology Center, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Tae Geol Lee
- Nanosafety Metrology Center, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Hyun-Yi Kim
- Institute for Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- NGeneS Inc., Gyeonggi-do, 15495, Republic of Korea
| | - Tae-Hyun Yoon
- Institute for Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, South Korea.
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Yoon Idea Lab. Co. Ltd, Seoul, 04763, Republic of Korea.
| |
Collapse
|
6
|
Mendonca P, Kaur S, Kirpal B, Soliman KFA. Cardamonin anticancer effects through the modulation of the tumor immune microenvironment in triple-negative breast cancer cells. Am J Cancer Res 2024; 14:5644-5664. [PMID: 39803666 PMCID: PMC11711538 DOI: 10.62347/anxs3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/21/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor immune microenvironment (TIME) plays a critical role in cancer development and response to immunotherapy. Immune checkpoint inhibitors aim to reverse the immunosuppressive effects of the TIME, but their success has been limited. Immunotherapy directed at PD-1/PD-L1 has been widely employed, yielding positive results. Unfortunately, the gradual emergence of resistance to PD-1/PD-L1 inhibition has diminished the effectiveness of this immunotherapy in cancer patients, emphasizing the need for new compounds that will be more effective in managing immunotherapy. This study investigated the effect of the natural compound cardamonin on PD-L1 expression and its ability to modulate the TIME, which could overcome immunotherapy resistance in triple-negative breast cancer (TNBC). This investigation used two genetically distinct triple-negative breast cancer cell lines, MDA-MB-231 (MDA-231) and MDA-MB-468 (MDA-468). The results show that TNBC cell treatment with cardamonin inhibited PD-L1 expression and reduced JAK1 and STAT3 levels in MDA-231 cells, while it increased JAK1 expression in MDA-468 cells. Also, cardamonin increased the expression of Nrf2 in both cell lines. In addition, cardamonin decreased MUC1, NF-κB1, and NF-κB2 expression in MDA-MB-231 cells and selectively reduced NF-κB1 expression in MDA-468 cells. Furthermore, cardamonin very potently reduced the inflammatory cytokine CCL2 levels. The decrease in CCL2 release reduces the chemoattraction of macrophages in the tumor microenvironment, which may increase the effectiveness of PD-1/PD-L1 inhibition and allow T-cell infiltration. These findings suggest that the cardamonin modulation of TIME holds promise in reversing resistance of PD-1/PD-L1 inhibition when it is used along with immunotherapy in TNBC treatment.
Collapse
Affiliation(s)
- Patricia Mendonca
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M UniversityTallahassee, FL 32307, The United States
- Department of Biology, College of Science and Technology, Florida A&M UniversityTallahassee, FL 32307, The United States
| | - Sukhmandeep Kaur
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M UniversityTallahassee, FL 32307, The United States
| | - Bhonesa Kirpal
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M UniversityTallahassee, FL 32307, The United States
| | - Karam FA Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M UniversityTallahassee, FL 32307, The United States
| |
Collapse
|
7
|
Xiong W, Li Y, Hu L, He G, Huang J. Risks of malignancies related to disease-modifying antirheumatic drugs in rheumatoid arthritis: a pharmacovigilance analysis using the FAERS database. Front Pharmacol 2024; 15:1458500. [PMID: 39605908 PMCID: PMC11598350 DOI: 10.3389/fphar.2024.1458500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives Over the years when disease-modifying antirheumatic drugs (DMARDs) have been used in rheumatoid arthritis patients, reports of malignancies have emerged. This study aims to investigate the association between malignancies and DMARDs by using data extracted from the Food and Drug Administration Adverse Event Reporting System (FAERS). Methods FAERS data (January 2019 to December 2023) were reviewed. For each drug-event pair, the disproportionality analysis was conducted to evaluate the risk of malignancy. Multivariate logistic regression was implemented to mitigate potential biases. Moreover, the time to onset of malignancy was also evaluated. Results We conducted a detailed search for rheumatoid arthritis indications and identified a total of 17,412 adverse event reports associated with malignancies, with selective DMARDs designated as the role code "primary suspect". At the preferred term level, there were 198 positive signals, among which the lower limit of the 95% confidence interval for the information component is 3.55 for squamous cell carcinoma of the skin, 2.39 for breast cancer, and 2.27 for lymphoproliferative disorder. In comparison to other DMARDs, targeted synthetic DMARDs were associated with a broader range of malignancies at both preferred term and Standardized MedDRA Queries levels. The number of adverse events reported in female patients is approximately 2-3 times higher than men, and the median age across the population was approximately 62 years. In terms of onset time, the conventional synthetic DMRADs exhibited a relatively longer median time, ranging from 3.58 to 7.08 years, while the targeted synthetic DMARDs demonstrated a shorter median time of 0.83-1.67 years. Conclusion Our study uncovers varying degrees of malignancy risks related to DMARDs, with a significantly higher risk observed in targeted synthetic DMARDs. Additionally, novel malignancy signals, not documented in product labels, have been detected. In the future, further research will be necessary to validate our findings.
Collapse
Affiliation(s)
- Wan Xiong
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Yilin Li
- Department of Information and Digital Technology, PowerChina Zhongnan Engineering Corporation Limited, Changsha, China
| | - Lin Hu
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Gefei He
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Juanjuan Huang
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| |
Collapse
|
8
|
Zhang M, Mo J, Huang W, Bao Y, Luo X, Yuan L. The ovarian cancer-associated microbiome contributes to the tumor's inflammatory microenvironment. Front Cell Infect Microbiol 2024; 14:1440742. [PMID: 39497925 PMCID: PMC11532186 DOI: 10.3389/fcimb.2024.1440742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
A growing body of research has established a correlation between tumors and persistent chronic inflammatory infiltration. As a primary instigator of inflammation, the majority of microbiomes naturally residing within our bodies engage in a mutually beneficial symbiotic relationship. Nevertheless, alterations in the microbiome's composition or breaches in the normal barrier function can disrupt the internal environment's homeostasis, potentially leading to the development and progression of various diseases, including tumors. The investigation of tumor-related microbiomes has contributed to a deeper understanding of their role in tumorigenesis. This review offers a comprehensive overview of the microbiome alterations and the associated inflammatory changes in ovarian cancer. It may aid in advancing research to elucidate the mechanisms underlying the ovarian cancer-associated microbiome, providing potential theoretical support for the future development of microbiome-targeted antitumor therapies and early screening through convenient methods.
Collapse
Affiliation(s)
- Min Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiahang Mo
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wu Huang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiting Bao
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xukai Luo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lei Yuan
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
10
|
Zhang L, Weiskittel TM, Zhu Y, Xue D, Zhang H, Shen Y, Yu H, Li J, Hou L, Guo H, Dai Z, Li H, Zhang J. Comparative dissection of transcriptional landscapes of human iPSC-NK differentiation and NK cell development. LIFE MEDICINE 2024; 3:lnae032. [PMID: 39872864 PMCID: PMC11749552 DOI: 10.1093/lifemedi/lnae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/04/2024] [Indexed: 01/30/2025]
Abstract
Clinical and preclinical research has demonstrated that iPSC-derived NK (iNK) cells have a high therapeutic potential, yet poor understanding of the detailed process of their differentiation in vitro and their counterpart cell development in vivo has hindered therapeutic iNK cell production and engineering. Here we dissect the crucial differentiation of both fetal liver NK cells and iNK cells to enable the rational design of advanced iNK production protocols. We use a comparative analysis of single-cell RNA-seq (scRNA-seq) to pinpoint key factors lacking in the induced setting which we hypothesized would hinder iNK differentiation and/ or functionality. By analyzing key transcription factor regulatory networks, we discovered the importance of TBX21, EOMES, and STAT5A in the differentiation timeline. This analysis provides a blueprint for further engineering new iPSC lines to obtain iNK cells with enhanced functions. We validated this approach by creating a new line of STAT5A-iPSCs which can be differentiated to STAT5A-expressing macrophages with both NK cell and macrophage features such as perforin production, phagocytosis, and anti-tumor functions.
Collapse
Affiliation(s)
- Li Zhang
- The Bone Marrow Transplantation Center of The First Affiliated Hospital &Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310012, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Taylor M Weiskittel
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuqing Zhu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Dixuan Xue
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Hailing Zhang
- The Bone Marrow Transplantation Center of The First Affiliated Hospital &Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310012, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuxuan Shen
- The Bone Marrow Transplantation Center of The First Affiliated Hospital &Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310012, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingyu Li
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linxiao Hou
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongshan Guo
- The Bone Marrow Transplantation Center of The First Affiliated Hospital &Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310012, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jin Zhang
- The Bone Marrow Transplantation Center of The First Affiliated Hospital &Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310012, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou 310000, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Feng P, Luo L, Yang Q, Meng W, Guan Z, Li Z, Sun G, Dong Z, Yang M. Hippo kinases Mst1 and Mst2 maintain NK cell homeostasis by orchestrating metabolic state and transcriptional activity. Cell Death Dis 2024; 15:430. [PMID: 38898027 PMCID: PMC11187177 DOI: 10.1038/s41419-024-06828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Natural killer (NK) cells play a crucial role in immune response against viral infections and tumors. However, further investigation is needed to better understand the key molecules responsible for determining the fate and function of NK cells. In this study, we made an important discovery regarding the involvement of the Hippo kinases Mst1 and Mst2 as novel regulators in maintaining mouse NK cell homeostasis. The presence of high Mst1 and Mst2 (Mst1/2) activity in NK cells is essential for their proper development, survival and function in a canonical Hippo signaling independent mode. Mechanistically, Mst1/2 induce cellular quiescence by regulating the processes of proliferation and mitochondrial metabolism, thereby ensuring the development and survival of NK cells. Furthermore, Mst1/2 effectively sense IL-15 signaling and facilitate the activation of pSTAT3-TCF1, which contributes to NK cell homeostasis. Overall, our investigation highlights the crucial role of Mst1/2 as key regulators in metabolic reprogramming and transcriptional regulation for mouse NK cell survival and function, emphasizing the significance of cellular quiescence during NK cell development and functional maturation.
Collapse
Affiliation(s)
- Peiran Feng
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Liang Luo
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital(Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
| | - Wanqing Meng
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zerong Guan
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhizhong Li
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zhongjun Dong
- The First Affiliated Hospital of Anhui Medical University and Institute for Clinical Immunology, Anhui Medical University, 230032, Anhui, China.
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital(Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University), Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Klein K, Kollmann S, Hiesinger A, List J, Kendler J, Klampfl T, Rhandawa M, Trifinopoulos J, Maurer B, Grausenburger R, Betram CA, Moriggl R, Rülicke T, Mullighan CG, Witalisz-Siepracka A, Walter W, Hoermann G, Sexl V, Gotthardt D. A lineage-specific STAT5BN642H mouse model to study NK-cell leukemia. Blood 2024; 143:2474-2489. [PMID: 38498036 PMCID: PMC11208297 DOI: 10.1182/blood.2023022655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.
Collapse
Affiliation(s)
- Klara Klein
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Kollmann
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angela Hiesinger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia List
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonatan Kendler
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thorsten Klampfl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mehak Rhandawa
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Maurer
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christof A. Betram
- Department for Biological Sciences and Pathobiology, Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, Unit for Functional Cancer Genomics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department for Biological Sciences and Pathobiology and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charles G. Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Agnieszka Witalisz-Siepracka
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | | | | | - Veronika Sexl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Dagmar Gotthardt
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
13
|
Acharya SS, Kundu CN. Havoc in harmony: Unravelling the intricacies of angiogenesis orchestrated by the tumor microenvironment. Cancer Treat Rev 2024; 127:102749. [PMID: 38714074 DOI: 10.1016/j.ctrv.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Cancer cells merely exist in isolation; rather, they exist in an intricate microenvironment composed of blood vessels, signalling molecules, immune cells, stroma, fibroblasts, and the ECM. The TME provides a setting that is favourable for the successful growth and survivance of tumors. Angiogenesis is a multifaceted process that is essential for the growth, invasion, and metastasis of tumors. TME can be visualized as a "concert hall," where various cellular and non-cellular factors perform in a "symphony" to orchestrate tumor angiogenesis and create "Havoc" instead of "Harmony". In this review, we comprehensively summarized the involvement of TME in regulating tumor angiogenesis. Especially, we have focused on immune cells and their secreted factors, inflammatory cytokines and chemokines, and their role in altering the TME. We have also deciphered the crosstalk among various cell types that further aids the process of tumor angiogenesis. Additionally, we have highlighted the limitations of existing anti-angiogenic therapy and discussed various potential strategies that could be used to overcome these challenges and improve the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Sushree Subhadra Acharya
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| |
Collapse
|
14
|
De Palma M, Hanahan D. Milestones in tumor vascularization and its therapeutic targeting. NATURE CANCER 2024; 5:827-843. [PMID: 38918437 DOI: 10.1038/s43018-024-00780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future.
Collapse
Affiliation(s)
- Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
15
|
Sohrabi S, Alipour S, Ghahramanipour Z, Masoumi J, Baradaran B. STAT signaling pathways in immune cells and their associated mechanisms in cancer pathogenesis. BIOIMPACTS : BI 2024; 15:30030. [PMID: 39963570 PMCID: PMC11830145 DOI: 10.34172/bi.30030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 02/20/2025]
Abstract
Introduction Signal transducer and activator of transcriptions (STATs) factors as critical proteins in cell signaling regulate diverse biological processes such as differentiation and proliferation of cells. STATs have been shown to play distinct roles in modulating immune responses mediated by innate and adaptive immune cell subsets due to their significant roles in cytokine signaling. Methods In the current study, we review recent studies on the contribution of individual STAT proteins to cytokine signaling, development, and activity of diverse immune cells that constitute the whole immune system and help its performance against endogenous or exogenous agents with a particular focus on meaningful STAT factor in each of innate and adaptive immune cells' subsets to clarify their function in favor of the tumor or against it. Results Dysregulation of signaling pathways in the immune cells is associated with various immune disorders, such as the inability of immune system cells in the effective destruction of cancerous cells. Increase of knowledge about these pathways' functions is essential to understand how they can be effectively targeted to eliminate tumors. Conclusion The majority of immune cells use the Jak/STAT signaling pathway, which is one of the most important signaling pathways with a role in induction of proper immune responses. Since each of the STAT factors has a specific role in diverse immune cells' subsets, appropriate targeting of them can be a promising strategy for patients who suffer from immune system disorders; specifically it can be beneficial as an approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Berjis A, Muthumani D, Aguilar OA, Pomp O, Johnson O, Finck AV, Engel NW, Chen L, Plachta N, Scholler J, Lanier LL, June CH, Sheppard NC. Pretreatment with IL-15 and IL-18 rescues natural killer cells from granzyme B-mediated apoptosis after cryopreservation. Nat Commun 2024; 15:3937. [PMID: 38729924 PMCID: PMC11087472 DOI: 10.1038/s41467-024-47574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Human natural killer (NK) cell-based therapies are under assessment for treating various cancers, but cryopreservation reduces both the recovery and function of NK cells, thereby limiting their therapeutic feasibility. Using cryopreservation protocols optimized for T cells, here we find that ~75% of NK cells die within 24 h post-thaw, with the remaining cells displaying reduced cytotoxicity. Using CRISPR-Cas9 gene editing and confocal microscopy, we find that cryopreserved NK cells largely die via apoptosis initiated by leakage of granzyme B from cytotoxic vesicles. Pretreatment of NK cells with a combination of Interleukins-15 (IL-15) and IL-18 prior to cryopreservation improves NK cell recovery to ~90-100% and enables equal tumour control in a xenograft model of disseminated Raji cell lymphoma compared to non-cryopreserved NK cells. The mechanism of IL-15 and IL-18-induced protection incorporates two mechanisms: a transient reduction in intracellular granzyme B levels via degranulation, and the induction of antiapoptotic genes.
Collapse
Affiliation(s)
- Abdulla Berjis
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Deeksha Muthumani
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Oscar A Aguilar
- Department of Microbiology and Immunology and Parker Institute of Cancer Immunotherapy, University of California; San Francisco, San Francisco, CA, USA
| | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Johnson
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda V Finck
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nils W Engel
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Linhui Chen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, the Bioinformatic Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and Parker Institute of Cancer Immunotherapy, University of California; San Francisco, San Francisco, CA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neil C Sheppard
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Karmakar S, Mishra A, Pal P, Lal G. Effector and cytolytic function of natural killer cells in anticancer immunity. J Leukoc Biol 2024; 115:235-252. [PMID: 37818891 DOI: 10.1093/jleuko/qiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Adaptive immune cells play an important role in mounting antigen-specific antitumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well studied in cancer immunology. NK cells are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and antitumor function in the tumor microenvironment. We discuss the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and noncytotoxic functions in cancer biology. We also highlight the use of NK cell-based adoptive cellular therapy in cancer.
Collapse
Affiliation(s)
- Surojit Karmakar
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Amrita Mishra
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Pradipta Pal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| |
Collapse
|
18
|
Tang B, Ma W, Lin Y. Emerging applications of anti-angiogenic nanomaterials in oncotherapy. J Control Release 2023; 364:61-78. [PMID: 37871753 DOI: 10.1016/j.jconrel.2023.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Angiogenesis is the process of generating new blood vessels from pre-existing vasculature. Under normal conditions, this process is delicately controlled by pro-angiogenic and anti-angiogenic factors. Tumor cells can produce plentiful pro-angiogenic molecules promoting pathological angiogenesis for uncontrollable growth. Therefore, anti-angiogenic therapy, which aims to inhibit tumor angiogenesis, has become an attractive approach for oncotherapy. However, classic anti-angiogenic agents have several limitations in clinical use, such as lack of specific targeting, low bioavailability, and poor therapeutic outcomes. Hence, alternative angiogenic inhibitors are highly desired. With the emergence of nanotechnology, various nanomaterials have been designed for anti-angiogenesis purposes, offering promising features like excellent targeting capabilities, reduced side effects, and enhanced therapeutic efficacy. In this review, we describe tumor vascular features, discuss current dilemma of traditional anti-angiogenic medicines in oncotherapy, and underline the potential of nanomaterials in tumor anti-angiogenic therapy. Moreover, we discuss the current challenges of anti-angiogenic cancer treatment. We expect that this summary of anti-angiogenic nanomaterials in oncotherapy will offer valuable insights, facilitating their extensive applications in the future.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
19
|
Ghasemian A, Omear HA, Mansoori Y, Mansouri P, Deng X, Darbeheshti F, Zarenezhad E, Kohansal M, Pezeshki B, Wang Z, Tang H. Long non-coding RNAs and JAK/STAT signaling pathway regulation in colorectal cancer development. Front Genet 2023; 14:1297093. [PMID: 38094755 PMCID: PMC10716712 DOI: 10.3389/fgene.2023.1297093] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 10/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the main fatal cancers. Cell signaling such as Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling substantially influences the process of gene expression and cell growth. Long non-coding RNAs (lncRNAs) play regulatory roles in cell signaling, cell proliferation, and cancer fate. Hence, lncRNAs can be considered biomarkers in cancers. The inhibitory or activating effects of different lncRNAs on the JAK/STAT pathway regulate cancer cell proliferation or tumor suppression. Additionally, lncRNAs regulate immune responses which play a role in immunotherapy. Mechanisms of lncRNAs in CRC via JAK/STAT regulation mainly include cell proliferation, invasion, metastasis, apoptosis, adhesion, and control of inflammation. More profound findings are warranted to specifically target the lncRNAs in terms of activation or suppression in hindering CRC cell proliferation. Here, to understand the lncRNA cross-talk in CRC through the JAK/STAT signaling pathway, we collected the related in vitro and in vivo data. Future insights may pave the way for the development of novel diagnostic tools, therapeutic interventions, and personalized treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hadeel A. Omear
- College of Science, University of Tikrit University, Tikrit, Iraq
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Pardis Mansouri
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Farzaneh Darbeheshti
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Kohansal
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Babak Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zhangling Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| |
Collapse
|
20
|
Yang V, Kragstrup TW, McMaster C, Reid P, Singh N, Haysen SR, Robinson PC, Liew DFL. Managing Cardiovascular and Cancer Risk Associated with JAK Inhibitors. Drug Saf 2023; 46:1049-1071. [PMID: 37490213 PMCID: PMC10632271 DOI: 10.1007/s40264-023-01333-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Janus kinase inhibitors (JAKi) have enormous appeal as immune-modulating therapies across many chronic inflammatory diseases, but recently this promise has been overshadowed by questions regarding associated cardiovascular and cancer risk emerging from the ORAL Surveillance phase 3b/4 post-marketing requirement randomized controlled trial. In that study of patients with rheumatoid arthritis with existing cardiovascular risk, tofacitinib, the first JAKi registered for chronic inflammatory disease, failed to meet non-inferiority thresholds when compared with tumor necrosis factor inhibitors for both incident major adverse cardiovascular events and incident cancer. While this result was unexpected by many, subsequently published observational data have also supported this finding. Notably, however, such a risk has largely not yet been demonstrated in patients outside the specific clinical situation examined in the trial, even in the face of many studies examining this. Nevertheless, this signal has practically re-aligned approaches to both tofacitinib and other JAKi to varying extents, in other patient populations and contexts: within rheumatoid arthritis, but also in psoriatic arthritis, axial spondyloarthritis, inflammatory bowel disease, atopic dermatitis, and beyond. Application to individual patients can be more challenging but remains important to harness the substantive potential of JAKi to the maximum extent safely possible. This review not only explores the evolution of the regulatory response to the signal, its informing data, biological plausibility, and its impact on guidelines, but also the many factors that clinicians must consider in navigating cardiovascular and cancer risk for their patients considering JAKi as immune-modulating therapy.
Collapse
Affiliation(s)
- Victor Yang
- Department of Rheumatology, Level 1, North Wing, Heidelberg Repatriation Hospital, Austin Health, 300 Waterdale Road, PO Box 5444, Heidelberg West, VIC, 3081, Australia
| | - Tue W Kragstrup
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Sector for Rheumatology, Diagnostic Center, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Christopher McMaster
- Department of Rheumatology, Level 1, North Wing, Heidelberg Repatriation Hospital, Austin Health, 300 Waterdale Road, PO Box 5444, Heidelberg West, VIC, 3081, Australia
- Department of Clinical Pharmacology and Therapeutics, Austin Health, Melbourne, VIC, Australia
- Centre for Digital Transformation of Health, University of Melbourne, Melbourne, VIC, Australia
| | - Pankti Reid
- Division of Rheumatology and Committee on Clinical Pharmacology and Pharmacogenomics, Department of Medicine, University of Chicago Biological Sciences Division, Chicago, IL, USA
| | - Namrata Singh
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stine R Haysen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Philip C Robinson
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, QLD, Australia
| | - David F L Liew
- Department of Rheumatology, Level 1, North Wing, Heidelberg Repatriation Hospital, Austin Health, 300 Waterdale Road, PO Box 5444, Heidelberg West, VIC, 3081, Australia.
- Department of Clinical Pharmacology and Therapeutics, Austin Health, Melbourne, VIC, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
22
|
Khameneh HJ, Fonta N, Zenobi A, Niogret C, Ventura P, Guerra C, Kwee I, Rinaldi A, Pecoraro M, Geiger R, Cavalli A, Bertoni F, Vivier E, Trumpp A, Guarda G. Myc controls NK cell development, IL-15-driven expansion, and translational machinery. Life Sci Alliance 2023; 6:e202302069. [PMID: 37105715 PMCID: PMC10140547 DOI: 10.26508/lsa.202302069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
MYC is a pleiotropic transcription factor involved in cancer, cell proliferation, and metabolism. Its regulation and function in NK cells, which are innate cytotoxic lymphocytes important to control viral infections and cancer, remain poorly defined. Here, we show that mice deficient for Myc in NK cells presented a severe reduction in these lymphocytes. Myc was required for NK cell development and expansion in response to the key cytokine IL-15, which induced Myc through transcriptional and posttranslational mechanisms. Mechanistically, Myc ablation in vivo largely impacted NK cells' ribosomagenesis, reducing their translation and expansion capacities. Similar results were obtained by inhibiting MYC in human NK cells. Impairing translation by pharmacological intervention phenocopied the consequences of deleting or blocking MYC in vitro. Notably, mice lacking Myc in NK cells exhibited defective anticancer immunity, which reflected their decreased numbers of mature NK cells exerting suboptimal cytotoxic functions. These results indicate that MYC is a central node in NK cells, connecting IL-15 to translational fitness, expansion, and anticancer immunity.
Collapse
Affiliation(s)
- Hanif J Khameneh
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Nicolas Fonta
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Charlène Niogret
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pedro Ventura
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Concetta Guerra
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ivo Kwee
- BigOmics Analytics SA, Lugano, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Roger Geiger
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Andrea Cavalli
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Francesco Bertoni
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Innate Pharma Research Laboratories, Marseille, France
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- HI-STEM: The Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Greta Guarda
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
23
|
Horvath DP, Doherty CJ, Desai J, Clark N, Anderson JV, Chao WS. Weed-induced changes in the maize root transcriptome reveal transcription factors and physiological processes impacted early in crop-weed interactions. AOB PLANTS 2023; 15:plad013. [PMID: 37228420 PMCID: PMC10202722 DOI: 10.1093/aobpla/plad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
A new paradigm suggests weeds primarily reduce crop yield by altering crop developmental and physiological processes long before the weeds reduce resources through competition. Multiple studies have implicated stress response pathways are activated when crops such as maize are grown in close proximity with weeds during the first 4-8 weeks of growth-the point at which weeds have their greatest impact on subsequent crop yields. To date, these studies have mostly focused on the response of above-ground plant parts and have not examined the early signal transduction processes associated with maize root response to weeds. To investigate the impact of signals from a below-ground competitor on the maize root transcriptome when most vulnerable to weed pressure, a system was designed to expose maize to only below-ground signals. Gene set enrichment analyses identified over-represented ontologies associated with oxidative stress signalling throughout the time of weed exposure, with additional ontologies associated with nitrogen use and transport and abscisic acid (ABA) signalling, and defence responses being enriched at later time points. Enrichment of promoter motifs indicated over-representation of sequences known to bind FAR-RED IMPAIRED RESPONSE 1 (FAR1), several AP2/ERF transcription factors and others. Likewise, co-expression networks were identified using Weighted-Gene Correlation Network Analysis (WGCNA) and Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) algorithms. WGCNA highlighted the potential roles of several transcription factors including a MYB 3r-4, TB1, WRKY65, CONSTANS-like5, ABF3, HOMEOBOX 12, among others. These studies also highlighted the role of several specific proteins involved in ABA signalling as being important for the initiation of the early response of maize to weeds. SC-ION highlighted potential roles for NAC28, LOB37, NAC58 and GATA2 transcription factors, among many others.
Collapse
Affiliation(s)
| | - Colleen J Doherty
- Metabolism and Disease Molecular and Systems Biology, North Carolina State University, 120 Broughton Dr., Raleigh, NC 27607, USA
| | - Jigar Desai
- Wave Life Sciences, 733 Concord Ave, Cambridge, MA 02138, USA
| | - Natalie Clark
- Massachusetts Institute of Technology, Merkin Building, 415 Main St., Cambridge, MA 02142, USA
| | - James V Anderson
- Sunflower and Plant Biology Research Unit, USDA-ARS-ETSARC, 1616 Albrecht Blvd., Fargo, ND 58102, USA
| | - Wun S Chao
- Sunflower and Plant Biology Research Unit, USDA-ARS-ETSARC, 1616 Albrecht Blvd., Fargo, ND 58102, USA
| |
Collapse
|
24
|
Ebeling S, Kowalczyk A, Perez-Vazquez D, Mattiola I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front Oncol 2023; 13:1171794. [PMID: 37234993 PMCID: PMC10206118 DOI: 10.3389/fonc.2023.1171794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Endothelial cells and immune cells are major regulators of cancer progression and prognosis. Endothelial cell proliferation and angiogenesis are required for providing nutrients and oxygen to the nascent tumor and infiltration of immune cells to the tumor is dependent on endothelial cell activation. Myeloid cells and innate lymphocytes have an important role in shaping the tumor microenvironment by crosstalking with cancer cells and structural cells, including endothelial cells. Innate immune cells can modulate the activation and functions of tumor endothelial cells, and, in turn, endothelial cell expression of adhesion molecules can affect immune cell extravasation. However, the mechanisms underlying this bidirectional crosstalk are not fully understood. In this review, we will provide an overview of the current knowledge on the pathways regulating the crosstalk between innate immune cells and endothelial cells during tumor progression and discuss their potential contribution to the development of novel anti-tumor therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Ebeling
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anita Kowalczyk
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Diego Perez-Vazquez
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Irene Mattiola
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
25
|
Addressing Natural Killer Cell Dysfunction and Plasticity in Cell-Based Cancer Therapeutics. Cancers (Basel) 2023; 15:cancers15061743. [PMID: 36980629 PMCID: PMC10046032 DOI: 10.3390/cancers15061743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Natural killer (NK) cells are cytotoxic group 1 innate lymphoid cells (ILC), known for their role as killers of stressed, cancerous, and virally infected cells. Beyond this cytotoxic function, NK cell subsets can influence broader immune responses through cytokine production and have been linked to central roles in non-immune processes, such as the regulation of vascular remodeling in pregnancy and cancer. Attempts to exploit the anti-tumor functions of NK cells have driven the development of various NK cell-based therapies, which have shown promise in both pre-clinical disease models and early clinical trials. However, certain elements of the tumor microenvironment, such as elevated transforming growth factor (TGF)-β, hypoxia, and indoalemine-2,3-dioxygenase (IDO), are known to suppress NK cell function, potentially limiting the longevity and activity of these approaches. Recent studies have also identified these factors as contributors to NK cell plasticity, defined by the conversion of classical cytotoxic NK cells into poorly cytotoxic, tissue-resident, or ILC1-like phenotypes. This review summarizes the current approaches for NK cell-based cancer therapies and examines the challenges presented by tumor-linked NK cell suppression and plasticity. Ongoing efforts to overcome these challenges are discussed, along with the potential utility of NK cell therapies to applications outside cancer.
Collapse
|
26
|
Abeynaike SA, Huynh TR, Mehmood A, Kim T, Frank K, Gao K, Zalfa C, Gandarilla A, Shultz L, Paust S. Human Hematopoietic Stem Cell Engrafted IL-15 Transgenic NSG Mice Support Robust NK Cell Responses and Sustained HIV-1 Infection. Viruses 2023; 15:365. [PMID: 36851579 PMCID: PMC9960100 DOI: 10.3390/v15020365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mice reconstituted with human immune systems are instrumental in the investigation of HIV-1 pathogenesis and therapeutics. Natural killer (NK) cells have long been recognized as a key mediator of innate anti-HIV responses. However, established humanized mouse models do not support robust human NK cell development from engrafted human hematopoietic stem cells (HSCs). A major obstacle to human NK cell reconstitution is the lack of human interleukin-15 (IL-15) signaling, as murine IL-15 is a poor stimulator of the human IL-15 receptor. Here, we demonstrate that immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice expressing a transgene encoding human IL-15 (NSG-Tg(IL-15)) have physiological levels of human IL-15 and support long-term engraftment of human NK cells when transplanted with human umbilical-cord-blood-derived HSCs. These Hu-NSG-Tg(IL-15) mice demonstrate robust and long-term reconstitution with human immune cells, but do not develop graft-versus-host disease (GVHD), allowing for long-term studies of human NK cells. Finally, we show that these HSC engrafted mice can sustain HIV-1 infection, resulting in human NK cell responses in HIV-infected mice. We conclude that Hu-NSG-Tg(IL-15) mice are a robust novel model to study NK cell responses to HIV-1.
Collapse
Affiliation(s)
- Shawn A. Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tridu R. Huynh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
- Division of Internal Medicine, Scripps Clinic/Scripps Green Hospital, La Jolla, CA 92037, USA
| | - Abeera Mehmood
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Teha Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kefei Gao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Zalfa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Angel Gandarilla
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Smith MR, Satter LRF, Vargas-Hernández A. STAT5b: A master regulator of key biological pathways. Front Immunol 2023; 13:1025373. [PMID: 36755813 PMCID: PMC9899847 DOI: 10.3389/fimmu.2022.1025373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)-5 proteins are required in immune regulation and homeostasis and play a crucial role in the development and function of several hematopoietic cells. STAT5b activation is involved in the expression of genes that participate in cell development, proliferation, and survival. STAT5a and STAT5b are paralogs and only human mutations in STAT5B have been identified leading to immune dysregulation and hematopoietic malignant transformation. The inactivating STAT5B mutations cause impaired post-natal growth, recurrent infections and immune dysregulation, whereas gain of function somatic mutations cause dysregulated allergic inflammation. These mutations are rare, and they are associated with a wide spectrum of clinical manifestations which provide a disease model elucidating the biological mechanism of STAT5 by studying the consequences of perturbations in STAT5 activity. Further, the use of Jak inhibitors as therapy for a variety of autoimmune and malignant disorders has increased substantially heading relevant lessons for the consequences of Jak/STAT immunomodulation from the human model. This review summarizes the biology of the STAT5 proteins, human disease associate with molecular defects in STAT5b, and the connection between aberrant activation of STAT5b and the development of certain cancers.
Collapse
Affiliation(s)
- Madison R. Smith
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Lisa R. Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States,*Correspondence: Alexander Vargas-Hernández,
| |
Collapse
|
28
|
Soldi LR, Silva VLC, Rabelo DH, Uehara IA, Silva MJB. Reactivation of natural killer cells with monoclonal antibodies in the microenvironment of malignant neoplasms. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04575-8. [PMID: 36633682 DOI: 10.1007/s00432-023-04575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Natural killer cells are critical players in the antitumor immune response due to their ability to destroy target cells through cytotoxic activity and other means. However, this response is inhibited in the tumor microenvironment, where a crippling hypoxic environment and several inhibitory molecules bind to NK cells to trigger an anergic state. Inhibitory receptors such as PD-1, NK2GA, KIR, TIGIT, and LAG-3 have been associated with inhibition of NK cells in multiple cancer types. Binding to these receptors leads to loss of cytotoxicity, lower proliferation and metabolic rates, and even apoptosis. While these receptors are important for avoiding auto-immunity, in a pathological setting like malignant neoplasms they are disadvantageous for the individual's immune system to combat cancer cells. The use of monoclonal antibodies to block these receptors contributes to cancer therapy by preventing the inhibition of NK cells. In this review, the impact of NK cell inhibition and activation on cancer therapy was summarized and an overview of the blockade of inhibitory pathways by monoclonal antibodies was provided.
Collapse
Affiliation(s)
- Luiz Ricardo Soldi
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Tumor Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, MG, Brazil.,Graduate Program in Applied Immunology and Parasitology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Victor Luigi Costa Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Tumor Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, MG, Brazil
| | - Diogo Henrique Rabelo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Tumor Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, MG, Brazil.,Graduate Program in Applied Immunology and Parasitology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Isadora Akemi Uehara
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Tumor Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil. .,Tumor Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, MG, Brazil.
| |
Collapse
|
29
|
Wang Q, Li X, Qiu J, He Y, Wu J, Li J, Liu W, Han J. A pathway-based mutation signature to predict the clinical outcomes and response to CTLA-4 inhibitors in melanoma. Comput Struct Biotechnol J 2023; 21:2536-2546. [PMID: 37102155 PMCID: PMC10123336 DOI: 10.1016/j.csbj.2023.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has become a powerful clinical strategy for treating melanoma. The relationship between somatic mutations and the clinical benefits of immunotherapy has been widely recognized. However, the gene-based predictive biomarkers are less stable due to the heterogeneity of cancer at the individual gene level. Recent studies have suggested that the accumulation of gene mutations in biological pathways may activate antitumor immune responses. Herein, a novel pathway mutation signature (PMS) was constructed to predict the survival and efficacy of ICI therapy. In a dataset of melanoma patients treated with anti-CTLA-4, we mapped the mutated genes into the pathways and then identified seven significant mutation pathways associated with survival and immunotherapy response, which were used to construct the PMS model. According to the PMS model, the patients in the PMS-high group showed better overall survival (hazard ratio (HR) = 0.37; log-rank test, p < 0.0001) and progression-free survival (HR = 0.52; log-rank test, p = 0.014) than those in the PMS-low group. The PMS-high patients also showed a significantly higher objective response rate to anti-CTLA-4 therapy than the PMS-low patients (Fisher's exact test, p = 0.0055), and the predictive power of the PMS model was superior to that of TMB. Finally, the prognostic and predictive value of the PMS model was validated in two independent validation sets. Our study demonstrated that the PMS model can be considered a potential biomarker to predict the clinical outcomes and response to anti-CTLA-4 therapy in melanoma patients.
Collapse
Affiliation(s)
- Qian Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Jiayue Qiu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Yalan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Ji Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Wei Liu
- College of Science, Heilongjiang Institute of Technology, Harbin 150050, PR China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| |
Collapse
|
30
|
Hilton LR, Rätsep MT, VandenBroek MM, Jafri S, Laverty KJ, Mitchell M, Theilmann AL, Smart JA, Hawke LG, Moore SD, Renaud SJ, Soares MJ, Morrell NW, Ormiston ML. Impaired Interleukin-15 Signaling via BMPR2 Loss Drives Natural Killer Cell Deficiency and Pulmonary Hypertension. Hypertension 2022; 79:2493-2504. [PMID: 36043416 DOI: 10.1161/hypertensionaha.122.19178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/11/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Natural killer (NK) cell impairment is a feature of pulmonary arterial hypertension (PAH) and contributes to vascular remodeling in animal models of disease. Although mutations in BMPR2, the gene encoding the BMP (bone morphogenetic protein) type-II receptor, are strongly associated with PAH, the contribution of BMPR2 loss to NK cell impairment remains unknown. We explored the impairment of IL (interleukin)-15 signaling, a central mediator of NK cell homeostasis, as both a downstream target of BMPR2 loss and a contributor to the pathogenesis of PAH. METHODS The expression, trafficking, and secretion of IL-15 and IL-15Rα (interleukin 15 α-type receptor) were assessed in human pulmonary artery endothelial cells, with or without BMPR2 silencing. NK cell development and IL-15/IL-15Rα levels were quantified in mice bearing a heterozygous knock-in of the R899X-BMPR2 mutation (bmpr2+/R899X). NK-deficient Il15-/- rats were exposed to the Sugen/hypoxia and monocrotaline models of PAH to assess the impact of impaired IL-15 signaling on disease severity. RESULTS BMPR2 loss reduced IL-15Rα surface presentation and secretion in human pulmonary artery endothelial cells via impaired trafficking through the trans-Golgi network. bmpr2+/R899X mice exhibited a decrease in NK cells, which was not attributable to impaired hematopoietic development but was instead associated with reduced IL-15/IL-15Rα levels in these animals. Il15-/- rats of both sexes exhibited enhanced disease severity in the Sugen/hypoxia model, with only male Il15-/- rats developing more severe PAH in response to monocrotaline. CONCLUSIONS This work identifies the loss of IL-15 signaling as a novel BMPR2-dependent contributor to NK cell impairment and pulmonary vascular disease.
Collapse
Affiliation(s)
- L Rhiannon Hilton
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Matthew T Rätsep
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - M Martin VandenBroek
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Salema Jafri
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom (S.J., S.D.M., N.W.M.)
| | - Kimberly J Laverty
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Melissa Mitchell
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Anne L Theilmann
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - James A Smart
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Lindsey G Hawke
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| | - Stephen D Moore
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom (S.J., S.D.M., N.W.M.)
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Western University, London, Canada (S.J.R.)
| | - Michael J Soares
- Departments of Pathology and Laboratory Medicine and Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City (M.J.S.)
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom (S.J., S.D.M., N.W.M.)
| | - Mark L Ormiston
- Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Queen's University, Kingston, Canada (L.B.H., M.T.R., M.M.V., K.J.L., M.M., A.L.T., J.A.S., L.G.H., M.L.O.)
| |
Collapse
|
31
|
Jeong S, Kim YG, Kim S, Kim K. Enhanced anticancer efficacy of primed natural killer cells via coacervate-mediated exogenous interleukin-15 delivery. Biomater Sci 2022; 10:5968-5979. [PMID: 36048163 DOI: 10.1039/d2bm00876a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Effective exogenous delivery of interleukin (IL)-15 to natural killer (NK) cells with subsequent anticancer efficacy could be a promising immune cell-based cancer immunotherapy. For the protection of encapsulated cargo IL-15 while maintaining its bioactivity under physiological conditions, we utilized a coacervate (Coa) consisting of a cationic methoxy polyethylene glycol-poly(ethylene arginyl aspartate diglyceride) (mPEG-PEAD) polymer, anionic counterpart heparin, and cargo IL-15. mPEGylation into the backbone cation effectively preserved the colloidal stability of Coa in harsh environments and enhanced the protection of cargo IL-15 than normal Coa without mPEGylation. Proliferation and anticancer efficacy of primed NK cells through co-culture with multiple cancer cell lines were enhanced in the mPEG-Coa group due to the maintained bioactivity of cargo IL-15 during the ex vivo expansion of NK cells. These facilitated functions of NK cells were also supported by the increased expression of mRNAs related to anticancer effects of NK cells, including cytotoxic granules, death ligands, anti-apoptotic proteins, and activation receptors. In summary, our Coa-mediated exogenous IL-15 delivery could be an effective ex vivo priming technique for NK cells with sustained immune activation that can effectively facilitate its usage for cancer immunotherapy.
Collapse
Affiliation(s)
- Sehwan Jeong
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Young Guk Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Macedo AB, Levinger C, Nguyen BN, Richard J, Gupta M, Cruz CRY, Finzi A, Chiappinelli KB, Crandall KA, Bosque A. The HIV Latency Reversal Agent HODHBt Enhances NK Cell Effector and Memory-Like Functions by Increasing Interleukin-15-Mediated STAT Activation. J Virol 2022; 96:e0037222. [PMID: 35867565 PMCID: PMC9364794 DOI: 10.1128/jvi.00372-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Elimination of human immunodeficiency virus (HIV) reservoirs is a critical endpoint to eradicate HIV. One therapeutic intervention against latent HIV is "shock and kill." This strategy is based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) with the consequent killing of the reactivated cell by either the cytopathic effect of HIV or the immune system. We have previously found that the small molecule 3-hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) acts as an LRA by increasing signal transducer and activator of transcription (STAT) factor activation mediated by interleukin-15 (IL-15) in cells isolated from aviremic participants. The IL-15 superagonist N-803 is currently under clinical investigation to eliminate latent reservoirs. IL-15 and N-803 share similar mechanisms of action by promoting the activation of STATs and have shown some promise in preclinical models directed toward HIV eradication. In this work, we evaluated the ability of HODHBt to enhance IL-15 signaling in natural killer (NK) cells and the biological consequences associated with increased STAT activation in NK cell effector and memory-like functions. We showed that HODHBt increased IL-15-mediated STAT phosphorylation in NK cells, resulting in increases in the secretion of CXCL-10 and interferon gamma (IFN-γ) and the expression of cytotoxic proteins, including granzyme B, granzyme A, perforin, granulysin, FASL, and TRAIL. This increased cytotoxic profile results in increased cytotoxicity against HIV-infected cells and different tumor cell lines. HODHBt also improved the generation of cytokine-induced memory-like NK cells. Overall, our data demonstrate that enhancing the magnitude of IL-15 signaling with HODHBt favors NK cell cytotoxicity and memory-like generation, and thus, targeting this pathway could be further explored for HIV cure interventions. IMPORTANCE Several clinical trials targeting the HIV latent reservoir with LRAs have been completed. In spite of a lack of clinical benefit, they have been crucial to elucidate hurdles that "shock and kill" strategies have to overcome to promote an effective reduction of the latent reservoir to lead to a cure. These hurdles include low reactivation potential mediated by LRAs, the negative influence of some LRAs on the activity of natural killer and effector CD8 T cells, an increased resistance to apoptosis of latently infected cells, and an exhausted immune system due to chronic inflammation. To that end, finding therapeutic strategies that can overcome some of these challenges could improve the outcome of shock and kill strategies aimed at HIV eradication. Here, we show that the LRA HODHBt also improves IL-15-mediated NK cell effector and memory-like functions. As such, pharmacological enhancement of IL-15-mediated STAT activation can open new therapeutic avenues toward an HIV cure.
Collapse
Affiliation(s)
- Amanda B. Macedo
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Callie Levinger
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Bryan N. Nguyen
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Mamta Gupta
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
- GW Cancer Center, Washington, DC, USA
| | - Conrad Russell Y. Cruz
- GW Cancer Center, Washington, DC, USA
- Children’s National Medical Center, Washington, DC, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- GW Cancer Center, Washington, DC, USA
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
33
|
Witalisz-Siepracka A, Klein K, Zdársky B, Stoiber D. The Multifaceted Role of STAT3 in NK-Cell Tumor Surveillance. Front Immunol 2022; 13:947568. [PMID: 35865518 PMCID: PMC9294167 DOI: 10.3389/fimmu.2022.947568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a member of the Janus kinase (JAK)-STAT pathway, which is one of the key pathways contributing to cancer. STAT3 regulates transcription downstream of many cytokines including interleukin (IL)-6 and IL-10. In cancer, STAT3 is mainly described as a tumor promoter driving tumor cell proliferation, resistance to apoptosis, angiogenesis and metastasis and aberrant activation of STAT3 is associated with poor prognosis. STAT3 is also an important driver of immune evasion. Among many other immunosuppressive mechanisms, STAT3 aids tumor cells to escape natural killer (NK) cell-mediated immune surveillance. NK cells are innate lymphocytes, which can directly kill malignant cells but also regulate adaptive immune responses and contribute to the composition of the tumor microenvironment. The inborn ability to lyse transformed cells renders NK cells an attractive tool for cancer immunotherapy. Here, we provide an overview of the role of STAT3 in the dynamic interplay between NK cells and tumor cells. On the one hand, we summarize the current knowledge on how tumor cell-intrinsic STAT3 drives the evasion from NK cells. On the other hand, we describe the multiple functions of STAT3 in regulating NK-cell cytotoxicity, cytokine production and their anti-tumor responses in vivo. In light of the ongoing research on STAT3 inhibitors, we also discuss how targeting STAT3 would affect the two arms of STAT3-dependent regulation of NK cell-mediated anti-tumor immunity. Understanding the complexity of this interplay in the tumor microenvironment is crucial for future implementation of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Agnieszka Witalisz-Siepracka
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Bernhard Zdársky
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
- *Correspondence: Dagmar Stoiber,
| |
Collapse
|
34
|
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH, Deng YC. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther 2022; 7:205. [PMID: 35768424 PMCID: PMC9243142 DOI: 10.1038/s41392-022-01058-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells, a subgroup of innate lymphoid cells, act as the first line of defense against cancer. Although some evidence shows that NK cells can develop in secondary lymphoid tissues, NK cells develop mainly in the bone marrow (BM) and egress into the blood circulation when they mature. They then migrate to and settle down in peripheral tissues, though some special subsets home back into the BM or secondary lymphoid organs. Owing to its success in allogeneic adoptive transfer for cancer treatment and its "off-the-shelf" potential, NK cell-based immunotherapy is attracting increasing attention in the treatment of various cancers. However, insufficient infiltration of adoptively transferred NK cells limits clinical utility, especially for solid tumors. Expansion of NK cells or engineered chimeric antigen receptor (CAR) NK cells ex vivo prior to adoptive transfer by using various cytokines alters the profiles of chemokine receptors, which affects the infiltration of transferred NK cells into tumor tissue. Several factors control NK cell trafficking and homing, including cell-intrinsic factors (e.g., transcriptional factors), cell-extrinsic factors (e.g., integrins, selectins, chemokines and their corresponding receptors, signals induced by cytokines, sphingosine-1-phosphate (S1P), etc.), and the cellular microenvironment. Here, we summarize the profiles and mechanisms of NK cell homing and trafficking at steady state and during tumor development, aiming to improve NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Guang He Ran
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Yu Qing Lin
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tao Zhang
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Dong Mei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Jian Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - You Cai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
35
|
Schnoegl D, Hochgerner M, Gotthardt D, Marsh LM. Fra-2 Is a Dominant Negative Regulator of Natural Killer Cell Development. Front Immunol 2022; 13:909270. [PMID: 35812461 PMCID: PMC9257261 DOI: 10.3389/fimmu.2022.909270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cells play an important role in recognizing and killing pathogen-infected or malignant cells. Changes in their numbers or activation can contribute to several diseases and pathologies including systemic sclerosis (SSc), an autoimmune disease characterized by inflammation and tissue remodeling. In these patients, increased expression of the AP-1 transcription factor, Fra-2 was reported. In mice ectopic overexpression of Fra-2 (TG) leads to SSc with strong pulmonary fibrosis, pulmonary hypertension, and inflammation. Analysis of the underlying immune cell profile in the lungs of young TG mice, which do not yet show any signs of lung disease, revealed increased numbers of eosinophils and T cells but strongly reduced NK numbers. Therefore, we aimed to identify the cause of the absence of NK cells in the lungs of these mice and to determine the potential role of Fra-2 in NK development. Examination of inflammatory cell distribution in TG mice revealed similar NK deficiencies in the spleen, blood, and bone marrow. Deeper analysis of the WT and TG bone marrow revealed a potential NK cell developmental defect beginning at the preNKP stage. To determine whether this defect was cell-intrinsic or extrinsic, mixed bone marrow chimera and in vitro differentiation experiments were performed. Both experiments showed that the defect caused by Fra-2 was primarily cell-intrinsic and minimally dependent on the environment. Closer examination of surface markers and transcription factors required for NK development, revealed the expected receptor distribution but changes in transcription factor expression. We found a significant reduction in Nfil3, which is essential for the transition of common lymphoid cells to NK committed precursor cells and an AP-1 binding site in the promotor of this gene. In Summary, our data demonstrates that regulation of Fra-2 is essential for NK development and maturation, and suggests that the early NK dysfunction plays an important role in the pathogenesis of systemic sclerosis.
Collapse
Affiliation(s)
- Diana Schnoegl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | | | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
- *Correspondence: Leigh M. Marsh,
| |
Collapse
|
36
|
Abstract
Natural killer (NK) cells are innate immune cells that are critical to the body's antitumor and antimetastatic defense. As such, novel therapies are being developed to utilize NK cells as part of a next generation of immunotherapies to treat patients with metastatic disease. Therefore, it is essential for us to examine how metastatic cancer cells and NK cells interact with each other throughout the metastatic cascade. In this Review, we highlight the recent body of work that has begun to answer these questions. We explore how the unique biology of cancer cells at each stage of metastasis alters fundamental NK cell biology, including how cancer cells can evade immunosurveillance and co-opt NK cells into cells that promote metastasis. We also discuss the translational potential of this knowledge.
Collapse
Affiliation(s)
- Isaac S. Chan
- Department of Internal Medicine, Division of Hematology and Oncology, and
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew J. Ewald
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Han NR, Moon PD, Nam SY, Ko SG, Park HJ, Kim HM, Jeong HJ. TSLP up-regulates inflammatory responses through induction of autophagy in T cells. FASEB J 2022; 36:e22148. [PMID: 34997949 DOI: 10.1096/fj.202101447r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), a type I cytokine belonging to the IL-2 cytokine family, promotes Th2-mediated inflammatory responses. The aim of this study is to investigate whether TSLP increases inflammatory responses via induction of autophagy using a murine T cell lymphoma cell line, EL4 cells, and lipopolysaccharide (LPS)-injected mice. TSLP increased expression levels of autophagy-related factors, such as Beclin-1, LC3-II, p62, Atg5, and lysosome associated membrane protein 1/2, whereas these factors increased by TSLP disappeared by neutralization of TSLP in EL4 cells. TSLP activated JAK1/JAK2/STAT5/JNK/PI3K, while the blockade of JAK1/JAK2/STAT5/JNK/PI3K signaling pathways reduced the expression levels of Beclin-1, LC3-II, and p62 in TSLP-stimulated EL4 cells. In addition, TSLP simultaneously increased levels of inflammatory cytokines via induction of autophagy by activation of JAK1/JAK2/STAT5/JNK/PI3K signaling pathways. In an LPS-induced acute liver injury (ALI) mouse model, exogenous TSLP increased expression levels of Beclin-1 and LC3-II, whereas functional deficiency of TSLP by TSLP siRNA resulted in lower expression of Beclin-1, LC3-II, and inflammatory cytokines, impairing their ability to form autophagosomes in ALI mice. Thus, our findings show a new role of TSLP between autophagy and inflammatory responses. In conclusion, regulating TSLP-induced autophagy may be a potential therapeutic strategy for inflammatory responses.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
38
|
Liu J, Wang Z, Hao S, Wang F, Yao Y, Zhang Y, Zhao Y, Guo W, Yu G, Ma X, Liu J, Chen F, Yuan S, Kang Y, Yu S. Tcf1 Sustains the Expression of Multiple Regulators in Promoting Early Natural Killer Cell Development. Front Immunol 2021; 12:791220. [PMID: 34917097 PMCID: PMC8669559 DOI: 10.3389/fimmu.2021.791220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
T cell factor 1 (Tcf1) is known as a critical mediator for natural killer (NK) cell development and terminal maturation. However, its essential targets and precise mechanisms involved in early NK progenitors (NKP) are not well clarified. To investigate the role of Tcf1 in NK cells at distinct developmental phases, we employed three kinds of genetic mouse models, namely, Tcf7fl/flVavCre/+, Tcf7fl/flCD122Cre/+ and Tcf7fl/flNcr1Cre/+ mice, respectively. Similar to Tcf1 germline knockout mice, we found notably diminished cell number and defective development in BM NK cells from all strains. In contrast, Tcf7fl/flNcr1Cre/+ mice exhibited modest defects in splenic NK cells compared with those in the other two strains. By analyzing the published ATAC-seq and ChIP-seq data, we found that Tcf1 directly targeted 110 NK cell-related genes which displayed differential accessibility in the absence of Tcf1. Along with this clue, we further confirmed that a series of essential regulators were expressed aberrantly in distinct BM NK subsets with conditional ablating Tcf1 at NKP stage. Eomes, Ets1, Gata3, Ikzf1, Ikzf2, Nfil3, Runx3, Sh2d1a, Slamf6, Tbx21, Tox, and Zeb2 were downregulated, whereas Spi1 and Gzmb were upregulated in distinct NK subsets due to Tcf1 deficiency. The dysregulation of these genes jointly caused severe defects in NK cells lacking Tcf1. Thus, our study identified essential targets of Tcf1 in NK cells, providing new insights into Tcf1-dependent regulatory programs in step-wise governing NK cell development.
Collapse
Affiliation(s)
- Juanjuan Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shanshan Hao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yajiao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanyi Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenhui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guotao Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohan Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingjing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng Chen
- Central Laboratory, School of Stomatology, Peking University, Beijing, China
| | - Shunzong Yuan
- Department of Hematology, the Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Youmin Kang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis. Vaccines (Basel) 2021; 9:vaccines9121488. [PMID: 34960234 PMCID: PMC8709224 DOI: 10.3390/vaccines9121488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 01/21/2023] Open
Abstract
The tumor immune microenvironment (TIME) has largely been reported to cooperate on tumor onset and progression, as a consequence of the phenotype/functional plasticity and adaptation capabilities of tumor-infiltrating and tumor-associated immune cells. Immune cells within the tumor micro (tissue-local) and macro (peripheral blood) environment closely interact by cell-to-cell contact and/or via soluble factors, also generating a tumor-permissive soil. These dangerous liaisons have been investigated for pillars of tumor immunology, such as tumor associated macrophages and T cell subsets. Here, we reviewed and discussed the contribution of selected innate immunity effector cells, namely neutrophils and natural killer cells, as "soloists" or by their "dangerous liaisons", in favoring tumor progression by dissecting the cellular and molecular mechanisms involved.
Collapse
|
40
|
Park J, Kim J, Ko ES, Jeong JH, Park CO, Seo JH, Jang YS. Enzymatic bioconversion of ginseng powder increases the content of minor ginsenosides and potentiates immunostimulatory activity. J Ginseng Res 2021; 46:304-314. [PMID: 35509827 PMCID: PMC9058844 DOI: 10.1016/j.jgr.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Background Ginsenosides are biologically active components of ginseng and have various functions. In this study, we investigated the immunomodulatory activity of a ginseng product generated from ginseng powder (GP) via enzymatic bioconversion. This product, General Bio compound K-10 mg solution (GBCK10S), exhibited increased levels of minor ginsenosides, including ginsenoside-F1, compound K, and compound Y. Methods The immunomodulatory properties of GBCK10S were confirmed using mice and a human natural killer (NK) cell line. We monitored the expression of molecules involved in immune responses via enzyme-linked immunosorbent assay, flow cytometry, NK cell-targeted cell destruction, quantitative reverse-transcription real-time polymerase chain reaction, and Western blot analyses. Results Oral administration of GBCK10S significantly increased serum immunoglobulin M levels and primed splenocytes to express pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ. Oral administration of GBCK10S also activated NK cells in mice. Furthermore, GBCK10S treatment stimulated a human NK cell line in vitro, thereby increasing granzyme B gene expression and activating STAT5. Conclusion GBCK10S may have potent immunostimulatory properties and can activate immune responses mediated by B cells, Th1-type T cells, and NK cells.
Collapse
Affiliation(s)
- Jisang Park
- Innovative Research and Education Center for Integrated Bioactive Materials and the Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Eun-Sil Ko
- R&D Center, General Bio Co., Ltd., Namwon, Republic of Korea
| | - Jong Hoon Jeong
- R&D Center, General Bio Co., Ltd., Namwon, Republic of Korea
| | - Cheol-Oh Park
- R&D Center, General Bio Co., Ltd., Namwon, Republic of Korea
| | - Jeong Hun Seo
- R&D Center, General Bio Co., Ltd., Namwon, Republic of Korea
| | - Yong-Suk Jang
- Innovative Research and Education Center for Integrated Bioactive Materials and the Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
- Corresponding author. Department of Molecular Biology, Jeonbuk National University, Republic of Korea.
| |
Collapse
|
41
|
Wang C, Cui A, Bukenya M, Aung A, Pradhan D, Whittaker CA, Agarwal Y, Thomas A, Liang S, Amlashi P, Suh H, Spranger S, Hacohen N, Irvine DJ. Reprogramming NK cells and macrophages via combined antibody and cytokine therapy primes tumors for elimination by checkpoint blockade. Cell Rep 2021; 37:110021. [PMID: 34818534 PMCID: PMC8653865 DOI: 10.1016/j.celrep.2021.110021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Treatments aiming to augment immune checkpoint blockade (ICB) in cancer often focus on T cell immunity, but innate immune cells may have important roles to play. Here, we demonstrate a single-dose combination treatment (termed AIP) using a pan-tumor-targeting antibody surrogate, half-life-extended interleukin-2 (IL-2), and anti-programmed cell death 1 (PD-1), which primes tumors to respond to subsequent ICB and promotes rejection of large established tumors in mice. Natural killer (NK) cells and macrophages activated by AIP treatment underwent transcriptional reprogramming; rapidly killed cancer cells; governed the recruitment of cross-presenting dendritic cells (DCs) and other leukocytes; and induced normalization of the tumor vasculature, facilitating further immune infiltration. Thus, innate cell-activating therapies can initiate critical steps leading to a self-sustaining cycle of T cell priming driven by ICB. Wang et al. report an immune priming therapy based on a single dose of anti-tumor antibodies, IL-2, and anti-PD-1, which engages natural killer cells and macrophages, promotes lymphocyte recruitment and activation, and elicits vascular normalization. This priming strategy allows subsequent immune checkpoint blockade (ICB) to eradicate large, established tumors.
Collapse
Affiliation(s)
- Chensu Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Maurice Bukenya
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dikshant Pradhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Simon Liang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
42
|
Costa AC, Santos JMO, Gil da Costa RM, Medeiros R. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol 2021; 168:103541. [PMID: 34801696 DOI: 10.1016/j.critrevonc.2021.103541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells (TIICs) are critical players in the tumor microenvironment, modulating cancer cell functions. TIICs are highly heterogenic and plastic and may either suppress cancers or provide support for tumor growth. A wide range of studies have shed light on how tumor-associated macrophages, dendritic cells, neutrophils, mast cells, natural killer cells and lymphocytes contribute for the establishment of several hallmarks of cancer and became the basis for successful immunotherapies. Many of those TIICs play pivotal roles in several hallmarks of cancer. This review contributes to elucidate the multifaceted roles of immune cells in cancer development, highlighting molecular components that constitute promising therapeutic targets. Additional studies are needed to clarify the relation between TIICs and hallmarks such as enabling replicative immortality, evading growth suppressors, sustaining proliferative signaling, resisting cell death and genome instability and mutation, to further explore their therapeutic potential and improve the outcomes of cancer patients.
Collapse
Affiliation(s)
- Alexandra C Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| |
Collapse
|
43
|
Sabaawy HE, Ryan BM, Khiabanian H, Pine SR. JAK/STAT of all trades: Linking inflammation with cancer development, tumor progression, and therapy resistance. Carcinogenesis 2021; 42:1411-1419. [PMID: 34415330 DOI: 10.1093/carcin/bgab075] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is at the forefront of carcinogenesis, tumor progression, and resistance to therapy. The JAK/STAT signaling axis is a central pathway that mediates the cellular response to inflammation and contributes to carcinogenesis. The JAK/STAT pathway coordinates intercellular communication between tumor cells and their immune microenvironment, and JAK/STAT activation leads to the expression of a variety of proteins involved in cell proliferation, cell survival, stemness, self-renewal, evasion of immunosurveillance mechanisms, and overall tumor progression. Activation of JAK/STAT signaling also mediates resistance to radiation therapy or cytotoxic agents, and modulates tumor cell responses to molecularly targeted and immune modulating drugs. Despite extensive research focused on understanding its signaling mechanisms and downstream phenotypic and functional consequences in hematological disorders, the importance of JAK/STAT signaling in solid tumor initiation and progression has been underappreciated. We highlight the role of chronic inflammation in cancer, the epidemiological evidence for contribution of JAK/STAT to carcinogenesis, the current cancer prevention measures involving JAK/STAT inhibition, and the impact of JAK/STAT signaling activity on cancer development, progression, and treatment resistance. We also discuss recent therapeutic advances in targeting key factors within the JAK/STAT pathway with single agents, and the use of these agents in combination with other targeted therapies and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
44
|
NK Cell Therapy: A Rising Star in Cancer Treatment. Cancers (Basel) 2021; 13:cancers13164129. [PMID: 34439285 PMCID: PMC8394762 DOI: 10.3390/cancers13164129] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary A cancer treatment approach known as immunotherapy has become popular in the medical field. In this case, immune cells are boosted for effective response against cancer. A type of immune cell with significant potential for use in immunotherapy is the natural killer (NK) cell. The number of NK cells in the cancer tissues has been shown to be lower than normal, and this contributes to the growth of cancer cells. Besides, the immune function of the NK cells is compromised, thus interfering with anticancer immunity. Many research studies are being conducted to develop cancer treatment strategies based on increasing the number of NK cells and enhancing their activity. Abstract Immunotherapy has become a robust and routine treatment strategy for patients with cancer; however, there are efficacy and safety issues that should be resolved. Natural killer (NK) cells are important innate immune cells that have attracted increasing attention owing to their major histocompatibility complex-independent immunosurveillance ability. These cells provide the first-line defense against carcinogenesis and are closely related to cancer development. However, NK cells are functionally suppressed owing to multiple immunosuppressive factors in the tumor microenvironment; thus, releasing the suppressed state of NK cells is an emergent project and a promising solution for immunotherapy. As a result, many clinical trials of NK cell therapy alone or in combination with other agents are currently underway. This review describes the current status of NK cell therapy for cancer treatment based on the effector function and releasing the inhibited state of NK cells in the cancer microenvironment.
Collapse
|
45
|
NK cells in hypoxic skin mediate a trade-off between wound healing and antibacterial defence. Nat Commun 2021; 12:4700. [PMID: 34349124 PMCID: PMC8338923 DOI: 10.1038/s41467-021-25065-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
During skin injury, immune response and repair mechanisms have to be coordinated for rapid skin regeneration and the prevention of microbial infections. Natural Killer (NK) cells infiltrate hypoxic skin lesions and Hypoxia-inducible transcription factors (HIFs) mediate adaptation to low oxygen. We demonstrate that mice lacking the Hypoxia-inducible factor (HIF)-1α isoform in NK cells show impaired release of the cytokines Interferon (IFN)-γ and Granulocyte Macrophage - Colony Stimulating Factor (GM-CSF) as part of a blunted immune response. This accelerates skin angiogenesis and wound healing. Despite rapid wound closure, bactericidal activity and the ability to restrict systemic bacterial infection are impaired. Conversely, forced activation of the HIF pathway supports cytokine release and NK cell-mediated antibacterial defence including direct killing of bacteria by NK cells despite delayed wound closure. Our results identify, HIF-1α in NK cells as a nexus that balances antimicrobial defence versus global repair in the skin.
Collapse
|
46
|
Classification of Lung Adenocarcinoma Based on Immune Checkpoint and Screening of Related Genes. JOURNAL OF ONCOLOGY 2021; 2021:5512325. [PMID: 34367284 PMCID: PMC8337117 DOI: 10.1155/2021/5512325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Aims Lung adenocarcinoma (LUAD) cells could escape from the monitoring of immune cells and metastasize rapidly through immune escape. Therefore, we aimed to develop a method to predict the prognosis of LUAD patients based on immune checkpoints and their associated genes, thus providing guidance for LUAD treatment. Methods Gene sequencing data were downloaded from the Cancer Genome Atlas (TCGA) and analyzed by R software and R Bioconductor software package. Based on immune checkpoint genes, kmdist clustering in ConsensusClusterPlus R software package was utilized to classify LUAD. CIBERSORT was used to quantify the abundance of immune cells in LUAD samples. LM22 signature was performed to distinguish 22 phenotypes of human infiltrating immune cells. Gene set variation analysis (GSVA) was performed on immune checkpoint cluster and immune checkpoint score using GSVA R software package. The risk score was calculated by LASSO regression coefficient. Gene Ontology (GO), Hallmark, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. PROC was performed to generate the ROC curve and calculate the area under the curve (AUC). Results According to the immune checkpoint, LUAD was classified into clusters 1 and 2. Survival rate, immune infiltration patterns, TMB, and immune score were significantly different between the two clusters. Functional prediction showed that the functions of cluster 1 focused on apoptosis, JAK/STAT signaling pathway, TNF-α/NFκB signaling pathway, and STAT5 signaling pathway. The risk score model was constructed based on nine genes associated with immune checkpoints. Survival analysis and ROC analysis showed that patients with high-risk score had poor prognosis. The risk score was significantly correlated with cancer status (with tumor), male proportion, status, tobacco intake, and cancer stage. With the increase of the risk score, the enrichment of 22 biological functions increased, such as p53 signaling pathway. The signature was verified in IMvigor immunotherapy dataset with excellent diagnostic accuracy. Conclusion We established a nine-gene signature based on immune checkpoints, which may contribute to the diagnosis, prognosis, and clinical treatment of LUAD.
Collapse
|
47
|
Tonetti CR, de Souza-Araújo CN, Yoshida A, da Silva RF, Alves PCM, Mazzola TN, Derchain S, Fernandes LGR, Guimarães F. Ovarian Cancer-Associated Ascites Have High Proportions of Cytokine-Responsive CD56bright NK Cells. Cells 2021; 10:cells10071702. [PMID: 34359872 PMCID: PMC8306021 DOI: 10.3390/cells10071702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy, with serous histotype as the most prevalent epithelial ovarian cancer (EOC). Peritoneal ascites is a frequent comorbidity in advanced EOC. EOC-associated ascites provide a reliable sampling source for studying lymphocytes directly from tumor environment. Herein, we carried out flow cytometry-based analysis to readdress issues on NK and T lymphocyte subsets in women with advanced EOC, additionally evaluating phenotypic modulation of their intracellular pathways involved in interleukin (IL)-2 and IL-15 signaling. Results depicted ascites as an inflammatory and immunosuppressive environment, presenting significantly (p < 0.0001) higher amounts of IL-6 and IL-10 than in the patients' blood, as well as significantly (p < 0.05) increased expression of checkpoint inhibitory receptors (programmed death protein-1, PD-1) and ectonucleotidase (CD39) on T lymphocytes. However, NK lymphocytes from EOC-associated ascites showed higher (p < 0.05) pS6 phosphorylation compared with NK from blood. Additionally, in vitro treatment of lymphocytes with IL-2 or IL-15 elicited significantly (p < 0.001) phosphorylation of the STAT5 protein in NK, CD3 and CD8 lymphocytes, both from blood and ascites. EOC-associated ascites had a significantly (p < 0.0001) higher proportion of NK CD56bright lymphocytes than blood, which, in addition, were more responsive (p < 0.05) to stimulation by IL-2 than CD56dim NK. EOC-associated ascites allow studies on lymphocyte phenotype modulation in the tumor environment, where inflammatory profile contrasts with the presence of immunosuppressive elements and development of cellular self-regulating mechanisms.
Collapse
Affiliation(s)
- Cláudia Rodrigues Tonetti
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Caroline Natânia de Souza-Araújo
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Adriana Yoshida
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
| | - Rodrigo Fernandes da Silva
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Paulo César Martins Alves
- Center for Investigation in Pediatrics, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (P.C.M.A.); (T.N.M.)
| | - Taís Nitsch Mazzola
- Center for Investigation in Pediatrics, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (P.C.M.A.); (T.N.M.)
| | - Sophie Derchain
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
| | - Luís Gustavo Romani Fernandes
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Fernando Guimarães
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
- Correspondence: ; Tel.: +55-(19)-35219462
| |
Collapse
|
48
|
Angiogenic Properties of NK Cells in Cancer and Other Angiogenesis-Dependent Diseases. Cells 2021; 10:cells10071621. [PMID: 34209508 PMCID: PMC8303392 DOI: 10.3390/cells10071621] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of many serious diseases, including cancer, is closely related to disturbances in the angiogenesis process. Angiogenesis is essential for the progression of tumor growth and metastasis. The tumor microenvironment (TME) has immunosuppressive properties, which contribute to tumor expansion and angiogenesis. Similarly, the uterine microenvironment (UME) exerts a tolerogenic (immunosuppressive) and proangiogenic effect on its cells, promoting implantation and development of the embryo and placenta. In the TME and UME natural killer (NK) cells, which otherwise are capable of killing target cells autonomously, enter a state of reduced cytotoxicity or anergy. Both TME and UME are rich with factors (e.g., TGF-β, glycodelin, hypoxia), which support a conversion of NK cells to the low/non-cytotoxic, proangiogenic CD56brightCD16low phenotype. It is plausible that the phenomenon of acquiring proangiogenic and low cytotoxic features by NK cells is not only limited to cancer but is a common feature of different angiogenesis-dependent diseases (ADDs). In this review, we will discuss the role of NK cells in angiogenesis disturbances associated with cancer and other selected ADDs. Expanding the knowledge of the mechanisms responsible for angiogenesis and its disorders contributes to a better understanding of ADDs and may have therapeutic implications.
Collapse
|
49
|
Epigenetic Regulation of Cancer Immune Cells. Semin Cancer Biol 2021; 83:377-383. [PMID: 34182142 DOI: 10.1016/j.semcancer.2021.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/06/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
The epigenetic regulation of immune response involves reversible and heritable changes that do not alter the DNA sequence. Though there have been extensive studies accomplished relating to epigenetic changes in cancer cells, recent focus has been shifted on epigenetic-mediated changes in the immune cells including T cells, Macrophages, Natural Killer cells and anti-tumor immune responses. This review compiles the most relevant and recent literature related to the role of epigenetic mechanisms including DNA methylation and histone modifications in immune cells of wide range of cancers. We also include recent research with respect to role of the most relevant transcription factors that epigenetically control the anti-tumor immune response. Finally, a statement of future direction that promises to look forward for strategies to improve immunotherapy in cancer.
Collapse
|
50
|
Quinone-rich fraction of Ardisia crispa (Thunb.) A. DC roots alters angiogenic cascade in collagen-induced arthritis. Inflammopharmacology 2021; 29:771-788. [PMID: 34091811 DOI: 10.1007/s10787-021-00816-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/24/2021] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic joint disorder, of which, excessive angiogenesis is the well-established factor contributing to synovitis and joint destruction. Ardisia crispa (Primulaceae) is a medicinal herb with evidenced anti-angiogenic properties, attributed to 2-methoxy-6-undecyl-1,4-benzoquinone (BQ) found in its roots. However, it is still unclear how BQ is able to inhibit angiogenesis in RA. Hence, we investigated the anti-arthritic potential of quinone-rich fraction (QRF) separated from Ardisia crispa roots hexane extract (ACRH) by targeting angiogenesis on collagen-induced arthritis (CIA) in rats. The QRF was priorly identified by quantifying the BQ content in the fraction using GC-MS. Male Sprague-Dawley rats (n = 6) were initially immunised with type II collagen (150 µg) subcutaneously at the base of the tail on day 0. QRF (3, 10, and 30 mg/kg/day) and celecoxib (5 mg/kg/day) were orally administered for 13 consecutive days starting from day 14 post-induction, except for the vehicle and arthritic controls. QRF at all dosages moderately ameliorated the arthritic scores, ankle swelling, and hind paw oedema with no significant (p > 0.05) modulation on the bodyweights and organ weights (i.e., liver, kidney, and spleen). Treatment with QRF at 3, 10, and 30 mg/kg, significantly (p < 0.05) attenuated VEGF-A, PI3K, AKT, NF-κB, p38, STAT3, and STAT5 proteins and markedly restored the increased synovial microvessel densities (MVD) to the normal level in arthritic rats in a dose-independent manner. In conclusion, QRF conferred the anti-arthritic effect via angiogenesis inhibition in vivo, credited to the BQ content and synergism, at least in part, by other phytoconstituents.
Collapse
|