1
|
Madden MB, Stewart BW, White MG, Krimmel SR, Qadir H, Barrett FS, Seminowicz DA, Mathur BN. A role for the claustrum in cognitive control. Trends Cogn Sci 2022; 26:1133-1152. [PMID: 36192309 PMCID: PMC9669149 DOI: 10.1016/j.tics.2022.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
Early hypotheses of claustrum function were fueled by neuroanatomical data and yielded suggestions that the claustrum is involved in processes ranging from salience detection to multisensory integration for perceptual binding. While these hypotheses spurred useful investigations, incompatibilities inherent in these views must be reconciled to further conceptualize claustrum function amid a wealth of new data. Here, we review the varied models of claustrum function and synthesize them with developments in the field to produce a novel functional model: network instantiation in cognitive control (NICC). This model proposes that frontal cortices direct the claustrum to flexibly instantiate cortical networks to subserve cognitive control. We present literature support for this model and provide testable predictions arising from this conceptual framework.
Collapse
Affiliation(s)
- Maxwell B Madden
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Brent W Stewart
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Michael G White
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Houman Qadir
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian N Mathur
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Bruguier H, Suarez R, Manger P, Hoerder-Suabedissen A, Shelton AM, Oliver DK, Packer AM, Ferran JL, García-Moreno F, Puelles L, Molnár Z. In search of common developmental and evolutionary origin of the claustrum and subplate. J Comp Neurol 2020; 528:2956-2977. [PMID: 32266722 DOI: 10.1002/cne.24922] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
The human claustrum, a major hub of widespread neocortical connections, is a thin, bilateral sheet of gray matter located between the insular cortex and the striatum. The subplate is a largely transient cortical structure that contains some of the earliest generated neurons of the cerebral cortex and has important developmental functions to establish intra- and extracortical connections. In human and macaque some subplate cells undergo regulated cell death, but some remain as interstitial white matter cells. In mouse and rat brains a compact layer is formed, Layer 6b, and it remains underneath the cortex, adjacent to the white matter. Whether Layer 6b in rodents is homologous to primate subplate or interstitial white matter cells is still debated. Gene expression patterns, such as those of Nurr1/Nr4a2, have suggested that the rodent subplate and the persistent subplate cells in Layer 6b and the claustrum might have similar origins. Moreover, the birthdates of the claustrum and Layer 6b are similarly precocious in mice. These observations prompted our speculations on the common developmental and evolutionary origin of the claustrum and the subplate. Here we systematically compare the currently available data on cytoarchitecture, evolutionary origin, gene expression, cell types, birthdates, neurogenesis, lineage and migration, circuit connectivity, and cell death of the neurons that contribute to the claustrum and subplate. Based on their similarities and differences we propose a partially common early evolutionary origin of the cells that become claustrum and subplate, a likely scenario that is shared in these cell populations across all amniotes.
Collapse
Affiliation(s)
- Hannah Bruguier
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Rodrigo Suarez
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Andrew M Shelton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David K Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Adam M Packer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - José L Ferran
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Zamudio, Spain.,IKERBASQUE Foundation, Bilbao, Spain
| | - Luis Puelles
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Abstract
The claustrum is one of the most widely connected regions of the forebrain, yet its function has remained obscure, largely due to the experimentally challenging nature of targeting this small, thin, and elongated brain area. However, recent advances in molecular techniques have enabled the anatomy and physiology of the claustrum to be studied with the spatiotemporal and cell type–specific precision required to eventually converge on what this area does. Here we review early anatomical and electrophysiological results from cats and primates, as well as recent work in the rodent, identifying the connectivity, cell types, and physiological circuit mechanisms underlying the communication between the claustrum and the cortex. The emerging picture is one in which the rodent claustrum is closely tied to frontal/limbic regions and plays a role in processes, such as attention, that are associated with these areas.
Collapse
Affiliation(s)
- Jesse Jackson
- Department of Physiology and Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jared B. Smith
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Albert K. Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| |
Collapse
|
4
|
Suárez R, Paolino A, Fenlon LR, Morcom LR, Kozulin P, Kurniawan ND, Richards LJ. A pan-mammalian map of interhemispheric brain connections predates the evolution of the corpus callosum. Proc Natl Acad Sci U S A 2018; 115:9622-9627. [PMID: 30181276 PMCID: PMC6156618 DOI: 10.1073/pnas.1808262115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The brain of mammals differs from that of all other vertebrates, in having a six-layered neocortex that is extensively interconnected within and between hemispheres. Interhemispheric connections are conveyed through the anterior commissure in egg-laying monotremes and marsupials, whereas eutherians evolved a separate commissural tract, the corpus callosum. Although the pattern of interhemispheric connectivity via the corpus callosum is broadly shared across eutherian species, it is not known whether this pattern arose as a consequence of callosal evolution or instead corresponds to a more ancient feature of mammalian brain organization. Here we show that, despite cortical axons using an ancestral commissural route, monotremes and marsupials share features of interhemispheric connectivity with eutherians that likely predate the origin of the corpus callosum. Based on ex vivo magnetic resonance imaging and tractography, we found that connections through the anterior commissure in both fat-tailed dunnarts (Marsupialia) and duck-billed platypus (Monotremata) are spatially segregated according to cortical area topography. Moreover, cell-resolution retrograde and anterograde interhemispheric circuit mapping in dunnarts revealed several features shared with callosal circuits of eutherians. These include the layered organization of commissural neurons and terminals, a broad map of connections between similar (homotopic) regions of each hemisphere, and regions connected to different areas (heterotopic), including hyperconnected hubs along the medial and lateral borders of the cortex, such as the cingulate/motor cortex and claustrum/insula. We therefore propose that an interhemispheric connectome originated in early mammalian ancestors, predating the evolution of the corpus callosum. Because these features have been conserved throughout mammalian evolution, they likely represent key aspects of neocortical organization.
Collapse
Affiliation(s)
- Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4070, Australia;
| | - Annalisa Paolino
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4070, Australia
| | - Laura R Fenlon
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4070, Australia
| | - Laura R Morcom
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4070, Australia
| | - Peter Kozulin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4070, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4070, Australia
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4070, Australia;
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4070, Australia
| |
Collapse
|
5
|
Puelles L, Ayad A, Alonso A, Sandoval J, MartÍnez-de-la-Torre M, Medina L, Ferran J. Selective early expression of the orphan nuclear receptorNr4a2identifies the claustrum homolog in the avian mesopallium: Impact on sauropsidian/mammalian pallium comparisons. J Comp Neurol 2015; 524:665-703. [DOI: 10.1002/cne.23902] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022]
Affiliation(s)
- L. Puelles
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - A. Ayad
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - A. Alonso
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - J.E. Sandoval
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - M. MartÍnez-de-la-Torre
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - L. Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine; University of Lleida, and IRBLleida Institute of Biomedical Research of Lleida; Lleida 25198 Spain
| | - J.L. Ferran
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| |
Collapse
|
6
|
Torgerson CM, Irimia A, Goh SYM, Van Horn JD. The DTI connectivity of the human claustrum. Hum Brain Mapp 2015; 36:827-38. [PMID: 25339630 PMCID: PMC4324054 DOI: 10.1002/hbm.22667] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 01/18/2023] Open
Abstract
The origin, structure, and function of the claustrum, as well as its role in neural computation, have remained a mystery since its discovery in the 17th century. Assessing the in vivo connectivity of the claustrum may bring forth useful insights with relevance to model the overall functionality of the claustrum itself. Using structural and diffusion tensor neuroimaging in N = 100 healthy subjects, we found that the claustrum has the highest connectivity in the brain by regional volume. Network theoretical analyses revealed that (a) the claustrum is a primary contributor to global brain network architecture, and that (b) significant connectivity dependencies exist between the claustrum, frontal lobe, and cingulate regions. These results illustrate that the claustrum is ideally located within the human central nervous system (CNS) connectome to serve as the putative "gate keeper" of neural information for consciousness awareness. Our findings support and underscore prior theoretical contributions about the involvement of the claustrum in higher cognitive function and its relevance in devastating neurological disease.
Collapse
Affiliation(s)
- Carinna M. Torgerson
- The Institute for Neuroimaging and Informatics (INI) and Laboratory of Neuro Imaging [LONI]Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesCalifornia
| | - Andrei Irimia
- The Institute for Neuroimaging and Informatics (INI) and Laboratory of Neuro Imaging [LONI]Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesCalifornia
| | - S. Y. Matthew Goh
- The Institute for Neuroimaging and Informatics (INI) and Laboratory of Neuro Imaging [LONI]Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesCalifornia
| | - John Darrell Van Horn
- The Institute for Neuroimaging and Informatics (INI) and Laboratory of Neuro Imaging [LONI]Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesCalifornia
| |
Collapse
|
7
|
Torgerson CM, Van Horn JD. A case study in connectomics: the history, mapping, and connectivity of the claustrum. Front Neuroinform 2014; 8:83. [PMID: 25426062 PMCID: PMC4227511 DOI: 10.3389/fninf.2014.00083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023] Open
Abstract
The claustrum seems to have been waiting for the science of connectomics. Due to its tiny size, the structure has remained remarkably difficult to study until modern technological and mathematical advancements like graph theory, connectomics, diffusion tensor imaging, HARDI, and excitotoxic lesioning. That does not mean, however, that early methods allowed researchers to assess micro-connectomics. In fact, the claustrum is such an enigma that the only things known for certain about it are its histology, and that it is extraordinarily well connected. In this literature review, we provide background details on the claustrum and the history of its study in the human and in other animal species. By providing an explanation of the neuroimaging and histology methods have been undertaken to study the claustrum thus far—and the conclusions these studies have drawn—we illustrate this example of how the shift from micro-connectomics to macro-connectomics advances the field of neuroscience and improves our capacity to understand the brain.
Collapse
Affiliation(s)
- Carinna M Torgerson
- Department of Neurology, Laboratory of Neuro Imaging, Institute of Neuroimaging and Informatics, University of Southern California Los Angeles, CA, USA
| | - John D Van Horn
- Department of Neurology, Laboratory of Neuro Imaging, Institute of Neuroimaging and Informatics, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
8
|
Chen CC, Winkler CM, Pfenning AR, Jarvis ED. Molecular profiling of the developing avian telencephalon: regional timing and brain subdivision continuities. J Comp Neurol 2014; 521:3666-701. [PMID: 23818174 PMCID: PMC3863995 DOI: 10.1002/cne.23406] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 12/30/2022]
Abstract
In our companion study (Jarvis et al. [2013] J Comp Neurol. doi: 10.1002/cne.23404) we used quantitative brain molecular profiling to discover that distinct subdivisions in the avian pallium above and below the ventricle and the associated mesopallium lamina have similar molecular profiles, leading to a hypothesis that they may form as continuous subdivisions around the lateral ventricle. To explore this hypothesis, here we profiled the expression of 16 genes at eight developmental stages. The genes included those that define brain subdivisions in the adult and some that are also involved in brain development. We found that phyletic hierarchical cluster and linear regression network analyses of gene expression profiles implicated single and mixed ancestry of these brain regions at early embryonic stages. Most gene expression-defined pallial subdivisions began as one ventral or dorsal domain that later formed specific folds around the lateral ventricle. Subsequently a clear ventricle boundary formed, partitioning them into dorsal and ventral pallial subdivisions surrounding the mesopallium lamina. These subdivisions each included two parts of the mesopallium, the nidopallium and hyperpallium, and the arcopallium and hippocampus, respectively. Each subdivision expression profile had a different temporal order of appearance, similar in timing to the order of analogous cell types of the mammalian cortex. Furthermore, like the mammalian pallium, expression in the ventral pallial subdivisions became distinct during prehatch development, whereas the dorsal portions did so during posthatch development. These findings support the continuum hypothesis of avian brain subdivision development around the ventricle and influence hypotheses on homologies of the avian pallium with other vertebrates.
Collapse
Affiliation(s)
- Chun-Chun Chen
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina, 27710
| | | | | | | |
Collapse
|
9
|
Abstract
The claustrum is among the most enigmatic of all prominent mammalian brain structures. Since the 19th century, a wealth of data has amassed on this forebrain nucleus. However, much of this data is disparate and contentious; conflicting views regarding the claustrum’s structural definitions and possible functions abound. This review synthesizes historical and recent claustrum studies with the purpose of formulating an acceptable description of its structural properties. Integrating extant anatomical and functional literature with theorized functions of the claustrum, new visions of how this structure may be contributing to cognition and action are discussed.
Collapse
Affiliation(s)
- Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
10
|
Patzke N, Innocenti GM, Manger PR. The claustrum of the ferret: afferent and efferent connections to lower and higher order visual cortical areas. Front Syst Neurosci 2014; 8:31. [PMID: 24616671 PMCID: PMC3937871 DOI: 10.3389/fnsys.2014.00031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/11/2014] [Indexed: 01/16/2023] Open
Abstract
The claustrum, a subcortical telencephalic structure, is known to be reciprocally interconnected to almost all cortical regions; however, a systematic analysis of claustrocortical connectivity with physiologically identified lower and higher order visual cortical areas has not been undertaken. In the current study we used biotinylated dextran amine to trace the connections of the ferret claustrum with lower (occipital areas 17, 18, 19 and 21) and higher (parietal and temporal areas posterior parietal caudal visual area (PPc), posterior parietal rostral visual area (PPr), 20a, 20b, anterior ectosylvian visual area (AEV)) order visual cortical areas. No connections between the claustrum and area 17 were observed. Occipital visual areas 18, 19 and 21 revealed a reciprocal connectivity mainly to the caudal part of the claustrum. After injection into parietal areas PPc and PPr labeled neurons and terminals were found throughout almost the entire rostrocaudal extent of the dorsal claustrum. Area 20b revealed reciprocal connections mainly to the caudal-ventral claustrum, although some labeled neurons and terminals were observed in the dorso-central claustrum. No projection from the claustrum to areas AEV and 20a could be observed, though projections from AEV and 20a to the claustrum were found. Only injections placed in areas PPr and AEV resulted in anterogradely labeled terminals in the contralateral claustrum. Our results suggest that lower order visual areas have clearly defined connectivity zones located in the caudal claustrum, whereas higher order visual areas, even if not sending and/or receiving projections from the entire claustrum, show a more widespread connectivity.
Collapse
Affiliation(s)
- Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, South Africa
| | - Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden ; Brain and Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, South Africa
| |
Collapse
|
11
|
Ashwell KWS, Hardman CD. Distinct development of the cerebral cortex in platypus and echidna. BRAIN, BEHAVIOR AND EVOLUTION 2011; 79:57-72. [PMID: 22143038 DOI: 10.1159/000334188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/31/2011] [Indexed: 11/19/2022]
Abstract
Both lineages of the modern monotremes have distinctive features in the cerebral cortex, but the developmental mechanisms that produce such different adult cortical architecture remain unknown. Similarly, nothing is known about the differences and/or similarities between monotreme and therian cortical development. We have used material from the Hill embryological collection to try to answer key questions concerning cortical development in monotremes. Our findings indicate that gyrencephaly begins to emerge in the echidna brain shortly before birth (crown-rump length 12.5 mm), whereas the cortex of the platypus remains lissencephalic throughout development. The cortices of both monotremes are very immature at the time of hatching, much like that seen in marsupials, and both have a subventricular zone (SubV) within both the striatum and pallium during post-hatching development. It is particularly striking that in the platypus, this region has an extension from the palliostriatal angle beneath the developing trigeminoreceptive part of the somatosensory cortex of the lateral cortex. The putative SubV beneath the trigeminal part of S1 appears to accommodate at least two distinct types of cell and many mitotic figures and (particularly in the platypus) appears to be traversed by large numbers of thalamocortical axons as these grow in. The association with putative thalamocortical fibres suggests that this region may also serve functions similar to the subplate zone of Eutheria. These findings suggest that cortical development in each monotreme follows distinct paths from at least the time of birth, consistent with a long period of independent and divergent cortical evolution.
Collapse
Affiliation(s)
- Ken W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | | |
Collapse
|
12
|
Molnár Z. Evolution of cerebral cortical development. BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:94-107. [PMID: 21691047 DOI: 10.1159/000327325] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding how the human cerebral cortex evolved to its present complex state is a fascinating topic for neuroscience, genetics, bioinformatics and comparative biology. To gain further insights into the origins of the mammalian neocortex and to understand how the cortex evolved to be able to serve more complex cognitive functions, we study the development of various extant species. Our aim is to correlate cortical cell numbers and neuronal cell types with the elaboration of cortical progenitor populations and their modes of proliferation in different species. There are several progenitors, i.e. the ventricular radial glia, the subventricular intermediate progenitors and subventricular (outer) radial glia types, but the contribution of each to cortical layers and cell types through specific lineages is not fully understood. Recent comparisons of the proportions of these progenitors in various species during embryonic neurogenesis have revealed the elaboration and cytoarchitectonic compartmentalization of the germinal zone, with alterations in the proportions of various types that can be included among the intermediate progenitors. Across species, larger and more diverse intermediate progenitor populations correlate with brain size and cortical cell diversity. Understanding the molecular and cellular interactions regulating the divisions of these intermediate progenitors not only has implications for cortical evolution but also relates to stem cell biology and illuminates the pathomechanisms of several cortical developmental disorders.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Buchanan KJ, Johnson JI. Diversity of spatial relationships of the claustrum and insula in branches of the mammalian radiation. Ann N Y Acad Sci 2011; 1225 Suppl 1:E30-63. [DOI: 10.1111/j.1749-6632.2011.06022.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Montiel JF, Wang WZ, Oeschger FM, Hoerder-Suabedissen A, Tung WL, García-Moreno F, Holm IE, Villalón A, Molnár Z. Hypothesis on the dual origin of the Mammalian subplate. Front Neuroanat 2011; 5:25. [PMID: 21519390 PMCID: PMC3078748 DOI: 10.3389/fnana.2011.00025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/25/2011] [Indexed: 12/23/2022] Open
Abstract
The development of the mammalian neocortex relies heavily on subplate. The proportion of this cell population varies considerably in different mammalian species. Subplate is almost undetectable in marsupials, forms a thin, but distinct layer in mouse and rat, a larger layer in carnivores and big-brained mammals as pig, and a highly developed embryonic structure in human and non-human primates. The evolutionary origin of subplate neurons is the subject of current debate. Some hypothesize that subplate represents the ancestral cortex of sauropsids, while others consider it to be an increasingly complex phylogenetic novelty of the mammalian neocortex. Here we review recent work on expression of several genes that were originally identified in rodent as highly and differentially expressed in subplate. We relate these observations to cellular morphology, birthdating, and hodology in the dorsal cortex/dorsal pallium of several amniote species. Based on this reviewed evidence we argue for a third hypothesis according to which subplate contains both ancestral and newly derived cell populations. We propose that the mammalian subplate originally derived from a phylogenetically ancient structure in the dorsal pallium of stem amniotes, but subsequently expanded with additional cell populations in the synapsid lineage to support an increasingly complex cortical plate development. Further understanding of the detailed molecular taxonomy, somatodendritic morphology, and connectivity of subplate in a comparative context should contribute to the identification of the ancestral and newly evolved populations of subplate neurons.
Collapse
Affiliation(s)
- Juan F. Montiel
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- Center for Biomedical Research, Faculty of Medicine, Diego Portales UniversitySantiago, Chile
| | - Wei Zhi Wang
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | | | | | - Wan Ling Tung
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | | | - Ida Elizabeth Holm
- Department of Pathology, Randers Hospital, Randers and Clinical Institute, University of AarhusAarhus, Denmark
| | - Aldo Villalón
- Center for Biomedical Research, Faculty of Medicine, Diego Portales UniversitySantiago, Chile
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
15
|
Rahman FE, Baizer JS. Neurochemically defined cell types in the claustrum of the cat. Brain Res 2007; 1159:94-111. [PMID: 17582386 DOI: 10.1016/j.brainres.2007.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 05/08/2007] [Accepted: 05/08/2007] [Indexed: 11/22/2022]
Abstract
The claustrum is a subcortical structure reciprocally and topographically connected with all sensory and motor domains of the cerebral cortex. Previous anatomical and electrophysiological data suggested that most cells in the claustrum are large neurons that both receive cortical input and project back to cortex, forming excitatory connections with their cortical targets. These data have been interpreted to imply a relay function for the claustrum, with information from different functional cortical domains remaining segregated. The possibility that the claustrum might mediate a more "global" function has been recently been developed by Crick and Koch [Crick, F. C., Koch, C., 2005. What is the function of the claustrum? Philos. Trans. R. Soc. Lond., B Biol. Sci. 360, 1271-1279]. We have reexamined the anatomical substrate for information processing in the claustrum of the cat by analyzing the patterns of immunoreactivity to calcium-binding proteins, GAD, serotonin, nNOS and the glutamate transporter EAAC1. We found multiple neurochemically defined cell types, suggesting multiple classes of projection neurons and interneurons. Each class was found throughout the entire claustrum, in all functionally defined subdivisions. Many neurons in the claustrum were surrounded by parvalbumin, calretinin, GAD or nNOS immunoreactive terminals, suggesting that many neurons of the claustrum make extensive intraclaustral connections. The entire claustrum also receives a serotonergic input. The identification of multiple neurochemical cell classes, their distribution and the extent of their dendritic arborizations relative to functional compartments suggest a substrate for information processing in the claustrum that may allow integration of information across functional subdivisions.
Collapse
Affiliation(s)
- Fahad E Rahman
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | |
Collapse
|
16
|
Butler AB, Cotterill RMJ. Mammalian and avian neuroanatomy and the question of consciousness in birds. THE BIOLOGICAL BULLETIN 2006; 211:106-27. [PMID: 17062871 DOI: 10.2307/4134586] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Some birds display behavior reminiscent of the sophisticated cognition and higher levels of consciousness usually associated with mammals, including the ability to fashion tools and to learn vocal sequences. It is thus important to ask what neuroanatomical attributes these taxonomic classes have in common and whether there are nevertheless significant differences. While the underlying brain structures of birds and mammals are remarkably similar in many respects, including high brain-body ratios and many aspects of brain circuitry, the architectural arrangements of neurons, particularly in the pallium, show marked dissimilarity. The neural substrate for complex cognitive functions that are associated with higher-level consciousness in mammals and birds alike may thus be based on patterns of circuitry rather than on local architectural constraints. In contrast, the corresponding circuits in reptiles are substantially less elaborated, with some components actually lacking, and in amphibian brains, the major thalamopallial circuits involving sensory relay nuclei are conspicuously absent. On the basis of these criteria, the potential for higher-level consciousness in these taxa appears to be lower than in birds and mammals.
Collapse
Affiliation(s)
- Ann B Butler
- The Krasnow Institute for Advanced Study and Department of Psychology, George Mason University, Fairfax, Virginia 22030, USA.
| | | |
Collapse
|
17
|
Abstract
Early 20th-century comparative anatomists regarded the avian telencephalon as largely consisting of a hypertrophied basal ganglia, with thalamotelencephalic circuitry thus being taken to be akin to thalamostriatal circuitry in mammals. Although this view has been disproved for more than 40 years, only with the recent replacement of the old telencephalic terminology that perpetuated this view by a new terminology reflecting more accurate understanding of avian brain organization has the modern view of avian forebrain organization begun to become more widely appreciated. The modern view, reviewed in the present article, recognizes that the avian basal ganglia occupies no more of the telencephalon than is typically the case in mammals, and that it plays a role in motor control and motor learning as in mammals. Moreover, the vast majority of the telencephalon in birds is pallial in nature and, as true of cerebral cortex in mammals, provides the substrate for the substantial perceptual and cognitive abilities evident among birds. While the evolutionary relationship of the pallium of the avian telencephalon and its thalamic input to mammalian cerebral cortex and its thalamic input remains a topic of intense interest, the evidence currently favors the view that they had a common origin from forerunners in the stem amniotes ancestral to birds and mammals.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | |
Collapse
|
18
|
Abstract
The claustrum is a thin, irregular, sheet-like neuronal structure hidden beneath the inner surface of the neocortex in the general region of the insula. Its function is enigmatic. Its anatomy is quite remarkable in that it receives input from almost all regions of cortex and projects back to almost all regions of cortex. We here briefly summarize what is known about the claustrum, speculate on its possible relationship to the processes that give rise to integrated conscious percepts, propose mechanisms that enable information to travel widely within the claustrum and discuss experiments to address these questions.
Collapse
Affiliation(s)
- Francis C Crick
- The Salk Institute for Biological Studies10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christof Koch
- California Institute of TechnologyM/S 139-74, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Author for correspondence ()
| |
Collapse
|
19
|
Ashwell KWS, Hardman CD, Paxinos G. Cyto- and chemoarchitecture of the amygdala of a monotreme, Tachyglossus aculeatus (the short-beaked echidna). J Chem Neuroanat 2005; 30:82-104. [PMID: 15993563 DOI: 10.1016/j.jchemneu.2005.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Revised: 03/01/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022]
Abstract
We have examined the cyto- and chemoarchitecture of the temporal and extended amygdala in the brain of a monotreme (the short-beaked echidna Tachyglossus aculeatus) using Nissl and myelin staining, enzyme histochemistry for acetylcholine esterase and NADPH diaphorase, immunohistochemistry for calcium binding proteins (parvalbumin, calbindin and calretinin) and tyrosine hydroxylase. While the broad subdivisions of the eutherian temporal amygdala were present in the echidna brain, there were some noticeable differences. No immunoreactivity for parvalbumin or calretinin for somata was found in the temporal amygdala of the echidna. The nucleus of the lateral olfactory tract could not be definitively identified and the medial nucleus of amygdala appeared to be very small in the echidna. Calbindin immunoreactive neurons were most frequently found in the ventrolateral part of the lateral nucleus, intraamygdaloid parts of the bed nucleus of the stria terminalis and the lateral part of the central nucleus. Neurons strongly reactive for NADPH diaphorase with filling of the dendritic tree were found mainly scattered through the cortical, central and lateral subnuclei, while neurons showing only somata reactivity for NADPH diaphorase were concentrated in the basomedial and basolateral subnuclei. Most of the components of the extended amygdala of eutherians could also be identified in the echidna. Volumetric analysis indicated that the temporal amygdala in both the platypus and echidna is small compared to the same structure in both insectivores and primates, with the central and medial components of the temporal amygdala being particularly small.
Collapse
Affiliation(s)
- Ken W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, Australia.
| | | | | |
Collapse
|
20
|
Abstract
We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain - in particular the neocortex-like cognitive functions of the avian pallium - requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.
Collapse
|
21
|
Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB. Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 2005; 6:151-9. [PMID: 15685220 PMCID: PMC2507884 DOI: 10.1038/nrn1606] [Citation(s) in RCA: 632] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain - in particular the neocortex-like cognitive functions of the avian pallium - requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.
Collapse
Affiliation(s)
- Erich D Jarvis
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
It has become increasingly clear that the standard nomenclature for many telencephalic and related brainstem structures of the avian brain is based on flawed once-held assumptions of homology to mammalian brain structures, greatly hindering functional comparisons between avian and mammalian brains. This has become especially problematic for those researchers studying the neurobiology of birdsong, the largest single group within the avian neuroscience community. To deal with the many communication problems this has caused among researchers specializing in different vertebrate classes, the Avian Brain Nomenclature Forum, held at Duke University from July 18-20, 2002, set out to develop a new terminology for the avian telencephalon and some allied brainstem cell groups. In one major step, the erroneous conception that the avian telencephalon consists mainly of a hypertrophied basal ganglia has been purged from the telencephalic terminology, and the actual parts of the basal ganglia and its brainstem afferent cell groups have been given new names to reflect their now-evident homologies. The telencephalic regions that were incorrectly named to reflect presumed homology to mammalian basal ganglia have been renamed as parts of the pallium. The prefixes used for the new names for the pallial subdivisions have retained most established abbreviations, in an effort to maintain continuity with the pre-existing nomenclature. Here we present a brief synopsis of the inaccuracies in the old nomenclature, a summary of the nomenclature changes, and details of changes for specific songbird vocal and auditory nuclei. We believe this new terminology will promote more accurate understanding of the broader neurobiological implications of song control mechanisms and facilitate the productive exchange of information between researchers studying avian and mammalian systems.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|
23
|
Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED, Gütürkün O. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 2004; 473:377-414. [PMID: 15116397 PMCID: PMC2518311 DOI: 10.1002/cne.20118] [Citation(s) in RCA: 888] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names. Revisions for the brainstem focused on vocal control, catecholaminergic, cholinergic, and basal ganglia-related nuclei. For example, the Forum recognized that the hypoglossal nucleus had been incorrectly identified as the nucleus intermedius in the Karten and Hodos (1967) pigeon brain atlas, and what was identified as the hypoglossal nucleus in that atlas should instead be called the supraspinal nucleus. The locus ceruleus of this and other avian atlases was noted to consist of a caudal noradrenergic part homologous to the mammalian locus coeruleus and a rostral region corresponding to the mammalian A8 dopaminergic cell group. The midbrain dopaminergic cell group in birds known as the nucleus tegmenti pedunculopontinus pars compacta was recognized as homologous to the mammalian substantia nigra pars compacta and was renamed accordingly; a group of gamma-aminobutyric acid (GABA)ergic neurons at the lateral edge of this region was identified as homologous to the mammalian substantia nigra pars reticulata and was also renamed accordingly. A field of cholinergic neurons in the rostral avian hindbrain was named the nucleus pedunculopontinus tegmenti, whereas the anterior nucleus of the ansa lenticularis in the avian diencephalon was renamed the subthalamic nucleus, both for their evident mammalian homologues. For the basal (i.e., subpallial) telencephalon, the actual parts of the basal ganglia were given names reflecting their now evident homologues. For example, the lobus parolfactorius and paleostriatum augmentatum were acknowledged to make up the dorsal subdivision of the striatal part of the basal ganglia and were renamed as the medial and lateral striatum. The paleostriatum primitivum was recognized as homologous to the mammalian globus pallidus and renamed as such. Additionally, the rostroventral part of what was called the lobus parolfactorius was acknowledged as comparable to the mammalian nucleus accumbens, which, together with the olfactory tubercle, was noted to be part of the ventral striatum in birds. A ventral pallidum, a basal cholinergic cell group, and medial and lateral bed nuclei of the stria terminalis were also recognized. The dorsal (i.e., pallial) telencephalic regions that had been erroneously named to reflect presumed homology to striatal parts of mammalian basal ganglia were renamed as part of the pallium, using prefixes that retain most established abbreviations, to maintain continuity with the outdated nomenclature. We concluded, however, that one-to-one (i.e., discrete) homologies with mammals are still uncertain for most of the telencephalic pallium in birds and thus the new pallial terminology is largely devoid of assumptions of one-to-one homologies with mammals. The sectors of the hyperstriatum composing the Wulst (i.e., the hyperstriatum accessorium intermedium, and dorsale), the hyperstriatum ventrale, the neostriatum, and the archistriatum have been renamed (respectively) the hyperpallium (hypertrophied pallium), the mesopallium (middle pallium), the nidopallium (nest pallium), and the arcopallium (arched pallium). The posterior part of the archistriatum has been renamed the posterior pallial amygdala, the nucleus taeniae recognized as part of the avian amygdala, and a region inferior to the posterior paleostriatum primitivum included as a subpallial part of the avian amygdala. The names of some of the laminae and fiber tracts were also changed to reflect current understanding of the location of pallial and subpallial sectors of the avian telencephalon. Notably, the lamina medularis dorsalis has been renamed the pallial-subpallial lamina. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists. Further information is available at http://avianbrain.org
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy, University of Tennessee Health Science Center, Memphis 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hassiotis M, Paxinos G, Ashwell KWS. Cyto- and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). I. Areal organization. J Comp Neurol 2004; 475:493-517. [PMID: 15236232 DOI: 10.1002/cne.20193] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have examined the topography of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus), using Nissl and myelin staining, immunoreactivity for parvalbumin, calbindin, and nonphosphorylated neurofilament protein (SMI-32 antibody), and histochemistry for acetylcholinesterase (AChE) and NADPH diaphorase. Myelinated fibers terminating in layer IV of the cortex were abundant in the primary sensory cortical areas (areas S1, R, and PV of somatosensory cortex; primary visual cortex) as well as the frontal cortex. Parvalbumin immunoreactivity was particularly intense in the neuropil and somata of somatosensory regions (S1, R, and PV areas) but was poor in motor cortex. Immunoreactivity with the SMI-32 antibody was largely confined to a single sublayer of layer V pyramidal neurons in discrete subregions of the somatosensory, visual, and auditory cortices, as well as a large field in the frontal cortex (Fr1). Surprisingly, SMI-32 neurons were absent from the motor cortex. In AChE preparations, S1, R, V1, and A regions displayed intense reactivity in supragranular layers. Our findings indicate that there is substantial regional differentiation in the expanded frontal cortex of this monotreme. Although we agree with many of the boundaries identified by previous authors in this unusual mammal (Abbie [1940] J. Comp. Neurol. 72:429-467), we present an updated nomenclature for cortical areas that more accurately reflects findings from functional and chemoarchitectural studies.
Collapse
Affiliation(s)
- Maria Hassiotis
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, New South Wales 2052, Australia
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | |
Collapse
|
26
|
Ashwell KWS, Hardman C, Paxinos G. The Claustrum Is Not Missing from All Monotreme Brains. BRAIN, BEHAVIOR AND EVOLUTION 2004; 64:223-41. [PMID: 15319553 DOI: 10.1159/000080243] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 03/24/2004] [Indexed: 11/19/2022]
Abstract
Many authors have reported that the claustrum, which comprises the insular claustrum and the endopiriform nucleus, is missing from the monotreme forebrain. We used Nissl and myelin staining in conjunction with enzyme histochemistry for acetylcholinesterase and immunohistochemistry for parvalbumin, calbindin, calretinin and tyrosine hydroxylase to examine the brains of two monotremes, the short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus). We found that although the insular claustrum is a small structure in the echidna brain, it is nevertheless clearly present as loosely clustered neurons embedded in the white matter ventrolateral to the putamen and deep to the piriform and entorhinal cortices. Neurons in this region share the chemical features of the adjacent cortex (presence of a similar proportion of parvalbumin immunoreactive neurons and minimal activity for acetylcholinesterase and tyrosine hydroxylase), unlike the adjacent putamen and ventral pallidum. A putative endopiriform nucleus can be identified in the interior of the piriform lobe of the echidna as calretinin immunoreactive neurons embedded within the white matter. The situation is much less clear in the platypus, but our data suggest that there may be an insular claustrum deep to frontal cortex, separated from layer VI by only a thin layer of white matter. We could not identify an endopiriform nucleus in our platypus material. Our findings indicate that presence of the claustrum cannot be considered a feature confined to therian mammals and lend weight to arguments that this structure was present in the ancestral mammalian brain.
Collapse
Affiliation(s)
- Ken W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
27
|
REINER ANTON, PERKEL DAVIDJ, BRUCE LAURAL, BUTLER ANNB, CSILLAG ANDRÁS, KUENZEL WAYNE, MEDINA LORETA, PAXINOS GEORGE, SHIMIZU TORU, STRIEDTER GEORG, WILD MARTIN, BALL GREGORYF, DURAND SARAH, GÜTÜRKÜN ONUR, LEE DIANEW, MELLO CLAUDIOV, POWERS ALICE, WHITE STEPHANIEA, HOUGH GERALD, KUBIKOVA LUBICA, SMULDERS TOMV, WADA KAZUHIRO, DUGAS-FORD JENNIFER, HUSBAND SCOTT, YAMAMOTO KEIKO, YU JING, SIANG CONNIE, JARVIS ERICHD. The Avian Brain Nomenclature Forum: Terminology for a New Century in Comparative Neuroanatomy. J Comp Neurol 2004; 473:E1-E6. [PMID: 19626136 PMCID: PMC2713747 DOI: 10.1002/cne.20119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many of the assumptions of homology on which the standard nomenclature for the cell groups and fiber tracts of avian brains have been based are in error, and as a result that terminology promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains. Recognizing this problem, a number of avian brain researchers began an effort to revise the terminology, which culminated in the Avian Brain Nomenclature Forum, held at Duke University from July 18 to 20, 2002. In the new terminology approved at this Forum, the flawed conception that the telencephalon of birds consists nearly entirely of a hypertrophied basal ganglia has been purged from the telencephalic terminology, and the actual parts of the basal ganglia and its brainstem afferent cell groups have been given names reflecting their now evident homologies. The telencephalic regions that were erroneously named to reflect presumed homology to mammalian basal ganglia were renamed as parts of the pallium, using prefixes that retained most established abbreviations (to maintain continuity with the replaced nomenclature). Details of this meeting and its major conclusions are presented in this paper, and the details of the new terminology and its basis are presented in a longer companion paper. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists.
Collapse
Affiliation(s)
- ANTON REINER
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - DAVID J. PERKEL
- Departments of Biology and Otolaryngology, University of Washington, Seattle Washington 98195-6515
| | - LAURA L. BRUCE
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - ANN B. BUTLER
- Krasnow Institute and Department of Psychology, George Mason University, Fairfax, Virginia 22030-4444
| | - ANDRÁS CSILLAG
- Department of Anatomy, Semmelweis University, Faculty of Medicine, H-1094 Budapest, Hungary
| | - WAYNE KUENZEL
- Department of Poultry Science, Poultry Science Center, University of Arkansas, Fayetteville, Arkansas 72701
| | - LORETA MEDINA
- Department of Human Anatomy, Faculty of Medicine, University of Murcia, Murcia E-30100, Spain
| | - GEORGE PAXINOS
- Prince of Wales Medical Research Institute, Sydney, New South Wales 2031, Australia
| | - TORU SHIMIZU
- Department of Psychology, University of South Florida, Tampa, Florida 33620-8200
| | - GEORG STRIEDTER
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California 92697-4550
| | - MARTIN WILD
- Division of Anatomy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 92019, New Zealand
| | - GREGORY F. BALL
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218
| | - SARAH DURAND
- Department of Biology, Queens College–City University of New York, Flushing, New York 11367-1597
| | - ONUR GÜTÜRKÜN
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - DIANE W. LEE
- Department of Psychology, California State University, Long Beach, Long Beach, California 90840-0901
| | - CLAUDIO V. MELLO
- Neurological Sciences Institute, Oregon Health and Science University, West Campus, Beaverton, Oregon 97006-3499
| | - ALICE POWERS
- Department of Psychology, St John’s University, Jamaica, New York 11439
| | - STEPHANIE A. WHITE
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, California 90095-1606
| | - GERALD HOUGH
- Department of Psychology, Bowling Green State University, Bowling Green, Ohio 43403
| | - LUBICA KUBIKOVA
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - TOM V. SMULDERS
- School of Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - KAZUHIRO WADA
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - JENNIFER DUGAS-FORD
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - SCOTT HUSBAND
- Department of Psychology, University of South Florida, Tampa, Florida 33620-8200
| | - KEIKO YAMAMOTO
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - JING YU
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - CONNIE SIANG
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - ERICH D. JARVIS
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|