1
|
Weissenrieder JS, Peura J, Paudel U, Bhalerao N, Weinmann N, Johnson C, Wengyn M, Drager R, Furth EE, Simin K, Ruscetti M, Stanger BZ, Rustgi AK, Pitarresi JR, Foskett JK. Mitochondrial Ca 2+ controls pancreatic cancer growth and metastasis by regulating epithelial cell plasticity. Cell Rep 2025; 44:115627. [PMID: 40286270 DOI: 10.1016/j.celrep.2025.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/24/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Endoplasmic reticulum to mitochondria Ca2+ transfer is important for cancer cell survival, but the role of mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. Here, we show that increased MCU expression is associated with malignancy and poorer outcomes in patients with PDAC. In isogenic murine PDAC models, Mcu deletion (McuKO) ablated mitochondrial Ca2+ uptake, which reduced proliferation and inhibited self-renewal. Orthotopic implantation of MCU-null tumor cells reduced primary tumor growth and metastasis. Mcu deletion reduced the cellular plasticity of tumor cells by inhibiting epithelial-to-mesenchymal transition (EMT), which contributes to metastatic competency in PDAC. Mechanistically, the loss of mitochondrial Ca2+ uptake reduced the expression of the key EMT transcription factor Snail and secretion of the EMT-inducing ligand TGF-β. Snail re-expression and TGF-β treatment rescued deficits in McuKO cells and restored their metastatic ability. Thus, MCU may present a therapeutic target in PDAC to limit cancer-cell-induced EMT and metastasis.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Peura
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Usha Paudel
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nikita Bhalerao
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie Weinmann
- Department of Chemistry, Millersville University, Millersville, PA, USA
| | - Calvin Johnson
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maximilian Wengyn
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Rebecca Drager
- Department of Chemistry, The Ohio State University, Columbus, OH, USA
| | - Emma Elizabeth Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Karl Simin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jason R Pitarresi
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - J Kevin Foskett
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Haimi M, Yang JW, Kremer R. Refractory hypercalcemia caused by parathyroid-hormone-related peptide secretion from a metastatic pancreatic neuroendocrine tumor: a case report. J Med Case Rep 2025; 19:54. [PMID: 39924477 PMCID: PMC11809048 DOI: 10.1186/s13256-025-05074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND The parathyroid-hormone-related peptide has been shown in earlier studies to be secreted by pancreatic neuroendocrine tumors, although its secretion by gastroenteropancreatic neuroendocrine tumors is very rare. In contrast, a number of solid tumors, such as lung cancer and renal cell carcinoma, have frequently been shown to secrete parathyroid-hormone-related peptide. CASE PRESENTATION We describe a case report of a 53-year-old Canadian white patient with refractory parathyroid-hormone-related-peptide-mediated hypercalcemia associated with metastatic pancreatic neuroendocrine tumors and review the available research. Our patient had severe hypercalcemia initially refractory to treatment. Computed tomography scan of the abdomen revealed a pancreatic lesion and multiple hepatic metastases. A liver biopsy confirmed metastatic pancreatic neuroendocrine tumor expressing parathyroid-hormone-related peptide. Circulating parathyroid-hormone-related peptide levels were at the upper limit of normal preoperatively and decreased sharply postoperatively following debulking of the tumor. Blood calcium levels eventually normalized on long-term administration of the somatostatin analog lanreotide in combination with denosumab. CONCLUSIONS We describe a case with parathyroid-hormone-related-peptide-mediated hypercalcemia in a pancreatic neuroendocrine tumor (parathyroid-hormone-related peptide tumor). Refractory hypercalcemia was likely the result of parathyroid-hormone-related peptide overproduction by the tumor and resolved following normalization of parathyroid-hormone-related peptide levels.
Collapse
Affiliation(s)
- Motti Haimi
- Meuhedet Health Services, Northern District, Israel.
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.
- Health Systems Management Department, The Max Stern Yezreel Valley College, Yezreel Valley, Israel.
| | - Ji Wei Yang
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Richard Kremer
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
3
|
Moës B, Gao Y, Demina E, Kremer R, Rudd CE. Anti-PTHrP blockade limits CD8+ T-cell exhaustion in anti-cancer immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619890. [PMID: 39554058 PMCID: PMC11566012 DOI: 10.1101/2024.10.23.619890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cancer is a major global health concern, with immune suppression hindering treatment. Immunotherapy, specifically immune checkpoint blockage on T cells, has revolutionized cancer treatment. T-cell exhaustion is an abnormal activation state that develops when continuous exposure to antigens, like cancer. In this context, recent evidence suggests that parathyroid hormone-related protein (PTHrP) plays a previously underappreciated role in fostering an immunosuppressive tumor microenvironment. Further, blocking PTHrP activity reduces primary tumor growth, prevents metastasis, and prolongs survival in mice with various cancers. Here, we confirm that administration of anti-PTHrP monoclonal antibodies can reduce the growth of B16-PDL1 melanoma tumors and that although the therapy did not alter the presence of CD4+ and CD8+ TILs, we noted that all stages of T-cell exhaustion were reduced. Further, the expression of cytolytic proteins PERFORIN and GZMB also increased. By contrast, anti-PTHrP therapy increased the relative presence of pre-pro B cells with a decline in mature B cells in the bone marrow. Overall, our data indicates that anti-PTHrP therapy acts by reducing T-cell exhaustion and by affecting B-cell development. These provide further mechanistic evidence to support the application of anti-PTHrP blockade as an alternate therapeutic approach to boost anti-tumor immunity.
Collapse
|
4
|
Zhou J, Song Q, Li H, Han Y, Pu Y, Li L, Rong W, Liu X, Wang Z, Sun J, Song Y, Hu X, Zhu G, Zhu H, Yang L, Ge G, Li H, Ji Q. Targeting circ-0034880-enriched tumor extracellular vesicles to impede SPP1 highCD206 + pro-tumor macrophages mediated pre-metastatic niche formation in colorectal cancer liver metastasis. Mol Cancer 2024; 23:168. [PMID: 39164758 PMCID: PMC11334400 DOI: 10.1186/s12943-024-02086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Information transmission between primary tumor cells and immunocytes or stromal cells in distal organs is a critical factor in the formation of pre-metastatic niche (PMN). Understanding this mechanism is essential for developing effective therapeutic strategy against tumor metastasis. Our study aims to prove the hypothesis that circ-0034880-enriched tumor-derived extracellular vesicles (TEVs) mediate the formation of PMN and colorectal cancer liver metastasis (CRLM), and targeting circ-0034880-enriched TEVs might be an effective therapeutic strategy against PMN formation and CRLM. METHODS We utilized qPCR and FISH to measure circRNAs expression levels in human CRC plasma, primary CRC tissues, and liver metastatic tissues. Additionally, we employed immunofluorescence, RNA sequencing, and in vivo experiments to assess the effect mechanism of circ-0034880-enriched TEVs on PMN formation and CRC metastasis. DARTS, CETSA and computational docking modeling were applied to explore the pharmacological effects of Ginsenoside Rb1 in impeding PMN formation. RESULTS We found that circ-0034880 was highly enriched in plasma extracellular vesicles (EVs) derived from CRC patients and closely associated with CRLM. Functionally, circ-0034880-enriched TEVs entered the liver tissues and were absorbed by macrophages in the liver through bloodstream. Mechanically, TEVs-released circ-0034880 enhanced the activation of SPP1highCD206+ pro-tumor macrophages, reshaping the metastasis-supportive host stromal microenvironment and promoting overt metastasis. Importantly, our mechanistic findings led us to discover that the natural product Ginsenoside Rb1 impeded the activation of SPP1highCD206+ pro-tumor macrophages by reducing circ-0034880 biogenesis, thereby suppressing PMN formation and inhibiting CRLM. CONCLUSIONS Circ-0034880-enriched TEVs facilitate strong interaction between primary tumor cells and SPP1highCD206+ pro-tumor macrophages, promoting PMN formation and CRLM. These findings suggest the potential of using Ginsenoside Rb1 as an alternative therapeutic agent to reshape PMN formation and prevent CRLM.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, 215007, China
| | - Haoze Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yicun Han
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenqing Rong
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaodie Liu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Sun
- Department of Peripheral Vascular Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuqing Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guanghao Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huirong Zhu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Department of Oncology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Weissenrieder JS, Peura J, Paudel U, Bhalerao N, Weinmann N, Johnson C, Wengyn M, Drager R, Furth EE, Simin K, Ruscetti M, Stanger BZ, Rustgi AK, Pitarresi JR, Foskett JK. Mitochondrial Ca 2+ controls pancreatic cancer growth and metastasis by regulating epithelial cell plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607195. [PMID: 39149344 PMCID: PMC11326289 DOI: 10.1101/2024.08.08.607195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Endoplasmic reticulum to mitochondria Ca2+ transfer is important for cancer cell survival, but the role of mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) in pancreatic adenocarcinoma (PDAC) is poorly understood. Here, we show that increased MCU expression is associated with malignancy and poorer outcomes in PDAC patients. In isogenic murine PDAC models, Mcu deletion (Mcu KO) ablated mitochondrial Ca2+ uptake, which reduced proliferation and inhibited self-renewal. Orthotopic implantation of MCU-null tumor cells reduced primary tumor growth and metastasis. Mcu deletion reduced the cellular plasticity of tumor cells by inhibiting epithelial-to-mesenchymal transition (EMT), which contributes to metastatic competency in PDAC. Mechanistically, the loss of mitochondrial Ca2+ uptake reduced expression of the key EMT transcription factor Snail and secretion of the EMT-inducing ligand TGFβ. Snail re-expression and TGFβ treatment rescued deficits in Mcu KO cells and restored their metastatic ability. Thus, MCU may present a therapeutic target in PDAC to limit cancer-cell-induced EMT and metastasis.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Peura
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Usha Paudel
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nikita Bhalerao
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie Weinmann
- Department of Chemistry, Millersville University, Millersville, PA, USA
| | - Calvin Johnson
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maximilian Wengyn
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rebecca Drager
- Department of Chemistry, The Ohio State University, Columbus, OH, USA
| | - Emma Elizabeth Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Karl Simin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jason R Pitarresi
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - J Kevin Foskett
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Wang B, Zhang Z, Zhao J, Ma Y, Wang Y, Yin N, Song T. Spatiotemporal Evolution of Developing Palate in Mice. J Dent Res 2024; 103:546-554. [PMID: 38619065 PMCID: PMC11145300 DOI: 10.1177/00220345241232317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
The intricate formation of the palate involves a series of complex events, yet its mechanistic basis remains uncertain. To explore major cell populations in the palate and their roles during development, we constructed a spatiotemporal transcription landscape of palatal cells. Palate samples from C57BL/6 J mice at embryonic days 12.5 (E12.5), 14.5 (E14.5), and 16.5 (E16.5) underwent single-cell RNA sequencing (scRNA-seq) to identify distinct cell subsets. In addition, spatial enhanced resolution omics-sequencing (stereo-seq) was used to characterize the spatial distribution of these subsets. Integrating scRNA-seq and stereo-seq with CellTrek annotated mesenchymal and epithelial cellular components of the palate during development. Furthermore, cellular communication networks between these cell subpopulations were analyzed to discover intercellular signaling during palate development. From the analysis of the middle palate, both mesenchymal and epithelial populations were spatially segregated into 3 domains. The middle palate mesenchymal subpopulations were associated with tooth formation, ossification, and tissue remodeling, with initial state cell populations located proximal to the dental lamina. The nasal epithelium of the palatal shelf exhibited richer humoral immune responses than the oral side. Specific enrichment of Tgfβ3 and Pthlh signals in the midline epithelial seam at E14.5 suggested a role in epithelial-mesenchymal transition. In summary, this study provides high-resolution transcriptomic information, contributing to a deeper mechanistic understanding of palate biology and pathophysiology.
Collapse
Affiliation(s)
- B. Wang
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Z. Zhang
- Center for Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J. Zhao
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Y. Ma
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Y. Wang
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - N. Yin
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - T. Song
- Center for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Zhao Y, Lu SM, Zhong B, Wang GC, Jia RP, Wang Q, Long JH. Parathyroid hormone related-protein (PTHrP) in tissues with poor prognosis in prostate cancer patients. Medicine (Baltimore) 2024; 103:e37934. [PMID: 38669432 PMCID: PMC11049731 DOI: 10.1097/md.0000000000037934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Parathyroid hormone-related peptide (PTHrP) is known to have a pivotal role in the progression of various solid tumors, among which prostate cancer stands out. However, the extent of PTHrP expression and its clinical implications in prostate cancer patients remain shrouded in obscurity. The primary objective of this research endeavor was to shed light on the relevance of PTHrP in the context of prostate cancer patients and to uncover the potential underlying mechanisms. METHODS The expression of PTHrP, E-cadherin, and vimentin in tumor tissues of 88 prostate cancer patients was evaluated by immunohistochemical technique. Subsequently, the associations between PTHrP and clinicopathological parameters and prognosis of patients with prostate cancer were analyzed. RESULTS Immunohistochemical analysis showed that the expression rates of PTHrP, E-cadherin, and vimentin in prostate cancer tissues were 95.5%, 88.6%, and 84.1%, respectively. Patients with a high level of PTHrP had a decreased expression of E-cadherin (P = .013) and an increased expression of vimentin (P = .010) compared with patients with a low level of PTHrP. Besides, the high expression of PTHrP was significantly correlated with a higher level of initial prostate-specific antigen (P = .026), positive lymph node metastasis (P = .010), osseous metastasis (P = .004), and Gleason score (P = .026). Moreover, patients with a high level of PTHrP had shorter progression-free survival (P = .002) than patients with a low level of PTHrP. CONCLUSION The present study indicates that PTHrP is associated with risk factors of poor outcomes in prostate cancer, while epithelial-mesenchymal transition may be involved in this process.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou New Health Geriatric Disease Hospital, Xuzhou, Jiangsu, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sheng-Ming Lu
- Department of Urology, Subei People’s Hospital, Yangzhou, Jiangsu, China
| | - Bing Zhong
- Department of Urology, The First People’s Hospital of Huaian, Affiliated with Nanjing Medical University, Huaian, Jiangsu, China
| | - Gong-Cheng Wang
- Department of Urology, The First People’s Hospital of Huaian, Affiliated with Nanjing Medical University, Huaian, Jiangsu, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, Jiangsu, China
| | - Jian-Hua Long
- Department of Urology, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
9
|
Tsanov KM, Barriga FM, Ho YJ, Alonso-Curbelo D, Livshits G, Koche RP, Baslan T, Simon J, Tian S, Wuest AN, Luan W, Wilkinson JE, Masilionis I, Dimitrova N, Iacobuzio-Donahue CA, Chaligné R, Pe’er D, Massagué J, Lowe SW. Metastatic site influences driver gene function in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585402. [PMID: 38562717 PMCID: PMC10983983 DOI: 10.1101/2024.03.17.585402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Driver gene mutations can increase the metastatic potential of the primary tumor1-3, but their role in sustaining tumor growth at metastatic sites is poorly understood. A paradigm of such mutations is inactivation of SMAD4 - a transcriptional effector of TGFβ signaling - which is a hallmark of multiple gastrointestinal malignancies4,5. SMAD4 inactivation mediates TGFβ's remarkable anti- to pro-tumorigenic switch during cancer progression and can thus influence both tumor initiation and metastasis6-14. To determine whether metastatic tumors remain dependent on SMAD4 inactivation, we developed a mouse model of pancreatic ductal adenocarcinoma (PDAC) that enables Smad4 depletion in the pre-malignant pancreas and subsequent Smad4 reactivation in established metastases. As expected, Smad4 inactivation facilitated the formation of primary tumors that eventually colonized the liver and lungs. By contrast, Smad4 reactivation in metastatic disease had strikingly opposite effects depending on the tumor's organ of residence: suppression of liver metastases and promotion of lung metastases. Integrative multiomic analysis revealed organ-specific differences in the tumor cells' epigenomic state, whereby the liver and lungs harbored chromatin programs respectively dominated by the KLF and RUNX developmental transcription factors, with Klf4 depletion being sufficient to reverse Smad4's tumor-suppressive activity in liver metastases. Our results show how epigenetic states favored by the organ of residence can influence the function of driver genes in metastatic tumors. This organ-specific gene-chromatin interplay invites consideration of anatomical site in the interpretation of tumor genetics, with implications for the therapeutic targeting of metastatic disease.
Collapse
Affiliation(s)
- Kaloyan M. Tsanov
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco M. Barriga
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Yu-Jui Ho
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Direna Alonso-Curbelo
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Geulah Livshits
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timour Baslan
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Janelle Simon
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sha Tian
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra N. Wuest
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Luan
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ignas Masilionis
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nevenka Dimitrova
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A. Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligné
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe’er
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Joan Massagué
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W. Lowe
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
10
|
Zhao Y, Fu ZY, Feng HY, Peng YH, Yin ZX, Cao JY, Pei CS. Parathyroid hormone-related protein as a potential prostate cancer biomarker: Promoting prostate cancer progression through upregulation of c-Met expression. BIOMOLECULES & BIOMEDICINE 2024; 24:374-386. [PMID: 37838928 PMCID: PMC10950337 DOI: 10.17305/bb.2023.9753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) plays a significant role in various tumor types, including prostate cancer. However, its specific role and underlying mechanisms in prostate cancer remain unclear. This study investigates the role of PTHrP and its interaction with the c-Met in prostate cancer. PTHrP was overexpressed and knocked down in prostate cancer cell lines to determine its effect on cell functions. Xenograft tumor models were employed to assess the impact of PTHrP overexpression on tumor growth. To delve into the interaction between PTHrP and c-Met, rescue experiments were conducted. Clinical data and tissue samples from prostate cancer patients were gathered and analyzed for PTHrP and c-Met expression. PTHrP overexpression in prostate cancer cells upregulates c-Met expression and augments cell functions. In contrast, PTHrP-knockdown diminishes c-Met expression and inhibits cell functions. In vivo experiments further demonstrated that PTHrP overexpression promoted tumor growth in xenograft models.Moreover, modulating c-Met expression in rescue experiments led to concurrent alterations in prostate cancer cell functions. Immunohistochemical analysis of clinical samples displayed a significant positive correlation between PTHrP and c-Met expression. Additionally, PTHrP expression correlated with clinical parameters like prostate-specific antigen (PSA) levels, tumor stage, lymph node involvement, distant metastasis, and Gleason score. PTHrP plays a crucial role in prostate cancer progression by upregulating c-Met expression. These insights point to PTHrP as a promising potential biomarker for prostate cancer.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Zhen-Yu Fu
- Department of Urology, Changshu No. 2 People’s Hospital, Changshu, China
| | - Han-Yong Feng
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu-Hao Peng
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi-Xiang Yin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing-Yi Cao
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Chang-Song Pei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Li N, Zhu Q, Tian Y, Ahn KJ, Wang X, Cramer Z, Jou J, Folkert IW, Yu P, Adams-Tzivelekidis S, Sehgal P, Mahmoud NN, Aarons CB, Roses RE, Thomas-Tikhonenko A, Furth EE, Stanger BZ, Rustgi A, Haldar M, Katona BW, Tan K, Lengner CJ. Mapping and modeling human colorectal carcinoma interactions with the tumor microenvironment. Nat Commun 2023; 14:7915. [PMID: 38036590 PMCID: PMC10689473 DOI: 10.1038/s41467-023-43746-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
The initiation and progression of cancer are intricately linked to the tumor microenvironment (TME). Understanding the function of specific cancer-TME interactions poses a major challenge due in part to the complexity of the in vivo microenvironment. Here we predict cancer-TME interactions from single cell transcriptomic maps of both human colorectal cancers (CRCs) and mouse CRC models, ask how these interactions are altered in human tumor organoid (tumoroid) cultures, and functionally recapitulate human myeloid-carcinoma interactions in vitro. Tumoroid cultures suppress gene expression programs involved in inflammation and immune cell migration, providing a reductive platform for re-establishing carcinoma-immune cell interactions in vitro. Introduction of human monocyte-derived macrophages into tumoroid cultures instructs macrophages to acquire immunosuppressive and pro-tumorigenic gene expression programs similar to those observed in vivo. This includes hallmark induction of SPP1, encoding Osteopontin, an extracellular CD44 ligand with established oncogenic effects. Taken together, these findings offer a framework for understanding CRC-TME interactions and provide a reductionist tool for modeling specific aspects of these interactions.
Collapse
Affiliation(s)
- Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Qin Zhu
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yuhua Tian
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xin Wang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zvi Cramer
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Justine Jou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian W Folkert
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pengfei Yu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephanie Adams-Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Najia N Mahmoud
- Division of Colorectal Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cary B Aarons
- Division of Colorectal Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert E Roses
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrei Thomas-Tikhonenko
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ben Z Stanger
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anil Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bryson W Katona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Tan
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Dudgeon C, Casabianca A, Harris C, Ogier C, Bellina M, Fiore S, Bernet A, Ducarouge B, Goldschneider D, Su X, Pitarresi J, Hezel A, De S, Narrow W, Soliman F, Shields C, Vendramini-Costa DB, Prela O, Wang L, Astsaturov I, Mehlen P, Carpizo DR. Netrin-1 feedforward mechanism promotes pancreatic cancer liver metastasis via hepatic stellate cell activation, retinoid, and ELF3 signaling. Cell Rep 2023; 42:113369. [PMID: 37922311 DOI: 10.1016/j.celrep.2023.113369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/04/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2023] Open
Abstract
The biology of metastatic pancreatic ductal adenocarcinoma (PDAC) is distinct from that of the primary tumor due to changes in cell plasticity governed by a distinct transcriptome. Therapeutic strategies that target this distinct biology are needed. We detect an upregulation of the neuronal axon guidance molecule Netrin-1 in PDAC liver metastases that signals through its dependence receptor (DR), uncoordinated-5b (Unc5b), to facilitate metastasis in vitro and in vivo. The mechanism of Netrin-1 induction involves a feedforward loop whereby Netrin-1 on the surface of PDAC-secreted extracellular vesicles prepares the metastatic niche by inducing hepatic stellate cell activation and retinoic acid secretion that in turn upregulates Netrin-1 in disseminated tumor cells via RAR/RXR and Elf3 signaling. While this mechanism promotes PDAC liver metastasis, it also identifies a therapeutic vulnerability, as it can be targeted using anti-Netrin-1 therapy to inhibit metastasis using the Unc5b DR cell death mechanism.
Collapse
Affiliation(s)
- Crissy Dudgeon
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Anthony Casabianca
- Department of Surgery, Division of Surgical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | - Chris Harris
- Department of Surgery, Division of Surgical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | - Charline Ogier
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mélanie Bellina
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; Netris Pharma, 69008 Lyon, France
| | - Stephany Fiore
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France
| | - Agnes Bernet
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; Netris Pharma, 69008 Lyon, France
| | | | | | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Jason Pitarresi
- Department of Medicine, Division of Hematology/Oncology, University of Massachusetts, Worcester, MA, USA
| | - Aram Hezel
- Department of Medicine, Division of Medical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Wade Narrow
- Department of Surgery, Division of Surgical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | - Fady Soliman
- Rutgers Robert Wood-Johnson Medical School, New Brunswick, NJ, USA
| | - Cory Shields
- Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | | | - Orjola Prela
- Department of Surgery, Division of Surgical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lan Wang
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Igor Astsaturov
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; Netris Pharma, 69008 Lyon, France
| | - Darren R Carpizo
- Department of Surgery, Division of Surgical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wilmot Cancer Center, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
13
|
Iresjö BM, Kir S, Lundholm K. Parathyroid hormone related protein (PTHrP) in patients with pancreatic carcinoma and overt signs of disease progression and host tissue wasting. Transl Oncol 2023; 36:101752. [PMID: 37540958 PMCID: PMC10407952 DOI: 10.1016/j.tranon.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Cancer-cachexia is a complex syndrome secondary to physiological mechanisms related to classical hormone and immune alterations, where contributions of neuro-endocrine involvement have been less evaluated. Therefore, the aim of our study was to explore relationships between PTHrP and whole body metabolism in patients with progressive pancreatic carcinoma; relevant to "fat tissue browning". METHODS Patient serum samples and clinical information were retrieved from earlier translational projects (1995-2005), at Sahlgrenska University Hospital in Gothenburg. Blood PTHrP levels were determined at Harvard medical School (2014). Patient data included: medical history, clinical laboratory tests, food diaries, resting metabolic expenditure, body composition, exercise capacity, Health-Related Quality of Life (SF-36) and mental disorders (HAD-scales). RESULTS Serum PTHrP was detectable in 17 % of all samples without significance to tumor stage. PTHrP-negativity at inclusion remained during follow-up. Mean PTHrP concentration was 262±274 pg/ml, without sex difference and elevation over time. PTHrP-positive and negative patients experienced similar body weight loss (%) at inclusion, with a trend to deviate at follow ups (16.8±8.2% vs. 13.1±8.2%, p<0.06), where PTHrP concentrations showed correlations to weight loss, handgrip strength and Karnofsky performance, without difference in exercise capacity. PTHrP-positivity was related to increased whole body fat oxidation (p<0.006-0.01) and reduced carbohydrate oxidation (p<0.01-0.03), independently of peripheral lipolysis. Metabolic alterations in PTHrP-positive patients were related to reduced Health Related Quality of life (SF: p<0.08, MH: p<0.02), and increased anxiety and depression (HAD 1-7: p<0.004; HAD 8-14: p<0.008). CONCLUSION Serum PTHrP positivity in patients with pancreatic carcinoma was related to altered whole body oxidative metabolism; perhaps induced by "browning" of fat cells?
Collapse
Affiliation(s)
- Britt-Marie Iresjö
- Surgical Metabolic Research Lab, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden.
| | - Serkan Kir
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Molecular Biology and Genetics, KoÇ University, Istanbul 34450, Turkey
| | - Kent Lundholm
- Surgical Metabolic Research Lab, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden; Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg 41345, Sweden
| |
Collapse
|
14
|
Zhang R, Li J, Badescu D, Karaplis AC, Ragoussis J, Kremer R. PTHrP Regulates Fatty Acid Metabolism via Novel lncRNA in Breast Cancer Initiation and Progression Models. Cancers (Basel) 2023; 15:3763. [PMID: 37568579 PMCID: PMC10417726 DOI: 10.3390/cancers15153763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Parathyroid hormone-related peptide (PTHrP) is the primary cause of malignancy-associated hypercalcemia (MAH). We previously showed that PTHrP ablation, in the MMTV-PyMT murine model of breast cancer (BC) progression, can dramatically prolong tumor latency, slow tumor growth, and prevent metastatic spread. However, the signaling mechanisms using lineage tracing have not yet been carefully analyzed. Here, we generated Pthrpflox/flox; Cre+ mT/mG mice (KO) and Pthrpwt/wt; Cre+ mT/mG tumor mice (WT) to examine the signaling pathways under the control of PTHrP from the early to late stages of tumorigenesis. GFP+ mammary epithelial cells were further enriched for subsequent RNA sequencing (RNAseq) analyses. We observed significant upregulation of cell cycle signaling and fatty acid metabolism in PTHrP WT tumors, which are linked to tumor initiation and progression. Next, we observed that the expression levels of a novel lncRNA, GM50337, along with stearoyl-Coenzyme A desaturase 1 (Scd1) are significantly upregulated in PTHrP WT but not in KO tumors. We further validated a potential human orthologue lncRNA, OLMALINC, together with SCD1 that can be regulated via PTHrP in human BC cell lines. In conclusion, these novel findings could be used to develop targeted strategies for the treatment of BC and its metastatic complications.
Collapse
Affiliation(s)
- Rui Zhang
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Jiarong Li
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada (J.R.)
| | - Andrew C. Karaplis
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada;
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada (J.R.)
| | - Richard Kremer
- Research Institute, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
15
|
Lin YC, Hou YC, Wang HC, Shan YS. New insights into the role of adipocytes in pancreatic cancer progression: paving the way towards novel therapeutic targets. Theranostics 2023; 13:3925-3942. [PMID: 37554282 PMCID: PMC10405844 DOI: 10.7150/thno.82911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies across the world, which is due to delayed diagnosis and resistance to current therapies. The interactions between pancreatic tumor cells and their tumor microenvironment (TME) allow cancer cells to escape from anti-cancer therapies, leading to difficulties in treating PC. With endocrine function and lipid storage capacity, adipose tissue can maintain energy homeostasis. Direct or indirect interaction between adipocytes and PC cells leads to adipocyte dysfunction characterized by morphological change, fat loss, abnormal adipokine secretion, and fibroblast-like transformation. Various adipokines released from dysfunctional adipocytes have been reported to promote proliferation, invasion, metastasis, stemness, and chemoresistance of PC cells via different mechanisms. Additional lipid outflow from adipocytes can be taken into the TME and thus alter the metabolism in PC cells and surrounding stromal cells. Besides, the trans-differentiation potential enables adipocytes to turn into various cell types, which may give rise to an inflammatory response as well as extracellular matrix reorganization to modulate tumor burden. Understanding the molecular basis behind the protumor functions of adipocytes in PC may offer new therapeutic targets.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Medical Imaging Center, Innovation Headquarter, National Cheng Kung University; Tainan 704, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
16
|
Liu K, Hong B, Wang S, Lou F, You Y, Hu R, Shafqat A, Fan H, Tong Y. Pharmacological Activity of Cepharanthine. Molecules 2023; 28:5019. [PMID: 37446681 DOI: 10.3390/molecules28135019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Cepharanthine, a natural bisbenzylisoquinoline (BBIQ) alkaloid isolated from the plant Stephania Cephalantha Hayata, is the only bisbenzylisoquinoline alkaloid approved for human use and has been used in the clinic for more than 70 years. Cepharanthine has a variety of medicinal properties, including signaling pathway inhibitory activities, immunomodulatory activities, and antiviral activities. Recently, cepharanthine has been confirmed to greatly inhibit SARS-CoV-2 infection. Therefore, we aimed to describe the pharmacological properties and mechanisms of cepharanthine, mainly including antitumor, anti-inflammatory, anti-pathogen activities, inhibition of bone resorption, treatment of alopecia, treatment of snake bite, and other activities. At the same time, we analyzed and summarized the potential antiviral mechanism of cepharanthine and concluded that one of the most important anti-viral mechanisms of cepharanthine may be the stability of plasma membrane fluidity. Additionally, we explained its safety and bioavailability, which provides evidence for cepharanthine as a potential drug for the treatment of a variety of diseases. Finally, we further discuss the potential new clinical applications of cepharanthine and provide direction for its future development.
Collapse
Affiliation(s)
- Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yecheng You
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruolan Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Amna Shafqat
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
An J, Jiang T, Qi L, Xie K. Acinar cells and the development of pancreatic fibrosis. Cytokine Growth Factor Rev 2023; 71-72:40-53. [PMID: 37291030 DOI: 10.1016/j.cytogfr.2023.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
Pancreatic fibrosis is caused by excessive deposition of extracellular matrixes of collagen and fibronectin in the pancreatic tissue as a result of repeated injury often seen in patients with chronic pancreatic diseases. The most common causative conditions include inborn errors of metabolism, chemical toxicity and autoimmune disorders. Its pathophysiology is highly complex, including acinar cell injury, acinar stress response, duct dysfunction, pancreatic stellate cell activation, and persistent inflammatory response. However, the specific mechanism remains to be fully clarified. Although the current therapeutic strategies targeting pancreatic stellate cells show good efficacy in cell culture and animal models, they are not satisfactory in the clinic. Without effective intervention, pancreatic fibrosis can promote the transformation from pancreatitis to pancreatic cancer, one of the most lethal malignancies. In the normal pancreas, the acinar component accounts for 82% of the exocrine tissue. Abnormal acinar cells may activate pancreatic stellate cells directly as cellular source of fibrosis or indirectly via releasing various substances and initiate pancreatic fibrosis. A comprehensive understanding of the role of acinar cells in pancreatic fibrosis is critical for designing effective intervention strategies. In this review, we focus on the role of and mechanisms underlying pancreatic acinar injury in pancreatic fibrosis and their potential clinical significance.
Collapse
Affiliation(s)
- Jianhong An
- SCUT-QMPH Joint Laboratory for Pancreatic Cancer Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China; Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Ling Qi
- SCUT-QMPH Joint Laboratory for Pancreatic Cancer Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
18
|
Hur SK, Somerville TD, Wu XS, Maia-Silva D, Demerdash OE, Tuveson DA, Notta F, Vakoc CR. p73 activates transcriptional signatures of basal lineage identity and ciliogenesis in pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537667. [PMID: 37131797 PMCID: PMC10153254 DOI: 10.1101/2023.04.20.537667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During the progression of pancreatic ductal adenocarcinoma (PDAC), tumor cells are known to acquire transcriptional and morphological properties of the basal (also known as squamous) epithelial lineage, which leads to more aggressive disease characteristics. Here, we show that a subset of basal-like PDAC tumors aberrantly express p73 (TA isoform), which is a known transcriptional activator of basal lineage identity, ciliogenesis, and tumor suppression in normal tissue development. Using gain- and loss- of function experiments, we show that p73 is necessary and sufficient to activate genes related to basal identity (e.g. KRT5), ciliogenesis (e.g. FOXJ1), and p53-like tumor suppression (e.g. CDKN1A) in human PDAC models. Owing to the paradoxical combination of oncogenic and tumor suppressive outputs of this transcription factor, we propose that PDAC cells express a low level of p73 that is optimal for promoting lineage plasticity without severe impairment of cell proliferation. Collectively, our study reinforces how PDAC cells exploit master regulators of the basal epithelial lineage during disease progression.
Collapse
Affiliation(s)
- Stella K. Hur
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | | | - Xiaoli S. Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | - Diogo Maia-Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | | | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Zhao Y, Su S, Li X. Parathyroid Hormone-Related Protein/Parathyroid Hormone Receptor 1 Signaling in Cancer and Metastasis. Cancers (Basel) 2023; 15:cancers15071982. [PMID: 37046642 PMCID: PMC10093484 DOI: 10.3390/cancers15071982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
PTHrP exerts its effects by binding to its receptor, PTH1R, a G protein-coupled receptor (GPCR), activating the downstream cAMP signaling pathway. As an autocrine, paracrine, or intracrine factor, PTHrP has been found to stimulate cancer cell proliferation, inhibit apoptosis, and promote tumor-induced osteolysis of bone. Despite these findings, attempts to develop PTHrP and PTH1R as drug targets have not produced successful results in the clinic. Nevertheless, the efficacy of blocking PTHrP and PTH1R has been shown in various types of cancer, suggesting its potential for therapeutic applications. In light of these conflicting data, we conducted a comprehensive review of the studies of PTHrP/PTH1R in cancer progression and metastasis and highlighted the strengths and limitations of targeting PTHrP or PTH1R in cancer therapy. This review also offers our perspectives for future research in this field.
Collapse
|
20
|
Wang J, He X, Bai Y, Du G, Cai M. Identification and validation of novel biomarkers affecting bladder cancer immunotherapy via machine learning and its association with M2 macrophages. Front Immunol 2022; 13:1051063. [PMID: 36439109 PMCID: PMC9681792 DOI: 10.3389/fimmu.2022.1051063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Immunotherapy has shown promising results in bladder cancer therapy options. METHODS Analysis of open-access data was conducted using the R software. Open-access data were obtained from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and IMvigor210 databases. Immunofluorescence and co-culture systems were utilized to validate the effect of PTHLH on M2 macrophage polarization. RESULTS Here, through the combined (TCGA, GSE128959, GSE13507, and GSE83586) and IMvigor210 cohorts, we comprehensively investigated the biological and immune microenvironment differences in patients with diverse immunotherapy responses. Meanwhile, we found that M2 macrophage could affect bladder cancer immunotherapy sensibility. Moreover, based on the machine learning algorithm (LASSO logistics regression), PTHLH, BHMT2, and NGFR were identified, which all have good prediction abilities for patient immunotherapy. Then, a logistics regression model was established based on PTHLH, BHMT2, and NGFR, and each patient was assigned a logistics score. Subsequently, we investigated the difference in patients with high low logistics scores, including biological enrichment, immune microenvironment, and genomic characteristics. Meanwhile, data from the Human Protein Atlas database indicated a higher protein level of PTHLH in bladder cancer tissue. Immunofluorescence indicated that the knockdown of PTHLH in bladder cancer cells can significantly inhibit the M2 polarization of co-culture M0 macrophages. CONCLUSIONS Our study investigated the difference between bladder cancer immunotherapy responders and non-responders. Meanwhile, the PTHLH was identified as a novel biomarker for bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Junkang Wang
- Department of Outpatient, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xiaojuan He
- Department of Outpatient, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Yifeng Bai
- Department of Cancer Center, Sichuan Academy of Medical Sciences and Sichuan People’s Hospital, Chengdu, Sichuan, China
| | - Guanghui Du
- Department of Outpatient, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Minhong Cai
- Healthcare-associated Infection Management Office, Sichuan Academy of Medical Sciences and Sichuan People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Huo Y, Zhou Y, Zheng J, Jin G, Tao L, Yao H, Zhang J, Sun Y, Liu Y, Hu LP. GJB3 promotes pancreatic cancer liver metastasis by enhancing the polarization and survival of neutrophil. Front Immunol 2022; 13:983116. [PMID: 36341459 PMCID: PMC9627207 DOI: 10.3389/fimmu.2022.983116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/28/2022] [Indexed: 07/26/2023] Open
Abstract
Connexins are membrane expressed proteins, which could assemble into hexamers to transfer metabolites and secondary messengers. However, its roles in pancreatic cancer metastasis remains unknown. In this study, by comparing the gene expression patterns in primary pancreatic cancer patients primary and liver metastasis specimens, we found that Gap Junction Protein Beta 3 (GJB3) significantly increased in Pancreatic ductal adenocarcinoma (PDAC) liver metastasis. Animal experiments verified that GJB3 depletion suppressed the hepatic metastasis of PDAC cancer cells. Further, GJB3 over expression increased the neutrophil infiltration. Mechanistic study revealed that GJB3 form channels between PDAC tumor cells and accumulated neutrophil, which transfer cyclic adenosine monophosphate (cAMP) from cancer to neutrophil cells, which supports the survival and polarization. Taken together, our data suggesting that GJB3 could act as a potential therapeutic target of PDAC liver metastasis.
Collapse
Affiliation(s)
- Yanmiao Huo
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaoqi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahao Zheng
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangxin Jin
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingye Tao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongfei Yao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongwei Sun
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Dhanapala L, Joseph S, Jones AL, Moghaddam S, Lee N, Kremer RB, Rusling JF. Immunoarray Measurements of Parathyroid Hormone-Related Peptides Combined with Other Biomarkers to Diagnose Aggressive Prostate Cancer. Anal Chem 2022; 94:12788-12797. [PMID: 36074029 DOI: 10.1021/acs.analchem.2c02648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is related to bone metastasis and hypercalcemia in prostate and breast cancers and should be an excellent biomarker for aggressive forms of these cancers. Current clinical detection protocols for PTHrP are immunoradiometric assay and radioimmunoassay but are not sensitive enough to detect PTHrPs at early stages. We recently evaluated a prostate cancer biomarker panel, including serum monocyte differentiation antigen (CD-14), ETS-related gene protein, pigment epithelial-derived factor, and insulin-like growth factor-1, with promise for identifying aggressive prostate cancers. This panel predicted the need for patient biopsy better than PSA alone. In the present paper, we report an ultrasensitive microfluidic assay for PTHrPs and evaluate their diagnostic value and the value of including them with our prior biomarker panel to diagnose aggressive forms of prostate cancer. The immunoarray features screen-printed carbon sensor electrodes coated with 5 nm glutathione gold nanoparticles with capture antibodies attached. PTHrPs are bound to a secondary antibody attached to a polyhorseradish peroxidase label and delivered to the sensors to provide high sensitivity when activated by H2O2 and a mediator. We obtained an unprecedented 0.3 fg mL-1 limit of detection for PTHrP bioactive moieties PTHrP 1-173 and PTHrP 1-86. We also report the first study of PTHrPs in a large serum pool to identify aggressive malignancies. In assays of 130 human patient serum samples, PTHrP levels distinguished between aggressive and indolent prostate cancers with 83-91% clinical sensitivity and 78-96% specificity. Logistic regression identified the best predictive model as a combination of PTHrP 1-86 and vascular endothelial growth factor-D. PTHrP 1-173 alone also showed a high ability to differentiate aggressive and indolent cancers.
Collapse
Affiliation(s)
- Lasangi Dhanapala
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sophie Joseph
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abby L Jones
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shirin Moghaddam
- Department of Mathematics and Statistics (MACSI), University of Limerick, Limerick V94 T9PX, Ireland
| | - Norman Lee
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street, NW, Washington, Washington, District of Columbia 20037, United States.,George Washington University Cancer Center, 800 22nd Street, NW, Washington, Washington, District of Columbia 20052, United States
| | - Richard B Kremer
- Department of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06232, United States.,School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland.,Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
23
|
Bowers LW, Glenny EM, Punjala A, Lanman NA, Goldbaum A, Himbert C, Montgomery SA, Yang P, Roper J, Ulrich CM, Dannenberg AJ, Coleman MF, Hursting SD. Weight Loss and/or Sulindac Mitigate Obesity-associated Transcriptome, Microbiome, and Protumor Effects in a Murine Model of Colon Cancer. Cancer Prev Res (Phila) 2022; 15:481-495. [PMID: 35653548 PMCID: PMC9357192 DOI: 10.1158/1940-6207.capr-21-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023]
Abstract
Obesity is associated with an increased risk of colon cancer. Our current study examines whether weight loss and/or treatment with the NSAID sulindac suppresses the protumor effects of obesity in a mouse model of colon cancer. Azoxymethane-treated male FVB/N mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 15 weeks, then HFD mice were randomized to remain on HFD (obese) or switch to LFD [formerly obese (FOb-LFD)]. Within the control (LFD), obese, and FOb-LFD groups, half the mice started sulindac treatment (140 ppm in the diet). All mice were euthanized 7 weeks later. FOb-LFD mice had intermediate body weight levels, lower than obese but higher than control (P < 0.05). Sulindac did not affect body weight. Obese mice had greater tumor multiplicity and burden than all other groups (P < 0.05). Transcriptomic profiling indicated that weight loss and sulindac each modulate the expression of tumor genes related to invasion and may promote a more antitumor immune landscape. Furthermore, the fecal microbes Coprobacillus, Prevotella, and Akkermansia muciniphila were positively correlated with tumor multiplicity and reduced by sulindac in obese mice. Coprobacillus abundance was also decreased in FOb-LFD mice. In sum, weight loss and sulindac treatment, alone and in combination, reversed the effects of chronic obesity on colon tumor multiplicity and burden. Our findings suggest that an investigation regarding the effects of NSAID treatment on colon cancer risk and/or progression in obese individuals is warranted, particularly for those unable to achieve moderate weight loss. PREVENTION RELEVANCE Obesity is a colon cancer risk and/or progression factor, but the underlying mechanisms are incompletely understood. Herein we demonstrate that obesity enhances murine colon carcinogenesis and expression of numerous tumoral procancer and immunosuppressive pathways. Moreover, we establish that weight loss via LFD and/or the NSAID sulindac mitigate procancer effects of obesity.
Collapse
Affiliation(s)
- Laura W. Bowers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arunima Punjala
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nadia A. Lanman
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Audrey Goldbaum
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Caroline Himbert
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation, and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jatin Roper
- Department of Medicine, Duke University, Durham, NC, USA
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Andrew J. Dannenberg
- Department of Medicine (retired), Weill Cornell Medical College, New York, NY, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| |
Collapse
|
24
|
Grunbaum A, Kremer R. Parathyroid hormone-related protein (PTHrP) and malignancy. VITAMINS AND HORMONES 2022; 120:133-177. [PMID: 35953108 DOI: 10.1016/bs.vh.2022.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PTHrP (parathyroid hormone related protein) is an important mediator of malignancy-related tumor progression and hypercalcemia that shares considerable homology and functionality with parathyroid hormone. In this chapter, we review what has been elucidated to date regarding PTHrP's role in malignancies. Starting with a review of calcium metabolism and regulation, we then summarize the discovery and structure of PTHrP and development of sensitive immunoassays for specific measurement. Subsequently, we explore its role in tumor progression, with emphasis on the primary tumor as well as skeletal and non-osseus metastases. We then consider the clinical implications of PTHrP in cancer before concluding with a discussion of both established and potential treatments for malignancy associated hypercalcemia and bone metastases.
Collapse
Affiliation(s)
- Ami Grunbaum
- Calcium Research Laboratories and Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC, Canada
| | - Richard Kremer
- Calcium Research Laboratories and Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
25
|
Albaradei S, Albaradei A, Alsaedi A, Uludag M, Thafar MA, Gojobori T, Essack M, Gao X. MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data. Front Mol Biosci 2022; 9:913602. [PMID: 35936793 PMCID: PMC9353773 DOI: 10.3389/fmolb.2022.913602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Deep learning has massive potential in predicting phenotype from different omics profiles. However, deep neural networks are viewed as black boxes, providing predictions without explanation. Therefore, the requirements for these models to become interpretable are increasing, especially in the medical field. Here we propose a computational framework that takes the gene expression profile of any primary cancer sample and predicts whether patients' samples are primary (localized) or metastasized to the brain, bone, lung, or liver based on deep learning architecture. Specifically, we first constructed an AutoEncoder framework to learn the non-linear relationship between genes, and then DeepLIFT was applied to calculate genes' importance scores. Next, to mine the top essential genes that can distinguish the primary and metastasized tumors, we iteratively added ten top-ranked genes based upon their importance score to train a DNN model. Then we trained a final multi-class DNN that uses the output from the previous part as an input and predicts whether samples are primary or metastasized to the brain, bone, lung, or liver. The prediction performances ranged from AUC of 0.93-0.82. We further designed the model's workflow to provide a second functionality beyond metastasis site prediction, i.e., to identify the biological functions that the DL model uses to perform the prediction. To our knowledge, this is the first multi-class DNN model developed for the generic prediction of metastasis to various sites.
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asim Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mahmut Uludag
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maha A. Thafar
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Takashi Gojobori
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
26
|
Qian Y, Zhai E, Chen S, Liu Y, Ma Y, Chen J, Liu J, Qin C, Cao Q, Chen J, Cai S. Single-cell RNA-seq dissecting heterogeneity of tumor cells and comprehensive dynamics in tumor microenvironment during lymph nodes metastasis in gastric cancer. Int J Cancer 2022; 151:1367-1381. [PMID: 35716132 DOI: 10.1002/ijc.34172] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022]
Abstract
Lymph node metastasis is the common metastasis route of gastric cancer. However, until now, heterogeneities of tumor cells and tumor microenvironment in primary tumors (PT) and metastatic lymph nodes (MLN) of gastric cancer (GC) remains uncharacterized. In this study, scRNA-seq was performed on tissues from PT and MLN of gastric cancer. Trajectory analysis and function enrichment analyses were conducted to decode the underlying mechanisms contributing to LN metastasis of gastric cancer. Heterogeneous composition of immune cells and distant intercellular interactions in PT and MLN were analyzed. Based on the generated single cell transcriptome profiles, dynamics of gene expressions in cancer cells between PT and MLN were characterized. Moreover, we reconstructed the developmental trajectory of GC cells' metastasis to LN and identified two sub-types of GC cells with distinct potentials of having malignant biological behaviors. We characterized the repression of neutrophil polarization associated genes, like LCN2, which would contribute to LN metastasis, and histochemistry experiments validated our findings. Additionally, heterogeneity in neutrophils, rather than macrophages, was characterized. Immune checkpoint associated interaction of SPP1 was found active in MLN. In conclusion, we decode the dynamics of tumor cells during LN metastasis in GC and to identify a sub-type of GC cells with potentials of LN metastasis. Our data indicated that the disordering the neutrophils polarization and maturation and the activation of immune checkpoint SPP1 might contribute to LN metastasis in GC, providing a novel insight on the mechanism and potential therapeutic targets of LN metastasis in GC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan Qian
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ertao Zhai
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sile Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinan Liu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Ma
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junting Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianqiu Liu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Qin Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shirong Cai
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Fan T, Kuang G, Long R, Han Y, Wang J. The overall process of metastasis: From initiation to a new tumor. Biochim Biophys Acta Rev Cancer 2022; 1877:188750. [PMID: 35728735 DOI: 10.1016/j.bbcan.2022.188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Metastasis-a process that involves the migration of cells from the primary site to distant organs-is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.
Collapse
Affiliation(s)
- Tianyue Fan
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guicheng Kuang
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runmin Long
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
28
|
Li J, Camirand A, Zakikhani M, Sellin K, Guo Y, Luan X, Mihalcioiu C, Kremer R. Parathyroid Hormone-Related Protein Inhibition Blocks Triple-Negative Breast Cancer Expansion in Bone Through Epithelial to Mesenchymal Transition Reversal. JBMR Plus 2022; 6:e10587. [PMID: 35720668 PMCID: PMC9189913 DOI: 10.1002/jbm4.10587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) plays a major role in skeletal metastasis but its action mechanism has not been fully defined. We previously demonstrated the crucial importance of PTHrP in promoting mammary tumor initiation, growth, and metastasis in a mouse model with a mammary epithelium-targeted Pthlh gene ablation. We demonstrate here a novel mechanism for bone invasion involving PTHrP induction of epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs) regulation. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated Pthlh gene ablation was used to study EMT markers, phenotype, and invasiveness in two triple-negative breast cancer (TNBC) cell types (established MDA-MB-231 and patient-derived PT-TNBC cells). In vitro, Pthlh ablation in TNBC cells reduced EMT markers, mammosphere-forming ability, and CD44high/CD24low cells ratio. In vivo, cells were injected intratibially into athymic nude mice, and therapeutic treatment with our anti-PTHrP blocking antibody was started 2 weeks after skeletal tumors were established. In vivo, compared to control, lytic bone lesion from Pthlh -ablated cells decreased significantly over 2 weeks by 27% for MDA-MB-231 and by 75% for PT-TNBC-injected mice (p < 0.001). Micro-CT (μCT) analyses also showed that antibody therapy reduced bone lytic volume loss by 52% and 48% for non-ablated MDA-MB-231 and PT-TNBC, respectively (p < 0.05). Antibody therapy reduced skeletal tumor burden by 45% and 87% for non-ablated MDA-MB-231 and PT-TNBC, respectively (p < 0.002) and caused a significant decrease of CSC/EMT markers ALDH1, vimentin, and Slug, and an increase in E-cadherin in bone lesions. We conclude that PTHrP is a targetable EMT molecular driver and suggest that its pharmacological blockade can provide a potential therapeutic approach against established TNBC-derived skeletal lesions. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jiarong Li
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Anne Camirand
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Mahvash Zakikhani
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Karine Sellin
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Yubo Guo
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
- Third Affiliated HospitalBeijing University of Chinese MedicineBeijingChina
| | - XiaoRui Luan
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
- Department of Genetics, School of MedicineZhejiang UniversityHangzhouChina
| | - Catalin Mihalcioiu
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Richard Kremer
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| |
Collapse
|
29
|
Liu X, Geng Z, Ding X, Lou Y, Zhang X. Convallatoxin suppresses osteosarcoma cell proliferation, migration, invasion, and enhances osteogenic differentiation by downregulating parathyroid hormone receptor 1 (PTHR1) expression and inactivating Wnt/β-catenin pathway. Bioengineered 2022; 13:13280-13292. [PMID: 35635031 PMCID: PMC9275893 DOI: 10.1080/21655979.2022.2080363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. Convallatoxin, a natural cardiac glycoside, exhibits potent anti-tumor activities. Literature has confirmed that PTHR1 is highly expressed in OS tissues and cells and downregulation of PTHR1 could decrease the invasion and growth of OS cells and increase tumor differentiation. In addition, PTHR1 could activate Wnt signaling pathway to promote the malignant functions of OS. In the present study, MG63 and U2OS cells were treated with 0, 12.5, 25, and 50 nM convallatoxin in order to elucidate the precise function of convallatox on the malignant behaviors of OS cells. Moreover, MG63 and U2OS cells treated with convallatoxin were transfected with Ov-PTHR1 or sh-DKK1, aiming to explore whether convallatoxin impeded the malignant progression of OS by modulating PTHR1 and Wnt/β-catenin pathway. CCK-8, wound healing and transwell assays were employed to assess the proliferation, migration, and invasion of OS cells. Differentiation markers (collagen 1, osteopontin, RANKL, Runx2, osteocalcin) were measured to evaluate OS cell differentiation. Results illuminated that convallatoxin suppressed proliferation, migration, and invasion as well as promoted osteogenic differentiation of OS cells. Besides, convallatoxin inhibited PTHR1 expression and inactivated Wnt/β-catenin pathway and PTHR1 overexpression activated Wnt/β-catenin pathway. Furthermore, PTHR1 overexpression or DKK1 knockdown reversed the suppressing effects of convallatoxin on OS cell proliferation, migration, and invasion, as well as the enhancing effect of convallatoxin on OS cell osteogenic differentiation. Collectively, convallatoxin may repress the malignant progression of OS by blocking PTHR1 and Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ze Geng
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiangyong Ding
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Lou
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingquan Zhang
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Polygonum cuspidatum Extract (Pc-Ex) Containing Emodin Suppresses Lung Cancer-Induced Cachexia by Suppressing TCF4/TWIST1 Complex-Induced PTHrP Expression. Nutrients 2022; 14:nu14071508. [PMID: 35406121 PMCID: PMC9002362 DOI: 10.3390/nu14071508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022] Open
Abstract
Cachexia, which is characterised by the wasting of fat and skeletal muscles, is the most common risk factor for increased mortality rates among patients with advanced lung cancer. PTHLH (parathyroid hormone-like hormone) is reported to be involved in the pathogenesis of cancer cachexia. However, the molecular mechanisms underlying the regulation of PTHLH expression and the inhibitors of PTHLH have not yet been identified. The PTHLH mRNA levels were measured using quantitative real-time polymerase chain reaction, while the PTHrP (parathyroid hormone-related protein) expression levels were measured using Western blotting and enzyme-linked immunosorbent assay. The interaction between TCF4 (Transcription Factor 4) and TWIST1 and the binding of the TCF4–TWIST1 complex to the PTHLH promoter were analysed using co-immunoprecipitation and chromatin immunoprecipitation. The results of the mammalian two-hybrid luciferase assay revealed that emodin inhibited TCF4–TWIST1 interaction. The effects of Polygonum cuspidatum extract (Pc-Ex), which contains emodin, on cachexia were investigated in vivo using A549 tumour-bearing mice. Ectopic expression of TCF4 upregulated PTHLH expression. Conversely, TCF4 knockdown downregulated PTHLH expression in lung cancer cells. The expression of PTHLH was upregulated in cells ectopically co-expressing TCF4 and TWIST1 when compared with that in cells expressing TCF4 or TWIST1 alone. Emodin inhibited the interaction between TCF4 and TWIST1 and consequently suppressed the TCF4/TWIST1 complex-induced upregulated mRNA and protein levels of PTHLH and PTHrP. Meanwhile, emodin-containing Pc-Ex significantly alleviated skeletal muscle atrophy and downregulated fat browning-related genes in A549 tumour-bearing mice. Emodin-containing Pc-Ex exerted therapeutic effects on lung cancer-associated cachexia by inhibiting TCF4/TWIST1 complex-induced PTHrP expression.
Collapse
|
31
|
Luo Q, Yu Y, Lan X. SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging. Brief Bioinform 2022; 23:bbab547. [PMID: 34962260 PMCID: PMC8769917 DOI: 10.1093/bib/bbab547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
High-throughput single-cell RNA-seq data have provided unprecedented opportunities for deciphering the regulatory interactions among genes. However, such interactions are complex and often nonlinear or nonmonotonic, which makes their inference using linear models challenging. We present SIGNET, a deep learning-based framework for capturing complex regulatory relationships between genes under the assumption that the expression levels of transcription factors participating in gene regulation are strong predictors of the expression of their target genes. Evaluations based on a variety of real and simulated scRNA-seq datasets showed that SIGNET is more sensitive to ChIP-seq validated regulatory interactions in different types of cells, particularly rare cells. Therefore, this process is more effective for various downstream analyses, such as cell clustering and gene regulatory network inference. We demonstrated that SIGNET is a useful tool for identifying important regulatory modules driving various biological processes.
Collapse
Affiliation(s)
- Qinhuan Luo
- School of Medicine, Tsinghua University, Beijing, China
| | - Yongzhen Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Xun Lan
- School of Medicine,and the Tsinghua-Peking Center for Life science, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Norgard RJ, Pitarresi JR, Maddipati R, Aiello‐Couzo NM, Balli D, Li J, Yamazoe T, Wengyn MD, Millstein ID, Folkert IW, Rosario‐Berrios DN, Kim I, Bassett JB, Payne R, Berry CT, Feng X, Sun K, Cioffi M, Chakraborty P, Jolly MK, Gutkind JS, Lyden D, Freedman BD, Foskett JK, Rustgi AK, Stanger BZ. Calcium signaling induces a partial EMT. EMBO Rep 2021; 22:e51872. [PMID: 34324787 PMCID: PMC8419705 DOI: 10.15252/embr.202051872] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/15/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
Epithelial plasticity, or epithelial-to-mesenchymal transition (EMT), is a well-recognized form of cellular plasticity, which endows tumor cells with invasive properties and alters their sensitivity to various agents, thus representing a major challenge to cancer therapy. It is increasingly accepted that carcinoma cells exist along a continuum of hybrid epithelial-mesenchymal (E-M) states and that cells exhibiting such partial EMT (P-EMT) states have greater metastatic competence than those characterized by either extreme (E or M). We described recently a P-EMT program operating in vivo by which carcinoma cells lose their epithelial state through post-translational programs. Here, we investigate the underlying mechanisms and report that prolonged calcium signaling induces a P-EMT characterized by the internalization of membrane-associated E-cadherin (ECAD) and other epithelial proteins as well as an increase in cellular migration and invasion. Signaling through Gαq-associated G-protein-coupled receptors (GPCRs) recapitulates these effects, which operate through the downstream activation of calmodulin-Camk2b signaling. These results implicate calcium signaling as a trigger for the acquisition of hybrid/partial epithelial-mesenchymal states in carcinoma cells.
Collapse
Affiliation(s)
- Robert J Norgard
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jason R Pitarresi
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ravikanth Maddipati
- Department of Internal Medicine and Children’s Research InstituteUT Southwestern Medical CenterDallasTXUSA
| | - Nicole M Aiello‐Couzo
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - David Balli
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jinyang Li
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Taiji Yamazoe
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Maximilian D Wengyn
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ian D Millstein
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ian W Folkert
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of SurgeryHospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | | | - Il‐Kyu Kim
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jared B Bassett
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Riley Payne
- Department of PhysiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Corbett T Berry
- Department of PathobiologySchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Xiaodong Feng
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCAUSA
- State Key Laboratory of Oral DiseasesNational Clinical Research for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kathryn Sun
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Michele Cioffi
- Children’s Cancer and Blood Foundation LaboratoriesDepartments of Pediatrics, and Cell and Developmental BiologyDrukier Institute for Children’s HealthMeyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Priyanka Chakraborty
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBangaloreIndia
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBangaloreIndia
| | - J Silvio Gutkind
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCAUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation LaboratoriesDepartments of Pediatrics, and Cell and Developmental BiologyDrukier Institute for Children’s HealthMeyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Bruce D Freedman
- Department of PathobiologySchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - J Kevin Foskett
- Department of PhysiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Cell and Developmental BiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Anil K Rustgi
- Division of Digestive and Liver DiseasesDepartment of MedicineHerbert Irving Comprehensive Cancer CenterVagelos College of Physicians and SurgeonsColumbia University Irving Medical CenterNew YorkNYUSA
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Cell and Developmental BiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|