1
|
Lyu Y, Kim SJ, Humphrey ES, Nayak R, Guan Y, Liang Q, Kim KH, Tan Y, Dou J, Sun H, Song X, Nagarajan P, Gerner-Mauro KN, Jin K, Liu V, Hassan RH, Johnson ML, Deliu LP, You Y, Sharma A, Pasolli HA, Lu Y, Zhang J, Mohanty V, Chen K, Yang YJ, Chen T, Ge Y. Stem cell activity-coupled suppression of endogenous retrovirus governs adult tissue regeneration. Cell 2024; 187:7414-7432.e26. [PMID: 39476839 DOI: 10.1016/j.cell.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 12/29/2024]
Abstract
Mammalian retrotransposons constitute 40% of the genome. During tissue regeneration, adult stem cells coordinately repress retrotransposons and activate lineage genes, but how this coordination is controlled is poorly understood. Here, we observed that dynamic expression of histone methyltransferase SETDB1 (a retrotransposon repressor) closely mirrors stem cell activities in murine skin. SETDB1 ablation leads to the reactivation of endogenous retroviruses (ERVs, a type of retrotransposon) and the assembly of viral-like particles, resulting in hair loss and stem cell exhaustion that is reversible by antiviral drugs. Mechanistically, at least two molecularly and spatially distinct pathways are responsible: antiviral defense mediated by hair follicle stem cells and progenitors and antiviral-independent response due to replication stress in transient amplifying cells. ERV reactivation is promoted by DNA demethylase ten-eleven translocation (TET)-mediated hydroxymethylation and recapitulated by ablating cell fate transcription factors. Together, we demonstrated ERV silencing is coupled with stem cell activity and essential for adult hair regeneration.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soo Jin Kim
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Ericka S Humphrey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Richa Nayak
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingnan Liang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Huandong Sun
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kamryn N Gerner-Mauro
- Department of Pulmonary Medicine, UT MD Anderson Cancer Center, Houston, TX, USA; Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Jin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Virginia Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Rehman H Hassan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miranda L Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa P Deliu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun You
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Turčić M, Kraljević Pavelić S, Trivanović D, Pavelić K. Interaction of HERVs with PAMPs in Dysregulation of Immune Response Cascade Upon SARS-CoV-2 Infections. Int J Mol Sci 2024; 25:13360. [PMID: 39769125 PMCID: PMC11677760 DOI: 10.3390/ijms252413360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Human endogenous retroviruses (HERVs) are genomic fragments integrated into human DNA from germline infections by exogenous retroviruses that threatened primates early in their evolution and are inherited vertically in the germline. So far, HERVs have been studied in the context of extensive immunopathogenic, neuropathogenic and even oncogenic effects within their host. In particular, in our paper, we elaborate on the aspects related to the possible correlation of transposable HERV elements' activation and SARS-CoV-2 spike protein's presence in cells of COVID-19 patients or upon COVID-19 vaccination with implications for natural and adaptive immunity. In particular, the release of cytokines TNF-α, IL-1β and IL-6 occurs in such cases and plays a notable role in sustaining chronic inflammation. Moreover, well-known interindividual variations of HERVs might partially account for the interpersonal variability of COVID-19 symptoms or unwanted events post-vaccination. Accordingly, further studies are required to clarify the SARS-CoV-2 spike protein's role in triggering HERVs.
Collapse
Affiliation(s)
- Marijana Turčić
- Teaching Institute of Public Health of Primorsko-Goranska County, Krešimirova 52a, 51000 Rijeka, Croatia;
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Dragan Trivanović
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia;
- Opća Bolnica Pula, Santoriova Ul. 24a, 52100 Pula, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia;
- International Academy of Science, Arts and Religion, Radnička Cesta, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
3
|
Chisca M, Larouche J, Xing Q, Kassiotis G. Antibodies against endogenous retroviruses. Immunol Rev 2024; 328:300-313. [PMID: 39152687 PMCID: PMC11659944 DOI: 10.1111/imr.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The human genome harbors hundreds of thousands of integrations of ancient retroviruses, amassed over millions of years of evolution. To reduce further amplification in the genome, the host prevents transcription of these now endogenous retroviruses (ERVs) through epigenetic repression and, with evolutionary time, ERVs are incapacitated by accumulating mutations and deletions. However, several members of recently endogenized ERV groups still retain the capacity to produce viral RNA, retroviral proteins, and higher order structures, including virions. The retention of viral characteristics, combined with the reversible nature of epigenetic repression, particularly as seen in cancer, allow for immunologically unanticipated ERV expression, perceived by the adaptive immune system as a genuine retroviral infection, to which it has to respond. Accordingly, antibodies reactive with ERV antigens have been detected in diverse disorders and, occasionally, in healthy individuals. Although they are part of self, the retroviral legacy of ERV antigens, and association with and, possibly, causation of disease states may set them apart from typical self-antigens. Consequently, the pathogenic or, indeed, host-protective capacity of antibodies targeting ERV antigens is likely to be context-dependent. Here, we review the immunogenicity of typical ERV proteins, with emphasis on the antibody response and its potential disease implications.
Collapse
Affiliation(s)
- Mihaela Chisca
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Qi Xing
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
| | - George Kassiotis
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
4
|
Zheng J, Feng H, Lin J, Zhou J, Xi Z, Zhang Y, Ling F, Liu Y, Wang J, Hou T, Xing F, Li Y. KDM3A Ablation Activates Endogenous Retrovirus Expression to Stimulate Antitumor Immunity in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309983. [PMID: 39031630 PMCID: PMC11515915 DOI: 10.1002/advs.202309983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/04/2024] [Indexed: 07/22/2024]
Abstract
The success of immunotherapy for cancer treatment is limited by the presence of an immunosuppressive tumor microenvironment (TME); Therefore, identifying novel targets to that can reverse this immunosuppressive TME and enhance immunotherapy efficacy is essential. In this study, enrichment analysis based on publicly available single-cell and bulk RNA sequencing data from gastric cancer patients are conducted, and found that tumor-intrinsic interferon (IFN) plays a central role in TME regulation. The results shows that KDM3A over-expression suppresses the tumor-intrinsic IFN response and inhibits KDM3A, either genomically or pharmacologically, which effectively promotes IFN responses by activating endogenous retroviruses (ERVs). KDM3A ablation reconfigures the dsRNA-MAVS-IFN axis by modulating H3K4me2, enhancing the infiltration and function of CD8 T cells, and simultaneously reducing the presence of regulatory T cells, resulting in a reshaped TME in vivo. In addition, combining anti-PD1 therapy with KDM3A inhibition effectively inhibited tumor growth. In conclusions, this study highlights KDM3A as a potential target for TME remodeling and the enhancement of antitumor immunity in gastric cancer through the regulation of the ERV-MAVS-IFN axis.
Collapse
Affiliation(s)
- Jiabin Zheng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Huolun Feng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jiatong Lin
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jianlong Zhou
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zhihui Xi
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Yucheng Zhang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Fa Ling
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yongfeng Liu
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Junjiang Wang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Tieying Hou
- Medical Experimental CenterShenzhen Nanshan People's HospitalShenzhenGuangdong518052China
- Shenzhen University Medical SchoolShenzhenGuangdong518073China
| | - Fan Xing
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Yong Li
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| |
Collapse
|
5
|
Cocozza F, Martin‐Jaular L, Lippens L, Di Cicco A, Arribas YA, Ansart N, Dingli F, Richard M, Merle L, Jouve San Roman M, Poullet P, Loew D, Lévy D, Hendrix A, Kassiotis G, Joliot A, Tkach M, Théry C. Extracellular vesicles and co-isolated endogenous retroviruses from murine cancer cells differentially affect dendritic cells. EMBO J 2023; 42:e113590. [PMID: 38073509 PMCID: PMC10711651 DOI: 10.15252/embj.2023113590] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Cells secrete extracellular vesicles (EVs) and non-vesicular extracellular (nano)particles (NVEPs or ENPs) that may play a role in intercellular communication. Tumor-derived EVs have been proposed to induce immune priming of antigen presenting cells or to be immuno-suppressive agents. We suspect that such disparate functions are due to variable compositions in EV subtypes and ENPs. We aimed to characterize the array of secreted EVs and ENPs of murine tumor cell lines. Unexpectedly, we identified virus-like particles (VLPs) from endogenous murine leukemia virus in preparations of EVs produced by many tumor cells. We established a protocol to separate small EVs from VLPs and ENPs. We compared their protein composition and analyzed their functional interaction with target dendritic cells. ENPs were poorly captured and did not affect dendritic cells. Small EVs specifically induced dendritic cell death. A mixed large/dense EV/VLP preparation was most efficient to induce dendritic cell maturation and antigen presentation. Our results call for systematic re-evaluation of the respective proportions and functions of non-viral EVs and VLPs produced by murine tumors and their contribution to tumor progression.
Collapse
Affiliation(s)
- Federico Cocozza
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
- Université de ParisParisFrance
| | - Lorena Martin‐Jaular
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
- Institut Curie Centre de RechercheCurieCoreTech Extracellular VesiclesParisFrance
| | - Lien Lippens
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent University, and Cancer Research Institute GhentGhentBelgium
| | - Aurelie Di Cicco
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico‐chimie CurieParisFrance
- Institut Curie, PSL Research University, CNRS UMR144, Cell and Tissue Imaging Facility (PICT‐IBiSA)ParisFrance
| | - Yago A Arribas
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
| | - Nicolas Ansart
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse ProtéomiqueParisFrance
| | - Michael Richard
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse ProtéomiqueParisFrance
| | - Louise Merle
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
| | | | - Patrick Poullet
- Institut Curie, Bioinformatics core facility (CUBIC), INSERM U900, PSL Research University, Mines Paris TechParisFrance
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse ProtéomiqueParisFrance
| | - Daniel Lévy
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico‐chimie CurieParisFrance
- Institut Curie, PSL Research University, CNRS UMR144, Cell and Tissue Imaging Facility (PICT‐IBiSA)ParisFrance
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent University, and Cancer Research Institute GhentGhentBelgium
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute and Department of Medicine, Faculty of MedicineImperial CollegeLondonUK
| | - Alain Joliot
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
| | - Mercedes Tkach
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
| | - Clotilde Théry
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
- Institut Curie Centre de RechercheCurieCoreTech Extracellular VesiclesParisFrance
| |
Collapse
|
6
|
Sun S, Fang B, Wang R, Ren F, Chen J. ERV: a promising new target for lung adenocarcinoma treatment. Sci Bull (Beijing) 2023; 68:2135-2138. [PMID: 37661539 DOI: 10.1016/j.scib.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Affiliation(s)
- Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| |
Collapse
|
7
|
Liu S, Heumüller SE, Hossinger A, Müller SA, Buravlova O, Lichtenthaler SF, Denner P, Vorberg IM. Reactivated endogenous retroviruses promote protein aggregate spreading. Nat Commun 2023; 14:5034. [PMID: 37596282 PMCID: PMC10439213 DOI: 10.1038/s41467-023-40632-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
Prion-like spreading of protein misfolding is a characteristic of neurodegenerative diseases, but the exact mechanisms of intercellular protein aggregate dissemination remain unresolved. Evidence accumulates that endogenous retroviruses, remnants of viral germline infections that are normally epigenetically silenced, become upregulated in neurodegenerative diseases such as amyotrophic lateral sclerosis and tauopathies. Here we uncover that activation of endogenous retroviruses affects prion-like spreading of proteopathic seeds. We show that upregulation of endogenous retroviruses drastically increases the dissemination of protein aggregates between cells in culture, a process that can be inhibited by targeting the viral envelope protein or viral protein processing. Human endogenous retrovirus envelopes of four different clades also elevate intercellular spreading of proteopathic seeds, including pathological Tau. Our data support a role of endogenous retroviruses in protein misfolding diseases and suggest that antiviral drugs could represent promising candidates for inhibiting protein aggregate spreading.
Collapse
Affiliation(s)
- Shu Liu
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | | | - André Hossinger
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oleksandra Buravlova
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Philip Denner
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany.
- Department of Neurology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
8
|
Abstract
Our defenses against infection rely on the ability of the immune system to distinguish invading pathogens from self. This task is exceptionally challenging, if not seemingly impossible, in the case of retroviruses that have integrated almost seamlessly into the host. This review examines the limits of innate and adaptive immune responses elicited by endogenous retroviruses and other retroelements, the targets of immune recognition, and the consequences for host health and disease. Contrary to theoretical expectation, endogenous retroelements retain substantial immunogenicity, which manifests most profoundly when their epigenetic repression is compromised, contributing to autoinflammatory and autoimmune disease and age-related inflammation. Nevertheless, recent evidence suggests that regulated immune reactivity to endogenous retroelements is integral to immune system development and function, underpinning cancer immunosurveillance, resistance to infection, and responses to the microbiota. Elucidation of the interaction points with endogenous retroelements will therefore deepen our understanding of immune system function and contribution to disease.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom;
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Daradoumis J, Ragonnaud E, Skandorff I, Nielsen KN, Bermejo AV, Andersson AM, Schroedel S, Thirion C, Neukirch L, Holst PJ. An Endogenous Retrovirus Vaccine Encoding an Envelope with a Mutated Immunosuppressive Domain in Combination with Anti-PD1 Treatment Eradicates Established Tumours in Mice. Viruses 2023; 15:v15040926. [PMID: 37112906 PMCID: PMC10141008 DOI: 10.3390/v15040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) account for 8% of our genome, and, although they are usually silent in healthy tissues, they become reactivated and expressed in pathological conditions such as cancer. Several studies support a functional role of ERVs in tumour development and progression, specifically through their envelope (Env) protein, which contains a region described as an immunosuppressive domain (ISD). We have previously shown that targeting of the murine ERV (MelARV) Env using virus-like vaccine (VLV) technology, consisting of an adenoviral vector encoding virus-like particles (VLPs), induces protection against small tumours in mice. Here, we investigate the potency and efficacy of a novel MelARV VLV with a mutated ISD (ISDmut) that can modify the properties of the adenoviral vaccine-encoded Env protein. We show that the modification of the vaccine's ISD significantly enhanced T-cell immunogenicity in both prime and prime-boost vaccination regimens. The modified VLV in combination with an α-PD1 checkpoint inhibitor (CPI) exhibited excellent curative efficacy against large established colorectal CT26 tumours in mice. Furthermore, only ISDmut-vaccinated mice that survived CT26 challenge were additionally protected against rechallenge with a triple-negative breast cancer cell line (4T1), showing that our modified VLV provides cross-protection against different tumour types expressing ERV-derived antigens. We envision that translating these findings and technology into human ERVs (HERVs) could provide new treatment opportunities for cancer patients with unmet medical needs.
Collapse
Affiliation(s)
- Joana Daradoumis
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Emeline Ragonnaud
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isabella Skandorff
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | - Amaia Vergara Bermejo
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anne-Marie Andersson
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | | | - Lasse Neukirch
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Peter Johannes Holst
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Ng KW, Boumelha J, Enfield KSS, Almagro J, Cha H, Pich O, Karasaki T, Moore DA, Salgado R, Sivakumar M, Young G, Molina-Arcas M, de Carné Trécesson S, Anastasiou P, Fendler A, Au L, Shepherd STC, Martínez-Ruiz C, Puttick C, Black JRM, Watkins TBK, Kim H, Shim S, Faulkner N, Attig J, Veeriah S, Magno N, Ward S, Frankell AM, Al Bakir M, Lim EL, Hill MS, Wilson GA, Cook DE, Birkbak NJ, Behrens A, Yousaf N, Popat S, Hackshaw A, Hiley CT, Litchfield K, McGranahan N, Jamal-Hanjani M, Larkin J, Lee SH, Turajlic S, Swanton C, Downward J, Kassiotis G. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. Nature 2023; 616:563-573. [PMID: 37046094 PMCID: PMC10115647 DOI: 10.1038/s41586-023-05771-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/30/2023] [Indexed: 04/14/2023]
Abstract
B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Katey S S Enfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Hongui Cha
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Takahiro Karasaki
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - David A Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Queensland, Australia
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - George Young
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, UK
| | | | | | | | - Annika Fendler
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Lewis Au
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
| | - Scott T C Shepherd
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Hyemin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seohee Shim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Nikhil Faulkner
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jan Attig
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Neil Magno
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Sophia Ward
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Alexander M Frankell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Emilia L Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nicolai J Birkbak
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK
- CRUK Convergence Science Centre, Imperial College, London, UK
| | - Nadia Yousaf
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
- Lung Unit, The Royal Marsden Hospital, London, UK
| | - Sanjay Popat
- Lung Unit, The Royal Marsden Hospital, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Allan Hackshaw
- Cancer Research UK and University College London Cancer Trials Centre, London, UK
| | - Crispin T Hiley
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK.
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK.
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
11
|
Watterson A, Coelho MA. Cancer immune evasion through KRAS and PD-L1 and potential therapeutic interventions. Cell Commun Signal 2023; 21:45. [PMID: 36864508 PMCID: PMC9979509 DOI: 10.1186/s12964-023-01063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023] Open
Abstract
Oncogenic driver mutations have implications that extend beyond cancer cells themselves. Aberrant tumour cell signalling has various effects on the tumour microenvironment and anti-tumour immunity, with important consequences for therapy response and resistance. We provide an overview of how mutant RAS, one of the most prevalent oncogenic drivers in cancer, can instigate immune evasion programs at the tumour cell level and through remodelling interactions with the innate and adaptive immune cell compartments. Finally, we describe how immune evasion networks focused on RAS, and the immune checkpoint molecule PD-L1 can be disrupted through therapeutic intervention, and discuss potential strategies for combinatorial treatment. Video abstract.
Collapse
Affiliation(s)
- Alex Watterson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.,Open Targets, Cambridge, UK
| | - Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK. .,Open Targets, Cambridge, UK.
| |
Collapse
|
12
|
Boumelha J, de Carné Trécesson S, Law EK, Romero-Clavijo P, Coelho MA, Ng K, Mugarza E, Moore C, Rana S, Caswell DR, Murillo M, Hancock DC, Argyris PP, Brown WL, Durfee C, Larson LK, Vogel RI, Suárez-Bonnet A, Priestnall SL, East P, Ross SJ, Kassiotis G, Molina-Arcas M, Swanton C, Harris R, Downward J. An Immunogenic Model of KRAS-Mutant Lung Cancer Enables Evaluation of Targeted Therapy and Immunotherapy Combinations. Cancer Res 2022; 82:3435-3448. [PMID: 35930804 PMCID: PMC7613674 DOI: 10.1158/0008-5472.can-22-0325] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Mutations in oncogenes such as KRAS and EGFR cause a high proportion of lung cancers. Drugs targeting these proteins cause tumor regression but ultimately fail to elicit cures. As a result, there is an intense interest in how to best combine targeted therapies with other treatments, such as immunotherapies. However, preclinical systems for studying the interaction of lung tumors with the host immune system are inadequate, in part due to the low tumor mutational burden in genetically engineered mouse models. Here we set out to develop mouse models of mutant KRAS-driven lung cancer with an elevated tumor mutational burden by expressing the human DNA cytosine deaminase, APOBEC3B, to mimic the mutational signature seen in human lung cancer. This failed to substantially increase clonal tumor mutational burden and autochthonous tumors remained refractory to immunotherapy. However, establishing clonal cell lines from these tumors enabled the generation of an immunogenic syngeneic transplantation model of KRAS-mutant lung adenocarcinoma that was sensitive to immunotherapy. Unexpectedly, antitumor immune responses were not directed against neoantigens but instead targeted derepressed endogenous retroviral antigens. The ability of KRASG12C inhibitors to cause regression of KRASG12C -expressing tumors was markedly potentiated by the adaptive immune system, highlighting the importance of using immunocompetent models for evaluating targeted therapies. Overall, this model provides a unique opportunity for the study of combinations of targeted and immunotherapies in immune-hot lung cancer. SIGNIFICANCE This study develops a mouse model of immunogenic KRAS-mutant lung cancer to facilitate the investigation of optimal combinations of targeted therapies with immunotherapies.
Collapse
Affiliation(s)
| | | | - Emily K. Law
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Howard Hughes Medical Institute, University of Minnesota,
Minneapolis, MN, USA, 55455
| | | | | | - Kevin Ng
- Retroviral Immunology Laboratory
| | | | | | - Sareena Rana
- Oncogene Biology Laboratory
- Lung Cancer Group, Division of Molecular Pathology, Institute of
Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Miguel Murillo
- Oncogene Biology Laboratory
- Lung Cancer Group, Division of Molecular Pathology, Institute of
Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Division of Oral and Maxillofacial Pathology, School of Dentistry,
University of Minnesota, Minneapolis, MN, USA, 55455
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Institute for Molecular Virology, University of Minnesota,
Minneapolis, MN, USA, 55455
| | - Cameron Durfee
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Institute for Molecular Virology, University of Minnesota,
Minneapolis, MN, USA, 55455
- Department of Biochemistry and Structural Biology, University of
Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Lindsay K. Larson
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Institute for Molecular Virology, University of Minnesota,
Minneapolis, MN, USA, 55455
| | - Rachel I. Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,
USA, 55455
- Department of Obstetrics, Gynecology, and Women’s Health,
University of Minnesota, Minneapolis, MN, USA, 55455
| | - Alejandro Suárez-Bonnet
- Experimental Histopathology, Francis Crick Institute, 1 Midland
Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary
College, Hatfield, AL9 7TA, UK
| | - Simon L. Priestnall
- Experimental Histopathology, Francis Crick Institute, 1 Midland
Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary
College, Hatfield, AL9 7TA, UK
| | | | | | | | | | | | - Reuben Harris
- Department of Biochemistry, Molecular Biology and Biophysics,
University of Minnesota, Minneapolis, MN, USA, 55455
- Howard Hughes Medical Institute, University of Minnesota,
Minneapolis, MN, USA, 55455
- Department of Biochemistry and Structural Biology, University of
Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San
Antonio, San Antonio, TX 78229, USA
| | - Julian Downward
- Oncogene Biology Laboratory
- Lung Cancer Group, Division of Molecular Pathology, Institute of
Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
13
|
Grace BE, Backlund CM, Morgan DM, Kang BH, Singh NK, Huisman BD, Rappazzo CG, Moynihan KD, Maiorino L, Dobson CS, Kyung T, Gordon KS, Holec PV, Mbah OCT, Garafola D, Wu S, Love JC, Wittrup KD, Irvine DJ, Birnbaum ME. Identification of Highly Cross-Reactive Mimotopes for a Public T Cell Response in Murine Melanoma. Front Immunol 2022; 13:886683. [PMID: 35812387 PMCID: PMC9260506 DOI: 10.3389/fimmu.2022.886683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
While immune checkpoint blockade results in durable responses for some patients, many others have not experienced such benefits. These treatments rely upon reinvigorating specific T cell-antigen interactions. However, it is often unknown what antigens are being recognized by T cells or how to potently induce antigen-specific responses in a broadly applicable manner. Here, we characterized the CD8+ T cell response to a murine model of melanoma following combination immunotherapy to determine the basis of tumor recognition. Sequencing of tumor-infiltrating T cells revealed a repertoire of highly homologous TCR sequences that were particularly expanded in treated mice and which recognized an antigen from an endogenous retrovirus. While vaccination against this peptide failed to raise a protective T cell response in vivo, engineered antigen mimotopes induced a significant expansion of CD8+ T cells cross-reactive to the original antigen. Vaccination with mimotopes resulted in killing of antigen-loaded cells in vivo yet showed modest survival benefit in a prophylactic vaccine paradigm. Together, this work demonstrates the identification of a dominant tumor-associated antigen and generation of mimotopes which can induce robust functional T cell responses that are cross-reactive to the endogenous antigen across multiple individuals.
Collapse
Affiliation(s)
- Beth E. Grace
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Coralie M. Backlund
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Duncan M. Morgan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Byong H. Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nishant K. Singh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Brooke D. Huisman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - C. Garrett Rappazzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kelly D. Moynihan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Laura Maiorino
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Connor S. Dobson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Taeyoon Kyung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Khloe S. Gordon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Patrick V. Holec
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Daniel Garafola
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - K. Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Michael E. Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- *Correspondence: Michael E. Birnbaum,
| |
Collapse
|
14
|
Fontes F, Rocha S, Sánchez R, Pessina P, Sebastian M, Benavides F, Breijo M. Detection of high antibodies titers against rat leukemia virus in an outbreak of reproductive disorders and lymphomas in Wistar rats. Lab Anim 2022; 56:437-445. [PMID: 35360996 DOI: 10.1177/00236772221085356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Young female Wistar rats from a specific pathogen free breeding colony presented an outbreak of infertility along with neurological symptoms and malignant lymphomas. We evaluated the presence and the potential role of the rat leukemia virus (RaLV) in the disease because these clinical signs could be compatible with a retrovirus. RaLV is a mammalian type C endogenous retrovirus initially isolated from in vitro Sprague-Dawley rat embryo cultures. There are no reports of clinical disease in rats associated with this virus, and little is known about its interaction with the host. Using reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, we studied the synthesis of the viral particles and the development of an immune response against the virus in this rat colony. The results showed that healthy and diseased Wistar rats synthetized viral RNA but only diseased animals developed a detectable immune response against RaLV envelop protein. Furthermore, rats with lymphomas tended to have higher titers of antibodies against RaLV epitopes than those with infertility or neurological symptoms. The results suggest that increases in the RaLV infectious particle loads could be involved in the development of lymphomas in young rats. The potential causes of RaLV reactivation are discussed.
Collapse
Affiliation(s)
- Florencia Fontes
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sergio Rocha
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rosina Sánchez
- Laboratorio de Análisis Clínicos, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Paula Pessina
- Laboratorio de Análisis Clínicos, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Manu Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, USA
| | - Martín Breijo
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Ottina E, Panova V, Doglio L, Kazachenka A, Cornish G, Kirkpatrick J, Attig J, Young GR, Litchfield K, Lesluyes T, Van Loo P, Swanton C, MacRae J, Tüting T, Kassiotis G. E3 ubiquitin ligase HECTD2 mediates melanoma progression and immune evasion. Oncogene 2021; 40:5567-5578. [PMID: 34145398 PMCID: PMC8445817 DOI: 10.1038/s41388-021-01885-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 11/08/2022]
Abstract
The ubiquitin-proteasome system maintains protein homoeostasis, underpins the cell cycle, and is dysregulated in cancer. However, the role of individual E3 ubiquitin ligases, which mediate the final step in ubiquitin-mediated proteolysis, remains incompletely understood. Identified through screening for cancer-specific endogenous retroviral transcripts, we show that the little-studied E3 ubiquitin ligase HECTD2 exerts dominant control of tumour progression in melanoma. HECTD2 cell autonomously drives the proliferation of human and murine melanoma cells by accelerating the cell cycle. HECTD2 additionally regulates cancer cell production of immune mediators, initiating multiple immune suppressive pathways, which include the cyclooxygenase 2 (COX2) pathway. Accordingly, higher HECTD2 expression is associated with weaker anti-tumour immunity and unfavourable outcome of PD-1 blockade in human melanoma and counteracts immunity against a model tumour antigen in murine melanoma. This central, multifaceted role of HECTD2 in cancer cell-autonomous proliferation and in immune evasion may provide a single target for a multipronged therapy of melanoma.
Collapse
Affiliation(s)
- Eleonora Ottina
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Veera Panova
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Laura Doglio
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | | | - Georgina Cornish
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | | | - Jan Attig
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - George R Young
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Tom Lesluyes
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - James MacRae
- Proteomics STP, The Francis Crick Institute, London, UK
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University of Magdeburg, Magdeburg, Germany
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK.
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
16
|
Danelli L, Cornish G, Merkenschlager J, Kassiotis G. Default polyfunctional T helper 1 response to ample signal 1 alone. Cell Mol Immunol 2021; 18:1809-1822. [PMID: 32313208 PMCID: PMC8245500 DOI: 10.1038/s41423-020-0415-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/14/2020] [Indexed: 12/27/2022] Open
Abstract
CD4+ T cells integrate well-defined signals from the T-cell receptor (TCR) (signal 1) and a host of costimulatory molecules (signal 2) to initiate clonal expansion and differentiation into diverse functional T helper (Th) subsets. However, our ability to guide the expansion of context-appropriate Th subsets by deploying these signals in vaccination remains limited. Using cell-based vaccines, we selectively amplified signal 1 by exclusive presentation of an optimized peptide:MHC II (pMHC II) complex in the absence of classic costimulation. Contrary to expectations, amplified signal 1 alone was strongly immunogenic and selectively expanded high-affinity TCR clonotypes, despite delivering intense TCR signals. In contrast to natural infection or standard vaccines, amplified signal 1, presented by a variety of professional and nonprofessional antigen-presenting cells (APCs), induced exclusively polyfunctional Th1 effector and memory cells, which protected against retroviral infection and tumor challenge, and expanded tumor-reactive CD4+ T cells otherwise rendered unresponsive in tumor-bearing hosts. Together, our findings uncover a default Th1 response to ample signal 1 and offer a means to selectively prime such protective responses by vaccination.
Collapse
Affiliation(s)
- Luca Danelli
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Georgina Cornish
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julia Merkenschlager
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
17
|
Kang BH, Momin N, Moynihan KD, Silva M, Li Y, Irvine DJ, Wittrup KD. Immunotherapy-induced antibodies to endogenous retroviral envelope glycoprotein confer tumor protection in mice. PLoS One 2021; 16:e0248903. [PMID: 33857179 PMCID: PMC8049297 DOI: 10.1371/journal.pone.0248903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/07/2021] [Indexed: 12/02/2022] Open
Abstract
Following curative immunotherapy of B16F10 tumors, ~60% of mice develop a strong antibody response against cell-surface tumor antigens. Their antisera confer prophylactic protection against intravenous challenge with B16F10 cells, and also cross-react with syngeneic and allogeneic tumor cell lines MC38, EL.4, 4T1, and CT26. We identified the envelope glycoprotein (env) of a murine endogenous retrovirus (ERV) as the antigen accounting for the majority of this humoral response. A systemically administered anti-env monoclonal antibody cloned from such a response protects against tumor challenge, and prophylactic vaccination against the env protein protects a majority of naive mice from tumor establishment following subcutaneous inoculation with B16F10 cells. These results suggest the potential for effective prophylactic vaccination against analogous HERV-K env expressed in numerous human cancers.
Collapse
Affiliation(s)
- Byong H. Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kelly D. Moynihan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yingzhong Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
18
|
Panova V, Attig J, Young GR, Stoye JP, Kassiotis G. Antibody-induced internalisation of retroviral envelope glycoproteins is a signal initiation event. PLoS Pathog 2020; 16:e1008605. [PMID: 32453763 PMCID: PMC7274472 DOI: 10.1371/journal.ppat.1008605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/05/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
Abstract
As obligate parasites, viruses highjack, modify and repurpose the cellular machinery for their own replication. Viral proteins have, therefore, evolved biological functions, such as signalling potential, that alter host cell physiology in ways that are still incompletely understood. Retroviral envelope glycoproteins interact with several host proteins, extracellularly with their cellular receptor and anti-envelope antibodies, and intracellularly with proteins of the cytoskeleton or sorting, endocytosis and recirculation pathways. Here, we examined the impact of endogenous retroviral envelope glycoprotein expression and interaction with host proteins, particularly antibodies, on the cell, independently of retroviral infection. We found that in the commonly used C57BL/6 substrains of mice, where murine leukaemia virus (MLV) envelope glycoproteins are expressed by several endogenous MLV proviruses, the highest expressed MLV envelope glycoprotein is under the control of an immune-responsive cellular promoter, thus linking MLV envelope glycoprotein expression with immune activation. We further showed that antibody ligation induces extensive internalisation from the plasma membrane into endocytic compartments of MLV envelope glycoproteins, which are not normally subject to constitutive endocytosis. Importantly, antibody binding and internalisation of MLV envelope glycoproteins initiates signalling cascades in envelope-expressing murine lymphocytic cell lines, leading to cellular activation. Similar effects were observed by MLV envelope glycoprotein ligation by its cellular receptor mCAT-1, and by overexpression in human lymphocytic cells, where it required an intact tyrosine-based YXXΦ motif in the envelope glycoprotein cytoplasmic tail. Together, these results suggest that signalling potential is a general property of retroviral envelope glycoproteins and, therefore, a target for intervention. The outcome of viral infection depends on the balance between host immunity and the ability of the virus to avoid, evade or subvert it. The envelope glycoproteins of diverse viruses, including retroviruses, are displayed on the surface of virions and of infected cells and thus constitute the major target of the host antibody response. Antibody responses are elicited not only against infectious viruses we acquire during our life-history, but also against the numerous retroviral envelopes encoded by our genome and acquired during our species’ life-history. In turn, viruses have evolved ways to reduce exposure of their envelope glycoproteins to the host immune system, including constitutive endocytosis or antibody-induced internalisation. Using murine leukaemia viruses as models of infectious and endogenous retroviruses, we show that antibody binding to retroviral envelopes induces extensive internalisation of the envelope-antibody complex and initiates signalling cascades, ultimately leading to transcriptional activation of envelope glycoprotein-expressing lymphocytes. We further show that expression of endogenous retroviral envelopes is coupled to physiological lymphocyte activation, integrating them with the immune response. These findings reveal an unexpected layer of interaction between the host antibody response and retroviral envelope glycoproteins, which could be considered immune receptors.
Collapse
Affiliation(s)
- Veera Panova
- Retroviral Immunology, The Francis Crick Institute, United Kingdom
| | - Jan Attig
- Retroviral Immunology, The Francis Crick Institute, United Kingdom
| | - George R. Young
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom
| | - Jonathan P. Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
20
|
Treger RS, Pope SD, Kong Y, Tokuyama M, Taura M, Iwasaki A. The Lupus Susceptibility Locus Sgp3 Encodes the Suppressor of Endogenous Retrovirus Expression SNERV. Immunity 2019; 50:334-347.e9. [PMID: 30709743 DOI: 10.1016/j.immuni.2018.12.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/18/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Abstract
Elevated endogenous retrovirus (ERV) transcription and anti-ERV antibody reactivity are implicated in lupus pathogenesis. Overproduction of non-ecotropic ERV (NEERV) envelope glycoprotein gp70 and resultant nephritis occur in lupus-prone mice, but whether NEERV mis-expression contributes to lupus etiology is unclear. Here we identified suppressor of NEERV (Snerv) 1 and 2, Krüppel-associated box zinc-finger proteins (KRAB-ZFPs) that repressed NEERV by binding the NEERV long terminal repeat to recruit the transcriptional regulator KAP1. Germline Snerv1/Snerv2 deletion increased activating chromatin modifications, transcription, and gp70 expression from NEERV loci. F1 crosses of lupus-prone New Zealand Black (NZB) and 129 mice to Snerv1/Snerv2-/- mice failed to restore NEERV repression, demonstrating that loss of SNERV underlies the lupus autoantigen gp70 overproduction that promotes nephritis in susceptible mice and that SNERV encodes for Sgp3 (in NZB mice) and Gv-1 loci (in 129 mice). Increased ERV expression in lupus patients inversely correlated with three putative ERV-suppressing KRAB-ZFPs, suggesting that loss of KRAB-ZFP-mediated ERV control may contribute to human lupus pathogenesis.
Collapse
Affiliation(s)
- Rebecca S Treger
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Scott D Pope
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yong Kong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Manabu Taura
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|