1
|
Sun Z, Cheng X, Wang Z, Qiao C, Qian H, Yuan T, Lv Z, Sun W, Zhang H, Liu Y, Lu Z, Lin J, Lai C, Wang Y, Yang X, Wang X, Meng J, Bao N. Single-nucleus transcriptomics reveals subsets of degenerative myonuclei after rotator cuff tear-induced muscle atrophy. Cell Prolif 2025; 58:e13763. [PMID: 39435630 PMCID: PMC11882757 DOI: 10.1111/cpr.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Rotator cuff tear (RCT) is the primary cause of shoulder pain and disability and frequently trigger muscle degeneration characterised by muscle atrophy, fatty infiltration and fibrosis. Single-nucleus RNA sequencing (snRNA-seq) was used to reveal the transcriptional changes in the supraspinatus muscle after RCT. Supraspinatus muscles were obtained from patients with habitual shoulder dislocation (n = 3) and RCT (n = 3). In response to the RCT, trajectory analysis showed progression from normal myonuclei to ANKRD1+ myonuclei, which captured atrophy-and fatty infiltration-related regulons (KLF5, KLF10, FOSL1 and BHLHE40). Transcriptomic alterations in fibro/adipogenic progenitors (FAPs) and muscle satellite cells (MuSCs) have also been studied. By predicting cell-cell interactions, we observed communication alterations between myofibers and muscle-resident cells following RCT. Our findings reveal the plasticity of muscle cells in response to RCT and offer valuable insights into the molecular mechanisms and potential therapeutic targets of RCT.
Collapse
Affiliation(s)
- Ziying Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Xi Cheng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Zheng Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Chenfeng Qiao
- Department of Orthopedics, Jinling Clinical Medical CollegeNanjing University of Chinese MedicineNanjingJiangsuPeople's Republic of China
| | - Hong Qian
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Zhongyang Lv
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Wenshuang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Hanwen Zhang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Zhihao Lu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Jintao Lin
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Chengteng Lai
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Yang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Xiaojiang Yang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- Department of Orthopedics, Jinling Clinical Medical CollegeNanjing University of Chinese MedicineNanjingJiangsuPeople's Republic of China
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- Department of Orthopedics, Jinling Clinical Medical CollegeNanjing University of Chinese MedicineNanjingJiangsuPeople's Republic of China
| |
Collapse
|
2
|
Huang C, Zhong Q, Lian W, Kang T, Hu J, Lei M. Ankrd1 inhibits the FAK/Rho-GTPase/F-actin pathway by downregulating ITGA6 transcriptional to regulate myoblast functions. J Cell Physiol 2024; 239:e31359. [PMID: 38988048 DOI: 10.1002/jcp.31359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Skeletal muscle constitutes the largest percentage of tissue in the animal body and plays a pivotal role in the development of normal life activities in the organism. However, the regulation mechanism of skeletal muscle growth and development remains largely unclear. This study investigated the effects of Ankrd1 on the proliferation and differentiation of C2C12 myoblasts. Here, we identified Ankrd1 as a potential regulator of muscle cell development, and found that Ankrd1 knockdown resulted in the proliferation ability decrease but the differentiation level increase of C2C12 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyzes as well as RNA-seq results showed that Ankrd1 knockdown activated focal adhesion kinase (FAK)/F-actin signal pathway with most genes significantly enriched in this pathway upregulated. The integrin subunit Itga6 promoter activity is increased when Ankrd1 knockdown, as demonstrated by a dual-luciferase reporter assay. This study revealed the molecular mechanism by which Ankrd1 knockdown enhanced FAK phosphorylation activity through the alteration of integrin subunit levels, thus activating FAK/Rho-GTPase/F-actin signal pathway, eventually promoting myoblast differentiation. Our data suggested that Ankrd1 might serve as a potential regulator of muscle cell development. Our findings provide new insights into skeletal muscle growth and development and valuable references for further study of human muscle-related diseases.
Collapse
Affiliation(s)
- Cheng Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiqi Zhong
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weisi Lian
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tingting Kang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinling Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- National Engineering Research Center for Livestock, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Pig Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
3
|
Xu X, Wang X, Li Y, Chen R, Wen H, Wang Y, Ma G. Research progress of ankyrin repeat domain 1 protein: an updated review. Cell Mol Biol Lett 2024; 29:131. [PMID: 39420247 PMCID: PMC11488291 DOI: 10.1186/s11658-024-00647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Ankyrin repeat domain 1 (Ankrd1) is an acute response protein that belongs to the muscle ankyrin repeat protein (MARP) family. Accumulating evidence has revealed that Ankrd1 plays a crucial role in a wide range of biological processes and diseases. This review consolidates current knowledge on Ankrd1's functions in myocardium and skeletal muscle development, neurogenesis, cancer, bone formation, angiogenesis, wound healing, fibrosis, apoptosis, inflammation, and infection. The comprehensive profile of Ankrd1 in cardiovascular diseases, myopathy, and its potential as a candidate prognostic and diagnostic biomarker are also discussed. In the future, more studies of Ankrd1 are warranted to clarify its role in diseases and assess its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xusan Xu
- Maternal and Child Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaoxia Wang
- Department of Neurology, Longjiang Hospital, Foshan, 528300, China
| | - Yu Li
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Houlang Wen
- Medical Genetics Laboratory, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Yajun Wang
- Respiratory Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Guoda Ma
- Maternal and Child Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| |
Collapse
|
4
|
Boskovic S, Marín-Juez R, Jasnic J, Reischauer S, El Sammak H, Kojic A, Faulkner G, Radojkovic D, Stainier DYR, Kojic S. Characterization of zebrafish (Danio rerio) muscle ankyrin repeat proteins reveals their conserved response to endurance exercise. PLoS One 2018; 13:e0204312. [PMID: 30252882 PMCID: PMC6155536 DOI: 10.1371/journal.pone.0204312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/05/2018] [Indexed: 12/30/2022] Open
Abstract
Muscle proteins with ankyrin repeats (MARPs) ANKRD1 and ANKRD2 are titin-associated proteins with a putative role as transcriptional co-regulators in striated muscle, involved in the cellular response to mechanical, oxidative and metabolic stress. Since many aspects of the biology of MARPs, particularly exact mechanisms of their action, in striated muscle are still elusive, research in this field will benefit from novel animal model system. Here we investigated the MARPs found in zebrafish for protein structure, evolutionary conservation, spatiotemporal expression profiles and response to increased muscle activity. Ankrd1 and Ankrd2 show overall moderate conservation at the protein level, more pronounced in the region of ankyrin repeats, motifs indispensable for their function. The two zebrafish genes, ankrd1a and ankrd1b, counterparts of mammalian ANKRD1/Ankrd1, have different expression profiles during first seven days of development. Mild increase of ankrd1a transcript levels was detected at 72 hpf (1.74±0.24 fold increase relative to 24 hpf time point), while ankrd1b expression was markedly upregulated from 24 hpf onward and peaked at 72 hpf (92.18±36.95 fold increase relative to 24 hpf time point). Spatially, they exhibited non-overlapping expression patterns during skeletal muscle development in trunk (ankrd1a) and tail (ankrd1b) somites. Expression of ankrd2 was barely detectable. Zebrafish MARPs, expressed at a relatively low level in adult striated muscle, were found to be responsive to endurance exercise training consisting of two bouts of 3 hours of forced swimming daily, for five consecutive days. Three hours after the last exercise bout, ankrd1a expression increased in cardiac muscle (6.19±5.05 fold change), while ankrd1b and ankrd2 were upregulated in skeletal muscle (1.97±1.05 and 1.84±0.58 fold change, respectively). This study provides the foundation to establish zebrafish as a novel in vivo model for further investigation of MARPs function in striated muscle.
Collapse
Affiliation(s)
- Srdjan Boskovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hadil El Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Dragica Radojkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
5
|
Rando A, Pastor D, Viso-León MC, Martínez A, Manzano R, Navarro X, Osta R, Martínez S. Intramuscular transplantation of bone marrow cells prolongs the lifespan of SOD1 G93A mice and modulates expression of prognosis biomarkers of the disease. Stem Cell Res Ther 2018; 9:90. [PMID: 29625589 PMCID: PMC5889612 DOI: 10.1186/s13287-018-0843-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive muscle weakness, paralysis and death. There is no effective treatment for ALS and stem cell therapy has arisen as a potential therapeutic approach. METHODS SOD1 mutant mice were used to study the potential neurotrophic effect of bone marrow cells grafted into quadriceps femoris muscle. RESULTS Bone marrow intramuscular transplants resulted in increased longevity with improved motor function and decreased motoneuron degeneration in the spinal cord. Moreover, the increment of the glial-derived neurotrophic factor and neurotrophin 4 observed in the grafted muscles suggests that this partial neuroprotective effect is mediated by neurotrophic factor release at the neuromuscular junction level. Finally, certain neurodegeneration and muscle disease-specific markers, which are altered in the SOD1G93A mutant mouse and may serve as molecular biomarkers for the early detection of ALS in patients, have been studied with encouraging results. CONCLUSIONS This work demonstrates that stem cell transplantation in the muscle prolonged the lifespan, increased motoneuron survival and slowed disease progression, which was also assessed by genetic expression analysis.
Collapse
Affiliation(s)
- Amaya Rando
- LAGENBIO-I3A, Facultad de Veterinaria, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Diego Pastor
- Centro de Investigación Deporte, Universidad Miguel Hernández de Elche, Alicante, Spain
- Instituto de Neurociencias de Alicante, UMH-CSIC, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Mari Carmen Viso-León
- Instituto de Neurociencias de Alicante, UMH-CSIC, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Anna Martínez
- Grupo de Neuroplasticidad y Regeneración, Instituto de Neurociencias y Departamento de Biología Celular, Fisiología e Inmunología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Raquel Manzano
- LAGENBIO-I3A, Facultad de Veterinaria, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Xavier Navarro
- Grupo de Neuroplasticidad y Regeneración, Instituto de Neurociencias y Departamento de Biología Celular, Fisiología e Inmunología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Rosario Osta
- LAGENBIO-I3A, Facultad de Veterinaria, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante, UMH-CSIC, Universidad Miguel Hernández de Elche, Alicante, Spain
| |
Collapse
|
6
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Differential expression and localization of Ankrd2 isoforms in human skeletal and cardiac muscles. Histochem Cell Biol 2016; 146:569-584. [PMID: 27393496 DOI: 10.1007/s00418-016-1465-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2016] [Indexed: 01/03/2023]
Abstract
Four human Ankrd2 transcripts, reported in the Ensembl database, code for distinct protein isoforms (360, 333, 327 and 300 aa), and so far, their existence, specific expression and localization patterns have not been studied in detail. Ankrd2 is preferentially expressed in the slow fibers of skeletal muscle. It is found in both the nuclei and the cytoplasm of skeletal muscle cells, and its localization is prone to change during differentiation and upon stress. Ankrd2 has also been detected in the heart, in ventricular cardiomyocytes and in the intercalated disks (ICDs). The main objective of this study was to distinguish between the Ankrd2 isoforms and to determine the contribution of each one to the general profile of Ankrd2 expression in striated muscles. We demonstrated that the known expression and localization pattern of Ankrd2 in striated muscle can be attributed to the isoform of 333 aa which is dominant in both tissues, while the designated cardiac and canonical isoform of 360 aa was less expressed in both tissues. The 360 aa isoform has a distinct nuclear localization in human skeletal muscle, as well as in primary myoblasts and myotubes. In contrast to the isoform of 333 aa, it was not preferentially expressed in slow fibers and not localized to the ICDs of human cardiomyocytes. Regulation of the expression of both isoforms is achieved at the transcriptional level. Our results set the stage for investigation of the specific functions and interactions of the Ankrd2 isoforms in healthy and diseased human striated muscles.
Collapse
|
8
|
Jasnic-Savovic J, Nestorovic A, Savic S, Karasek S, Vitulo N, Valle G, Faulkner G, Radojkovic D, Kojic S. Profiling of skeletal muscle Ankrd2 protein in human cardiac tissue and neonatal rat cardiomyocytes. Histochem Cell Biol 2015; 143:583-97. [PMID: 25585647 DOI: 10.1007/s00418-015-1307-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
Muscle-specific mechanosensors Ankrd2/Arpp (ankyrin repeat protein 2) and Ankrd1/CARP (cardiac ankyrin repeat protein) have an important role in transcriptional regulation, myofibrillar assembly, cardiogenesis and myogenesis. In skeletal muscle myofibrils, Ankrd2 has a structural role as a component of a titin associated stretch-sensing complex, while in the nucleus it exerts regulatory function as transcriptional co-factor. It is also involved in myogenic differentiation and coordination of myoblast proliferation. Although expressed in the heart, the role of Ankrd2 in the cardiac muscle is completely unknown. Recently, we have shown that hypertrophic and dilated cardiomyopathy pathways are altered upon Ankrd2 silencing suggesting the importance of this protein in cardiac tissue. Here we provide the underlying basis for the functional investigation of Ankrd2 in the heart. We confirmed reduced Ankrd2 expression levels in human heart in comparison with Ankrd1 using RNAseq and Western blot. For the first time we demonstrated that, apart from the sarcomere and nucleus, both proteins are localized to the intercalated disks of human cardiomyocytes. We further tested the expression and localization of endogenous Ankrd2 in rat neonatal cardiomyocytes, a well-established model for studying cardiac-specific proteins. Ankrd2 was found to be expressed in both the cytoplasm and nucleus, independently from maturation status of cardiomyocytes. In contrast to Ankrd1, it is not responsive to the cardiotoxic drug Doxorubicin, suggesting that different mechanisms govern their expression in cardiac cells.
Collapse
Affiliation(s)
- Jovana Jasnic-Savovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010, Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bang ML, Gu Y, Dalton ND, Peterson KL, Chien KR, Chen J. The muscle ankyrin repeat proteins CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to pressure overload. PLoS One 2014; 9:e93638. [PMID: 24736439 PMCID: PMC3988038 DOI: 10.1371/journal.pone.0093638] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/04/2014] [Indexed: 01/07/2023] Open
Abstract
Ankrd1/CARP, Ankrd2/Arpp, and Ankrd23/DARP belong to a family of stress inducible ankyrin repeat proteins expressed in striated muscle (MARPs). The MARPs are homologous in structure and localized in the nucleus where they negatively regulate gene expression as well as in the sarcomeric I-band, where they are thought to be involved in mechanosensing. Together with their strong induction during cardiac disease and the identification of causative Ankrd1 gene mutations in cardiomyopathy patients, this suggests their important roles in cardiac development, function, and disease. To determine the functional role of MARPs in vivo, we studied knockout (KO) mice of each of the three family members. Single KO mice were viable and had no apparent cardiac phenotype. We therefore hypothesized that the three highly homologous MARP proteins may have redundant functions in the heart and studied double and triple MARP KO mice. Unexpectedly, MARP triple KO mice were viable and had normal cardiac function both at basal levels and in response to mechanical pressure overload induced by transverse aortic constriction as assessed by echocardiography and hemodynamic studies. Thus, CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to mechanical pressure overload.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano (Milan), Italy
- * E-mail: (M-LB); (JC)
| | - Yusu Gu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nancy D. Dalton
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kirk L. Peterson
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kenneth R. Chien
- Department of Cell and Molecular Biology and Medicine, Karolinska Insititutet, Stockholm, Sweden
- Harvard University, Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, United States of America
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (M-LB); (JC)
| |
Collapse
|
10
|
Petrie MA, Suneja M, Faidley E, Shields RK. Low force contractions induce fatigue consistent with muscle mRNA expression in people with spinal cord injury. Physiol Rep 2014; 2:e00248. [PMID: 24744911 PMCID: PMC3966256 DOI: 10.1002/phy2.248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 11/11/2022] Open
Abstract
Spinal cord injury (SCI) is associated with muscle atrophy, transformation of muscle fibers to a fast fatigable phenotype, metabolic inflexibility (diabetes), and neurogenic osteoporosis. Electrical stimulation of paralyzed muscle may mitigate muscle metabolic abnormalities after SCI, but there is a risk for a fracture to the osteoporotic skeletal system. The goal of this study was to determine if low force stimulation (3 Hz) causes fatigue of chronically paralyzed muscle consistent with selected muscle gene expression profiles. We tested 29 subjects, nine with a SCI and 20 without and SCI, during low force fatigue protocol. Three SCI and three non-SCI subjects were muscle biopsied for gene and protein expression analysis. The fatigue index (FI) was 0.21 ± 0.27 and 0.91 ± 0.01 for the SCI and non-SCI groups, respectively, supporting that the low force protocol physiologically fatigued the chronically paralyzed muscle. The post fatigue potentiation index (PI) for the SCI group was increased to 1.60 ± 0.06 (P <0.001), while the non-SCI group was 1.26 ± 0.02 supporting that calcium handling was compromised with the low force stimulation. The mRNA expression from genes that regulate atrophy and fast properties (MSTN, ANKRD1, MYH8, and MYCBP2) was up regulated, while genes that regulate oxidative and slow muscle properties (MYL3, SDHB, PDK2, and RyR1) were repressed in the chronic SCI muscle. MSTN, ANKRD1, MYH8, MYCBP2 gene expression was also repressed 3 h after the low force stimulation protocol. Taken together, these findings support that a low force single twitch activation protocol induces paralyzed muscle fatigue and subsequent gene regulation. These findings suggest that training with a low force protocol may elicit skeletal muscle adaptations in people with SCI.
Collapse
Affiliation(s)
- Michael A Petrie
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Manish Suneja
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Elizabeth Faidley
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa ; Department of Veterans Affairs, VA Medical Center, Iowa City, Iowa
| |
Collapse
|
11
|
Wu Y, Ruggiero CL, Bauman WA, Cardozo C. Ankrd1 is a transcriptional repressor for the androgen receptor that is downregulated by testosterone. Biochem Biophys Res Commun 2013; 437:355-60. [PMID: 23811403 DOI: 10.1016/j.bbrc.2013.06.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The ankryn repeat domain proteins, Ankrd1 and Ankrd2, are expressed at the highest levels in skeletal muscle and heart where they are localized to the I band of the sarcomere through binding to titin and myopaladin. Ankrd1 and Ankrd2 migrate from the sarcomere to the nucleus when muscle is stressed, and act as coregulators for a growing number of transcription factors. Expression of Ankrd1 is altered by castration suggesting a link to androgen action. This investigation explored the effects of testosterone on Ankrd1 and Ankrd2 expression and determined whether Ankrd1 or Ankrd2 binds to or regulates the transcriptional activity of the androgen receptor (AR). Incubation of rat L6 myoblasts expressing the human AR (L6.AR) with testosterone reduced mRNA levels for Ankrd1 by approximately 50% and increased those for Ankrd2 by 20-fold. In reporter gene assays conducted with CHO cells co-transfected with an ARE-Luc reporter gene, Ankrd1 blocked the ability of testosterone to increase reporter gene activity while Ankrd2 had no effect. The effect of Ankrd1 and Ankrd2 on repression of the MAFbx promoter by testosterone was also tested in C2C12 cells using an MAFbx-Luc reporter gene (pMAF400-Luc); Ankrd1 blocked repression of pMAF400-Luc by testosterone while Ankrd2 did not. Co-immunoprecipitation studies revealed that Ankrd1 bound to the AR whereas Ankrd2 did not. The effect of Ankrd1 or Ankrd2 on changes in gene expression induced by testosterone in L6.AR cells was also evaluated. Incubation of L6.AR cells with testosterone modestly reduced myogenin mRNA levels but did not significantly alter those for mdm2, MEF2d, TnnI1, TnnI2, or p21. When cells were transfected with Ankrd1, testosterone markedly reduced mRNA levels for MEF2d, myogenin, p21 and TnnI1, increased those for TnnI2, but did not alter those for mdm2. When cells were transfected with Ankrd2, testosterone increased MEF2d and myogenin mRNA levels, having the opposite effect to cells transfected with Ankrd1; Ankrd2 did not change the effects of testosterone on TnnI1, TnnI2, p21, or mdm2 mRNA levels. In conclusion, testosterone regulates the expression of Ankrd1 and Ankrd2; Ankrd1 binds to and directly regulates the transcriptional activity of the AR whereas Ankrd2 does not; expression levels of both Ankrd1 and Ankrd2 modulate effects of testosterone on gene expression in cultured myoblasts.
Collapse
Affiliation(s)
- Yong Wu
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter Medical Center, Bronx, NY, United States
| | | | | | | |
Collapse
|
12
|
Cloning, expression, and bioinformatics analysis of the sheep CARP gene. Mol Cell Biochem 2013; 378:29-37. [PMID: 23475534 DOI: 10.1007/s11010-013-1590-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/08/2013] [Indexed: 12/24/2022]
Abstract
The cardiac ankyrin repeat protein (CARP) is a multifunctional protein that is expressed specifically in mammalian cardiac muscle and plays important roles in stress responses, transcriptional regulation, myofibrillar assembly, and the development of cardiac and skeletal muscle. In this study, the sheep homolog of the CARP gene was cloned and characterized. The coding region of the gene consists of 960 bp and encodes 319 amino acids with molecular weight 36.2 KD. Bioinformatics analysis demonstrated that the 3' untranslated region (3'-UTR) of the gene contains many AU-rich elements that are associated with mRNA stability and a potential regulatory site for miRNA binding. The protein was predicted to contain 14 potential phosphorylation sites and an O-GlcNAc glycosylation site and to be expressed in both the nucleus and cytoplasm. The evolutionary analysis revealed that the sheep CARP exhibited a high level of homology with the mammalian counterparts; however, the protein exhibited an increased evolutionary distance from the chicken, frog, and fish homologs. RT-PCR revealed that in addition to its high mRNA expression level in cardiac muscle, trace amounts of the sheep CARP mRNA were expressed in the skeletal muscle, stomach, and small intestine. However, western blot analysis demonstrated that the CARP protein was expressed only in cardiac muscle. The coding sequence was cloned into the pET30a-TEV-LIC vector, and the soluble CARP-MBP (maltose-binding protein) fusion protein was expressed in a prokaryotic host and purified by affinity chromatography. Our data provide the basis for future studies of the structure and function of sheep CARP.
Collapse
|
13
|
Calvo AC, Manzano R, Atencia-Cibreiro G, Oliván S, Muñoz MJ, Zaragoza P, Cordero-Vázquez P, Esteban-Pérez J, García-Redondo A, Osta R. Genetic biomarkers for ALS disease in transgenic SOD1(G93A) mice. PLoS One 2012; 7:e32632. [PMID: 22412900 PMCID: PMC3296719 DOI: 10.1371/journal.pone.0032632] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/28/2012] [Indexed: 12/11/2022] Open
Abstract
The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS) are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10) could be considered potential genetic biomarkers of longevity in transgenic SOD1G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.
Collapse
Affiliation(s)
- Ana C. Calvo
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Manzano
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Gabriela Atencia-Cibreiro
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Sara Oliván
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - María J. Muñoz
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar Cordero-Vázquez
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Jesús Esteban-Pérez
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Alberto García-Redondo
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Rosario Osta
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
14
|
Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit Rev Clin Lab Sci 2011; 48:269-94. [DOI: 10.3109/10408363.2011.643857] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Shtilbans A, Choi SG, Fowkes ME, Khitrov G, Shahbazi M, Ting J, Zhang W, Sun Y, Sealfon SC, Lange DJ. Differential gene expression in patients with amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2011; 12:250-6. [DOI: 10.3109/17482968.2011.560946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Kojic S, Nestorovic A, Rakicevic L, Belgrano A, Stankovic M, Divac A, Faulkner G. A novel role for cardiac ankyrin repeat protein Ankrd1/CARP as a co-activator of the p53 tumor suppressor protein. Arch Biochem Biophys 2010; 502:60-7. [PMID: 20599664 DOI: 10.1016/j.abb.2010.06.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 01/08/2023]
Abstract
The muscle ankyrin repeat protein (MARP) family member Ankrd1/CARP is a part of the titin-mechanosensory signaling complex in the sarcomere and in response to stretch it translocates to the nucleus where it participates in the regulation of cardiac genes as a transcriptional co-repressor. Several studies have focused on its structural role in muscle, but its regulatory role is still poorly understood. To gain more insight into the regulatory function of Ankrd1/CARP we searched for transcription factors that could interact and modulate its activity. Using protein array methodology we identified the tumor suppressor protein p53 as an Ankrd1/CARP interacting partner and confirmed their interaction both in vivo and in vitro. We demonstrate a novel role for Ankrd1/CARP as a transcriptional co-activator, moderately up regulating p53 activity. Furthermore, we show that p53 operates as an upstream effector of Ankrd1/CARP, by up regulating the proximal ANKRD1 promoter. Our findings suggest that, besides acting as a transcriptional co-repressor, Ankrd1/CARP could have a stimulatory effect on gene expression in cultured skeletal muscle cells. It is probable that Ankrd1/CARP has a role in the propagation of signals initiated by myogenic regulatory factors (MRFs) during myogenesis.
Collapse
Affiliation(s)
- Snezana Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Laure L, Danièle N, Suel L, Marchand S, Aubert S, Bourg N, Roudaut C, Duguez S, Bartoli M, Richard I. A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor-κB pathway in skeletal muscle. FEBS J 2010; 277:4322-37. [DOI: 10.1111/j.1742-4658.2010.07820.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Tee JM, Peppelenbosch MP. Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol 2010; 45:318-30. [PMID: 20515317 PMCID: PMC2942773 DOI: 10.3109/10409238.2010.488217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies.
Collapse
Affiliation(s)
- Jin-Ming Tee
- Hubrecht Institute for Developmental Biology and Stem Cell Research-University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | |
Collapse
|
19
|
Laure L, Suel L, Roudaut C, Bourg N, Ouali A, Bartoli M, Richard I, Danièle N. Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling. FEBS J 2009; 276:669-84. [PMID: 19143834 DOI: 10.1111/j.1742-4658.2008.06814.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In an attempt to identify potential therapeutic targets for the correction of muscle wasting, the gene expression of several pivotal proteins involved in protein metabolism was investigated in experimental atrophy induced by transient or definitive denervation, as well as in four animal models of muscular dystrophies (deficient for calpain 3, dysferlin, alpha-sarcoglycan and dystrophin, respectively). The results showed that: (a) the components of the ubiquitin-proteasome pathway are upregulated during the very early phases of atrophy but do not greatly increase in the muscular dystrophy models; (b) forkhead box protein O1 mRNA expression is augmented in the muscles of a limb girdle muscular dystrophy 2A murine model; and (c) the expression of cardiac ankyrin repeat protein (CARP), a regulator of transcription factors, appears to be persistently upregulated in every condition, suggesting that CARP could be a hub protein participating in common pathological molecular pathway(s). Interestingly, the mRNA level of a cell cycle inhibitor known to be upregulated by CARP in other tissues, p21(WAF1/CIP1), is consistently increased whenever CARP is upregulated. CARP overexpression in muscle fibres fails to affect their calibre, indicating that CARP per se cannot initiate atrophy. However, a switch towards fast-twitch fibres is observed, suggesting that CARP plays a role in skeletal muscle plasticity. The observation that p21(WAF1/CIP1) is upregulated, put in perspective with the effects of CARP on the fibre type, fits well with the idea that the mechanisms at stake might be required to oppose muscle remodelling in skeletal muscle.
Collapse
|
20
|
Hayashi C, Ono Y, Doi N, Kitamura F, Tagami M, Mineki R, Arai T, Taguchi H, Yanagida M, Hirner S, Labeit D, Labeit S, Sorimachi H. Multiple Molecular Interactions Implicate the Connectin/Titin N2A Region as a Modulating Scaffold for p94/Calpain 3 Activity in Skeletal Muscle. J Biol Chem 2008; 283:14801-14. [DOI: 10.1074/jbc.m708262200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
21
|
Gonzalez de Aguilar JL, Niederhauser-Wiederkehr C, Halter B, De Tapia M, Di Scala F, Demougin P, Dupuis L, Primig M, Meininger V, Loeffler JP. Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model. Physiol Genomics 2007; 32:207-18. [PMID: 18000159 DOI: 10.1152/physiolgenomics.00017.2007] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle atrophy is a major hallmark of amyotrophic lateral sclerosis (ALS), the most frequent adult-onset motor neuron disease. To define the full set of alterations in gene expression in skeletal muscle during the course of the disease, we used the G86R superoxide dismutase-1 transgenic mouse model of ALS and performed high-density oligonucleotide microarrays. We compared these data to those obtained by axotomy-induced denervation. A major set of gene regulations in G86R muscles resembled those of surgically denervated muscles, but many others appeared specific to the ALS condition. The first significant transcriptional changes appeared in a subpopulation of mice before the onset of overt clinical symptoms and motor neuron death. These early changes affected genes involved in detoxification (e.g., ALDH3, metallothionein-2, and thioredoxin-1) and regeneration (e.g., BTG1, RB1, and RUNX1) but also tissue degradation (e.g., C/EBPdelta and DDIT4) and cell death (e.g., ankyrin repeat domain-1, CDKN1A, GADD45alpha, and PEG3). Of particular interest, metallothionein-1 and -2, ATF3, cathepsin-Z, and galectin-3 genes appeared, among others, commonly regulated in both skeletal muscle (our present data) and spinal motor neurons (as previously reported) of paralyzed ALS mice. The importance of these findings is twofold. First, they designate the distal part of the motor unit as a primary site of disease. Second, they identify specific gene regulations to be explored in the search for therapeutic strategies that could alleviate disease before motor neuron death manifests clinically.
Collapse
Affiliation(s)
- Jose-Luis Gonzalez de Aguilar
- Institut National de la Santé et de la Recherche Médicale, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakada C, Oka A, Nonaka I, Sato K, Mori S, Ito H, Moriyama M. Cardiac ankyrin repeat protein is preferentially induced in atrophic myofibers of congenital myopathy and spinal muscular atrophy. Pathol Int 2003; 53:653-8. [PMID: 14516314 DOI: 10.1046/j.1440-1827.2003.01541.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac ankyrin repeat protein (CARP), which is structurally characterized by the presence of four ankyrin repeat motifs in its central region, is believed to be localized in the nucleus and to participate in the regulation of cardiac-specific gene expression in cardiomyocytes. However, we recently found that CARP was induced in skeletal muscle by denervation, leading us to speculate that CARP may be induced under some pathological conditions. In the present study, we immunohistochemically analyzed the expression of CARP in 11 cases of spinal muscular atrophy (SMA) and 14 cases of congenital myopathy. In SMA, CARP was expressed selectively in severely atrophic myofibers, suggesting that CARP expression may reflect the status of muscle atrophy. Furthermore, in the congenital myopathies, the expression patterns of CARP were distinct among the subtypes, which included nemaline myopathy, myotubular myopathy, central core disease, and congenital fiber type disproportion. Although CARP was preferentially expressed in severely damaged myofibers in nemaline myopathy, it was not detected in central core disease. These findings suggest that immunohistochemical evaluation of CARP may be helpful in the diagnosis of SMA and the congenital myopathies.
Collapse
Affiliation(s)
- Chisato Nakada
- Division of Molecular Biology, Department of Molecular and Cellular Biology, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | |
Collapse
|