1
|
Yuan S, Xia Y, Dai G, Rao S, Hu R, Gao Y, Qiu Q, Wu C, Qiao S, Xu Y, Xie X, Lou H, Wang X, Zhang J. Single-cell and spatial transcriptomic analysis reveals that an immune cell-related signature could predict clinical outcomes for microsatellite-stable colorectal cancer patients receiving immunotherapy. J Zhejiang Univ Sci B 2025; 26:371-392. [PMID: 40274385 PMCID: PMC12021538 DOI: 10.1631/jzus.b2300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/25/2024] [Indexed: 04/26/2025]
Abstract
Recent data suggest that vascular endothelial growth factor receptor inhibitor (VEGFRi) can enhance the anti-tumor activity of the anti-programmed cell death-1 (anti-PD-1) antibody in colorectal cancer (CRC) with microsatellite stability (MSS). However, the comparison between this combination and standard third-line VEGFRi treatment is not performed, and reliable biomarkers are still lacking. We retrospectively enrolled MSS CRC patients receiving anti-PD-1 antibody plus VEGFRi (combination group, n=54) or VEGFRi alone (VEGFRi group, n=32), and their efficacy and safety were evaluated. We additionally examined the immune characteristics of the MSS CRC tumor microenvironment (TME) through single-cell and spatial transcriptomic data, and an MSS CRC immune cell-related signature (MCICRS) that can be used to predict the clinical outcomes of MSS CRC patients receiving immunotherapy was developed and validated in our in-house cohort. Compared with VEGFRi alone, the combination of anti-PD-1 antibody and VEGFRi exhibited a prolonged survival benefit (median progression-free survival: 4.4 vs. 2.0 months, P=0.0024; median overall survival: 10.2 vs. 5.2 months, P=0.0038) and a similar adverse event incidence. Through single-cell and spatial transcriptomic analysis, we determined ten MSS CRC-enriched immune cell types and their spatial distribution, including naive CD4+ T, regulatory CD4+ T, CD4+ Th17, exhausted CD8+ T, cytotoxic CD8+ T, proliferated CD8+ T, natural killer (NK) cells, plasma, and classical and intermediate monocytes. Based on a systemic meta-analysis and ten machine learning algorithms, we obtained MCICRS, an independent risk factor for the prognosis of MSS CRC patients. Further analyses demonstrated that the low-MCICRS group presented a higher immune cell infiltration and immune-related pathway activation, and hence a significant relation with the superior efficacy of pan-cancer immunotherapy. More importantly, the predictive value of MCICRS in MSS CRC patients receiving immunotherapy was also validated with an in-house cohort. Anti-PD-1 antibody combined with VEGFRi presented an improved clinical benefit in MSS CRC with manageable toxicity. MCICRS could serve as a robust and promising tool to predict clinical outcomes for individual MSS CRC patients receiving immunotherapy.
Collapse
Affiliation(s)
- Shijin Yuan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yan Xia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Guangwei Dai
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Shun Rao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Rongrong Hu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
- Yongkang Hospital of Traditional Chinese Medicine Medical Community Xicheng Branch, Jinhua 321300, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Qing Qiu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Chenghao Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Sai Qiao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Yinghua Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Haizhou Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China. ,
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China.
| |
Collapse
|
2
|
Secada-Gómez C, Loricera J, Martín-Gutiérrez A, López-Gutiérrez F, García-Alcalde L, Núñez-Sayar M, Ucelay-Aristi A, Martínez-Rodríguez I, Castañeda S, Blanco R. Clinical characterization of aortitis and periaortitis: study of 134 patients from a single university hospital. Intern Emerg Med 2025:10.1007/s11739-025-03908-4. [PMID: 40038164 DOI: 10.1007/s11739-025-03908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Aortitis and periaortitis refer to the inflammation of the aortic wall and the surrounding tissues. Both conditions are associated with various diseases and express nonspecific manifestations. Early diagnosis and treatment are crucial to improve the prognosis of the disease. This study aimed to assess the causes and main clinical features of aortitis and periaortitis in patients from a single centre in Spain. Observational, retrospective study of patients diagnosed with aortitis or periaortitis at a Spanish referral center over the last decade. 134 patients (87 female; mean age of 55.1 ± 9.1 years) were recruited, 132 of which had aortitis and two periaortitis. Aortitis was associated with giant cell arteritis (n = 102), Takayasu's arteritis (n = 6), IgG4-related disease (n = 6), infectious diseases (n = 3), malignancy (n = 1), drugs (n = 1), isolated aortitis (n = 1), and other immune-mediated inflammatory diseases (IMIDs) (n = 12). IMIDs included were Sjögren's syndrome (n = 2), sarcoidosis (n = 2), rheumatoid arthritis (n = 2), axial spondyloarthritis (n = 2), inflammatory bowel disease (n = 1), primary biliary cirrhosis (n = 1), idiopathic pulmonary fibrosis (n = 1), and polyarteritis nodosa (n = 1). Periaortitis was due to idiopathic retroperitoneal fibrosis in both cases. Imaging techniques used for diagnosis included 18F-FDG PET/CT scan (n = 133), CT-angiography (n = 44), and/or MRI-angiography (n = 33). Polymyalgia rheumatica (52.2%) and asthenia (53.7%) were the most common manifestations, followed by limb claudication (23.9%) and inflammatory back pain (26.9%). Acute-phase reactants were typically increased. Aortitis is a common condition and may be associated with multiple non-infectious diseases. Its clinical presentation is often unspecific, requiring a high level of suspicion to get an early diagnosis and treatment.
Collapse
Affiliation(s)
- Carmen Secada-Gómez
- Rheumatology Division, University Hospital Marqués de Valdecilla, IDIVAL, Immunopathology Group, Santander, Spain
| | - Javier Loricera
- Rheumatology Division, University Hospital Marqués de Valdecilla, IDIVAL, Immunopathology Group, Santander, Spain
| | - Adrián Martín-Gutiérrez
- Rheumatology Division, University Hospital Marqués de Valdecilla, IDIVAL, Immunopathology Group, Santander, Spain
| | - Fernando López-Gutiérrez
- Rheumatology Division, University Hospital Marqués de Valdecilla, IDIVAL, Immunopathology Group, Santander, Spain
| | - Lucía García-Alcalde
- Department of Cardiovascular Surgery, University Hospital Marqués de Valdecilla, IDIVAL, Avda. Valdecilla s/n, 39008, Santander, Spain
| | - María Núñez-Sayar
- Department of Cardiovascular Surgery, University Hospital Marqués de Valdecilla, IDIVAL, Avda. Valdecilla s/n, 39008, Santander, Spain
| | - Ander Ucelay-Aristi
- Department of Cardiovascular Surgery, University Hospital Marqués de Valdecilla, IDIVAL, Avda. Valdecilla s/n, 39008, Santander, Spain
| | - Isabel Martínez-Rodríguez
- Nuclear Medicine Division, University Hospital Marqués de Valdecilla, IDIVAL Molecular Imaging Group, Santander, Spain
| | - Santos Castañeda
- Rheumatology Division, University Hospital La Princesa, IIS-Princesa, Madrid, Spain
| | - Ricardo Blanco
- Rheumatology Division, University Hospital Marqués de Valdecilla, IDIVAL, Immunopathology Group, Santander, Spain.
| |
Collapse
|
3
|
Moradi Kashkooli F, Mirala F, H H Tehrani M, Alirahimi M, Souri M, Golzaryan A, Kar S, Soltani M. Mechanical Forces in Tumor Growth and Treatment: Perspectives From Biology, Physics, Engineering, and Mathematical Modeling. WIREs Mech Dis 2025; 17:e70000. [PMID: 40170456 DOI: 10.1002/wsbm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/14/2024] [Accepted: 01/23/2025] [Indexed: 04/03/2025]
Abstract
The progression of tumors is influenced by mechanical forces and biological elements, such as hypoxia and angiogenesis. Mechanical factors, including stress, pressure, interstitial fluid pressure, and cellular traction forces, compromise normal tissue architecture, augmenting stiffness and thus promoting tumor growth and invasion. The selective elimination of specific tumor components can reduce growth-induced mechanical stress, thereby improving therapeutic efficacy. Furthermore, stress-relief drugs have the potential in enhancing chemotherapy outcomes. In this setting, computational modeling functions as an essential tool for quantitatively elucidating the mechanical principles underlying tumor formation. These models can precisely replicate the impact of mechanical pressures on solid tumors, offering insight into the regulation of tumor behavior by these forces. Tumor growth produces mechanical forces, including compression, displacement, and deformation, leading to irregular stress patterns, expedited tumor advancement, and reduced treatment efficacy. This review analyzes the impact of mechanical forces on carcinogenesis and solid tumor proliferation, emphasizing the significance of stress alleviation in regulating tumor growth. Furthermore, we investigate the influence of mechanical forces on tumor dissemination and emphasize the promise of integrating computational modeling with force-targeted cancer therapies to improve treatment efficacy by tackling the fundamental mechanics of tumor proliferation.
Collapse
Affiliation(s)
| | - Fatemeh Mirala
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Masoud H H Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mahvash Alirahimi
- Department of Obstetrics & Gynecology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Aryan Golzaryan
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Mandavkar AA, Padakanti SSN, Gupta S, Akram S, Jaffar N, Chauhan J, Allu LR, Saini P, Nasrallah J, Omar MA, Mugibel MA, Syed S, Ravindran KO, Dwivedi A, Dhingra GS, Dhingra A, Kakadiya J, Kotaich J, Beniwal SS. Emerging therapies in Multiple Myeloma: Leveraging immune checkpoint inhibitors for improved outcomes. Hum Antibodies 2025:10932607241301699. [PMID: 39973812 DOI: 10.1177/10932607241301699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND: Multiple Myeloma is a hematological malignancy characterized by the proliferation of clonal plasma cells and associated with severe clinical manifestations. Despite advancements in diagnosis and management, Multiple Myeloma remains incurable, necessitating further research into more effective therapies. AIM: The primary objective of this review is to provide an informative and critical summary of the Multiple Myeloma microenvironment, and emerging revolutionary therapeutic approaches with potential combination therapy to improve the quality of life for Multiple Myeloma patients. EMERGING APPROACHES: Recent advancements in immunotherapy, particularly immune checkpoint inhibitors (ICIs), have shown improvements in immune response against Multiple Myeloma. ICIs target inhibitory pathways such as PD-1/PD-L1 and CTLA-4, potentially overcoming tumor-induced immunosuppression. Combination therapies integrate ICIs with proteasome inhibitors, immunomodulators, and monoclonal antibodies to enhance the anti-tumor immune response. Additionally, Chimeric Antigen Receptor T-cell (CAR-T) therapy has demonstrated effectiveness against Multiple Myeloma, particularly when coupled with ICIs to decrease resistance and relapse. CHALLENGES: Although the efficacy of ICIs in treating Multiple Myeloma has been hindered by the complexity of the tumor microenvironment and immune evasion mechanisms, this challenge has led to the exploration of combination therapies. Potential side effects are still a big challenge for newly recognized ICIs and combination treatment. FUTURE DIRECTIONS: Investigations of new immune checkpoints and the development of targeted therapies against these markers are in progress, creating possibilities for more personalized and effective treatment strategies. Continuous research and robust clinical trials are needed to comprehend the complex dynamics of the Multiple Myeloma microenvironment to develop revolutionary therapeutic targets.
Collapse
Affiliation(s)
| | | | - Srajan Gupta
- SV Medical College, Tirupati, Andhra Pradesh, India
| | - Samiyah Akram
- Shadan Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Nida Jaffar
- Mid and South Essex NHS Foundation Trust, Southend University Hospital, Southend-on-Sea Essex, England
| | - Jugalkishor Chauhan
- Dr. N D Desai Faculty of Medical Science and Research, Nadiad, Gujarat, India
| | | | - Pulkit Saini
- Sri Devaraj URS Medical College, Kolar, Karnataka, India
| | - Jamil Nasrallah
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | - Muna Ali Mugibel
- College of Medicine and Health Sciences, Hadhramout University, Mukalla, Yemen
| | - Saif Syed
- Royal College of Surgeons, Dublin, Ireland
| | | | - Ayush Dwivedi
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Avleen Dhingra
- Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | | | - Jana Kotaich
- Faculty of Medical Sciences, Lebanese University, Lebanon
| | | |
Collapse
|
5
|
Huffman BM, Rahma OE, Tyan K, Li YY, Giobbie-Hurder A, Schlechter BL, Bockorny B, Manos MP, Cherniack AD, Baginska J, Mariño-Enríquez A, Kao KZ, Maloney AK, Ferro A, Kelland S, Ng K, Singh H, Welsh EL, Pfaff KL, Giannakis M, Rodig SJ, Hodi FS, Cleary JM. A Phase I Trial of Trebananib, an Angiopoietin 1 and 2 Neutralizing Peptibody, Combined with Pembrolizumab in Patients with Advanced Ovarian and Colorectal Cancer. Cancer Immunol Res 2025; 13:9-22. [PMID: 39348472 DOI: 10.1158/2326-6066.cir-23-1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Ovarian cancers and microsatellite stable (MSS) colorectal cancers are insensitive to anti-programmed cell death 1 (PD-1) immunotherapy, and new immunotherapeutic approaches are needed. Preclinical data suggest a relationship between immunotherapy resistance and elevated angiopoietin 2 levels. We performed a phase I dose escalation study of pembrolizumab and the angiopoietin 1/2 inhibitor trebananib (NCT03239145). This multicenter trial enrolled patients with metastatic ovarian cancer or MSS colorectal cancer. Trebananib was administered intravenously weekly for 12 weeks with 200 mg intravenous pembrolizumab every 3 weeks. The toxicity profile of this combination was manageable, and the protocol-defined highest dose level (trebananib 30 mg/kg weekly plus pembrolizumab 200 mg every 3 weeks) was declared the maximum tolerated dose. The objective response rate for all patients was 7.3% (90% confidence interval, 2.5%-15.9%). Three patients with MSS colorectal cancer had durable responses for ≥3 years. One responding patient's colorectal cancer harbored a POLE mutation. The other two responding patients had left-sided colorectal cancers, with no baseline liver metastases, and genomic analysis revealed that they both had KRAS wild-type, ERBB2-amplified tumors. After development of acquired resistance, biopsy of one patient's KRAS wild-type ERBB2-amplified tumor showed a substantial decline in tumor-associated T cells and an increase in immunosuppressive intratumoral macrophages. Future studies are needed to carefully assess whether clinicogenomic features, such as lack of liver metastases, ERBB2 amplification, and left-sided tumors, can predict increased sensitivity to PD-1 immunotherapy combinations.
Collapse
Affiliation(s)
- Brandon M Huffman
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Osama E Rahma
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kevin Tyan
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Yvonne Y Li
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Benjamin L Schlechter
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bruno Bockorny
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael P Manos
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew D Cherniack
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Joanna Baginska
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adrián Mariño-Enríquez
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Katrina Z Kao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna K Maloney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Allison Ferro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah Kelland
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kimmie Ng
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Harshabad Singh
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emma L Welsh
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathleen L Pfaff
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Scott J Rodig
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- ImmunoProfile, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - F Stephen Hodi
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - James M Cleary
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
6
|
Failla CM, Carbone ML, Ramondino C, Bruni E, Orecchia A. Vascular Endothelial Growth Factor (VEGF) Family and the Immune System: Activators or Inhibitors? Biomedicines 2024; 13:6. [PMID: 39857591 PMCID: PMC11763294 DOI: 10.3390/biomedicines13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The vascular endothelial growth factor (VEGF) family includes key mediators of vasculogenesis and angiogenesis. VEGFs are secreted by various cells of epithelial and mesenchymal origin and by some immune cells in response to physiological and pathological stimuli. In addition, immune cells express VEGF receptors and/or co-receptors and can respond to VEGFs in an autocrine or paracrine manner. This immunological role of VEGFs has opened the possibility of using the VEGF inhibitors already developed to inhibit tumor angiogenesis also in combination approaches with different immunotherapies to enhance the action of effector T lymphocytes against tumor cells. This review pursues to examine the current understanding of the interplay between VEGFs and the immune system, while identifying key areas that require further evaluation.
Collapse
Affiliation(s)
- Cristina Maria Failla
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (C.M.F.); (C.R.)
| | - Maria Luigia Carbone
- Clinical Trial Center, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| | - Carmela Ramondino
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (C.M.F.); (C.R.)
| | - Emanuele Bruni
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | | |
Collapse
|
7
|
Oura K, Morishita A, Tadokoro T, Fujita K, Tani J, Kobara H. Immune Microenvironment and the Effect of Vascular Endothelial Growth Factor Inhibition in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:13590. [PMID: 39769351 PMCID: PMC11679663 DOI: 10.3390/ijms252413590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Systemic therapy for unresectable hepatocellular carcinoma (HCC) has progressed with the development of multiple kinases, such as vascular endothelial growth factor (VEGF) signaling, targeting cancer growth and angiogenesis. Additionally, the efficacy of sorafenib, regorafenib, lenvatinib, ramucirumab, and cabozantinib has been demonstrated in various clinical trials, and they are now widely used in clinical practice. Furthermore, the development of effective immune checkpoint inhibitors has progressed in systemic therapy for unresectable HCC, and atezolizumab + bevacizumab (atezo/bev) therapy and durvalumab + tremelimumab therapy are now recommended as first-line treatment. Atezo/bev therapy, which combines an anti-programmed cell death 1 ligand 1 antibody with an anti-VEGF antibody, is the first cancer immunotherapy to demonstrate efficacy against unresectable HCC. With the increasing popularity of these treatments, VEGF inhibition is attracting attention from the perspective of its anti-angiogenic effects and impact on the cancer-immune cycle. In this review, we outline the role of VEGF in the tumor immune microenvironment and cancer immune cycle in HCC and outline the potential immune regulatory mechanisms of VEGF. Furthermore, we consider the potential significance of the dual inhibition of angiogenesis and immune-related molecules by VEGF, and ultimately aim to clarify the latest treatment strategies that maximizes efficacy.
Collapse
Affiliation(s)
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita 761-0793, Kagawa, Japan; (K.O.)
| | | | | | | | | |
Collapse
|
8
|
Yang J, Li C, Wang Z, Jiang K. Multi-omics analysis of the biological function of the VEGF family in colon adenocarcinoma. Funct Integr Genomics 2024; 24:210. [PMID: 39527375 PMCID: PMC11554882 DOI: 10.1007/s10142-024-01493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The vascular endothelial growth factor (VEGF) family plays a crucial role in cancer progression, but the prognostic significance and biological functions of VEGF family members in colon adenocarcinoma (COAD) remain unclear. Using data from The Cancer Genome Atlas, Gene Expression Omnibus, Gene Set Cancer Analysis, cBioPortal, GeneMANIA, String, MethSurv and starBase database, we identified vascular endothelial growth factor B (VEGFB) as a key gene associated with COAD prognosis, with its abnormal expression linked to methylation dysregulation. In vitro experiments confirmed VEGFB expression was significantly higher in colon cancer tissues compared to normal tissues, as shown by Real-time quantitative PCR and immunohistochemistry. Cell Counting Kit-8 and colony formation assay showed that decreased VEGFB expression in SW480 cells resulted in decreased cell viability and proliferation ability. Scratch assay showed that VEGFB downregulation impaired SW480 cell migration. In addition, our research suggests that VEGFB not only promotes angiogenesis but is also involved in the tumor microenvironment and immune regulation. The SHNG17-miR-375-VEGFB regulatory axis provides a potential therapeutic target for COAD, highlighting VEGFB's role in immune activation during anti-angiogenic therapy and potential reversal of drug resistance.
Collapse
Affiliation(s)
- Jianqiao Yang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Chen Li
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Zhu Wang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
9
|
Zhen W, Germanas T, Weichselbaum RR, Lin W. Multifunctional Nanomaterials Mediate Cholesterol Depletion for Cancer Treatment. Angew Chem Int Ed Engl 2024; 63:e202412844. [PMID: 39146242 PMCID: PMC11534517 DOI: 10.1002/anie.202412844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Cholesterol is an essential membrane component, and the metabolites from cholesterol play important biological functions to intricately support cancer progression and dampen immune responses. Preclinical and clinical studies have demonstrated the role of cholesterol metabolism regulation on inhibiting tumor growth, remodeling the immunosuppressive tumor microenvironment (TME), and enhancing anti-tumor immunity. In this minireview, we discuss complex cholesterol metabolism in tumors, its important role in cancer progression, and its influences on immune cells in the TME. We provide an overview of recent advances in cancer treatment through regulating cholesterol metabolism. We discuss the design of cholesterol-altering multifunctional nanomaterials to regulate oxidative stress, modulate immune checkpoints, manipulate mechanical stress responses, and alter cholesterol metabolic pathways. Additionally, we examine the interactions between cholesterol metabolism regulation and established cancer treatments with the aim of identifying efficient strategies to disrupt cholesterol metabolism and synergistic combination therapies for effective cancer treatment.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Tomas Germanas
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, 60637, United States
| |
Collapse
|
10
|
Jalil A, Donate MM, Mattei J. Exploring resistance to immune checkpoint inhibitors and targeted therapies in melanoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:42. [PMID: 39534873 PMCID: PMC11555183 DOI: 10.20517/cdr.2024.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Melanoma is the most aggressive form of skin cancer, characterized by a poor prognosis, and its incidence has risen rapidly over the past 30 years. Recent therapies, notably immunotherapy and targeted therapy, have significantly improved the outcome of patients with metastatic melanoma. Previously dismal five-year survival rates of below 5% have shifted to over 50% of patients surviving the five-year mark, marking a significant shift in the landscape of melanoma treatment and survival. Unfortunately, about 50% of patients either do not respond to therapy or experience early or late relapses following an initial response. The underlying mechanisms for primary and secondary resistance to targeted therapies or immunotherapy and relapse patterns remain not fully identified. However, several molecular pathways and genetic factors have been associated with melanoma resistance to these treatments. Understanding these mechanisms paves the way for creating novel treatments that can address resistance and ultimately enhance patient outcomes in melanoma. This review explores the mechanisms behind immunotherapy and targeted therapy resistance in melanoma patients. Additionally, it describes the treatment strategies to overcome resistance, which have improved patients' outcomes in clinical trials and practice.
Collapse
Affiliation(s)
- Anum Jalil
- Department of Medicine, UT Health Science Center San Antonio, San Antonio, TA 78229, USA
| | - Melissa M Donate
- Long School of Medicine, UT Health Science Center San Antonio, San Antonio, TA 78229, USA
| | - Jane Mattei
- Department of Hematology Oncology, UT Health Science Center San Antonio, San Antonio, TA 78229, USA
| |
Collapse
|
11
|
Huang AY, Burke KP, Porter R, Meiger L, Fatouros P, Yang J, Robitschek E, Vokes N, Ricker C, Rosado V, Tarantino G, Chen J, Aprati TJ, Glettig MC, He Y, Wang C, Fu D, Ho LL, Galani K, Freeman GJ, Buchbinder EI, Stephen Hodi F, Kellis M, Boland GM, Sharpe AH, Liu D. Stratified analysis identifies HIF-2 α as a therapeutic target for highly immune-infiltrated melanomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620300. [PMID: 39554029 PMCID: PMC11565796 DOI: 10.1101/2024.10.29.620300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
While immune-checkpoint blockade (ICB) has revolutionized treatment of metastatic melanoma over the last decade, the identification of broadly applicable robust biomarkers has been challenging, driven in large part by the heterogeneity of ICB regimens and patient and tumor characteristics. To disentangle these features, we performed a standardized meta-analysis of eight cohorts of patients treated with anti-PD-1 (n=290), anti-CTLA-4 (n=175), and combination anti-PD-1/anti-CTLA-4 (n=51) with RNA sequencing of pre-treatment tumor and clinical annotations. Stratifying by immune-high vs -low tumors, we found that surprisingly, high immune infiltrate was a biomarker for response to combination ICB, but not anti-PD-1 alone. Additionally, hypoxia-related signatures were associated with non-response to anti-PD-1, but only amongst immune infiltrate-high melanomas. In a cohort of scRNA-seq of patients with metastatic melanoma, hypoxia also correlated with immunosuppression and changes in tumor-stromal communication in the tumor microenvironment (TME). Clinically actionable targets of hypoxia signaling were also uniquely expressed across different cell types. We focused on one such target, HIF-2α, which was specifically upregulated in endothelial cells and fibroblasts but not in immune cells or tumor cells. HIF-2α inhibition, in combination with anti-PD-1, enhanced tumor growth control in pre-clinical models, but only in a more immune-infiltrated melanoma model. Our work demonstrates how careful stratification by clinical and molecular characteristics can be leveraged to derive meaningful biological insights and lead to the rational discovery of novel clinical targets for combination therapy.
Collapse
Affiliation(s)
- Amy Y Huang
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Kelly P Burke
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan Porter
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lynn Meiger
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Fatouros
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jiekun Yang
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
- Rutgers University, New Brunswick, NJ, USA
| | - Emily Robitschek
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Natalie Vokes
- University of Texas MD Anderson Cancer Center, Houston, USA
| | - Cora Ricker
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Valeria Rosado
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Giuseppe Tarantino
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jiajia Chen
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler J Aprati
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc C Glettig
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- ETH Zürich, Zurich, Switzerland
| | - Yiwen He
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cassia Wang
- Massachusetts Institute of Technology, Cambridge, USA
| | - Doris Fu
- Massachusetts Institute of Technology, Cambridge, USA
| | - Li-Lun Ho
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Kyriakitsa Galani
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Gordon J Freeman
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - F Stephen Hodi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Manolis Kellis
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Genevieve M Boland
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Arlene H Sharpe
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Liu
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Luo Z, Gong K. Inflammatory signaling in targeted therapy resistance: focus on EGFR-targeted treatment. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0327. [PMID: 39475221 PMCID: PMC11523269 DOI: 10.20892/j.issn.2095-3941.2024.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Affiliation(s)
- Zhihong Luo
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ke Gong
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
13
|
Lentz RW, Friedrich TJ, Blatchford PJ, Jordan KR, Pitts TM, Robinson HR, Davis SL, Kim SS, Leal AD, Lee MR, Waring MR, Martin AC, Dominguez AT, Bagby SM, Hartman SJ, Eckhardt SG, Messersmith WA, Lieu CH. A Phase II Study of Potentiation of Pembrolizumab with Binimetinib and Bevacizumab in Refractory Microsatellite-Stable Colorectal Cancer. Clin Cancer Res 2024; 30:3768-3778. [PMID: 38869830 PMCID: PMC11369619 DOI: 10.1158/1078-0432.ccr-24-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE In this single-institution phase II investigator-initiated study, we assessed the ability of MAPK and VEGF pathway blockade to overcome resistance to immunotherapy in microsatellite-stable metastatic colorectal cancer (MSS mCRC). PATIENTS AND METHODS Patients with MSS, BRAF wild-type mCRC who progressed on ≥2 prior lines of therapy received pembrolizumab, binimetinib, and bevacizumab until disease progression or unacceptable toxicity. After a safety run-in, patients were randomized to a 7-day run-in of binimetinib or simultaneous initiation of all study drugs, to explore whether MEK inhibition may increase tumor immunogenicity. The primary endpoint was objective response rate (ORR) in all patients combined (by Response Evaluation Criteria in Solid Tumors v1.1). RESULTS Fifty patients received study drug treatment; 54% were male with a median age of 55 years (range, 31-79). The primary endpoint, ORR, was 12.0% [95% confidence interval (CI) 4.5%-24.3%], which was not statistically different than the historical control data of 5% (P = 0.038, exceeding prespecified threshold of 0.025). The disease control rate was 70.0% (95% CI, 55.4%-82.1%), the median progression-free survival 5.9 months (95% CI, 4.2-8.7 months), and the median overall survival 9.3 months (95% CI, 6.7-12.2 months). No difference in efficacy was observed between the randomized cohorts. Grade 3 and 4 adverse events were observed in 56% and 8% of patients, respectively; the most common were rash (12%) and increased aspartate aminotransferase (12%). CONCLUSIONS Pembrolizumab, binimetinib, and bevacizumab failed to meet its primary endpoint of higher ORR compared with historical control data, demonstrated a high disease control rate, and demonstrated acceptable tolerability in refractory MSS mCRC.
Collapse
Affiliation(s)
- Robert W. Lentz
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Tyler J. Friedrich
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Patrick J. Blatchford
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Hannah R. Robinson
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - S. Lindsey Davis
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Sunnie S. Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Alexis D. Leal
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Mathew R. Lee
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Meredith R.N. Waring
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Anne C. Martin
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Adrian T.A. Dominguez
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Sarah J. Hartman
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - S. Gail Eckhardt
- Department of Oncology, The University of Texas at Austin Dell Medical School, Austin, Texas.
| | - Wells A. Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Christopher H. Lieu
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
14
|
Zhang J, Su J, Zhou Y, Lu J. Evaluating the efficacy and safety of trebananib in treating ovarian cancer and non-ovarian cancer patients: a meta-analysis and systematic review. Expert Rev Anticancer Ther 2024; 24:881-891. [PMID: 38970210 DOI: 10.1080/14737140.2024.2377793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVES Due to its anti-angiogenic properties, trebananib is frequently employed in the treatment of cancer patients, particularly those with ovarian cancer. We conducted a meta-analysis to assess the efficacy and safety profile of trebananib in combination with other drugs for treating both ovarian and non-ovarian cancer patients. METHODS Our search encompassed PubMed, Medline, Cochrane, and Embase databases, with a focus on evaluating study quality. Data extraction was conducted from randomized controlled trials (RCTs), and RevMan 5.3 facilitated result analysis. RESULTS Combining trebananib with other drugs extended progression-free survival (PFS) [HR 0.81, (95%CI: 0.65, 0.99), p = 0.04] and overall survival (OS) [HR 0.88, (95%CI: 0.79, 1.00), p = 0.04] in ovarian cancer patients. Ovarian cancer patients exhibited a higher objective response rate (ORR) with trebananib compared to non-ovarian cancer cohorts. Moreover, the incorporation of trebananib into the standard treatment regimen for malignant tumors did not significantly elevate drug-related adverse events [RR 1.05, (95% CI: 1.00, 1.11), p = 0.05]. CONCLUSION Trebananib plus other drugs can improve the PFS, OS and ORR in patients with cancer, especially ovarian cancer. Our recommendation is to use trebananib plus other drugs to treat advanced cancer, and to continuously monitor and manage drug-related adverse events. REGISTRATION PROSPERO (No. CRD42023466988).
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jingyang Su
- Department of General internal medicine, Tongde Hospital Affiliated to Zhejiang Chinese Medical University (Tongde Hospital of Zhejiang Province), Hangzhou, China
| | - Yeyue Zhou
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jinhua Lu
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
15
|
Shajari N, Baradaran B, Tohidkia MR, Nasiri H, Sepehri M, Setayesh S, Aghebati-Maleki L. Advancements in Melanoma Therapies: From Surgery to Immunotherapy. Curr Treat Options Oncol 2024; 25:1073-1088. [PMID: 39066854 DOI: 10.1007/s11864-024-01239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Melanoma is defined as the most aggressive and deadly form of skin cancer. The treatment of melanoma depends on the disease stage, tumor location, and extent of its spread from its point of origin. Melanoma treatment has made significant advances, notably in the context of targeted and immunotherapies. Surgical resection is the main therapeutic option for earlystage melanoma, and it provides favourable outcomes. With disease metastasis, systemic treatments such as immunotherapy and targeted therapy become increasingly important. The identification of mutations that lead to melanoma has influenced treatment strategies. Targeted therapies focusing on these mutations offer improved response rates and fewer toxicities than conventional chemotherapy. Furthermore, developing immunotherapies, including checkpoint inhibitors and tumor-infiltrating lymphocyte (TIL) therapies, has demonstrated encouraging outcomes in effectively combating cancer cells. These therapeutic agents demonstrate superior effectiveness and a more tolerable side-effect profile, improving the quality of life for patients receiving treatment. The future of melanoma treatment may involve a multimodal approach consisting of a combination of surgery, targeted therapy, and immunotherapy adapted to each patient's profile. This approach may improve survival rates and health outcomes.
Collapse
Affiliation(s)
- Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sepehri
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Setayesh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
16
|
Brandenburg A, Heine A, Brossart P. Next-generation cancer vaccines and emerging immunotherapy combinations. Trends Cancer 2024; 10:749-769. [PMID: 39048489 DOI: 10.1016/j.trecan.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Therapeutic cancer vaccines have been a subject of research for several decades as potential new weapons to tackle malignancies. Their goal is to induce a long-lasting and efficient antitumour-directed immune response, capable of mediating tumour regression, preventing tumour progression, and eradicating minimal residual disease, while avoiding major adverse effects. Development of new vaccine technologies and antigen prediction methods has led to significant improvements in cancer vaccine efficacy. However, for their successful clinical application, certain obstacles still need to be overcome, especially tumour-mediated immunosuppression and escape mechanisms. In this review, we introduce therapeutic cancer vaccines and subsequently discuss combination approaches of next-generation cancer vaccines and existing immunotherapies, particularly immune checkpoint inhibitors (ICIs) and adoptive cell transfer/cell-based immunotherapies.
Collapse
Affiliation(s)
- Anne Brandenburg
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Annkristin Heine
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Peter Brossart
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
17
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
18
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
19
|
Shen S, Li X, Guo S, Xu L, Yan N. Camrelizumab combined with anlotinib as second-line therapy for metastatic or recurrent small cell lung cancer: a retrospective cohort study. Front Oncol 2024; 14:1391828. [PMID: 39040456 PMCID: PMC11261159 DOI: 10.3389/fonc.2024.1391828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction This retrospective study evaluates the efficacy of camrelizumab combined with anlotinib versus chemotherapy in patients with extensive-stage small-cell lung cancer (ES-SCLC) undergoing second-line treatment. Methods Data were sourced from medical records at a Chinese medical facility, involving 34 patients diagnosed with ES-SCLC after failing first-line treatment. Patients were divided into two groups: one received camrelizumab (200 mg every 3 weeks) with anlotinib (12 mg daily for 14 days followed by a 7-day rest), while the other group received physician-chosen chemotherapy administered every 3 weeks. The primary endpoint was progression-free survival (PFS), with secondary endpoints including overall survival (OS), objective response rate (ORR), and disease control rate (DCR). Results The combination therapy group showed a significant improvement in PFS compared to the chemotherapy group (median PFS: 7 months vs. 3 months; hazard ratio (HR): 0.34; 95% confidence interval (CI): 0.15-0.77; p<0.001). However, there was no statistically significant difference in OS between the groups (16.3 months vs. 17.3 months; p=0.82). The ORR was 52.9% in the combination therapy group versus 23.5% in the chemotherapy group (p=0.08), and the DCR was 82.4% compared to 58.8% (p=0.26). Grade 3 or higher adverse events were observed in 17.6% of the combination therapy group and 29.4% of the chemotherapy group. Conclusions The findings suggest that the combination of camrelizumab and anlotinib offers a superior anti-tumor response with a manageable safety profile in a second-line setting for ES-SCLC patients. This combination regimen may be a viable option for second-line ES-SCLC treatment.
Collapse
Affiliation(s)
- Shujing Shen
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sanxing Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Xu
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Nanchang, Jiangxi, China
| | - Ningning Yan
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Feldman L. Hypoxia within the glioblastoma tumor microenvironment: a master saboteur of novel treatments. Front Immunol 2024; 15:1384249. [PMID: 38994360 PMCID: PMC11238147 DOI: 10.3389/fimmu.2024.1384249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Glioblastoma (GBM) tumors are the most aggressive primary brain tumors in adults that, despite maximum treatment, carry a dismal prognosis. GBM tumors exhibit tissue hypoxia, which promotes tumor aggressiveness and maintenance of glioma stem cells and creates an overall immunosuppressive landscape. This article reviews how hypoxic conditions overlap with inflammatory responses, favoring the proliferation of immunosuppressive cells and inhibiting cytotoxic T cell development. Immunotherapies, including vaccines, immune checkpoint inhibitors, and CAR-T cell therapy, represent promising avenues for GBM treatment. However, challenges such as tumor heterogeneity, immunosuppressive TME, and BBB restrictiveness hinder their effectiveness. Strategies to address these challenges, including combination therapies and targeting hypoxia, are actively being explored to improve outcomes for GBM patients. Targeting hypoxia in combination with immunotherapy represents a potential strategy to enhance treatment efficacy.
Collapse
Affiliation(s)
- Lisa Feldman
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
21
|
Li S, Sheng J, Zhang D, Qin H. Targeting tumor-associated macrophages to reverse antitumor drug resistance. Aging (Albany NY) 2024; 16:10165-10196. [PMID: 38787372 PMCID: PMC11210230 DOI: 10.18632/aging.205858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Currently, antitumor drugs show limited clinical outcomes, mainly due to adaptive resistance. Clinical evidence has highlighted the importance of the tumor microenvironment (TME) and tumor-associated macrophages (TAMs) in tumor response to conventional antitumor drugs. Preclinical studies show that TAMs following antitumor agent can be reprogrammed to an immunosuppressive phenotype and proangiogenic activities through different mechanisms, mediating drug resistance and poor prognosis. Potential extrinsic inhibitors targeting TAMs repolarize to an M1-like phenotype or downregulate proangiogenic function, enhancing therapeutic efficacy of anti-tumor therapy. Moreover, pharmacological modulation of macrophages that restore the immune stimulatory characteristics is useful to reshaping the tumor microenvironment, thus further limiting tumor growth. This review aims to introduce macrophage response in tumor therapy and provide a potential therapeutic combination strategy of TAM-targeting immunomodulation with conventional antitumor drugs.
Collapse
Affiliation(s)
- Sheng Li
- The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
23
|
He L, Li H, Wang Y, Li W, Gao L, Xu B, Hu J, He P, Pu W, Sun G, Wang Z, Han Q, Liu B, Chen H. Complete remission in a pretreated, microsatellite-stable, KRAS-mutated colon cancer patient after treatment with sintilimab and bevacizumab and platinum-based chemotherapy: a case report and literature review. Front Immunol 2024; 15:1354613. [PMID: 38617840 PMCID: PMC11010642 DOI: 10.3389/fimmu.2024.1354613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024] Open
Abstract
Metastatic colon cancer remains an incurable disease, and it is difficult for existing treatments to achieve the desired clinical outcome, especially for colon cancer patients who have received first-line treatment. Although immune checkpoint inhibitors (ICIs) have demonstrated durable clinical efficacy in a variety of solid tumors, their response requires an inflammatory tumor microenvironment. However, microsatellite-stable (MSS) colon cancer, which accounts for the majority of colorectal cancers, is a cold tumor that does not respond well to ICIs. Combination regimens open the door to the utility of ICIs in cold tumors. Although combination therapies have shown their advantage even for MSS colon cancer, it remains unclear whether combination therapies show their advantage in patients with pretreated metastatic colon cancer. We report a patient who has achieved complete remission and good tolerance with sintilimab plus bevacizumab and platinum-based chemotherapy after postoperative recurrence. The patient had KRAS mutation and MSS-type colon cancer, and his PD-1+CD8+ and CD3-CD19-CD14+CD16-HLA-DR were both positive. He has achieved a progression-free survival of 43 months and is still being followed up at our center. The above results suggest that this therapeutic regimen is a promising treatment modality for the management of pretreated, MSS-type and KRAS-mutated metastatic colorectal cancer although its application to the general public still needs to be validated in clinical trials.
Collapse
Affiliation(s)
- Lijuan He
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Haiyuan Li
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yunpeng Wang
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Weidong Li
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Xu
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jike Hu
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Puyi He
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Weigao Pu
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guodong Sun
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhuanfang Wang
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qinying Han
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ben Liu
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Provincial Key Laboratory Of Environmental Oncology, Lanzhou, China
| |
Collapse
|
24
|
Avino A, Ion DE, Gheoca-Mutu DE, Abu-Baker A, Țigăran AE, Peligrad T, Hariga CS, Balcangiu-Stroescu AE, Jecan CR, Tudor A, Răducu L. Diagnostic and Therapeutic Particularities of Symptomatic Melanoma Brain Metastases from Case Report to Literature Review. Diagnostics (Basel) 2024; 14:688. [PMID: 38611601 PMCID: PMC11011469 DOI: 10.3390/diagnostics14070688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The recent introduction of immunotherapy and targeted therapy has substantially enriched the therapeutic landscape of metastatic melanoma. However, cerebral metastases remain unrelenting entities with atypical metabolic and genetic profiles compared to extracranial metastases, requiring combined approaches with local ablative treatment to alleviate symptoms, prevent recurrence and restore patients' biological and psychological resources for fighting malignancy. This paper aims to provide the latest scientific evidence about the rationale and timing of treatment, emphasizing the complementary roles of surgery, radiotherapy, and systemic therapy in eradicating brain metastases, with a special focus on the distinct response of intracranial and extracranial disease, which are regarded as separate molecular entities. To illustrate the complexity of designing individualized therapeutic schemes, we report a case of delayed BRAF-mutant diagnosis, an aggressive forearm melanoma, in a presumed psychiatric patient whose symptoms were caused by cerebral melanoma metastases. The decision to administer molecularly targeted therapy was dictated by the urgency of diminishing the tumor burden for symptom control, due to potentially life-threatening complications caused by the flourishing of extracranial disease in locations rarely reported in living patients, further proving the necessity of multidisciplinary management.
Collapse
Affiliation(s)
- Adelaida Avino
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Doctoral School, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Daniela-Elena Ion
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Daniela-Elena Gheoca-Mutu
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
- Discipline of Anatomy, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Abdalah Abu-Baker
- Doctoral School, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Andrada-Elena Țigăran
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Teodora Peligrad
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Cristian-Sorin Hariga
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Department of Plastic and Reconstructive Surgery, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Andra-Elena Balcangiu-Stroescu
- Discipline of Physiology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristian-Radu Jecan
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Adrian Tudor
- Discipline of Anatomy and Embriology, University of Medicine, Sciences and Technology “George Emil Palade”, 540139 Targu Mures, Romania;
- Department of General Surgery I, Targu Mures Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Laura Răducu
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| |
Collapse
|
25
|
Nagai H, Mukozu T, Matsui T, Mohri K, Nagumo H, Yoshimine N, Kobayashi K, Ogino Y, Daido Y, Wakui N, Momiyama K, Matsuda T, Igarashi Y, Higai K. Remaining Issues Related to Serum Cytokines in Patients with Unresectable Hepatocellular Carcinoma Treated by Atezolizumab plus Bevacizumab Combination Treatment. Oncology 2024; 102:828-840. [PMID: 38402871 DOI: 10.1159/000537965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Atezolizumab plus bevacizumab (AteBev) combination treatment is widely used as first-line systemic therapy for unresectable hepatocellular carcinoma (uHCC). We aimed to clarify therapeutic issues regarding serum cytokines and the immune reaction in patients with uHCC treated with AteBev. METHODS We analyzed preserved serum from a previous prospective study on adult Japanese patients with chronic liver disease and uHCC who received AteBev treatment at our hospital. In that study, AteBev was administered intravenously every 3 weeks, and blood samples were collected before and after 3 weeks' treatment. Dynamic computed tomography was performed after 6 weeks of treatment to assess response. RESULTS In the prospective study, 21 of the 59 patients showed partial response (PR) and 19 patients showed stable disease, but 19 patients showed progressive disease (PD). We found that serum levels of tumor necrosis factor-alpha, interleukin (IL)-6, and soluble IL-2 receptor (IL-2R) increased significantly in the PR group, but only soluble IL-2R increased significantly in the PD group. Regulatory T cells decreased significantly in the PD group, but there was no significant change in Th1 or Th2 cells from before to after treatment in any group. As regards soluble MHC-class I, pre-treatment levels were significantly lower in the PD group than in the PR group, and serum levels increased significantly with treatment in the PD group. CONCLUSION These findings reveal a need to further improve T-cell priming and to further make T cells recognize tumor antigens in uHCC.
Collapse
Affiliation(s)
- Hidenari Nagai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Takanori Mukozu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Teppei Matsui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kunihide Mohri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hideki Nagumo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Naoyuki Yoshimine
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kojiro Kobayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yu Ogino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yasuko Daido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Noritaka Wakui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Koichi Momiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Takahisa Matsuda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yoshinori Igarashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Koji Higai
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| |
Collapse
|
26
|
Xu X, Ma M, Ye K, Zhang D, Chen X, Wu J, Mo X, Xiao Z, Shi C, Luo L. Magnetic resonance imaging-based approaches for detecting the efficacy of combining therapy following VEGFR-2 and PD-1 blockade in a colon cancer model. J Transl Med 2024; 22:198. [PMID: 38395884 PMCID: PMC10893708 DOI: 10.1186/s12967-024-04975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Angiogenesis inhibitors have been identified to improve the efficacy of immunotherapy in recent studies. However, the delayed therapeutic effect of immunotherapy poses challenges in treatment planning. Therefore, this study aims to explore the potential of non-invasive imaging techniques, specifically intravoxel-incoherent-motion diffusion-weighted imaging (IVIM-DWI) and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), in detecting the anti-tumor response to the combination therapy involving immune checkpoint blockade therapy and anti-angiogenesis therapy in a tumor-bearing animal model. METHODS The C57BL/6 mice were implanted with murine MC-38 cells to establish colon cancer xenograft model, and randomly divided into the control group, anti-PD-1 therapy group, and combination therapy group (VEGFR-2 inhibitor combined with anti-PD-1 antibody treatment). All mice were imaged before and, on the 3rd, 6th, 9th, and 12th day after administration, and pathological examinations were conducted at the same time points. RESULTS The combination therapy group effectively suppressed tumor growth, exhibiting a significantly higher tumor inhibition rate of 69.96% compared to the anti-PD-1 group (56.71%). The f value and D* value of IVIM-DWI exhibit advantages in reflecting tumor angiogenesis. The D* value showed the highest correlation with CD31 (r = 0.702, P = 0.001), and the f value demonstrated the closest correlation with vessel maturity (r = 0.693, P = 0.001). While the BOLD-MRI parameter, R2* value, shows the highest correlation with Hif-1α(r = 0.778, P < 0.001), indicating the capability of BOLD-MRI to evaluate tumor hypoxia. In addition, the D value of IVIM-DWI is closely related to tumor cell proliferation, apoptosis, and infiltration of lymphocytes. The D value was highly correlated with Ki-67 (r = - 0.792, P < 0.001), TUNEL (r = 0.910, P < 0.001) and CD8a (r = 0.918, P < 0.001). CONCLUSIONS The combination of VEGFR-2 inhibitors with PD-1 immunotherapy shows a synergistic anti-tumor effect on the mouse colon cancer model. IVIM-DWI and BOLD-MRI are expected to be used as non-invasive approaches to provide imaging-based evidence for tumor response detection and efficacy evaluation.
Collapse
Affiliation(s)
- Xi Xu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Mengjie Ma
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Kunlin Ye
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Dong Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xinhui Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiayang Wu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xukai Mo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, China.
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, China.
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
27
|
Hwang SY, Woo HY, Heo J, Kim HJ, Park YJ, Yi KY, Lee YR, Park SY, Chung WJ, Jang BK, Tak WY. Outcome of Atezolizumab Plus Bevacizumab Combination Therapy in High-Risk Patients with Advanced Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:838. [PMID: 38398229 PMCID: PMC10887033 DOI: 10.3390/cancers16040838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Real-world data regarding treatment with atezolizumab plus bevacizumab in high-risk patients with advanced HCC are lacking. In this multicenter retrospective cohort study, a total of 215 patients with advanced HCC received atezolizumab plus bevacizumab treatment at four tertiary hospitals. High-risk patients were those with grade Vp4 portal vein thrombus, bile duct invasion, or more than 50% liver infiltration. In total, 98 (45.6%) were the high-risk population, 186 (86.5%) were considered to be Child-Pugh class A, and 128 (59.5%) had previously received neoadjuvant or concomitant radiation treatment. Median overall survival (OS) was 11.25 months (95% CI, 9.50-13.10), and the median progression-free survival (PFS) was 8.00 months (95% CI, 6.82-9.18). In the high-risk population, the median OS was 10 months (95% CI, 8.19-11.82) and the median PFS was 6.50 months (95% CI, 3.93-9.08). In the high-risk population, multivariate analysis indicated that radiation therapy and lower ALBI grade were associated with better OS and PFS. A total of 177 (82.3%) patients experienced adverse events of any grade, the most common being proteinuria (23.7%). Atezolizumab plus bevacizumab treatment showed consistent efficacy and tolerability in both the total and high-risk population. Radiation therapy combined with atezolizumab plus bevacizumab treatment might be helpful to improve PFS and OS in high-risk populations.
Collapse
Affiliation(s)
- Sang Youn Hwang
- Department of Internal Medicine, Dongnam Institute of Radiologic & Medical Sciences, Busan 46033, Republic of Korea; (S.Y.H.); (H.J.K.)
| | - Hyun Young Woo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (H.Y.W.); (Y.J.P.); (K.Y.Y.)
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (H.Y.W.); (Y.J.P.); (K.Y.Y.)
| | - Hyung Jun Kim
- Department of Internal Medicine, Dongnam Institute of Radiologic & Medical Sciences, Busan 46033, Republic of Korea; (S.Y.H.); (H.J.K.)
| | - Young Joo Park
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (H.Y.W.); (Y.J.P.); (K.Y.Y.)
| | - Ki Youn Yi
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (H.Y.W.); (Y.J.P.); (K.Y.Y.)
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (Y.R.L.); (S.Y.P.)
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (Y.R.L.); (S.Y.P.)
| | - Woo Jin Chung
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (W.J.C.); (B.K.J.)
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (W.J.C.); (B.K.J.)
| | - Won Young Tak
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (Y.R.L.); (S.Y.P.)
| |
Collapse
|
28
|
Cho HJ, Yun KH, Shin SJ, Lee YH, Kim SH, Baek W, Han YD, Kim SK, Ryu HJ, Lee J, Cho I, Go H, Ko J, Jung I, Jeon MK, Rha SY, Kim HS. Durvalumab plus pazopanib combination in patients with advanced soft tissue sarcomas: a phase II trial. Nat Commun 2024; 15:685. [PMID: 38263321 PMCID: PMC10806253 DOI: 10.1038/s41467-024-44875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
We aimed to determine the activity of the anti-VEGF receptor tyrosine-kinase inhibitor, pazopanib, combined with the anti-PD-L1 inhibitor, durvalumab, in metastatic and/or recurrent soft tissue sarcoma (STS). In this single-arm phase 2 trial (NCT03798106), treatment consisted of pazopanib 800 mg orally once a day and durvalumab 1500 mg once every 3 weeks. Primary outcome was overall response rate (ORR) and secondary outcomes included progression-free survival (PFS), overall survival, disease control rate, immune-related response criteria, and safety. The ORR was 30.4% and the trial met the pre-specified endpoint. The median PFS was 7.7 months (95% confidence interval: 5.7-10.4). The common treatment-related adverse events of grades 3-4 included neutropenia (9 [19.1%]), elevated aspartate aminotransferase (7 [14.9%]), alanine aminotransferase (5 [10.6%]), and thrombocytopenia (4 [8.5%]). In a prespecified transcriptomic analysis, the B lineage signature was a significant key determinant of overall response (P = 0.014). In situ analysis also showed that tumours with high CD20+ B cell infiltration and vessel density had a longer PFS (P = 6.5 × 10-4) than those with low B cell infiltration and vessel density, as well as better response (50% vs 12%, P = 0.019). CD20+ B cell infiltration was identified as the only independent predictor of PFS via multivariate analysis. Durvalumab combined with pazopanib demonstrated promising efficacy in an unselected STS cohort, with a manageable toxicity profile.
Collapse
Affiliation(s)
- Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, CMRI, Kyungpook National University, Daegu, Republic of Korea
| | - Kum-Hee Yun
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Han Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wooyeol Baek
- Department of Plastic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Kyum Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyang Joo Ryu
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joohee Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Iksung Cho
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwon Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyung Jeon
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Baginska J, Nau A, Gomez Diaz I, Giobbie-Hurder A, Weirather J, Vergara J, Abrecht C, Hallisey M, Dennis J, Severgnini M, Huezo J, Marciello I, Rahma O, Manos M, Brohl AS, Bedard PL, Renouf DJ, Sharon E, Streicher H, Ott PA, Buchbinder EI, Hodi FS. Ziv-aflibercept plus pembrolizumab in patients with advanced melanoma resistant to anti-PD-1 treatment. Cancer Immunol Immunother 2024; 73:17. [PMID: 38236249 PMCID: PMC10796592 DOI: 10.1007/s00262-023-03593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Vascular endothelial growth factor is associated with reduced immune response and impaired anti-tumor activity. Combining antiangiogenic agents with immune checkpoint inhibition can overcome this immune suppression and enhance treatment efficacy. METHODS This study investigated the combination of ziv-aflibercept anti-angiogenic therapy with pembrolizumab in patients with advanced melanoma resistant to anti-PD-1 treatment. Baseline and on-treatment plasma and PBMC samples were analyzed by multiplex protein assay and mass cytometry, respectively. RESULTS In this Phase 1B study (NCT02298959), ten patients with advanced PD-1-resistant melanoma were treated with a combination of ziv-aflibercept (at 2-4 mg/kg) plus pembrolizumab (at 2 mg/kg), administered intravenously every 2 weeks. Two patients (20%) achieved a partial response, and two patients (20%) experienced stable disease (SD) as the best response. The two responders had mucosal melanoma, while both patients with SD had ocular melanoma. The combination therapy demonstrated clinical activity and acceptable safety, despite the occurrence of adverse events. Changes in plasma analytes such as platelet-derived growth factor and PD-L1 were explored, indicating potential alterations in myeloid cell function. Higher levels of circulating CXCL10 in non-responding patients may reflect pro-tumor activity. Specific subsets of γδ T cells were associated with poor clinical outcomes, suggesting impaired γδ T-cell function in non-responding patients. CONCLUSIONS Although limited by sample size and follow-up, these findings highlight the potential of the combination of ziv-aflibercept antiangiogenic therapy with pembrolizumab in patients with advanced melanoma resistant to anti-PD-1 treatment and the need for further research to improve outcomes in anti-PD-1-resistant melanoma. TRIAL REGISTRATION NUMBER NCT02298959.
Collapse
Affiliation(s)
- Joanna Baginska
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Allison Nau
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ilana Gomez Diaz
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Jason Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juliana Vergara
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charlotte Abrecht
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Margaret Hallisey
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jenna Dennis
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mariano Severgnini
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Julia Huezo
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabella Marciello
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Osama Rahma
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Manos
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew S Brohl
- Sarcoma Department and Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Daniel J Renouf
- Cancer and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Elad Sharon
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Patrick A Ott
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elizabeth I Buchbinder
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
30
|
Vitiello L, Lixi F, Coco G, Giannaccare G. Ocular Surface Side Effects of Novel Anticancer Drugs. Cancers (Basel) 2024; 16:344. [PMID: 38254833 PMCID: PMC10814578 DOI: 10.3390/cancers16020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Surgery, anticancer drugs (chemotherapy, hormonal medicines, and targeted treatments), and/or radiation are common treatment strategies for neoplastic diseases. Anticancer drugs eliminate malignant cells through the inhibition of specific pathways that contribute to the formation and development of cancer. Given the ability of such pharmacological medications to combat cancerous cells, their role in the management of neoplastic diseases has become essential. However, these drugs may also lead to undesirable systemic and ocular adverse effects due to cyto/neuro-toxicity and inflammatory reactions. Ocular surface side effects are recognized to significantly impact patient's quality of life and quality of vision. Blepharoconjunctivitis is known to be a common side effect caused by oxaliplatin, cyclophosphamide, cytarabine, and docetaxel, while anastrozole, methotrexate, and 5-fluorouracil can all determine dry eye disease. However, the potential processes involved in the development of these alterations are yet not fully understood, especially for novel drugs currently available for cancer treatment. This review aims at analyzing the potential ocular surface and adnexal side effects of novel anticancer medications, trying to provide a better understanding of the underlying pharmacological processes and useful insights on the choice of proper management.
Collapse
Affiliation(s)
- Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy;
| | - Filippo Lixi
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy;
| | - Giulia Coco
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy;
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy;
| |
Collapse
|
31
|
Li A, Fang J. Anti‐angiogenic therapy enhances cancer immunotherapy: Mechanism and clinical application. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/04/2025]
Abstract
AbstractImmunotherapy, specifically immune checkpoint inhibitors, is revolutionizing cancer treatment, achieving durable control of previously incurable or advanced tumors. However, only a certain group of patients exhibit effective responses to immunotherapy. Anti‐angiogenic therapy aims to block blood vessel growth in tumors by depriving them of essential nutrients and effectively impeding their growth. Emerging evidence shows that tumor vessels exhibit structural and functional abnormalities, resulting in an immunosuppressive microenvironment and poor response to immunotherapy. Both preclinical and clinical studies have used anti‐angiogenic agents to enhance the effectiveness of immunotherapy against cancer. In this review, we concentrate on the synergistic effect of anti‐angiogenic and immune therapies in cancer management, dissect the direct effects and underlying mechanisms of tumor vessels on recruiting and activating immune cells, and discuss the potential of anti‐angiogenic agents to improve the effectiveness of immunotherapy. Lastly, we outline challenges and opportunities for the anti‐angiogenic strategy to enhance immunotherapy. Considering the increasing approval of the combination of anti‐angiogenic and immune therapies in treating cancers, this comprehensive review would be timely and important.
Collapse
Affiliation(s)
- An‐Qi Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
| | - Jian‐Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
- Department of Hepatobiliary Surgery I General Surgery Center Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
32
|
Tabasum S, Thapa D, Giobbie-Hurder A, Weirather JL, Campisi M, Schol PJ, Li X, Li J, Yoon CH, Manos MP, Barbie DA, Hodi FS. EDIL3 as an Angiogenic Target of Immune Exclusion Following Checkpoint Blockade. Cancer Immunol Res 2023; 11:1493-1507. [PMID: 37728484 PMCID: PMC10618652 DOI: 10.1158/2326-6066.cir-23-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint blockade (ICB) has become the standard of care for several solid tumors. Multiple combinatorial approaches have been studied to improve therapeutic efficacy. The combination of antiangiogenic agents and ICB has demonstrated efficacy in several cancers. To improve the mechanistic understanding of synergies with these treatment modalities, we performed screens of sera from long-term responding patients treated with ipilimumab and bevacizumab. We discovered a high-titer antibody response against EGF-like repeats and discoidin I-like domains protein 3 (EDIL3) that correlated with favorable clinical outcomes. EDIL3 is an extracellular protein, previously identified as a marker of poor prognosis in various malignancies. Our Tumor Immune Dysfunction and Exclusion analysis predicted that EDIL3 was associated with immune exclusion signatures for cytotoxic immune cell infiltration and nonresponse to ICB. Cancer-associated fibroblasts (CAF) were predicted as the source of EDIL3 in immune exclusion-related cells. Furthermore, The Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) and CheckMate 064 data analyses correlated high levels of EDIL3 with increased pan-fibroblast TGFβ response, enrichment of angiogenic signatures, and induction of epithelial-to-mesenchymal transition. Our in vitro studies validated EDIL3 overexpression and TGFβ regulation in patient-derived CAFs. In pretreatment serum samples from patients, circulating levels of EDIL3 were associated with circulating levels of VEGF, and like VEGF, EDIL3 increased the angiogenic abilities of patient-derived tumor endothelial cells (TEC). Mechanistically, three-dimensional microfluidic cultures and two-dimensional transmigration assays with TEC endorsed EDIL3-mediated disruption of the lymphocyte function-associated antigen-1 (LFA-1)-ICAM-1 interaction as a possible means of T-cell exclusion. We propose EDIL3 as a potential target for improving the transendothelial migration of immune cells and efficacy of ICB therapy.
Collapse
Affiliation(s)
- Saba Tabasum
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Dinesh Thapa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason L. Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Pieter J. Schol
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Xiaoyu Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jingjing Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Charles H. Yoon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael P. Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Wang MM, Coupland SE, Aittokallio T, Figueiredo CR. Resistance to immune checkpoint therapies by tumour-induced T-cell desertification and exclusion: key mechanisms, prognostication and new therapeutic opportunities. Br J Cancer 2023; 129:1212-1224. [PMID: 37454231 PMCID: PMC10575907 DOI: 10.1038/s41416-023-02361-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Immune checkpoint therapies (ICT) can reinvigorate the effector functions of anti-tumour T cells, improving cancer patient outcomes. Anti-tumour T cells are initially formed during their first contact (priming) with tumour antigens by antigen-presenting cells (APCs). Unfortunately, many patients are refractory to ICT because their tumours are considered to be 'cold' tumours-i.e., they do not allow the generation of T cells (so-called 'desert' tumours) or the infiltration of existing anti-tumour T cells (T-cell-excluded tumours). Desert tumours disturb antigen processing and priming of T cells by targeting APCs with suppressive tumour factors derived from their genetic instabilities. In contrast, T-cell-excluded tumours are characterised by blocking effective anti-tumour T lymphocytes infiltrating cancer masses by obstacles, such as fibrosis and tumour-cell-induced immunosuppression. This review delves into critical mechanisms by which cancer cells induce T-cell 'desertification' and 'exclusion' in ICT refractory tumours. Filling the gaps in our knowledge regarding these pro-tumoral mechanisms will aid researchers in developing novel class immunotherapies that aim at restoring T-cell generation with more efficient priming by APCs and leukocyte tumour trafficking. Such developments are expected to unleash the clinical benefit of ICT in refractory patients.
Collapse
Affiliation(s)
- Mona Meng Wang
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
- Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore
| | - Sarah E Coupland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Liverpool Ocular Oncology Research Group (LOORG), Institute of Systems Molecular and Integrative Biology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Tero Aittokallio
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku, Turku, Finland.
| |
Collapse
|
34
|
Brest P, Mograbi B, Pagès G, Hofman P, Milano G. Checkpoint inhibitors and anti-angiogenic agents: a winning combination. Br J Cancer 2023; 129:1367-1372. [PMID: 37735244 PMCID: PMC10628191 DOI: 10.1038/s41416-023-02437-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The combination of immune checkpoint inhibitors and anti-angiogenic agents is a promising new approach in cancer treatment. Immune checkpoint inhibitors block the signals that help cancer cells evade the immune system, while anti-angiogenic agents target the blood vessels that supply the tumour with nutrients and oxygen, limiting its growth. Importantly, this combination triggers synergistic effects based on molecular and cellular mechanisms, leading to better response rates and longer progression-free survival than treatment alone. However, these combinations can also lead to increased side effects and require close monitoring.
Collapse
Affiliation(s)
- Patrick Brest
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France.
| | - Baharia Mograbi
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France
| | - Gilles Pagès
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France
- Université Côte d'Azur, CHU-Nice, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Nice, France
| | - Gerard Milano
- Centre Antoine Lacassagne, Scientific Valorisation Department, Nice, France
| |
Collapse
|
35
|
Carloni R, Sabbioni S, Rizzo A, Ricci AD, Palloni A, Petrarota C, Cusmai A, Tavolari S, Gadaleta-Caldarola G, Brandi G. Immune-Based Combination Therapies for Advanced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1445-1463. [PMID: 37701562 PMCID: PMC10493094 DOI: 10.2147/jhc.s390963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most frequent cause of cancer-related death worldwide. HCC frequently presents as advanced disease at diagnosis, and disease relapse following radical surgery is frequent. In recent years, immune checkpoint inhibitors (ICIs) have revolutionized the treatment of advanced HCC, particularly with the introduction of atezolizumab/bevacizumab as the new standard of care for first-line treatment. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective first-line treatment for advanced HCC and most of the research is currently focused on developing combination treatments based mainly on ICIs. In this review, we will discuss the rationale and ongoing clinical trials of immune-based combination therapies for the treatment of advanced HCC, also focusing on new immunotherapy strategies such as chimeric antigen receptor T cells (CAR-T) and anti-cancer vaccines.
Collapse
Affiliation(s)
- Riccardo Carloni
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Sabbioni
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, “Saverio de Bellis” Research Hospital, Bari, Italy
| | - Andrea Palloni
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cataldo Petrarota
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Antonio Cusmai
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Simona Tavolari
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
36
|
Fang J, Lu Y, Zheng J, Jiang X, Shen H, Shang X, Lu Y, Fu P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis 2023; 14:586. [PMID: 37666809 PMCID: PMC10477350 DOI: 10.1038/s41419-023-06119-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is a highly intricate milieu, comprising a multitude of components, including immune cells and stromal cells, that exert a profound influence on tumor initiation and progression. Within the TME, angiogenesis is predominantly orchestrated by endothelial cells (ECs), which foster the proliferation and metastasis of malignant cells. The interplay between tumor and immune cells with ECs is complex and can either bolster or hinder the immune system. Thus, a comprehensive understanding of the intricate crosstalk between ECs and immune cells is essential to advance the development of immunotherapeutic interventions. Despite recent progress, the underlying molecular mechanisms that govern the interplay between ECs and immune cells remain elusive. Nevertheless, the immunomodulatory function of ECs has emerged as a pivotal determinant of the immune response. In light of this, the study of the relationship between ECs and immune checkpoints has garnered considerable attention in the field of immunotherapy. By targeting specific molecular pathways and signaling molecules associated with ECs in the TME, novel immunotherapeutic strategies may be devised to enhance the efficacy of current treatments. In this vein, we sought to elucidate the relationship between ECs, immune cells, and immune checkpoints in the TME, with the ultimate goal of identifying novel therapeutic targets and charting new avenues for immunotherapy.
Collapse
Affiliation(s)
- Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, 313000, Huzhou, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People's Hospital, The Six Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Haixing Shen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Department of Breast and Thyroid Surgery, Cixi People's Hospital, 315300, Cixi, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, 318000, Taizhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| |
Collapse
|
37
|
Schuster C, Akslen LA, Straume O. β2-adrenergic receptor expression in patients receiving bevacizumab therapy for metastatic melanoma. Cancer Med 2023; 12:17891-17900. [PMID: 37551424 PMCID: PMC10524038 DOI: 10.1002/cam4.6424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) was initially known as vascular permeability factor and identified as a driver of tumour angiogenesis. Recently, its role in supporting an immunosuppressive tumour microenvironment was demonstrated, and anti-VEGF treatment combined with immune checkpoint blockade is currently investigated. Further, beta-adrenergic signalling as a modifier of cancer hallmarks like immune response, angiogenesis and metastasis gained increased attention during past years. METHODS Focusing on the aspect of immunosuppression in upregulated beta-adrenergic signalling, we investigated predictive markers in patients with metastatic melanoma who received bevacizumab monotherapy, a specific VEGF-A binding antibody. We explored the expression of beta-2 adrenergic receptor (β2-AR), interleukin 6-receptor (IL6-R), cyclooxygenase 2 (COX2) and VEGF-A by immunohistochemistry in melanoma to assess the correlation between these proteins in melanoma cells and response to treatment. RESULTS Strong β2-AR expression in metastases was associated with clinical benefit of bevacizumab. Furthermore, expression of the latter was positively linked to expression of VEGF-A and COX2. β2-AR expression in melanoma metastasis appears to distinguish a subgroup of patients that might benefit from anti-VEGF treatment. CONCLUSION Our results strengthen further exploration of anti-VEGF therapy in combination with immune checkpoint blockade in clinical studies and the investigation of β2-AR as predictive marker.
Collapse
Affiliation(s)
- Cornelia Schuster
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | - Lars A. Akslen
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Oddbjørn Straume
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| |
Collapse
|
38
|
Qin Z, Zheng M. Advances in targeted therapy and immunotherapy for melanoma (Review). Exp Ther Med 2023; 26:416. [PMID: 37559935 PMCID: PMC10407994 DOI: 10.3892/etm.2023.12115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer and is known for its poor prognosis as soon as metastasis occurs. Since 2011, new and effective therapies for metastatic melanoma have emerged, with US Food and Drug Administration approval of multiple targeted agents, such as V-Raf murine sarcoma viral oncogene homolog B1/mitogen-activated protein kinase kinase inhibitors and multiple immunotherapy agents, such as cytotoxic T lymphocyte-associated protein 4 and anti-programmed cell death protein 1/ligand 1 blockade. Based on insight into the respective advantages of the above two strategies, the present article provided a review of clinical trials of the application of targeted therapy and immunotherapy, as well as novel approaches of their combinations for the treatment of metastatic melanoma in recent years, with a focus on upcoming initiatives to improve the efficacy of these treatment approaches for metastatic melanoma.
Collapse
Affiliation(s)
- Ziyao Qin
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| | - Mei Zheng
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| |
Collapse
|
39
|
Mooradian MJ, Sullivan RJ. Immunotherapy in Melanoma: Recent Advancements and Future Directions. Cancers (Basel) 2023; 15:4176. [PMID: 37627204 PMCID: PMC10452647 DOI: 10.3390/cancers15164176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibition has fundamentally altered the treatment paradigm of resectable and unresectable melanoma, resulting in dramatic improvements in patient outcomes. With these advances, the five-year overall survival in patients with newly diagnosed unresectable disease has eclipsed 50%. Ongoing research is focused on improving outcomes further, with a considerable emphasis on preventing de novo and acquired resistance and personalizing therapeutic options. Here, we review the ongoing advancements in the treatment of malignant melanoma, focusing on novel combination strategies that aim to build upon the successes of the last decade.
Collapse
|
40
|
Han X, Ge P, Liu S, Yang D, Zhang J, Wang X, Liang W. Efficacy and safety of bevacizumab in patients with malignant melanoma: a systematic review and PRISMA-compliant meta-analysis of randomized controlled trials and non-comparative clinical studies. Front Pharmacol 2023; 14:1163805. [PMID: 37521468 PMCID: PMC10374288 DOI: 10.3389/fphar.2023.1163805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Malignant melanoma is a highly aggressive cancer that spreads and metastasizes quickly. In recent years, the antiangiogenic drug bevacizumab has been trialed to treat malignant melanoma. We conducted the first meta-analysis to examine the efficacy and safety of bevacizumab combined with other drugs in malignant melanoma. Methods: We searched for randomized controlled trials (RCTs) and non-comparative clinical studies of bevacizumab combined with chemotherapy, targeted medicine, and interferon to treat malignant melanoma in PubMed, Embase, the Cochrane Library, and Web of Science. Meta-analysis of RCT was performed using Review Manager (version 5.4), and non-comparative meta-analysis was performed using R (version 4.0.3). The primary outcome was the objective response rate. Depending on the heterogeneity of the included studies, the pooled outcomes and 95% CI were calculated using either random-effects or fixed-effect models. Subgroup outcomes were calculated with possible relevant variables. Sensitivity analyses were carried out by excluding each study from the highly heterogeneous pooled results in turn. Funnel plot and Begg's test were used to test the included studies' potential publication bias. The level of significance was set at p < 0.05. Results: This meta-analysis included 20 trials: five RCTs and 15 non-comparative clinical studies with a total of 23 bevacizumab intervention arms. In 14 treatment arms, bevacizumab was combined with chemotherapy drugs such as fotemustine, dacarbazine, carboplatin/paclitaxel, and temozolomide. In six treatment arms, bevacizumab was combined with targeted medicines such as imatinib, everolimus, sorafenib, erlotinib, and temsirolimus. There were also six treatment arms that used bevacizumab in combination with interferon. The pooled objective response rate was 15.8% (95% CI, 11.4%-20.2%). Bevacizumab plus carboplatin/paclitaxel significantly increased the overall survival compared to carboplatin/paclitaxel (HR = 0.64, 95% CI, 0.49-0.85, p < 0.01). Fatigue, nausea, leukopenia, thrombocytopenia, and neutropenia were the most common adverse events. The pooled incidence of hypertension of all bevacizumab arms in malignant melanoma was 32.4% (95% CI, 24.5%-40.3%). Conclusion: This study showed that bevacizumab combined with chemotherapy might be effective and well-tolerated in patients with stage III or IV unresectable malignant melanoma. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=304625], identifier [CRD42022304625].
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sat University, Zhuhai, China
| | - Pu Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Liu
- School of Stomatology, Shandong University, Jinan, China
| | - Dandan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinzi Zhang
- School of Humanities and Social Sciences, Harbin Medical University, Harbin, China
| | - Xinpei Wang
- Medical Equipment Department, Peking University First Hospital, Beijing, China
| | - Weiting Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
41
|
Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol 2023; 20:694-713. [PMID: 37069229 PMCID: PMC10310771 DOI: 10.1038/s41423-023-01019-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The B7/CD28 families of immune checkpoints play vital roles in negatively or positively regulating immune cells in homeostasis and various diseases. Recent basic and clinical studies have revealed novel biology of the B7/CD28 families and new therapeutics for cancer therapy. In this review, we discuss the newly discovered KIR3DL3/TMIGD2/HHLA2 pathways, PD-1/PD-L1 and B7-H3 as metabolic regulators, the glycobiology of PD-1/PD-L1, B7x (B7-H4) and B7-H3, and the recently characterized PD-L1/B7-1 cis-interaction. We also cover the tumor-intrinsic and -extrinsic resistance mechanisms to current anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapies in clinical settings. Finally, we review new immunotherapies targeting B7-H3, B7x, PD-1/PD-L1, and CTLA-4 in current clinical trials.
Collapse
Affiliation(s)
- Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Anne T Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Devin T Corrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
42
|
Park HR, Shiva A, Cummings P, Kim S, Kim S, Lee E, Leong A, Chowdhury S, Shawber C, Carvajal R, Thurston G, An JY, Lund AW, Yang HW, Kim M. Angiopoietin-2-Dependent Spatial Vascular Destabilization Promotes T-cell Exclusion and Limits Immunotherapy in Melanoma. Cancer Res 2023; 83:1968-1983. [PMID: 37093870 PMCID: PMC10267677 DOI: 10.1158/0008-5472.can-22-2838] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
T-cell position in the tumor microenvironment determines the probability of target encounter and tumor killing. CD8+ T-cell exclusion from the tumor parenchyma is associated with poor response to immunotherapy, and yet the biology that underpins this distinct pattern remains unclear. Here we show that the vascular destabilizing factor angiopoietin-2 (ANGPT2) causes compromised vascular integrity in the tumor periphery, leading to impaired T-cell infiltration to the tumor core. The spatial regulation of ANGPT2 in whole tumor cross-sections was analyzed in conjunction with T-cell distribution, vascular integrity, and response to immunotherapy in syngeneic murine melanoma models. T-cell exclusion was associated with ANGPT2 upregulation and elevated vascular leakage at the periphery of human and murine melanomas. Both pharmacologic and genetic blockade of ANGPT2 promoted CD8+ T-cell infiltration into the tumor core, exerting antitumor effects. Importantly, the reversal of T-cell exclusion following ANGPT2 blockade not only enhanced response to anti-PD-1 immune checkpoint blockade therapy in immunogenic, therapy-responsive mouse melanomas, but it also rendered nonresponsive tumors susceptible to immunotherapy. Therapeutic response after ANGPT2 blockade, driven by improved CD8+ T-cell infiltration to the tumor core, coincided with spatial TIE2 signaling activation and increased vascular integrity at the tumor periphery where endothelial expression of adhesion molecules was reduced. These data highlight ANGPT2/TIE2 signaling as a key mediator of T-cell exclusion and a promising target to potentiate immune checkpoint blockade efficacy in melanoma. SIGNIFICANCE ANGPT2 limits the efficacy of immunotherapy by inducing vascular destabilization at the tumor periphery to promote T-cell exclusion.
Collapse
Affiliation(s)
- Ha-Ram Park
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Anahita Shiva
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Portia Cummings
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Seoyeon Kim
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Eunhyeong Lee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Alessandra Leong
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Subrata Chowdhury
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Carrie Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Richard Carvajal
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Joon-Yong An
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
43
|
Liu QL, Zhou H, Zhou ZG, Chen HN. Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev 2023; 42:575-587. [PMID: 37061644 DOI: 10.1007/s10555-023-10107-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Colorectal cancer (CRC) patients frequently develop liver metastases, which are the major cause of cancer-related mortality. The molecular basis and management of colorectal liver metastases (CRLMs) remain a challenging clinical issue. Recent genomic evidence has demonstrated the liver tropism of CRC and the presence of a stricter evolutionary bottleneck in the liver as a target organ compared to lymph nodes. This bottleneck challenging CRC cells in the liver is organ-specific and requires adaptation not only at the genetic level, but also at the phenotypic level to crosstalk with the hepatic microenvironment. Here, we highlight the emerging evidence on the clonal evolution of CRLM and review recent insights into the molecular mechanisms orchestrating the bidirectional interactions between metastatic CRC cells and the unique liver microenvironment.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huijie Zhou
- Department of Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zong-Guang Zhou
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hai-Ning Chen
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
44
|
Shi F, Huang X, Hong Z, Lu N, Huang X, Liu L, Liang T, Bai X. Improvement strategy for immune checkpoint blockade: A focus on the combination with immunogenic cell death inducers. Cancer Lett 2023; 562:216167. [PMID: 37031916 DOI: 10.1016/j.canlet.2023.216167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Cancer immunotherapies have yielded promising outcomes in various malignant tumors by blocking specific immune checkpoint molecules, such as programmed cell death 1 and cytotoxic T lymphocyte antigen 4. However, only a few patients respond to immune checkpoint blockade therapy because of the poor immunogenicity of tumor cells and immune-suppressive tumor microenvironment. Accumulating evidence suggests that chemotherapeutic agents, including oxaliplatin and doxorubicin, not only mediate direct cytotoxicity in tumor cells but also induce immunogenic cancer cell death to stimulate a powerful anti-cancer immune response in the tumor microenvironment. In this review, we summarize the recent advances in cancer combination therapy based on immune checkpoint inhibitors plus immunogenic cell death inducers. Despite some clinical failures and challenges, immunogenic cell death inducers have displayed great potential when combined with immune checkpoint inhibitors for anti-cancer treatment in both preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Fukang Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Na Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xin Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lingyue Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
45
|
Tran TT, Caulfield J, Zhang L, Schoenfeld D, Djureinovic D, Chiang VL, Oria V, Weiss SA, Olino K, Jilaveanu LB, Kluger HM. Lenvatinib or anti-VEGF in combination with anti-PD-1 differentially augments antitumor activity in melanoma. JCI Insight 2023; 8:e157347. [PMID: 36821392 PMCID: PMC10132152 DOI: 10.1172/jci.insight.157347] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/22/2023] [Indexed: 02/24/2023] Open
Abstract
Targeting tumor-associated blood vessels to increase immune infiltration may enhance treatment effectiveness, yet limited data exist regarding anti-angiogenesis effects on the tumor microenvironment (TME). We hypothesized that dual targeting of angiogenesis with immune checkpoints would improve both intracranial and extracranial disease. We used subcutaneous and left ventricle melanoma models to evaluate anti-PD-1/anti-VEGF and anti-PD-1/lenvatinib (pan-VEGFR inhibitor) combinations. Cytokine/chemokine profiling and flow cytometry were performed to assess signaling and immune-infiltrating populations. An in vitro blood-brain barrier (BBB) model was utilized to study intracranial treatment effects on endothelial integrity and leukocyte transmigration. Anti-PD-1 with either anti-VEGF or lenvatinib improved survival and decreased tumor growth in systemic melanoma murine models; treatment increased Th1 cytokine/chemokine signaling. Lenvatinib decreased tumor-associated macrophages but increased plasmacytoid DCs early in treatment; this effect was not evident with anti-VEGF. Both lenvatinib and anti-VEGF resulted in decreased intratumoral blood vessels. Although anti-VEGF promoted endothelial stabilization in an in vitro BBB model, while lenvatinib did not, both regimens enabled leukocyte transmigration. The combined targeting of PD-1 and VEGF or its receptors promotes enhanced melanoma antitumor activity, yet their effects on the TME are quite different. These studies provide insights into dual anti-PD-1 and anti-angiogenesis combinations.
Collapse
Affiliation(s)
- Thuy T. Tran
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Jasmine Caulfield
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Lin Zhang
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - David Schoenfeld
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Dijana Djureinovic
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Veronica L. Chiang
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
- Yale School of Medicine, Department of Neurosurgery, New Haven, Connecticut, USA
| | - Victor Oria
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Sarah A. Weiss
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Kelly Olino
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
- Yale School of Medicine, Department of Surgery, New Haven, Connecticut, USA
| | - Lucia B. Jilaveanu
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Harriet M. Kluger
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Awad RM, Breckpot K. Novel technologies for applying immune checkpoint blockers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:1-101. [PMID: 38225100 DOI: 10.1016/bs.ircmb.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
47
|
Tian Y, Hu Q, Zhang R, Zhou B, Xie D, Wang Y, Yang L. Combining an adenovirus encoding human endostatin and PD‐1 blockade enhanced antitumor immune activity. MEDCOMM – ONCOLOGY 2023; 2. [DOI: 10.1002/mog2.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/14/2022] [Indexed: 03/19/2025]
Abstract
AbstractTreatment with immune checkpoint inhibitors (ICIs) has recently achieved unprecedented clinical benefits, becoming a critical treatment for patients with cancer. However, a set of patients are resistant to immune checkpoint inhibitor therapy, likely due to the limited presence or lack of tumor‐infiltrating lymphocytes in their tumors. Increasing data indicate that antiangiogenic therapy substantially reduces cancer‐induced immunosuppression and is an effective way to enhance the efficacy of cancer immunotherapies by combination with ICIs. Endostatin, an angiogenesis inhibitor, has been widely used as an antiangiogenic therapy for cancer. We showed that combined therapy with an adenovirus encoding human endostatin, named Ad‐E, and programmed cell death‐1 (PD‐1) blockade dramatically abrogated tumor growth, inhibited microvessel density, and promoted tumor apoptosis, compared to treatment with the single agents. Further investigation using flow cytometry showed that combined therapy significantly increased CD8+ T‐cell infiltration into tumors and promoted the level of CD8+ IFN‐γ+ T cells. Moreover, combined therapy effectively reduced the frequencies of CD11b+ F4/80+ tumor‐associated macrophages (TAMs) and slightly increased M1/M2 ratio in the tumors. RNA‐seq analysis of tumor tissue following combined therapy also demonstrated upregulated expression of genes associated with the antitumor immune response. These data support the rationale for combining antiangiogenic and ICIs for cancer therapy.
Collapse
Affiliation(s)
- Yaomei Tian
- Department of Biotherapy, Cancer Center, West China Hospital Sichuan University Chengdu Chengdu Sichuan China
- College of Bioengineering Sichuan University of Science & Engineering Zigong Sichuan China
| | - Qieyue Hu
- Department of Biotherapy, Cancer Center, West China Hospital Sichuan University Chengdu Chengdu Sichuan China
| | - Rui Zhang
- Department of Biotherapy, Cancer Center, West China Hospital Sichuan University Chengdu Chengdu Sichuan China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center, West China Hospital Sichuan University Chengdu Chengdu Sichuan China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center, West China Hospital Sichuan University Chengdu Chengdu Sichuan China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center, West China Hospital Sichuan University Chengdu Chengdu Sichuan China
| | - Li Yang
- Department of Biotherapy, Cancer Center, West China Hospital Sichuan University Chengdu Chengdu Sichuan China
| |
Collapse
|
48
|
Circulating galectin-1 delineates response to bevacizumab in melanoma patients and reprograms endothelial cell biology. Proc Natl Acad Sci U S A 2023; 120:e2214350120. [PMID: 36634146 PMCID: PMC9934167 DOI: 10.1073/pnas.2214350120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Blockade of vascular endothelial growth factor (VEGF) signaling with bevacizumab, a humanized anti-VEGF monoclonal antibody (mAb), or with receptor tyrosine kinase inhibitors, has improved progression-free survival and, in some indications, overall survival across several types of cancers by interrupting tumor angiogenesis. However, the clinical benefit conferred by these therapies is variable, and tumors from treated patients eventually reinitiate growth. Previously we demonstrated, in mouse tumor models, that galectin-1 (Gal1), an endogenous glycan-binding protein, preserves angiogenesis in anti-VEGF-resistant tumors by co-opting the VEGF receptor (VEGFR)2 signaling pathway in the absence of VEGF. However, the relevance of these findings in clinical settings is uncertain. Here, we explored, in a cohort of melanoma patients from AVAST-M, a multicenter, open-label, randomized controlled phase 3 trial of adjuvant bevacizumab versus standard surveillance, the role of circulating plasma Gal1 as part of a compensatory mechanism that orchestrates endothelial cell programs in bevacizumab-treated melanoma patients. We found that increasing Gal1 levels over time in patients in the bevacizumab arm, but not in the observation arm, significantly increased their risks of recurrence and death. Remarkably, plasma Gal1 was functionally active as it was able to reprogram endothelial cell biology, promoting migration, tubulogenesis, and VEGFR2 phosphorylation. These effects were prevented by blockade of Gal1 using a newly developed fully human anti-Gal1 neutralizing mAb. Thus, using samples from a large-scale clinical trial from stage II and III melanoma patients, we validated the clinical relevance of Gal1 as a potential mechanism of resistance to bevacizumab treatment.
Collapse
|
49
|
Yang B, Fan Y, Liang R, Wu Y, Gu A. Identification of a prognostic six-immune-gene signature and a nomogram model for uveal melanoma. BMC Ophthalmol 2023; 23:2. [PMID: 36597071 PMCID: PMC9809105 DOI: 10.1186/s12886-022-02723-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/01/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND To identify an immune-related prognostic signature and find potential therapeutic targets for uveal melanoma. METHODS The RNA-sequencing data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The prognostic six-immune-gene signature was constructed through least absolute shrinkage and selection operator and multi-variate Cox regression analyses. Functional enrichment analysis and single sample GSEA were carried out. In addition, a nomogram model established by integrating clinical variables and this signature risk score was also constructed and evaluated. RESULTS We obtained 130 prognostic immune genes, and six of them were selected to construct a prognostic signature in the TCGA uveal melanoma dataset. Patients were classified into high-risk and low-risk groups according to a median risk score of this signature. High-risk group patients had poorer overall survival in comparison to the patients in the low-risk group (p < 0.001). These findings were further validated in two external GEO datasets. A nomogram model proved to be a good classifier for uveal melanoma by combining this signature. Both functional enrichment analysis and single sample GSEA analysis verified that this signature was truly correlated with immune system. In addition, in vitro cell experiments results demonstrated the consistent trend of our computational findings. CONCLUSION Our newly identified six-immune-gene signature and a nomogram model could be used as meaningful prognostic biomarkers, which might provide uveal melanoma patients with individualized clinical prognosis prediction and potential novel treatment targets.
Collapse
Affiliation(s)
- Binghua Yang
- grid.413405.70000 0004 1808 0686Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, 510182 Guangdong China
| | - Yuxia Fan
- grid.417234.70000 0004 1808 3203Department of Ophthalmology, Gansu Provincial Hospital, Lanzhou, 730000 Gansu China
| | - Renlong Liang
- grid.413405.70000 0004 1808 0686Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, 510182 Guangdong China
| | - Yi Wu
- grid.413405.70000 0004 1808 0686Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, 510182 Guangdong China
| | - Aiping Gu
- grid.413405.70000 0004 1808 0686Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, 510182 Guangdong China ,grid.413405.70000 0004 1808 0686Department of Ophthalmology, Guangdong Second Provincial General Hospital, No. 466 Xin’gangzhong Road, Haizhu, 510317 Guangzhou China
| |
Collapse
|
50
|
Yu X, Zhu L, Wang T, Chen J. Immune microenvironment of cholangiocarcinoma: Biological concepts and treatment strategies. Front Immunol 2023; 14:1037945. [PMID: 37138880 PMCID: PMC10150070 DOI: 10.3389/fimmu.2023.1037945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cholangiocarcinoma is characterized by a poor prognosis with limited treatment and management options. Chemotherapy using gemcitabine with cisplatin is the only available first-line therapy for patients with advanced cholangiocarcinoma, although it offers only palliation and yields a median survival of < 1 year. Recently there has been a resurgence of immunotherapy studies focusing on the ability of immunotherapy to inhibit cancer growth by impacting the tumor microenvironment. Based on the TOPAZ-1 trial, the US Food and Drug Administration has approved the combination of durvalumab and gemcitabine with cisplatin as the first-line treatment of cholangiocarcinoma. However, immunotherapy, like immune checkpoint blockade, is less effective in cholangiocarcinoma than in other types of cancer. Although several factors such as the exuberant desmoplastic reaction are responsible for cholangiocarcinoma treatment resistance, existing literature on cholangiocarcinoma cites the inflammatory and immunosuppressive environment as the most common factor. However, mechanisms activating the immunosuppressive tumor microenvironment contributing to cholangiocarcinoma drug resistance are complicated. Therefore, gaining insight into the interplay between immune cells and cholangiocarcinoma cells, as well as the natural development and evolution of the immune tumor microenvironment, would provide targets for therapeutic intervention and improve therapeutic efficacy by developing multimodal and multiagent immunotherapeutic approaches of cholangiocarcinoma to overcome the immunosuppressive tumor microenvironment. In this review, we discuss the role of the inflammatory microenvironment-cholangiocarcinoma crosstalk and reinforce the importance of inflammatory cells in the tumor microenvironment, thereby highlighting the explanatory and therapeutic shortcomings of immunotherapy monotherapy and proposing potentially promising combinational immunotherapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Jiang Chen,
| |
Collapse
|