1
|
Lauwereins L, Van Thillo Q, Demeyer S, Mentens N, Provost S, Jacobs K, Gielen O, Boogaerts L, de Bock CE, Andrieu G, Asnafi V, Cools J, Veloso A. TLE4 is a repressor of the oncogenic activity of TLX3 in T-cell acute lymphoblastic leukemia. Leukemia 2025; 39:568-576. [PMID: 39838044 DOI: 10.1038/s41375-025-02513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease originating from the malignant transformation of T-cell progenitors, caused by the accumulation of genetic aberrations. One-fifth of T-ALL patients are characterized by ectopic expression of the homeobox transcription factor TLX3. However, the role of TLX3 in T-ALL remains elusive, partly due to the lack of suitable study models. Strikingly, this TLX3-positive subgroup has a high frequency of FLT3 mutations, predominantly FLT3-ITD, in pediatric cases. To investigate this, we generated ex vivo cultured pro-T cells driven by the co-expression of TLX3 and FLT3-ITD, which conferred IL7 independent growth. This model allowed us to confirm that TLX3 expression and FLT3 signaling cooperate to transform T-cells and induce an oncogenic context. Data from this cell model, combined with gene expression data from TLX3 positive T-ALL cases, revealed a strong downregulation of the transcriptional repressor TLE4. Furthermore, TLE4 showed to have a repressive effect on ex vivo TLX3 T-ALL cell growth, likely caused by a partial reversal of the TLX3 transcriptional profile. In conclusion, we developed a TLX3+FLT3-ITD pro-T cell model and used it to illustrate that TLX3 directly represses TLE4 expression, which is beneficial for the oncogenic function of TLX3.
Collapse
Affiliation(s)
- Lukas Lauwereins
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Quentin Van Thillo
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sofie Demeyer
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Nicole Mentens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sarah Provost
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Kris Jacobs
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Olga Gielen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lien Boogaerts
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Charles E de Bock
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | | | - Vahid Asnafi
- Institute Necker Enfants-Malades, INSERM U1151, Paris, France
- Laboratoire d'Onco-Hématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jan Cools
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
| | - Alexandra Veloso
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
| |
Collapse
|
2
|
Fanijavadi S, Thomassen M, Jensen LH. Targeting Triple NK Cell Suppression Mechanisms: A Comprehensive Review of Biomarkers in Pancreatic Cancer Therapy. Int J Mol Sci 2025; 26:515. [PMID: 39859231 PMCID: PMC11765000 DOI: 10.3390/ijms26020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor outcomes due to frequent recurrence, metastasis, and resistance to treatment. A major contributor to this resistance is the tumor's ability to suppress natural killer (NK) cells, which are key players in the immune system's fight against cancer. In PDAC, the tumor microenvironment (TME) creates conditions that impair NK cell function, including reduced proliferation, weakened cytotoxicity, and limited tumor infiltration. This review examines how interactions between tumor-derived factors, NK cells, and the TME contribute to tumor progression and treatment resistance. To address these challenges, we propose a new "Triple NK Cell Biomarker Approach". This strategy focuses on identifying biomarkers from three critical areas: tumor characteristics, TME factors, and NK cell suppression mechanisms. This approach could guide personalized treatments to enhance NK cell activity. Additionally, we highlight the potential of combining NK cell-based therapies with conventional treatments and repurposed drugs to improve outcomes for PDAC patients. While progress has been made, more research is needed to better understand NK cell dysfunction and develop effective therapies to overcome these barriers.
Collapse
Affiliation(s)
- Sara Fanijavadi
- Cancer Polyclinic, Levanger Hospital, 7601 Levanger, Norway
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Oncology, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
3
|
Meyers S, Gielen O, Cools J, Demeyer S. Single-cell CRISPR screening characterizes transcriptional deregulation in T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:3167-3181. [PMID: 38813729 PMCID: PMC11443379 DOI: 10.3324/haematol.2023.284901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of leukemia caused by accumulation of multiple genetic alterations in T-cell progenitors. However, for many genes it remains unknown how their mutations contribute to disease development. We therefore performed two single-cell CRISPR screens in primary pro-T cells ex vivo to study the transcriptional impact of loss-of-function alterations in T-ALL and correlate this with effects on cell fitness. The various perturbations were clustered based on their effects on E2F/MYC or STAT/NOTCH signatures, which play a defining role in driving T-cell proliferation. Many of the perturbations resulted in positive effects on the STAT and NOTCH signatures and were predicted to behave as haploinsufficient tumor suppressors in T-ALL. Additionally, Spi1 was identified as an essential gene for pro-T-cell survival, associated with deregulation of the MYC signature and epigenetic consequences. In contrast, Bcl11b was identified as a strong tumor suppressor gene in immature T lymphocytes, associated with deregulation of NF-kB and JAK/STAT signaling. We found a correlation between BCL11B expression level and JAK/STAT pathway mutations in T-ALL patients and demonstrated oncogenic cooperation between Bcl11b inactivation and JAK3 hyperactivation in pro-T cells. Altogether, these single-cell CRISPR screens in pro-T cells provide fundamental insights into the mechanisms of transcriptional deregulation caused by genetic alterations in T-ALL.
Collapse
Affiliation(s)
- Sarah Meyers
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Olga Gielen
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| |
Collapse
|
4
|
Yan Z, Xia J, Cao Z, Zhang H, Wang J, Feng T, Shu Y, Zou L. Multi-omics integration reveals potential stage-specific druggable targets in T-cell acute lymphoblastic leukemia. Genes Dis 2024; 11:100949. [PMID: 39071111 PMCID: PMC11282411 DOI: 10.1016/j.gendis.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/11/2023] [Indexed: 07/30/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a heterogeneous hematological malignancy, is caused by the developmental arrest of normal T-cell progenitors. The development of targeted therapeutic regimens is impeded by poor knowledge of the stage-specific aberrances in this disease. In this study, we performed multi-omics integration analysis, which included mRNA expression, chromatin accessibility, and gene-dependency database analyses, to identify potential stage-specific druggable targets and repositioned drugs for this disease. This multi-omics integration helped identify 29 potential pathological genes for T-ALL. These genes exhibited tissue-specific expression profiles and were enriched in the cell cycle, hematopoietic stem cell differentiation, and the AMPK signaling pathway. Of these, four known druggable targets (CDK6, TUBA1A, TUBB, and TYMS) showed dysregulated and stage-specific expression in malignant T cells and may serve as stage-specific targets in T-ALL. The TUBA1A expression level was higher in the early T cell precursor (ETP)-ALL cells, while TUBB and TYMS were mainly highly expressed in malignant T cells arrested at the CD4 and CD8 double-positive or single-positive stage. CDK6 exhibited a U-shaped expression pattern in malignant T cells along the naïve to maturation stages. Furthermore, mebendazole and gemcitabine, which target TUBA1A and TYMS, respectively, exerted stage-specific inhibitory effects on T-ALL cell lines, indicating their potential stage-specific antileukemic role in T-ALL. Collectively, our findings might aid in identifying potential stage-specific druggable targets and are promising for achieving more precise therapeutic strategies for T-ALL.
Collapse
Affiliation(s)
- Zijun Yan
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Jie Xia
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, Guizhou 554300, China
| | - Ziyang Cao
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Hongyang Zhang
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Jinxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Tienan Feng
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Shu
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lin Zou
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
5
|
Shenoy US, Adiga D, Alhedyan F, Kabekkodu SP, Radhakrishnan R. HOXA9 transcription factor is a double-edged sword: from development to cancer progression. Cancer Metastasis Rev 2024; 43:709-728. [PMID: 38062297 PMCID: PMC11156722 DOI: 10.1007/s10555-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 04/02/2024]
Abstract
The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Faisal Alhedyan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
6
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
7
|
Nakashima M, Suga N, Ikeda Y, Yoshikawa S, Matsuda S. Circular RNAs, Noncoding RNAs, and N6-methyladenosine Involved in the Development of MAFLD. Noncoding RNA 2024; 10:11. [PMID: 38392966 PMCID: PMC10893449 DOI: 10.3390/ncrna10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs), including circular RNAs (circRNAs) and N6-methyladenosine (m6A), have been shown to play a critical role in the development of various diseases including obesity and metabolic disorder-associated fatty liver disease (MAFLD). Obesity is a chronic disease caused by excessive fat accumulation in the body, which has recently become more prevalent and is the foremost risk factor for MAFLD. Causes of obesity may involve the interaction of genetic, behavioral, and social factors. m6A RNA methylation might add a novel inspiration for understanding the development of obesity and MAFLD with post-transcriptional regulation of gene expression. In particular, circRNAs, microRNAs (miRNAs), and m6A might be implicated in the progression of MAFLD. Interestingly, m6A modification can modulate the translation, degradation, and other functions of ncRNAs. miRNAs/circRNAs can also modulate m6A modifications by affecting writers, erasers, and readers. In turn, ncRNAs could modulate the expression of m6A regulators in different ways. However, there is limited evidence on how these ncRNAs and m6A interact to affect the promotion of liver diseases. It seems that m6A can occur in DNA, RNA, and proteins that may be associated with several biological properties. This study provides a mechanistic understanding of the association of m6A modification and ncRNAs with liver diseases, especially for MAFLD. Comprehension of the association between m6A modification and ncRNAs may contribute to the development of treatment tactics for MAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
8
|
Cui W, Bai X, Bai Z, Chen F, Xu J, Bai W, Xi Y. Exploring the expression and clinical significance of the miR-140-3p-HOXA9 axis in colorectal cancer. J Cancer Res Clin Oncol 2024; 150:47. [PMID: 38285101 PMCID: PMC10824855 DOI: 10.1007/s00432-023-05592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE This study aims to investigate the expression patterns and clinical significance of miR-140-3p and homeobox A9 (HOXA9) in colorectal cancer (CRC) selected by bioinformatic study, while elucidating their potential interplay. METHODS The microRNA expression profiles of paired colorectal cancer and matched normal tissues were retrieved from the Gene Expression Omnibus Database. Differentially expressed microRNAs and microRNA candidates were filtered and subjected to further analysis. Clinicopathological data, along with paraffin-embedded samples of colorectal tumor tissues were collected to facilitate comprehensive analysis. Expression levels of miR-140-3p and HOXA9 were quantified using qRT-PCR and immunohistochemistry. Survival rates were determined using the Kaplan-Meier method, and the COX regression model was utilized to identify independent prognostic factors that impact the overall prognosis. RESULTS MiR-140-3p was significantly downregulated in colorectal tumors compared to normal tissue, and HOXA9 was identified as a previously unreported potential downstream target. HOXA9 expression was elevated in tumors compared to normal tissues. Reduced miR-140-3p expression was associated with lymph node metastasis, while high HOXA9 expression correlated with both lymph node metastasis and lympho-vascular invasion. Patients with low miR-140-3p and high HOXA9 expression had a poorer prognosis. HOXA9 was identified as an independent risk factor for CRC patient survival. CONCLUSION The miR-140-3p-HOXA9 signaling disruption is closely linked to lymph node metastasis and unfavorable prognosis in CRC. This axis shows promise as a clinical biomarker for predicting the CRC patient survival and a potential therapeutic target.
Collapse
Affiliation(s)
- Wei Cui
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, People's Republic of China
| | - Xueliang Bai
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhongyuan Bai
- First Clinical Medical School, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fengxin Chen
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jing Xu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Wenqi Bai
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, People's Republic of China.
| | - Yanfeng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, People's Republic of China.
| |
Collapse
|
9
|
Liang D, Wang Q, Zhang W, Tang H, Song C, Yan Z, Liang Y, Wang H. JAK/STAT in leukemia: a clinical update. Mol Cancer 2024; 23:25. [PMID: 38273387 PMCID: PMC10811937 DOI: 10.1186/s12943-023-01929-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Over the past three decades, considerable efforts have been expended on understanding the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in leukemia, following the identification of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs). The aim of this review is to summarize the latest progress in our understanding of the involvement of the JAK/STAT signaling pathway in the development of leukemia. We also attempt to provide insights into the current use of JAK/STAT inhibitors in leukemia therapy and explore pertinent clinical trials in this field.
Collapse
Affiliation(s)
- Dong Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenbiao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhimin Yan
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hua Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
10
|
Aryal S, Lu R. HOXA9 Regulome and Pharmacological Interventions in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:405-430. [PMID: 39017854 DOI: 10.1007/978-3-031-62731-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
11
|
DuVall AS, Wesevich A, Larson RA. Developing Targeted Therapies for T Cell Acute Lymphoblastic Leukemia/Lymphoma. Curr Hematol Malig Rep 2023; 18:217-225. [PMID: 37490229 PMCID: PMC11748120 DOI: 10.1007/s11899-023-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE OF REVIEW Largely, treatment advances in relapsed and/or refractory acute lymphoblastic leukemia (ALL) have been made in B cell disease leaving T cell ALL reliant upon high-intensity chemotherapy. Recent advances in the understanding of the biology of T-ALL and the improvement in immunotherapies have led to new therapeutic pathways to target and exploit. Here, we review the more promising pathways that are able to be targeted and other therapeutic possibilities for T-ALL. RECENT FINDINGS Preclinical models and early-phase clinical trials have shown promising results in some case in the treatment of T-ALL. Targeting many different pathways could lead to the next advancement in the treatment of relapsed and/or refractory disease. Recent advances in cellular therapies have also shown promise in this space. When reviewing the literature as a whole, targeting important pathways and antigens likely will lead to the next advancement in T-ALL survival since intensifying chemotherapy.
Collapse
Affiliation(s)
- Adam S DuVall
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA.
| | - Austin Wesevich
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| | - Richard A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| |
Collapse
|
12
|
Omari SA, Kosasih HJ, Chung T, de Bock CE. In vitro and in vivo modelling of mutant JAK3/STAT5 signaling in leukemia. Heliyon 2023; 9:e22085. [PMID: 38053908 PMCID: PMC10694137 DOI: 10.1016/j.heliyon.2023.e22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Mutations within the IL7-R-JAK-STAT signaling pathway are important drivers of T-cell acute lymphoblastic leukemia (T-ALL). Here we describe the important steps required to generate retroviral particles for the stable expression of mutant JAK3 constructs that induce constitutive JAK/STAT signaling. These are subsequently used for the viral transduction of the IL-3 cytokine-dependent Ba/F3 cell line or murine hematopoietic stem and progenitor cells (HSPCs) for in vitro and in vivo modelling of cytokine-independent growth or leukemia initiation respectively.
Collapse
Affiliation(s)
- Sofia A. Omari
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Hansen J. Kosasih
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Thomas Chung
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Charles E. de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| |
Collapse
|
13
|
Agrawal-Singh S, Bagri J, Giotopoulos G, Azazi DMA, Horton SJ, Lopez CK, Anand S, Bach AS, Stedham F, Antrobus R, Houghton JW, Vassiliou GS, Sasca D, Yun H, Whetton AD, Huntly BJP. HOXA9 forms a repressive complex with nuclear matrix-associated protein SAFB to maintain acute myeloid leukemia. Blood 2023; 141:1737-1754. [PMID: 36577137 PMCID: PMC10113176 DOI: 10.1182/blood.2022016528] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022] Open
Abstract
HOXA9 is commonly upregulated in acute myeloid leukemia (AML), in which it confers a poor prognosis. Characterizing the protein interactome of endogenous HOXA9 in human AML, we identified a chromatin complex of HOXA9 with the nuclear matrix attachment protein SAFB. SAFB perturbation phenocopied HOXA9 knockout to decrease AML proliferation, increase differentiation and apoptosis in vitro, and prolong survival in vivo. Integrated genomic, transcriptomic, and proteomic analyses further demonstrated that the HOXA9-SAFB (H9SB)-chromatin complex associates with nucleosome remodeling and histone deacetylase (NuRD) and HP1γ to repress the expression of factors associated with differentiation and apoptosis, including NOTCH1, CEBPδ, S100A8, and CDKN1A. Chemical or genetic perturbation of NuRD and HP1γ-associated catalytic activity also triggered differentiation, apoptosis, and the induction of these tumor-suppressive genes. Importantly, this mechanism is operative in other HOXA9-dependent AML genotypes. This mechanistic insight demonstrates the active HOXA9-dependent differentiation block as a potent mechanism of disease maintenance in AML that may be amenable to therapeutic intervention by targeting the H9SB interface and/or NuRD and HP1γ activity.
Collapse
Affiliation(s)
- Shuchi Agrawal-Singh
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jaana Bagri
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - George Giotopoulos
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Dhoyazan M A Azazi
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J Horton
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Cecile K Lopez
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shubha Anand
- Cancer Molecular Diagnostics Laboratory, Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Anne-Sophie Bach
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Frances Stedham
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jack W Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - George S Vassiliou
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Daniel Sasca
- Department of Hematology, Oncology and Pneumology, University Medical Center Mainz, Mainz, Germany
| | - Haiyang Yun
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Anthony D Whetton
- School of Veterinary Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Liang F, Luo YF, Guo Z, Qian Q, Meng XB, Mo ZH. MicroRNA-139-5p mediates BMSCs impairment in diabetes by targeting HOXA9/c-Fos. FASEB J 2023; 37:e22697. [PMID: 36527387 DOI: 10.1096/fj.202201059r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
The properties and functions of BMSCs were altered by the diabetic microenvironment, and its mechanism was not very clear. In recent years, the regulation of the function of BMSCs by microRNA has become a research hotspot, meanwhile, HOX genes also have been focused on and involved in multiple functions of stem cells. In this study, we investigated the role of miR-139-5p in diabetes-induced BMSC impairment. Since HOXA9 may be a target gene of miR-139-5p, we speculated that miR-139-5p/HOXA9 might be involved in regulating the biological characteristics and the function of BMSCs in diabetes. We demonstrated that the miR-139-5p expression was increased in BMSCs derived from STZ-induced diabetic rats. MiR-139-5p mimics were able to inhibit cell proliferation, and migration and promoted senescence and apoptosis in vitro. MiR-139-5p induced the down-regulated expression of HOXA9 and c-Fos in BMSCs derived from normal rats. Moreover, miR-139-5p inhibitors reversed the tendency in diabetic-derived BMSCs. Further, gain-and-loss function experiments indicated that miR-139-5p regulated the functions of BMSCs by targeting HOXA9 and c-Fos. In vivo wound model experiments showed that the downregulation of miR-139-5p further promoted the epithelialization and angiogenesis of diabetic BMSC-mediated skin. In conclusion, induction of miR-139-5p upregulation mediated the impairment of BMSCs through the HOXA9/c-Fos pathway in diabetic rats. Therefore, miR-139-5p/HOXA9 might be an important therapeutic target in treating diabetic BMSCs and diabetic complications in the future.
Collapse
Affiliation(s)
- Fang Liang
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Yu-Fang Luo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Zi Guo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Qiang Qian
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Xu-Biao Meng
- Department of Endocrinology, Haikou People's Hospital & Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Zhao-Hui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| |
Collapse
|
15
|
Vanden Bempt M, Debackere K, Demeyer S, Van Thillo Q, Meeuws N, Prieto C, Provost S, Mentens N, Jacobs K, Gielen O, Nittner D, Ogawa S, Kataoka K, Graux C, Tousseyn T, Cools J, Dierickx D. Aberrant MYCN expression drives oncogenic hijacking of EZH2 as a transcriptional activator in peripheral T-cell lymphoma. Blood 2022; 140:2463-2476. [PMID: 35960849 PMCID: PMC10653048 DOI: 10.1182/blood.2022016428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of hematological cancers arising from the malignant transformation of mature T cells. In a cohort of 28 PTCL cases, we identified recurrent overexpression of MYCN, a member of the MYC family of oncogenic transcription factors. Approximately half of all PTCL cases was characterized by a MYC expression signature. Inducible expression of MYCN in lymphoid cells in a mouse model caused T-cell lymphoma that recapitulated human PTCL with an MYC expression signature. Integration of mouse and human expression data identified EZH2 as a key downstream target of MYCN. Remarkably, EZH2 was found to be an essential cofactor for the transcriptional activation of the MYCN-driven gene expression program, which was independent of methyltransferase activity but dependent on phosphorylation by CDK1. MYCN-driven T-cell lymphoma was sensitive to EZH2 degradation or CDK1 inhibition, which displayed synergy with US Food and Drug Administration-approved histone deacetylase (HDAC) inhibitors.
Collapse
Affiliation(s)
- Marlies Vanden Bempt
- Laboratory for Experimental Hematology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - Koen Debackere
- Laboratory for Experimental Hematology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - Quentin Van Thillo
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - Nienke Meeuws
- Laboratory for Experimental Hematology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - Cristina Prieto
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - Sarah Provost
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - Nicole Mentens
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - Kris Jacobs
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - Olga Gielen
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - David Nittner
- Histopathology Expertise Center, VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Carlos Graux
- Department of Hematology, Mont-Godinne University Hospital, Yvoir, Belgium
| | - Thomas Tousseyn
- Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Jan Cools
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
- VIB- Katholieke Universiteit Leuven Center for Cancer Biology, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
| | - Daan Dierickx
- Laboratory for Experimental Hematology, Department of Oncology, KU Leuven, Leuven, Belgium
- Leuvens Kanker Instituut, KU Leuven–UZ Leuven, Leuven, Belgium
- Department of Hematology, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Zhang Z, Yang K, Zhang H. Targeting Leukemia-Initiating Cells and Leukemic Niches: The Next Therapy Station for T-Cell Acute Lymphoblastic Leukemia? Cancers (Basel) 2022; 14:cancers14225655. [PMID: 36428753 PMCID: PMC9688677 DOI: 10.3390/cancers14225655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of hematological malignancy characterized by its high heterogeneity and potentially life-threatening clinical features. Despite the advances in risk stratification and therapeutic management of T-ALL, patients often suffer from treatment failure and chemotherapy-induced toxicity, calling for greater efforts to improve therapeutic efficacy and safety in the treatment of T-ALL. During the past decades, increasing evidence has shown the indispensable effects of leukemia-initiating cells (LICs) and leukemic niches on T-ALL initiation and progression. These milestones greatly facilitate precision medicine by interfering with the pathways that are associated with LICs and leukemic niches or by targeting themselves directly. Most of these novel agents, either alone or in combination with conventional chemotherapy, have shown promising preclinical results, facilitating them to be further evaluated under clinical trials. In this review, we summarize the latest discoveries in LICs and leukemic niches in terms of T-ALL, with a particular highlight on the current precision medicine. The challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: ; Tel.: +86-158-7796-3252
| |
Collapse
|
17
|
Tang L, Peng L, Tan C, Liu H, Chen P, Wang H. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Cancer Cell Int 2022; 22:349. [PMID: 36376832 PMCID: PMC9664671 DOI: 10.1186/s12935-022-02767-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
HOXA9 functioning as a transcription factor is one of the members of HOX gene family, which governs multiple cellular activities by facilitating cellular signal transduction. In addition to be a driver in AML which has been widely studied, the role of HOXA9 in solid tumor progression has also received increasing attention in recent years, where the aberrant expression of HOXA9 is closely associated with the prognosis of patient. This review details the signaling pathways, binding partners, post-transcriptional regulation of HOXA9, and possible inhibitors of HOXA9 in solid tumors, which provides a reference basis for further study on the role of HOXA9 in solid tumors.
Collapse
|
18
|
Talarmain L, Clarke MA, Shorthouse D, Cabrera-Cosme L, Kent DG, Fisher J, Hall BA. HOXA9 has the hallmarks of a biological switch with implications in blood cancers. Nat Commun 2022; 13:5829. [PMID: 36192425 PMCID: PMC9530117 DOI: 10.1038/s41467-022-33189-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Blood malignancies arise from the dysregulation of haematopoiesis. The type of blood cell and the specific order of oncogenic events initiating abnormal growth ultimately determine the cancer subtype and subsequent clinical outcome. HOXA9 plays an important role in acute myeloid leukaemia (AML) prognosis by promoting blood cell expansion and altering differentiation; however, the function of HOXA9 in other blood malignancies is still unclear. Here, we highlight the biological switch and prognosis marker properties of HOXA9 in AML and chronic myeloproliferative neoplasms (MPN). First, we establish the ability of HOXA9 to stratify AML patients with distinct cellular and clinical outcomes. Then, through the use of a computational network model of MPN, we show that the self-activation of HOXA9 and its relationship to JAK2 and TET2 can explain the branching progression of JAK2/TET2 mutant MPN patients towards divergent clinical characteristics. Finally, we predict a connection between the RUNX1 and MYB genes and a suppressive role for the NOTCH pathway in MPN diseases.
Collapse
Affiliation(s)
- Laure Talarmain
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Matthew A Clarke
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - David Shorthouse
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Lilia Cabrera-Cosme
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
19
|
van Gils N, Verhagen HJ, Broux M, Martiáñez T, Denkers F, Vermue E, Rutten A, Csikós T, Demeyer S, Çil M, Al M, Cools J, Janssen JJ, Ossenkoppele GJ, Menezes RX, Smit L. Targeting histone methylation to reprogram the transcriptional state that drives survival of drug-tolerant myeloid leukemia persisters. iScience 2022; 25:105013. [PMID: 36097617 PMCID: PMC9463578 DOI: 10.1016/j.isci.2022.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Although chemotherapy induces complete remission in the majority of acute myeloid leukemia (AML) patients, many face a relapse. This relapse is caused by survival of chemotherapy-resistant leukemia (stem) cells (measurable residual disease; MRD). Here, we demonstrate that the anthracycline doxorubicin epigenetically reprograms leukemia cells by inducing histone 3 lysine 27 (H3K27) and H3K4 tri-methylation. Within a doxorubicin-sensitive leukemia cell population, we identified a subpopulation of reversible anthracycline-tolerant cells (ATCs) with leukemic stem cell (LSC) features lacking doxorubicin-induced H3K27me3 or H3K4me3 upregulation. These ATCs have a distinct transcriptional landscape than the leukemia bulk and could be eradicated by KDM6 inhibition. In primary AML, reprogramming the transcriptional state by targeting KDM6 reduced MRD load and survival of LSCs residing within MRD, and enhanced chemotherapy response in vivo. Our results reveal plasticity of anthracycline resistance in AML cells and highlight the potential of transcriptional reprogramming by epigenetic-based therapeutics to target chemotherapy-resistant AML cells. Reversible anthracycline-tolerant leukemia cells (ATCs) have low H3K27me3 or H3K4me3 ATCs exhibit stem cell features similar to leukemic stem cells Reprogramming the transcriptional state by inhibition of KDM6 depletes ATCs Inhibiting KDM6 adds to doxorubicin treatment and eradicates AML MRD (stem) cells
Collapse
|
20
|
In vivo impact of JAK3 A573V mutation revealed using zebrafish. Cell Mol Life Sci 2022; 79:322. [PMID: 35622134 PMCID: PMC9142468 DOI: 10.1007/s00018-022-04361-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Background Janus kinase 3 (JAK3) acts downstream of the interleukin-2 (IL-2) receptor family to play a pivotal role in the regulation of lymphoid cell development. Activating JAK3 mutations are associated with a number of lymphoid and other malignancies, with mutations within the regulatory pseudokinase domain common. Methods The pseudokinase domain mutations A572V and A573V were separately introduced into the highly conserved zebrafish Jak3 and transiently expressed in cell lines and zebrafish embryos to examine their activity and impact on early T cells. Genome editing was subsequently used to introduce the A573V mutation into the zebrafish genome to study the effects of JAK3 activation on lymphoid cells in a physiologically relevant context throughout the life-course. Results Zebrafish Jak3 A573V produced the strongest activation of downstream STAT5 in vitro and elicited a significant increase in T cells in zebrafish embryos. Zebrafish carrying just a single copy of the Jak3 A573V allele displayed elevated embryonic T cells, which continued into adulthood. Hematopoietic precursors and NK cells were also increased, but not B cells. The lymphoproliferative effects of Jak3 A573V in embryos was shown to be dependent on zebrafish IL-2Rγc, JAK1 and STAT5B equivalents, and could be suppressed with the JAK3 inhibitor Tofacitinib. Conclusions This study demonstrates that a single JAK3 A573V allele expressed from the endogenous locus was able to enhance lymphopoiesis throughout the life-course, which was mediated via an IL-2Rγc/JAK1/JAK3/STAT5 signaling pathway and was sensitive to Tofacitinib. This extends our understanding of oncogenic JAK3 mutations and creates a novel model to underpin further translational investigations. Supplementary Information The online version contains supplementary material available at 10.1007/s00018-022-04361-8.
Collapse
|
21
|
Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway. Biomed Pharmacother 2022; 149:112836. [PMID: 35339827 DOI: 10.1016/j.biopha.2022.112836] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Formononetin is a type of phytoestrogen obtained from the Chinese medical herb Red Clover. It exhibits anti-neoplastic hepatoprotective, and neuroprotective properties. However, the anti-inflammatory effect of formononetin in cerebral ischemia-reperfusion injury has not been reported. OBJECTIVE To explore the potential mechanism of action of formononetin in cerebral ischemia-reperfusion injury with regard to the JAK2/STAT3 signaling pathway. METHODS Male SD rats were used to establish a middle cerebral artery occlusion (MCAO) model and randomly divided into 5 groups: Sham, MCAO, JAK2 Inhibitor (Ag490), Formononetin, Inhibitor + Formononetin. The protective effect of formononetin in MCAO rats was detected by performing neurological deficit testing, TTC staining, H&E staining, Nissl staining, ELISA, RT-PCR, western blotting and immunofluorescence. RESULTS Formononetin significantly alleviated the neurological deficit and the pathological state of brain tissues, and reduced the volume of cerebral infarction, levels of IL-18 and TNF-α inflammatory factors in plasma, mRNA levels of IL-6 and IL-1β in rat brain tissue, and the protein levels of p-JAK2, p-STAT3, NLRP3, ASC, cl-Caspase-1, and cl-IL-1β in the MCAO rat brain tissue. CONCLUSION Formononetin has anti-inflammatory effects. It may inhibit the relevant targets in the JAK2/STAT3 signaling pathway, thereby having a certain protective effect against cerebral ischemia-reperfusion injury.
Collapse
|
22
|
Chen X, Zhou X, Wang X. m 6A binding protein YTHDF2 in cancer. Exp Hematol Oncol 2022; 11:21. [PMID: 35382893 PMCID: PMC8981655 DOI: 10.1186/s40164-022-00269-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
YT521-B homology domain family member 2 (YTHDF2) is an N6-methyladenosine (m6A)-binding protein that was originally found to regulate the stability of mRNA. Growing evidence has shown that YTHDF2 can participate in multifarious bioprocesses, including embryonic development, immune response, and tumor progression. Furthermore, YTHDF2 is closely associated with the proliferation, apoptosis, invasion, and migration of tumor cells, suggesting its significant role in cancers. YTHDF2 primarily relies on m6A modification to modulate signaling pathways in cancer cells. However, the expression and function of YTHDF2 in human malignancies remain controversial. Meanwhile, the underlying molecular mechanisms of YTHDF2 have not been elucidated. In this review, we principally summarized the biological functions and molecular mechanisms of YTHDF2 in tumors and discussed its prognostic and therapeutic values.
Collapse
Affiliation(s)
- Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
23
|
Si H, Wang J, He R, Yu X, Li S, Huang J, Li J, Tang X, Song X, Tu Z, Zhang Z, Ding K. Identification of U937 JAK3-M511I Acute Myeloid Leukemia Cells as a Sensitive Model to JAK3 Inhibitor. Front Oncol 2022; 11:807200. [PMID: 35111683 PMCID: PMC8802890 DOI: 10.3389/fonc.2021.807200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mutated JAK3 has been considered a promising target for cancer therapy. Activating mutations of JAK3 are observed in 3.9%-10% of acute myeloid leukemia (AML) patients, but it is unclear whether AML cells are sensitive to JAK3 inhibitors, and no disease-related human AML cell model has been reported. We have identified U937 as the first human AML cell line expressing the JAK3M511I activated mutation and confirmed that JAK3 inhibitors sensitively suppress the proliferation of U937 AML cells.
Collapse
Affiliation(s)
- Hongfei Si
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jie Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiuwen Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Shan Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jing Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jie Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xia Tang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojuan Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Shenoy US, Adiga D, Kabekkodu SP, Hunter KD, Radhakrishnan R. Molecular implications of HOX genes targeting multiple signaling pathways in cancer. Cell Biol Toxicol 2022; 38:1-30. [PMID: 34617205 PMCID: PMC8789642 DOI: 10.1007/s10565-021-09657-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Homeobox (HOX) genes encode highly conserved homeotic transcription factors that play a crucial role in organogenesis and tissue homeostasis. Their deregulation impacts the function of several regulatory molecules contributing to tumor initiation and progression. A functional bridge exists between altered gene expression of individual HOX genes and tumorigenesis. This review focuses on how deregulation in the HOX-associated signaling pathways contributes to the metastatic progression in cancer. We discuss their functional significance, clinical implications and ascertain their role as a diagnostic and prognostic biomarker in the various cancer types. Besides, the mechanism of understanding the theoretical underpinning that affects HOX-mediated therapy resistance in cancers has been outlined. The knowledge gained shall pave the way for newer insights into the treatment of cancer.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
25
|
Abstract
Obesity is a chronic and complex psychosomatic disease that is becoming increasingly prevalent worldwide. This study aimed to analyze whole methylation profiles to uncover the epigenetic mechanisms associated with obesity. DNA methylation profiles in blood samples from patients with obesity and normal controls were studied using the Illumina 850 K methylation microarray. The diagnostic value of the differentially methylated genes was determined using receiver operating characteristic (ROC) analysis. The expression of selected candidate genes was verified using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and pyrosequencing. A total of 9,371 significantly differentially methylated sites (7,974 hypermethylated sites and 1,397 hypomethylated sites) were identified in 4,571 genes. A difference in the distribution of differentially methylated sites (hypermethylated and hypomethylated) in both gene structures and CpG islands was observed. A total of 114 key differentially methylated sites were identified in the CpG islands. ROC results indicated that Inhibin Subunit Beta B (INHBB), Homeobox A9 (HOXA9), Troponin T3 (TNNT3), Cyclic adenosine monophosphate (cAMP)-responsive element binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) and Zinc finger and BTB domain-containing 7 B (ZBTB7B) could discriminate patients with obesity from normal controls. RT-qPCR results of CRTC1 and ZBTB7B were consistent with our methylation profile results. The pyrosequencing results showed that the methylation levels of CRTC1 CpG sites (CpG1 and CpG2-cg11660071) and INHBB CpG sites (CpG2) were significantly changed in patients with obesity compared with normal controls, which was consistent with our DNA methylation profile results. Our study provides new insights into the pathological mechanism of obesity.
Collapse
Affiliation(s)
- Chunhu Wang
- 17th Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Wang
- 17th Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiguang Ma
- 17th Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
BETter insight into PRC2-mutated T-ALL. Blood 2021; 138:1787-1788. [PMID: 34762130 DOI: 10.1182/blood.2021012677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
|
27
|
Feng Y, Zhang T, Wang Y, Xie M, Ji X, Luo X, Huang W, Xia L. Homeobox Genes in Cancers: From Carcinogenesis to Recent Therapeutic Intervention. Front Oncol 2021; 11:770428. [PMID: 34722321 PMCID: PMC8551923 DOI: 10.3389/fonc.2021.770428] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
The homeobox (HOX) genes encoding an evolutionarily highly conserved family of homeodomain-containing transcriptional factors are essential for embryogenesis and tumorigenesis. HOX genes are involved in cell identity determination during early embryonic development and postnatal processes. The deregulation of HOX genes is closely associated with numerous human malignancies, highlighting the indispensable involvement in mortal cancer development. Since most HOX genes behave as oncogenes or tumor suppressors in human cancer, a better comprehension of their upstream regulators and downstream targets contributes to elucidating the function of HOX genes in cancer development. In addition, targeting HOX genes may imply therapeutic potential. Recently, novel therapies such as monoclonal antibodies targeting tyrosine receptor kinases, small molecular chemical inhibitors, and small interfering RNA strategies, are difficult to implement for targeting transcriptional factors on account of the dual function and pleiotropic nature of HOX genes-related molecular networks. This paper summarizes the current state of knowledge on the roles of HOX genes in human cancer and emphasizes the emerging importance of HOX genes as potential therapeutic targets to overcome the limitations of present cancer therapy.
Collapse
Affiliation(s)
- Yangyang Feng
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
A systematic analysis of genetic interactions and their underlying biology in childhood cancer. Commun Biol 2021; 4:1139. [PMID: 34615983 PMCID: PMC8494736 DOI: 10.1038/s42003-021-02647-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Childhood cancer is a major cause of child death in developed countries. Genetic interactions between mutated genes play an important role in cancer development. They can be detected by searching for pairs of mutated genes that co-occur more (or less) often than expected. Co-occurrence suggests a cooperative role in cancer development, while mutual exclusivity points to synthetic lethality, a phenomenon of interest in cancer treatment research. Little is known about genetic interactions in childhood cancer. We apply a statistical pipeline to detect genetic interactions in a combined dataset comprising over 2,500 tumors from 23 cancer types. The resulting genetic interaction map of childhood cancers comprises 15 co-occurring and 27 mutually exclusive candidates. The biological explanation of most candidates points to either tumor subtype, pathway epistasis or cooperation while synthetic lethality plays a much smaller role. Thus, other explanations beyond synthetic lethality should be considered when interpreting genetic interaction test results.
Collapse
|
29
|
Oncogenic Cooperation Between IL7R-JAK-STAT Pathway Mutations. Hemasphere 2021; 5:e637. [PMID: 34476346 PMCID: PMC8389874 DOI: 10.1097/hs9.0000000000000637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
|
30
|
PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression. Leukemia 2021; 36:370-382. [PMID: 34465864 PMCID: PMC8807395 DOI: 10.1038/s41375-021-01392-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by gene mutations in T-cell progenitors. As an important epigenetic regulator, PHF6 mutations frequently coexist with JAK3 mutations in T-ALL patients. However, the role(s) of PHF6 mutations in JAK3-driven leukemia remain unclear. Here, the cooperation between JAK3 activation and PHF6 inactivation is examined in leukemia patients and in mice models. We found that the average survival time is shorter in patients with JAK/STAT and PHF6 comutation than that in other patients, suggesting a potential role of PHF6 in leukemia progression. We subsequently found that Phf6 deficiency promotes JAK3M511I-induced T-ALL progression in mice by inhibiting the Bai1-Mdm2-P53 signaling pathway, which is independent of the JAK3/STAT5 signaling pathway. Furthermore, combination therapy with a JAK3 inhibitor (tofacitinib) and a MDM2 inhibitor (idasanutlin) reduces the Phf6 KO and JAK3M511I leukemia burden in vivo. Taken together, our study suggests that combined treatment with JAK3 and MDM2 inhibitors may potentially increase the drug benefit for T-ALL patients with PHF6 and JAK3 comutation.
Collapse
|
31
|
Keewan E, Matlawska-Wasowska K. The Emerging Role of Suppressors of Cytokine Signaling (SOCS) in the Development and Progression of Leukemia. Cancers (Basel) 2021; 13:4000. [PMID: 34439155 PMCID: PMC8393695 DOI: 10.3390/cancers13164000] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are pleiotropic signaling molecules that execute an essential role in cell-to-cell communication through binding to cell surface receptors. Receptor binding activates intracellular signaling cascades in the target cell that bring about a wide range of cellular responses, including induction of cell proliferation, migration, differentiation, and apoptosis. The Janus kinase and transducers and activators of transcription (JAK/STAT) signaling pathways are activated upon cytokines and growth factors binding with their corresponding receptors. The SOCS family of proteins has emerged as a key regulator of cytokine signaling, and SOCS insufficiency leads to constitutive activation of JAK/STAT signaling and oncogenic transformation. Dysregulation of SOCS expression is linked to various solid tumors with invasive properties. However, the roles of SOCS in hematological malignancies, such as leukemia, are less clear. In this review, we discuss the recent advances pertaining to SOCS dysregulation in leukemia development and progression. We also highlight the roles of specific SOCS in immune cells within the tumor microenvironment and their possible involvement in anti-tumor immunity. Finally, we discuss the epigenetic, genetic, and post-transcriptional modifications of SOCS genes during tumorigenesis, with an emphasis on leukemia.
Collapse
Affiliation(s)
- Esra’a Keewan
- Department of Pediatrics, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ksenia Matlawska-Wasowska
- Department of Pediatrics, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
32
|
Richter WF, Shah RN, Ruthenburg AJ. Non-canonical H3K79me2-dependent pathways promote the survival of MLL-rearranged leukemia. eLife 2021; 10:64960. [PMID: 34263728 PMCID: PMC8315800 DOI: 10.7554/elife.64960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
MLL-rearranged leukemia depends on H3K79 methylation. Depletion of this transcriptionally activating mark by DOT1L deletion or high concentrations of the inhibitor pinometostat downregulates HOXA9 and MEIS1, and consequently reduces leukemia survival. Yet, some MLL-rearranged leukemias are inexplicably susceptible to low-dose pinometostat, far below concentrations that downregulate this canonical proliferation pathway. In this context, we define alternative proliferation pathways that more directly derive from H3K79me2 loss. By ICeChIP-seq, H3K79me2 is markedly depleted at pinometostat-downregulated and MLL-fusion targets, with paradoxical increases of H3K4me3 and loss of H3K27me3. Although downregulation of polycomb components accounts for some of the proliferation defect, transcriptional downregulation of FLT3 is the major pathway. Loss-of-FLT3-function recapitulates the cytotoxicity and gene expression consequences of low-dose pinometostat, whereas overexpression of constitutively active STAT5A, a target of FLT3-ITD-signaling, largely rescues these defects. This pathway also depends on MLL1, indicating combinations of DOT1L, MLL1 and FLT3 inhibitors should be explored for treating FLT3-mutant leukemia.
Collapse
Affiliation(s)
- William F Richter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Rohan N Shah
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Pritzker School of Medicine, The University of Chicago, Chicago, United States
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
33
|
Van Thillo Q, De Bie J, Seneviratne JA, Demeyer S, Omari S, Balachandran A, Zhai V, Tam WL, Sweron B, Geerdens E, Gielen O, Provost S, Segers H, Boeckx N, Marshall GM, Cheung BB, Isobe K, Kato I, Takita J, Amos TG, Deveson IW, McCalmont H, Lock RB, Oxley EP, Garwood MM, Dickins RA, Uyttebroeck A, Carter DR, Cools J, de Bock CE. Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia. Nat Commun 2021; 12:4164. [PMID: 34230493 PMCID: PMC8260768 DOI: 10.1038/s41467-021-24442-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the β-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/β-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/β-catenin interaction.
Collapse
Affiliation(s)
- Quentin Van Thillo
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Jolien De Bie
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Human Genetics, UZ Leuven, Leuven, Belgium
| | - Janith A Seneviratne
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sofie Demeyer
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Sofia Omari
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Anushree Balachandran
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Vicki Zhai
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wai L Tam
- Technology Innovation Lab, VIB, Gent, Belgium
| | - Bram Sweron
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ellen Geerdens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Olga Gielen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sarah Provost
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| | - Glenn M Marshall
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Belamy B Cheung
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kiyotaka Isobe
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Timothy G Amos
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ethan P Oxley
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Maximilian M Garwood
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Anne Uyttebroeck
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium
| | - Daniel R Carter
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
| | - Jan Cools
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium.
| | - Charles E de Bock
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
34
|
Single-cell DNA amplicon sequencing reveals clonal heterogeneity and evolution in T-cell acute lymphoblastic leukemia. Blood 2021; 137:801-811. [PMID: 32812017 DOI: 10.1182/blood.2020006996] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 01/27/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive leukemia that is most frequent in children and is characterized by the presence of few chromosomal rearrangements and 10 to 20 somatic mutations in protein-coding regions at diagnosis. The majority of T-ALL cases harbor activating mutations in NOTCH1 together with mutations in genes implicated in kinase signaling, transcriptional regulation, or protein translation. To obtain more insight in the level of clonal heterogeneity at diagnosis and during treatment, we used single-cell targeted DNA sequencing with the Tapestri platform. We designed a custom ALL panel and obtained accurate single-nucleotide variant and small insertion-deletion mutation calling for 305 amplicons covering 110 genes in about 4400 cells per sample and time point. A total of 108 188 cells were analyzed for 25 samples of 8 T-ALL patients. We typically observed a major clone at diagnosis (>35% of the cells) accompanied by several minor clones of which some were less than 1% of the total number of cells. Four patients had >2 NOTCH1 mutations, some of which present in minor clones, indicating a strong pressure to acquire NOTCH1 mutations in developing T-ALL cells. By analyzing longitudinal samples, we detected the presence and clonal nature of residual leukemic cells and clones with a minor presence at diagnosis that evolved to clinically relevant major clones at later disease stages. Therefore, single-cell DNA amplicon sequencing is a sensitive assay to detect clonal architecture and evolution in T-ALL.
Collapse
|
35
|
Lefeivre T, Jones L, Trinquand A, Pinton A, Macintyre E, Laurenti E, Bond J. Immature acute leukaemias: lessons from the haematopoietic roadmap. FEBS J 2021; 289:4355-4370. [PMID: 34028982 DOI: 10.1111/febs.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
It is essential to relate the biology of acute leukaemia to normal blood cell development. In this review, we discuss how modern models of haematopoiesis might inform approaches to diagnosis and management of immature leukaemias, with a specific focus on T-lymphoid and myeloid cases. In particular, we consider whether next-generation analytical tools could provide new perspectives that could improve our understanding of immature blood cancer biology.
Collapse
Affiliation(s)
- Thomas Lefeivre
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Luke Jones
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Amélie Trinquand
- National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Antoine Pinton
- Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Université de Paris, Paris, France.,Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, Paris, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Université de Paris, Paris, France.,Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, Paris, France
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge, UK.,Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
36
|
Large-scale circular RNA deregulation in T-ALL: unlocking unique ectopic expression of molecular subtypes. Blood Adv 2021; 4:5902-5914. [PMID: 33259601 DOI: 10.1182/bloodadvances.2020002337] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (circRNAs) are stable RNA molecules that can drive cancer through interactions with microRNAs and proteins and by the expression of circRNA encoded peptides. The aim of the study was to define the circRNA landscape and potential impact in T-cell acute lymphoblastic leukemia (T-ALL). Analysis by CirComPara of RNA-sequencing data from 25 T-ALL patients, immature, HOXA overexpressing, TLX1, TLX3, TAL1, or LMO2 rearranged, and from thymocyte populations of human healthy donors disclosed 68 554 circRNAs. Study of the top 3447 highly expressed circRNAs identified 944 circRNAs with significant differential expression between malignant T cells and normal counterparts, with most circRNAs displaying increased expression in T-ALL. Next, we defined subtype-specific circRNA signatures in molecular genetic subgroups of human T-ALL. In particular, circZNF609, circPSEN1, circKPNA5, and circCEP70 were upregulated in immature, circTASP1, circZBTB44, and circBACH1 in TLX3, circHACD1, and circSTAM in HOXA, circCAMSAP1 in TLX1, and circCASC15 in TAL-LMO. Backsplice sequences of 14 circRNAs ectopically expressed in T-ALL were confirmed, and overexpression of circRNAs in T-ALL with specific oncogenic lesions was substantiated by quantification in a panel of 13 human cell lines. An oncogenic role of circZNF609 in T-ALL was indicated by decreased cell viability upon silencing in vitro. Furthermore, functional predictions identified circRNA-microRNA gene axes informing modes of circRNA impact in molecular subtypes of human T-ALL.
Collapse
|
37
|
Deregulation of the Interleukin-7 Signaling Pathway in Lymphoid Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14050443. [PMID: 34066732 PMCID: PMC8151260 DOI: 10.3390/ph14050443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.
Collapse
|
38
|
Shahjahani M, Abroun A, Saki N, Bagher Mohammadi SM, Rezaeeyan H. STAT5: From Pathogenesis Mechanism to Therapeutic Approach in Acute Leukemia. Lab Med 2021; 51:345-351. [PMID: 31860086 DOI: 10.1093/labmed/lmz074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Based on the results of multiple studies, multiple signaling pathways is a major cause of resistence to chemotherapy in leukemia cells. Signal transducer and activator of transcription 5 (STAT5) is among these factors; it plays an essential role in proliferation of leukemic cells. METHODS We obtained the materials used in our study via PubMed search from 1996 through 2019. The key search terms included "STAT5," "acute leukemia," "leukemogenesis," and "mutation." RESULTS On activation, STAT5 not only inhibits apoptosis of leukemic cells via activating the B-cell lymphoma 2 (BCL-2) gene but also inhibits resistance to chemotherapy by enhancing human telomerase reverse transcriptase (hTERT) expression and maintaining telomere length in cells. It has also been shown that a number of mutations in the STAT5 gene and in related genes alter the expression of STAT5. CONCLUSION The identification of STAT5 and the factors activated in its up- or downstream expression, affecting its function, contribute to better treatments such as targeted therapy rather than chemotherapy, improving the quality of life patients.
Collapse
Affiliation(s)
- Mohammad Shahjahani
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirreza Abroun
- Royan Stem Cell Technology Company, Royan Institute Tehran, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
39
|
Liu Z, Wang Y, Yuan S, Wen F, Liu J, Zou L, Zhang J. Regulatory role of long non-coding RNA UCA1 in signaling pathways and its clinical applications. Oncol Lett 2021; 21:404. [PMID: 33777227 PMCID: PMC7988699 DOI: 10.3892/ol.2021.12665] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNA metastasis-associated urothelial carcinoma associated 1 (UCA1) plays a pivotal role in various human diseases. Its gene expression is regulated by several factors, including transcription factors, chromatin remodeling and epigenetic modification. UCA1 is involved in the regulation of the PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB and JAK/STAT signaling pathways, affecting a series of cellular biological functions, such as cell proliferation, apoptosis, migration, invasion and tumor drug resistance. Furthermore, UCA1 is used as a novel potential biomarker for disease diagnosis and prognosis, as well as a target for clinical gene therapy. The present review systematically summarizes and elucidates the mechanisms of upstream transcriptional regulation of UCA1, the regulatory role of UCA1 in multiple signaling pathways in the occurrence and development of several diseases, and its potential applications in clinical treatment.
Collapse
Affiliation(s)
- Zhaoping Liu
- Department of Rheumatology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanyan Wang
- Department of Rheumatology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shunling Yuan
- Department of Rheumatology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Feng Wen
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Liheng Zou
- Department of Rheumatology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China.,Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
40
|
Liu G, Liu Z, Sun X, Xia X, Liu Y, Liu L. Pan-Cancer Genome-Wide DNA Methylation Analyses Revealed That Hypermethylation Influences 3D Architecture and Gene Expression Dysregulation in HOXA Locus During Carcinogenesis of Cancers. Front Cell Dev Biol 2021; 9:649168. [PMID: 33816499 PMCID: PMC8012915 DOI: 10.3389/fcell.2021.649168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 01/22/2023] Open
Abstract
DNA methylation dysregulation during carcinogenesis has been widely discussed in recent years. However, the pan-cancer DNA methylation biomarkers and corresponding biological mechanisms were seldom investigated. We identified differentially methylated sites and regions from 5,056 The Cancer Genome Atlas (TCGA) samples across 10 cancer types and then validated the findings using 48 manually annotated datasets consisting of 3,394 samples across nine cancer types from Gene Expression Omnibus (GEO). All samples’ DNA methylation profile was evaluated with Illumina 450K microarray to narrow down the batch effect. Nine regions were identified as commonly differentially methylated regions across cancers in TCGA and GEO cohorts. Among these regions, a DNA fragment consisting of ∼1,400 bp detected inside the HOXA locus instead of the boundary may relate to the co-expression attenuation of genes inside the locus during carcinogenesis. We further analyzed the 3D DNA interaction profile by the publicly accessible Hi-C database. Consistently, the HOXA locus in normal cell lines compromised isolated topological domains while merging to the domain nearby in cancer cell lines. In conclusion, the dysregulation of the HOXA locus provides a novel insight into pan-cancer carcinogenesis.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhenhao Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Xiaomeng Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoqiong Xia
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunhe Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lei Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Mucosal Epithelial Jak Kinases in Health and Diseases. Mediators Inflamm 2021; 2021:6618924. [PMID: 33814980 PMCID: PMC7990561 DOI: 10.1155/2021/6618924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/02/2021] [Accepted: 03/06/2021] [Indexed: 12/22/2022] Open
Abstract
Janus kinases (Jaks) are a family of nonreceptor tyrosine kinase that include four different members, viz., Jak1, Jak2, Jak3, and Tyk2. Jaks play critical roles in immune cells functions; however, recent studies suggest they also play essential roles in nonimmune cell physiology. This review highlights the significance of epithelial Jaks in understanding the molecular basis of some of the diseases through regulation of epithelial-mesenchymal transition, cell survival, cell growth, development, and differentiation. Growth factors and cytokines produced by the cells of hematopoietic origin use Jak kinases for signal transduction in both immune and nonimmune cells. Among Jaks, Jak3 is widely expressed in both immune cells and in intestinal epithelial cells (IECs) of both humans and mice. Mutations that abrogate Jak3 functions cause an autosomal severe combined immunodeficiency disease (SCID) while activating Jak3 mutations lead to the development of hematologic and epithelial cancers. A selective Jak3 inhibitor CP-690550 (Xeljanz) approved by the FDA for certain chronic inflammatory conditions demonstrates immunosuppressive activity in rheumatoid arthritis, psoriasis, and organ transplant rejection. Here, we also focus on the consequences of Jak3-directed drugs on adverse effects in light of recent discoveries in mucosal epithelial functions of Jak3 with some information on other Jaks. Lastly, we brief on structural implications of Jak3 domains beyond the immune cells. As information about the roles of Jak3 in gastrointestinal functions and associated diseases are only just emerging, in the review, we summarize its implications in gastrointestinal wound repair, inflammatory bowel disease, obesity-associated metabolic syndrome, and epithelial cancers. Lastly, we shed lights on identifying potential novel targets in developing therapeutic interventions of diseases associated with dysfunctional IEC.
Collapse
|
42
|
Rodrigues GOL, Cramer SD, Winer HY, Hixon JA, Li W, Yunes JA, Durum SK. Mutations that collaborate with IL-7Ra signaling pathways to drive ALL. Adv Biol Regul 2021; 80:100788. [PMID: 33578108 DOI: 10.1016/j.jbior.2021.100788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022]
Abstract
The IL-7 pathway is required for normal T cell development and survival. In recent years the pathway has been shown to be a major driver of acute lymphoblastic leukemia (ALL), the most common cancer in children. Gain-of-function mutations in the alpha chain of the IL-7 receptor found in ALL patients clearly demonstrated that this pathway was a driver. However mutant IL-7R alone was insufficient to transform primary T cell progenitors, indicating that cooperating mutations were required. Here we review evidence for additional oncogenic mutations in the IL-7 pathway. We discuss several oncogenes, loss of tumor suppressor genes and epigenetic effects that can cooperate with mutant IL-7 receptor. These include NRas, HOXA, TLX3, Notch 1, Arf, PHF6, WT1, PRC, PTPN2 and CK2. As new therapeutics targeting the IL-7 pathway are developed, combination with agents directed to cooperating pathways offer hope for novel therapies for ALL.
Collapse
Affiliation(s)
- Gisele O L Rodrigues
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA; Molecular Biology Laboratory, Boldrini Children's Center, Campinas, Brazil; Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Sarah D Cramer
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA; Comparative Biomedical Scientist Training Program, NIH, Bethesda, MD, USA; Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Hila Y Winer
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA
| | - Julie A Hixon
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA
| | - WenQing Li
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA
| | - José Andres Yunes
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Scott K Durum
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA.
| |
Collapse
|
43
|
Emerging molecular subtypes and therapeutic targets in B-cell precursor acute lymphoblastic leukemia. Front Med 2021; 15:347-371. [PMID: 33400146 DOI: 10.1007/s11684-020-0821-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by genetic alterations with high heterogeneity. Precise subtypes with distinct genomic and/or gene expression patterns have been recently revealed using high-throughput sequencing technology. Most of these profiles are associated with recurrent non-overlapping rearrangements or hotspot point mutations that are analogous to the established subtypes, such as DUX4 rearrangements, MEF2D rearrangements, ZNF384/ZNF362 rearrangements, NUTM1 rearrangements, BCL2/MYC and/or BCL6 rearrangements, ETV6-RUNX1-like gene expression, PAX5alt (diverse PAX5 alterations, including rearrangements, intragenic amplifications, or mutations), and hotspot mutations PAX5 (p.Pro80Arg) with biallelic PAX5 alterations, IKZF1 (p.Asn159Tyr), and ZEB2 (p.His1038Arg). These molecular subtypes could be classified by gene expression patterns with RNA-seq technology. Refined molecular classification greatly improved the treatment strategy. Multiagent therapy regimens, including target inhibitors (e.g., imatinib), immunomodulators, monoclonal antibodies, and chimeric antigen receptor T-cell (CAR-T) therapy, are transforming the clinical practice from chemotherapy drugs to personalized medicine in the field of risk-directed disease management. We provide an update on our knowledge of emerging molecular subtypes and therapeutic targets in BCP-ALL.
Collapse
|
44
|
Cordo' V, van der Zwet JC, Canté-Barrett K, Pieters R, Meijerink JP. T-cell Acute Lymphoblastic Leukemia: A Roadmap to Targeted Therapies. Blood Cancer Discov 2021; 2:19-31. [PMID: 34661151 PMCID: PMC8447273 DOI: 10.1158/2643-3230.bcd-20-0093] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy characterized by aberrant proliferation of immature thymocytes. Despite an overall survival of 80% in the pediatric setting, 20% of patients with T-ALL ultimately die from relapsed or refractory disease. Therefore, there is an urgent need for novel therapies. Molecular genetic analyses and sequencing studies have led to the identification of recurrent T-ALL genetic drivers. This review summarizes the main genetic drivers and targetable lesions of T-ALL and gives a comprehensive overview of the novel treatments for patients with T-ALL that are currently under clinical investigation or that are emerging from preclinical research. SIGNIFICANCE T-ALL is driven by oncogenic transcription factors that act along with secondary acquired mutations. These lesions, together with active signaling pathways, may be targeted by therapeutic agents. Bridging research and clinical practice can accelerate the testing of novel treatments in clinical trials, offering an opportunity for patients with poor outcome.
Collapse
|
45
|
Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma. Blood 2020; 135:1685-1695. [PMID: 32315407 DOI: 10.1182/blood.2019003880] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) and T-cell acute lymphoblastic lymphoma (T-LBL) are aggressive hematological malignancies that are currently treated with high-dose chemotherapy. Over the last several years, the search toward novel and less-toxic therapeutic strategies for T-ALL/T-LBL patients has largely focused on the identification of cell-intrinsic properties of the tumor cell. However, non-cell-autonomous activation of specific oncogenic pathways might also offer opportunities that could be exploited at the therapeutic level. In line with this, we here show that endogenous interleukin 7 (IL7) can increase the expression of the oncogenic kinase proviral integration site for Moloney-murine leukemia 1 (PIM1) in CD127+ T-ALL/T-LBL, thereby rendering these tumor cells sensitive to in vivo PIM inhibition. In addition, using different CD127+ T-ALL/T-LBL xenograft models, we also reveal that residual tumor cells, which remain present after short-term in vivo chemotherapy, display consistent upregulation of PIM1 as compared with bulk nontreated tumor cells. Notably, this effect was transient as increased PIM1 levels were not observed in reestablished disease after abrogation of the initial chemotherapy. Furthermore, we uncover that this phenomenon is, at least in part, mediated by the ability of glucocorticoids to cause transcriptional upregulation of IL7RA in T-ALL/T-LBL patient-derived xenograft (PDX) cells, ultimately resulting in non-cell-autonomous PIM1 upregulation by endogenous IL7. Finally, we confirm in vivo that chemotherapy in combination with a pan-PIM inhibitor can improve leukemia survival in a PDX model of CD127+ T-ALL. Altogether, our work reveals that IL7 and glucocorticoids coordinately drive aberrant activation of PIM1 and suggests that IL7-responsive CD127+ T-ALL and T-LBL patients could benefit from PIM inhibition during induction chemotherapy.
Collapse
|
46
|
Zha J, Lai Q, Deng M, Shi P, Zhao H, Chen Q, Wu H, Xu B. Disruption of CTCF Boundary at HOXA Locus Promote BET Inhibitors' Therapeutic Sensitivity in Acute Myeloid Leukemia. Stem Cell Rev Rep 2020; 16:1280-1291. [PMID: 33057942 DOI: 10.1007/s12015-020-10057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Both HOX gene expression and CTCF regulation have been well demonstrated to play a critical role in regulating maintenance of leukemic stem cells (LSCs) that are known to be resistant to BET inhibitor (BETi). To investigate the regulatory role of CTCF boundary in aberrant HOX gene expression and the therapeutic sensitivity of BETi in AML, we employed CRISPR-Cas9 genome editing technology to delete 47 base pairs of the CTCF binding motif which is located between HOXA7 and HOXA9 genes (CBS7/9) in different subtypes of AML with either MLL-rearrangement or NPM1 mutation. Our results revealed that HOXA9 is significantly downregulated in response to the CBS7/9 deletion. Moreover, CBS7/9 boundary deletion sensitized the BETi treatment reaction in both MOLM-13 and OCI-AML3 cells. To further examine whether BETi therapeutic sensitivity in AML is depended on the expression level of the HOXA9 gene, we overexpressed the HOXA9 in the CBS7/9 deleted AML cell lines, which can rescue and restore the resistance to BETi treatment of the CBS7/9 KO cells by activating MAPK signaling pathway. Deletion of CBS7/9 specifically decreased the recruitment of BRD4 and RNA pol II to the posterior HOXA genes, in which, a transcription elongation factor ELL3 is the key factor in regulating HOXA gene transcription monitored by CBS7/9 chromatin boundary. Thus, disruption of CBS7/9 boundary perturbs HOXA9 transcription and regulates BETi sensitivity in AML treatment. Moreover, alteration of CTCF boundaries in the oncogene loci may provide a novel strategy to overcome the drug resistance of LSCs. Graphical abstract.
Collapse
Affiliation(s)
- Jie Zha
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Qian Lai
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Manman Deng
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital. Southern Medical University, Guangzhou, 510515, China
| | - Haijun Zhao
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Qinwei Chen
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Hua Wu
- Department of Nuclear Medicine, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Bing Xu
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China.
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China.
| |
Collapse
|
47
|
Zhang H, Zhang Y, Zhou X, Wright S, Hyle J, Zhao L, An J, Zhao X, Shao Y, Xu B, Lee HM, Chen T, Zhou Y, Chen X, Lu R, Li C. Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen. eLife 2020; 9:e57858. [PMID: 33001025 PMCID: PMC7599066 DOI: 10.7554/elife.57858] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant HOXA9 expression is a hallmark of most aggressive acute leukemias, notably those with KMT2A (MLL) gene rearrangements. HOXA9 overexpression not only predicts poor diagnosis and outcome but also plays a critical role in leukemia transformation and maintenance. However, our current understanding of HOXA9 regulation in leukemia is limited, hindering development of therapeutic strategies. Here, we generated the HOXA9-mCherry knock-in reporter cell lines to dissect HOXA9 regulation. By utilizing the reporter and CRISPR/Cas9 screens, we identified transcription factors controlling HOXA9 expression, including a novel regulator, USF2, whose depletion significantly down-regulated HOXA9 expression and impaired MLLr leukemia cell proliferation. Ectopic expression of Hoxa9 rescued impaired leukemia cell proliferation upon USF2 loss. Cut and Run analysis revealed the direct occupancy of USF2 at HOXA9 promoter in MLLr leukemia cells. Collectively, the HOXA9 reporter facilitated the functional interrogation of the HOXA9 regulome and has advanced our understanding of the molecular regulation network in HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Xinyue Zhou
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Lianzhong Zhao
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Jie An
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research HospitalMemphisUnited States
| | - Ying Shao
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Hyeong-Min Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research HospitalMemphisUnited States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research HospitalMemphisUnited States
| | - Yang Zhou
- Department of Biomedical Engineering School of Engineering, University of Alabama at BirminghamBirminghamUnited States
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Rui Lu
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| |
Collapse
|
48
|
Luo H, Sun R, Zheng Y, Huang J, Wang F, Long D, Wu Y. PIM3 Promotes the Proliferation and Migration of Acute Myeloid Leukemia Cells. Onco Targets Ther 2020; 13:6897-6905. [PMID: 32764981 PMCID: PMC7368586 DOI: 10.2147/ott.s245578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/12/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose Acute myeloid leukemia (AML) is associated with a poor overall prognosis. PIM family genes, including PIM1, PIM2, and PIM3, are proto-oncogenes that are aberrantly overexpressed in different types of human cancers. In this study, we aimed to explore and clarify the function of PIM3 in AML. Patients and Methods The expression of the three PIM genes in AML was detected using the Gene Expression Omnibus. The expression of PIM3 and PIM3 in patient samples and AML cell lines was measured using quantitative real-time polymerase chain reaction or Western blot analyses. The cellular behaviors of PIM3-overexpressing AML cell lines were detected using a CCK-8 assay, flow cytometry, Western blotting, immunofluorescence staining, and a cell migration assay. The interactions between PIM3 and phosphorylated CXCR4 (pCXCR4) were explored via immunoprecipitation. Results Higher PIM3 expression was detected in primary AML cells than in healthy donor cells. Second, PIM3 overexpression promoted AML cell proliferation and protected against spontaneous apoptosis by phosphorylating BAD (pBAD) at Ser112. Furthermore, PIM3 overexpression might promote the migration of AML cells via CXCR4. PIM3-overexpressing AML cell lines exhibited increased CXCR4 phosphorylation at Ser339, and pCXCR4 interacted with PIM3. Conclusion Our findings suggest that PIM3 regulates the proliferation, survival, and chemotaxis of AML cell lines. Moreover, pCXCR4 might mediate the regulation of PIM3-induced chemotaxis. Therefore, the inhibition of PIM3 expression may be a promising therapeutic target in AML.
Collapse
Affiliation(s)
- Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ruixue Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, People's Republic of China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
49
|
Lim JT, Singh N, Leuvano LA, Calvert VS, Petricoin EF, Teachey DT, Lock RB, Padi M, Kraft AS, Padi SKR. PIM Kinase Inhibitors Block the Growth of Primary T-cell Acute Lymphoblastic Leukemia: Resistance Pathways Identified by Network Modeling Analysis. Mol Cancer Ther 2020; 19:1809-1821. [PMID: 32753387 DOI: 10.1158/1535-7163.mct-20-0160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022]
Abstract
Despite significant progress in understanding the genetic landscape of T-cell acute lymphoblastic leukemia (T-ALL), the discovery of novel therapeutic targets has been difficult. Our results demonstrate that the levels of PIM1 protein kinase is elevated in early T-cell precursor ALL (ETP-ALL) but not in mature T-ALL primary samples. Small-molecule PIM inhibitor (PIMi) treatment decreases leukemia burden in ETP-ALL. However, treatment of animals carrying ETP-ALL with PIMi was not curative. To model other pathways that could be targeted to complement PIMi activity, HSB-2 cells, previously characterized as a PIMi-sensitive T-ALL cell line, were grown in increasing doses of PIMi. Gene set enrichment analysis of RNA sequencing data and functional enrichment of network modules demonstrated that the HOXA9, mTOR, MYC, NFκB, and PI3K-AKT pathways were activated in HSB-2 cells after long-term PIM inhibition. Reverse phase protein array-based pathway activation mapping demonstrated alterations in the mTOR, PI3K-AKT, and NFκB pathways, as well. PIMi-tolerant HSB-2 cells contained phosphorylated RelA-S536 consistent with activation of the NFκB pathway. The combination of NFκB and PIMis markedly reduced the proliferation in PIMi-resistant leukemic cells showing that this pathway plays an important role in driving the growth of T-ALL. Together these results demonstrate key pathways that are activated when HSB-2 cell line develop resistance to PIMi and suggest pathways that can be rationally targeted in combination with PIM kinases to inhibit T-ALL growth.
Collapse
Affiliation(s)
- James T Lim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Neha Singh
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Libia A Leuvano
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Valerie S Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard B Lock
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
- Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, Arizona
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.
| | - Sathish K R Padi
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.
| |
Collapse
|
50
|
Rhein attenuates renal inflammatory injury of uric acid nephropathy via lincRNA-Cox2/miR-150-5p/STAT1 axis. Int Immunopharmacol 2020; 85:106620. [DOI: 10.1016/j.intimp.2020.106620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 11/21/2022]
|