1
|
Mottola F, Finelli R, Feola V, Leisegang K, Rocco L. Small Supernumerary Marker Chromosome (sSMC) 15 in Male Primary Infertility: A Case Study. Case Rep Med 2025; 2025:9935363. [PMID: 40313645 PMCID: PMC12043387 DOI: 10.1155/carm/9935363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 05/03/2025] Open
Abstract
This case report describes a 39-year-old phenotypically normal male patient of a married couple with primary infertility presenting as candidates for assisted reproductive techniques. The medical history of the couple is unremarkable, with both partners phenotypically normal. Semen analysis revealed oligoasthenzoospermia (OAT), 15% sperm DNA fragmentation and 4% aneuploidies in the sperm nuclei. Genetic analysis showed no Y chromosome of cystic fibrosis transmembrane conductance regulator gene mutations. Karyotype analysis in the male partner revealed a small supernumerary marker chromosome (sSMC) derived from chromosome 15, specifically inverted and duplicated (inv dup(15)) corresponding to the 15q11.2 region but lacking the Prader-Willi/Angelman syndrome critical region (PWACR). Further investigations revealed that 35% of the patient's spermatozoa carried the sSMC(15). This case study highlights the potential association between the presence of an inv dup(15) sSMC, without the involvement of the PWACR, and male infertility. sSMC(15) may disrupt spermatogenesis and contribute to oligoasthenozoospermia in males with primary infertility. Further research into the association of mechanism mechanisms of male infertility related to the 15q11.2 region is warranted.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | | | - Veronica Feola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Kristian Leisegang
- School of Natural Medicine, Faculty of Community and Health Sciences, University of Western Cape, Bellville 7535, South Africa
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| |
Collapse
|
2
|
Pizzo L, Rudd MK. Structural Variation Interpretation in the Genome Sequencing Era: Lessons from Cytogenetics. Clin Chem 2025; 71:119-128. [PMID: 39749522 DOI: 10.1093/clinchem/hvae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/26/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting. In this review, we describe SV patterns of common cytogenetic abnormalities for laboratorians who review GS data. CONTENT GS has the potential to detect diverse chromosomal abnormalities and sequence breakpoint junctions to clarify variant structure. No single GS analysis pipeline can detect all SV, and visualization of sequence data is crucial to recognize specific patterns. Here we describe genomic signatures of translocations, inverted duplications adjacent to terminal deletions, recombinant chromosomes, marker chromosomes, ring chromosomes, isodicentric and isochromosomes, and mosaic aneuploidy. Distinguishing these more complex abnormalities from simple deletions and duplications is critical for phenotypic interpretation and recurrence risk recommendations. SUMMARY Unlike single-nucleotide variant calling, identification of chromosome rearrangements by GS requires further processing and multiple callers. SV databases have caveats and limitations depending on the platform (CMA vs sequencing) and resolution (exome vs genome). In the rapidly evolving era of clinical genomics, where a single test can identify both sequence and structural variants, optimal patient care stems from the integration of molecular and cytogenetic expertise.
Collapse
Affiliation(s)
- Lucilla Pizzo
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Cytogenetics and Genomic Microarray Lab, ARUP Laboratories, Salt Lake City, UT, United States
| | - M Katharine Rudd
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Cytogenetics and Genomic Microarray Lab, ARUP Laboratories, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Xu L, Cheng X, Tang L, Min S, Wu J, Zhu H, Liao Y. Clinical and molecular cytogenetic findings of cat eye syndrome and a 2-year-old patient with congenital aural atresia and hearing loss. BMC Pediatr 2024; 24:658. [PMID: 39402511 PMCID: PMC11472575 DOI: 10.1186/s12887-024-05136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cat eye syndrome (CES) is a rare congenital disease frequently caused by a partial tetrasomy of the proximal long (q) arm of chromosome 22, due to a small supernumerary marker chromosome (sSMC). CES patients show remarkable phenotypic variability. Despite the progress of molecular cytogenetic technology, the cause of phenotypic variability and the genotype-phenotype correlations remain unknown. METHODS We analyzed clinical and genetic data of a new patient with CES together with 27 previously reported ones with a confirmed genomic gain in the PubMed database between 2012 and 2023. RESULTS We reported a boy with CES carrying a 22q11.1-q11.21 duplication of 1.76 Mb tetrasomy (16888900_18644241, hg19) who presented currently rare or unreported clinical findings such as congenital aural atresia, hearing loss, PLSVC, and IVC. The results of the whole exome sequencing (WES) showed a heterozygous mutation of the GJB2 gene (NM_004004.6: exon2: c.109G > A). In addition, the results of our literature review showed that the presence of a classical sSMC was the most frequent cytogenetic abnormality in CES (82%). 63% of cases were in a homogenous state and 37% of cases were in a mosaic state. 72% of cases had a 1-2 Mb duplication. In the majority of CES patients the breakpoints in chromosome 22 are localized to a 50 kb region (18610000_18660000 bp). The CES critical region (CESCR) may be further delimited to a 0.3 Mb region (17799398_18111588 bp). Within this region CECR2, SLC25A18, ATP6V1E1, and BCL2L13 are strong candidate genes for causing the main CES phenotype. The ear anomalies are the most frequent features in CES patients (89%) and hearing loss was present in 36% of CES patients. CONCLUSIONS The phenotypic features in CES are highly variable. Our findings expand the symptom spectrum of CES and lay the foundation for better delineating the clinical phenotype, molecular cytogenetic features associated with CES and genotype-phenotype correlations. We recommend performing WES to rule out the involvement of other genetic factors in the patient's phenotype. In addition, our findings also highlight the need for genetic counseling and recurrence risk assessment.
Collapse
Affiliation(s)
- Liang Xu
- School of Life Sciences, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233000, China
- Prenatal Diagnosis Center, Molecular Diagnosis Center, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, The First Affiliated Hospital of Bengbu Medical University, 287 Zhihuai Avenue, Bengbu, 233030, China
| | - Xia Cheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Bengbu Medical University, 633 Longhua Avenue, Bengbu, 233000, China
| | - Lemin Tang
- School of Life Sciences, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233000, China
| | - Shengping Min
- Prenatal Diagnosis Center, Molecular Diagnosis Center, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, The First Affiliated Hospital of Bengbu Medical University, 287 Zhihuai Avenue, Bengbu, 233030, China
| | - Jiatao Wu
- Prenatal Diagnosis Center, Molecular Diagnosis Center, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, The First Affiliated Hospital of Bengbu Medical University, 287 Zhihuai Avenue, Bengbu, 233030, China
| | - Hongwei Zhu
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, 287 Zhihuai Avenue, Bengbu, 233030, China
| | - Yaping Liao
- School of Life Sciences, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233000, China.
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233000, China.
| |
Collapse
|
4
|
Cilio Arroyuelo M, Tenorio-Castano J, García-Moya LF, Parra A, Cazalla M, Gallego N, Miranda L, Mori MÁ, García-Gueretta L, Labrandero C, Mansilla E, Rikeros E, García-Santiago F, Vallcorba I, Arias P, Silván C, Deiros Bronte L, Nevado J, Lapunzina P. Mortality in Patients with 22q11.2 Rearrangements. Genes (Basel) 2024; 15:1146. [PMID: 39336737 PMCID: PMC11431692 DOI: 10.3390/genes15091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
The 22q11.2 region is highly susceptible to genomic rearrangements leading to multiple genomic disorders, including 22q11.2 microdeletion syndrome (22q11.2 DS) (MIM# 188400), 22q11.2 microduplication syndrome (MIM# 608363), supernumerary der(22)t(11;22) syndrome (also known as Emanuel Syndrome; MIM# 609029), and Cat Eye Syndrome (MIM# 115470). In this study, we present data on causes of mortality, average age of death, and the existing associated risk factors in patients with 22q11.2 rearrangements. Our cohort included 223 patients (120 males and 103 females) with confirmed diagnoses of 22q11.2 rearrangements diagnosed through molecular techniques (FISH, MLPA, and CMA). Relatives from patients who have been molecularly confirmed with 22q11.2 rearrangements have also been added to the study, regardless of the presence or absence of symptoms. Of these 223 individuals, 21 (9.4%) died. Deceased patients' rearrangements include 19 microdeletions, 1 microduplication, and 1 patient with a marker chromosome. The median age of death was 3 months and 18 days (ranging from 3 days to 34 years). There were 17 patients who died at pediatric age (80.95%), 3 died at adult age (14.28%), and for 1 of whom, the age of death is unknown (4.76%). Eighteen patients were White Mediterranean (European non-Finnish) (85.71%) whereas three were Amerindian (South American) (14.28%). Mortality from cardiac causes accounted for 71.42%. The second most frequent cause of death was sepsis in two patients (9.52%). One patient died from respiratory failure (4.76%) and one from renal failure (4.76%). Information regarding the cause of death was not available in two patients (9.52%). Most patients who died were diagnosed within the first week of life, the majority on the first day. This study adds additional information on mortality in one of the largest cohorts of patients with 22q11.2 rearrangements in more than 30 years of follow-up.
Collapse
Affiliation(s)
- Melisa Cilio Arroyuelo
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
| | - Jair Tenorio-Castano
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Luis Fernández García-Moya
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Alejandro Parra
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Mario Cazalla
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Natalia Gallego
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Lucía Miranda
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
| | - María Ángeles Mori
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Luis García-Gueretta
- Department of Pediatric Cardiology, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.G.-G.); (C.L.); (L.D.B.)
| | - Carlos Labrandero
- Department of Pediatric Cardiology, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.G.-G.); (C.L.); (L.D.B.)
| | - Elena Mansilla
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Emi Rikeros
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
| | - Fe García-Santiago
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Isabel Vallcorba
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Pedro Arias
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Cristina Silván
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Lucia Deiros Bronte
- Department of Pediatric Cardiology, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.G.-G.); (C.L.); (L.D.B.)
| | - Julián Nevado
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, INGEMM-IdIPAZ, 28046 Madrid, Spain (J.T.-C.); (L.F.G.-M.); (A.P.); (M.C.); (N.G.); (L.M.); (M.Á.M.); (E.M.); (E.R.); (F.G.-S.); (I.V.); (P.A.); (C.S.); (J.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- European Reference Network, ITHACA, 1070 Brussels, Belgium
| |
Collapse
|
5
|
Jiang X, Liang B, Chen B, Wu X, Wang Y, Lin N, Huang H, Xu L. Prenatal diagnosis and genetic analysis of small supernumerary marker chromosomes in the eastern chinese han population: A retrospective study of 36 cases. Chromosome Res 2024; 32:9. [PMID: 39026136 DOI: 10.1007/s10577-024-09754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Small supernumerary marker chromosomes (sSMCs) are additional chromosomes with unclear structures and origins, and their correlations with clinical fetal phenotypes remain incompletely understood, which reduces the accuracy of genetic counseling. METHODS We conducted a retrospective analysis of a cohort of 36 cases of sSMCs diagnosed in our center. We performed G-banding and chromosomal microarray analysis (CMA). The resulting karyotypes were compared with case reports in the literature and various databases including OMIM, DECIPHER, ClinVar, ClinGen, ISCA, DGV, and PubMed. RESULTS Karyotype analysis data revealed that 19 out of 36 fetuses were mosaic. Copy number variants (CNVs) analysis results showed that 27 out of 36 fetuses harbored pathogenic/likely pathogenic variants. Among these 27 cases, 11 fetuses carried sex chromosome-related CNVs, including 4 female cases exhibiting Turner syndrome phenotypes and 7 cases showing Y chromosome deletions. In the remaining 16 fetuses with autosomal CNVs, 9 fetuses carried variants associated with Cat eye syndrome, Emanuel syndrome, Tetrasomy 18p, and 15q11-q13 duplication syndrome. Among these, 22 fetuses were terminated, and the remaining 5 fetuses were delivered and developed normally. Additionally, we identified a few variants with unclear pathogenicity. CONCLUSION Cytogenetic analysis is essential for identifying the pathogenicity of sSMCs and increasing the accuracy of genetic counseling.
Collapse
Affiliation(s)
- Xiali Jiang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Bin Liang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Bilian Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Xiaoqing Wu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Yan Wang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
6
|
Navarrete-Meneses MP, Ochoa-Mellado I, Gutiérrez-Álvarez R, Martínez-Anaya D, Juárez-Figueroa U, Durán-McKinster C, Lieberman-Hernández E, Yokoyama-Rebollar E, Gómez-Carmona S, Del Castillo-Ruiz V, Pérez-Vera P, Salas-Labadía C. Cytogenomic characterization of small supernumerary marker chromosomes in patients with pigmentary mosaicism. Front Genet 2024; 15:1356786. [PMID: 38711916 PMCID: PMC11071077 DOI: 10.3389/fgene.2024.1356786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction The combination of gene content on the marker chromosome, chromosomal origin, level of mosaicism, origin mechanism (chromothripsis), and uniparental disomy can influence the final characterization of sSMCs. Several chromosomal aberrations, including sSMCs, have been observed in 30%-60% of patients with pigmentary mosaicism, and in more than 80%, chromosomal abnormalities are present in the mosaic state. In patients with pigmentary mosaicism the most representative chromosomes involved in sSMCs are 3, 5, 6, 9, 10, 13, 15, 18, 20, and X. In this study, we included the complete clinical, cytogenetic, and molecular characterization of seven patients with pigmentary mosaicism associated with the presence of SMCs of different chromosomal origins. Methods The patients were diagnosed by the Genetics and Dermatology Department of three different hospitals. Cytogenetic and FISH analyses were performed on peripheral blood, light skin, and dark skin. FISH analysis was performed using different probes, depending on the marker chromosome description. Different array analysis was performed. Results To date, of the seven cases studied, the chromosomal origins of six were successfully identified by FISH or array analysis. The chromosomes involved in SMCs were 6, 9, 15, and 18, X. The most frequently found was the centric minute structure. Discussion To date, this group of seven patients constitutes the largest clinical and cytogenetically finely described study of cases with pigmentary mosaicism associated with sSMCs. Undoubtedly, analysis of the two skin types is a fundamental part of our study, as numerical differences may occur in the cell lines found in each skin type. The knowledge generated in this study will help delineate a very heterogeneous entity more accurately, and in the future, analyzing more patients with PM will likely establish a more definite association with the presence of this genetic alteration.
Collapse
Affiliation(s)
- M. P. Navarrete-Meneses
- Genetic and cancer Laboratory, National Institute of Pediatrics (Mexico), Mexico City, Mexico
| | - I. Ochoa-Mellado
- Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - R. Gutiérrez-Álvarez
- Genetic and cancer Laboratory, National Institute of Pediatrics (Mexico), Mexico City, Mexico
| | - D. Martínez-Anaya
- Genetic and cancer Laboratory, National Institute of Pediatrics (Mexico), Mexico City, Mexico
| | - U. Juárez-Figueroa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - C. Durán-McKinster
- Departamento de Dermatología, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | - S. Gómez-Carmona
- Departamento de Genética Médica, Centro de Rehabilitación e Inclusión Infantil Teletón, Cancún, México
| | | | - P. Pérez-Vera
- Genetic and cancer Laboratory, National Institute of Pediatrics (Mexico), Mexico City, Mexico
| | - C. Salas-Labadía
- Genetic and cancer Laboratory, National Institute of Pediatrics (Mexico), Mexico City, Mexico
| |
Collapse
|
7
|
Ouboukss F, El Amrani Z, Bouchahta H, Ratbi I, Sbiti A, Liehr T, Sefiani A, Natiq A. A maternally derived complex small supernumerary marker chromosome involving chromosomes 8 and 14: case report and review of the literature. Front Genet 2024; 15:1331676. [PMID: 38463166 PMCID: PMC10921356 DOI: 10.3389/fgene.2024.1331676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: The majority of small supernumerary marker chromosomes (sSMCs) are derived from one single chromosome. Complex sSMCs, on the other hand, consist of genetic material derived from more than one, normally two chromosomes. Complex sSMCs involving chromosomes 8 and 14 are rarely encountered. Case presentation: We present here a 14-month-old boy born from an unrelated couple. At birth, the baby was hypotonic and had a cleft lip and palate, as well as ocular involvement. Throughout the course of development, the baby experienced feeding difficulties, stunted growth, and delayed psychomotor development. Banding together with molecular cytogenetics revealed a balanced maternal translocation t(8;14)(p22.3;q21)mat, leading due to meiotic 3:1 segregation to a partial trisomy of chromosomes 8 and 14 in the affected boy. Discussion/Conclusion: This report highlights the importance of cytogenetics in diagnosis of rare genetic disorders, with impact on genetic counselling of patients and their families. There are three comparable cases in the literature involving both chromosomes 8 and 14, but with different breakpoints; the complex sSMC derived from chromosomes 8 and 14 in this case, characterized as der(14)t(8;14) (p22.3;q21)mat.
Collapse
Affiliation(s)
- Fatima Ouboukss
- Faculty of Medicine and Pharmacy, Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, Rabat, Morocco
| | - Zhour El Amrani
- Faculty of Medicine and Pharmacy, Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, Rabat, Morocco
| | - Hicham Bouchahta
- Department of Medical Genetics, National Institute of Health in Rabat, Rabat, Morocco
| | - Ilham Ratbi
- Faculty of Medicine and Pharmacy, Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, University Mohammed V in Rabat, Rabat, Morocco
| | - Aziza Sbiti
- Department of Medical Genetics, National Institute of Health in Rabat, Rabat, Morocco
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Abdelaziz Sefiani
- Faculty of Medicine and Pharmacy, Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, Rabat, Morocco
| | - Abdelhafid Natiq
- Faculty of Medicine and Pharmacy, Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, University Mohammed V in Rabat, Rabat, Morocco
| |
Collapse
|
8
|
Ibarra-Ramírez M, Campos-Acevedo LD, Martínez de Villarreal LE. Chromosomal Abnormalities of Interest in Turner Syndrome: An Update. J Pediatr Genet 2023; 12:263-272. [PMID: 38162151 PMCID: PMC10756729 DOI: 10.1055/s-0043-1770982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2023] [Indexed: 01/03/2024]
Abstract
Turner syndrome (TS) is caused by the total or partial loss of the second sex chromosome; it occurs in 1 every 2,500-3,000 live births. The clinical phenotype is highly variable and includes short stature and gonadal dysgenesis. In 1959, the chromosomal origin of the syndrome was recognized; patients had 45 chromosomes with a single X chromosome. TS presents numerical and structural abnormalities in the sex chromosomes, interestingly only 40% have a 45, X karyotype. The rest of the chromosomal abnormalities include mosaics, deletions of the short and long arms of the X chromosome, rings, and isochromosomes. Despite multiple studies to establish a relationship between the clinical characteristics and the different chromosomal variants in TS, a clear association cannot yet be established. Currently, different mechanisms involved in the phenotype have been explored. This review focuses to analyze the different chromosomal abnormalities and phenotypes in TS and discusses the possible mechanisms that lead to these abnormalities.
Collapse
Affiliation(s)
- Marisol Ibarra-Ramírez
- Department of Genetics, “Dr. José Eleuterio González” University Hospital of the Autonomous University of Nuevo León, Monterrey, México
| | - Luis Daniel Campos-Acevedo
- Department of Genetics, “Dr. José Eleuterio González” University Hospital of the Autonomous University of Nuevo León, Monterrey, México
| | - Laura E. Martínez de Villarreal
- Department of Genetics, “Dr. José Eleuterio González” University Hospital of the Autonomous University of Nuevo León, Monterrey, México
| |
Collapse
|
9
|
Cernohorska H, Kubickova S, Musilova P, Vozdova M, Vodicka R, Rubes J. Supernumerary Marker Chromosome Identified in Asian Elephant ( Elephas maximus). Animals (Basel) 2023; 13:ani13040701. [PMID: 36830488 PMCID: PMC9952010 DOI: 10.3390/ani13040701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
We identified a small, supernumerary marker chromosome (sSMC) in two phenotypically normal Asian elephants (Elephas maximus): a female (2n = 57,XX,+mar) and her male offspring (2n = 57,XY,+mar). sSMCs are defined as structurally abnormal chromosomes that cannot be identified by conventional banding analysis since they are usually small and often lack distinct banding patterns. Although current molecular techniques can reveal their origin, the mechanism of their formation is not yet fully understood. We determined the origin of the marker using a suite of conventional and molecular cytogenetic approaches that included (a) G- and C-banding, (b) AgNOR staining, (c) preparation of a DNA clone using laser microdissection of the marker chromosome, (d) FISH with commercially available human painting and telomeric probes, and (e) FISH with centromeric DNA derived from the centromeric regions of a marker-free Asian elephant. Moreover, we present new information on the location and number of NORs in Asian and savanna elephants. We show that the metacentric marker was composed of heterochromatin with NORs at the terminal ends, originating most likely from the heterochromatic region of chromosome 27. In this context, we discuss the possible mechanism of marker formation. We also discuss the similarities between sSMCs and B chromosomes and whether the marker chromosome presented here could evolve into a B chromosome in the future.
Collapse
Affiliation(s)
- Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
- Correspondence: ; Tel.: +420-533331425
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Petra Musilova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| | | | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| |
Collapse
|
10
|
Yi E, Chamorro González R, Henssen AG, Verhaak RGW. Extrachromosomal DNA amplifications in cancer. Nat Rev Genet 2022; 23:760-771. [PMID: 35953594 PMCID: PMC9671848 DOI: 10.1038/s41576-022-00521-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
Extrachromosomal DNA (ecDNA) amplification is an important driver alteration in cancer. It has been observed in most cancer types and is associated with worse patient outcome. The functional impact of ecDNA has been linked to its unique properties, such as its circular structure that is associated with altered chromatinization and epigenetic regulatory landscape, as well as its ability to randomly segregate during cell division, which fuels intercellular copy number heterogeneity. Recent investigations suggest that ecDNA is structurally more complex than previously anticipated and that it localizes to specialized nuclear bodies (hubs) and can act in trans as an enhancer for genes on other ecDNAs or chromosomes. In this Review, we synthesize what is currently known about how ecDNA is generated and how its genetic and epigenetic architecture affects proto-oncogene deregulation in cancer. We discuss how recently identified ecDNA functions may impact oncogenesis but also serve as new therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Eunhee Yi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Rocío Chamorro González
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
| | - Anton G Henssen
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (DKTK), partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Krepischi ACV, Villela D, da Costa SS, Mazzonetto PC, Schauren J, Migliavacca MP, Milanezi F, Santos JG, Guida G, Guarischi-Sousa R, Campana G, Kok F, Schlesinger D, Kitajima JP, Campagnari F, Bertola DR, Vianna-Morgante AM, Pearson PL, Rosenberg C. Chromosomal microarray analyses from 5778 patients with neurodevelopmental disorders and congenital anomalies in Brazil. Sci Rep 2022; 12:15184. [PMID: 36071085 PMCID: PMC9452501 DOI: 10.1038/s41598-022-19274-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Chromosomal microarray analysis (CMA) has been recommended and practiced routinely since 2010 both in the USA and Europe as the first-tier cytogenetic test for patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. However, in Brazil, the use of CMA is still limited, due to its high cost and complexity in integrating the results from both the private and public health systems. Although Brazil has one of the world’s largest single-payer public healthcare systems, nearly all patients referred for CMA come from the private sector, resulting in only a small number of CMA studies in Brazilian cohorts. To date, this study is by far the largest Brazilian cohort (n = 5788) studied by CMA and is derived from a joint collaboration formed by the University of São Paulo and three private genetic diagnostic centers to investigate the genetic bases of neurodevelopmental disorders and congenital abnormalities. We identified 2,279 clinically relevant CNVs in 1886 patients, not including the 26 cases of UPD found. Among detected CNVs, the corresponding frequency of each category was 55.6% Pathogenic, 4.4% Likely Pathogenic and 40% VUS. The diagnostic yield, by taking into account Pathogenic, Likely Pathogenic and UPDs, was 19.7%. Since the rational for the classification is mostly based on Mendelian or highly penetrant variants, it was not surprising that a second event was detected in 26% of those cases of predisposition syndromes. Although it is common practice to investigate the inheritance of VUS in most laboratories around the world to determine the inheritance of the variant, our results indicate an extremely low cost–benefit of this approach, and strongly suggest that in cases of a limited budget, investigation of the parents of VUS carriers using CMA should not be prioritized.
Collapse
Affiliation(s)
- Ana C V Krepischi
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil.,Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | - Silvia Souza da Costa
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil
| | | | | | | | | | | | - Gustavo Guida
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | | | | | | | | | | | - Debora R Bertola
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil.,Instituto da Criança Do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Angela M Vianna-Morgante
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil
| | - Peter L Pearson
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil
| | - Carla Rosenberg
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil. .,Diagnósticos da América S.A., DASA, São Paulo, Brazil.
| |
Collapse
|
12
|
Giansante R, Palka Bayard De Volo C, Alfonsi M, Morizio E, Guanciali Franchi P. First case of two supernumerary markers derived from chromosome 5 and chromosome 8. Mol Cytogenet 2022; 15:26. [PMID: 35761408 PMCID: PMC9237997 DOI: 10.1186/s13039-022-00601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Small supernumerary marker chromosomes (sSMC) are additional centric chromosome fragments too small to be identified by banding cytogenetics alone. A sSMC can originate from any chromosome and it is estimated that 70% of sSMC are de novo, while 30% are inherited. Cases of sSMC derived from chromosome 5 (sSMC5) are rare, accounting for1.4% of all reported sSMC cases. In these patients, the most common reported features are macrocephaly, dysmorphic facial features, heart defects, growth retardation, hypotonia, and intellectual disability. Also sSMC derived from chromosome 8 are very rare and the phenotype of patients with sSMC8 is very variable. Common clinical features of the patients include developmental delay, mental retardation, intellectual disability, hypotonia, hypospadias, attention deficit hyperactivity disorders (ADHD), skeletal anomalies, dysmorphic facial features, and renal dysplasia. To the best of our knowledge, in literature there are no cases with coexistence of sSMC5 and sSMC8, so we reviewed the literature to compare cases with SMC5 and those with SMC8 separately. This study is aimed to highlight the unique findings of a patient with the coexistence of sSMC5 and sSMC8. Case presentation We describe a female patient with two supernumerary markers derived from chromosome 5 (SMC5) and chromosome 8 (SMC8). The patient was born prematurely at 30 weeks with respiratory distress and bronchodysplasia. On physical examination she presented dysmorphic features, respiratory issues, congenital heart defect, developmental delay, and intellectual disability. The G-banded chromosome analysis on cultured lymphocytes revealed in all the analyzed cells a female karyotype with the presence of two supernumerary chromosomal markers and the array-CGH highlighted the region and the size of these two duplications. We also used the fluorescent in situ hybridization analysis (FISH) using painting of chromosomes 5 and 8 to confirm the origin of the two sSMC. So, the karyotype of the patient was: 48, XX, +mar1, +mar2. Conclusions This is the first case with two markers: one from chromosome 5 and one from chromosome 8. Based on the data reported, we can affirm that the phenotype of our patient is probably caused mainly by the presence of the sSMC.
Collapse
Affiliation(s)
- Roberta Giansante
- Department of Medical Genetics, "G. D'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy.
| | | | - Melissa Alfonsi
- Department of Medical Genetics, "SS. Annunziata Hospital", Chieti, Italy
| | - Elisena Morizio
- Department of Medical Genetics, "G. D'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Paolo Guanciali Franchi
- Department of Medical Genetics, "G. D'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy.,Department of Medical Genetics, "SS. Annunziata Hospital", Chieti, Italy
| |
Collapse
|
13
|
Manju HC, Bevinakoppamath S, Bhat D, Prashant A, Kadandale JS, Sairam PVVG. Supernumerary derivative 22 chromosome resulting from novel constitutional non-Robertsonian translocation: t(20;22)-Case Report. Mol Cytogenet 2022; 15:14. [PMID: 35346304 PMCID: PMC8962060 DOI: 10.1186/s13039-022-00591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Maternal non-Robertsonian translocation-t(20;22)(q13;q11.2) between chromosomes 20 and 22resulting in an additional complex small supernumerary marker chromosome as derivative (22)inherited to the proband is not been reported yet.
Case presentation A 4 years old boy with a history of developmental delay, low set ears, and facial dysmorphism was presented to the genetic clinic. Periauricular pit, downward slanting eyes, medially flared eyebrows, downturned mouth corners, and micrognathia were observed. He had congenital heart defect with atrial septal defect (ASD), ventricular septal defect (VSD), and central nervous system (CNS) anomalies with the gross cranium. Karyotype analysis, Fluorescent in-situ hybridization analysis (FISH), and Chromosomal microarray analysis (CMA) were used to determine the chromosomal origin and segmental composition of the derivative 22 chromosome. Karyotype and FISH analyses were performed to confirm the presence of a supernumerary chromosome, and Microarray analysis was performed to rule out copy number variations in the proband's 22q11.2q12 band point. The probands' karyotype revealed the inherited der(22)t(20;22)(q13;q11.2)dmat. Parental karyotype confirmed the mother as the carrier, with balanced non-Robertsonian translocation-46,XX,t(20;22)(q13;q11.2). Conclusion The mother had a non-Robertsonian translocation t(20;22)(q13;q11.2) between chromosomes 20 and 22, which resulted in Emanuel syndrome in the proband. The most plausible explanation is 3:1 meiotic malsegregation, which results in the child inheriting derivative chromosome. The parental karyotype study aided in identifying the carrier of the supernumerary der(22), allowing future pregnancies with abnormal offspring to be avoided.
Collapse
Affiliation(s)
- H C Manju
- Department of Medical Genetics, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India
| | - Supriya Bevinakoppamath
- Department of Medical Genetics, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India
| | - Deepa Bhat
- Department of Anatomy, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.,Center for Medical Genetics & Counseling, JSS Hospital, Mysuru, India.,Special Interest Group - Human Genomics & Rare Disorders, JSS Academy of Higher Education & Research, Mysuru, India
| | - Akila Prashant
- Center for Medical Genetics & Counseling, JSS Hospital, Mysuru, India.,Special Interest Group - Human Genomics & Rare Disorders, JSS Academy of Higher Education & Research, Mysuru, India.,Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - P V V Gowri Sairam
- Department of Medical Genetics, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India. .,Center for Medical Genetics & Counseling, JSS Hospital, Mysuru, India. .,Special Interest Group - Human Genomics & Rare Disorders, JSS Academy of Higher Education & Research, Mysuru, India.
| |
Collapse
|
14
|
Chien SC, Chen CP, Liou JD. Prenatal diagnosis and genetic counseling of uniparental disomy. Taiwan J Obstet Gynecol 2022; 61:210-215. [DOI: 10.1016/j.tjog.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 10/18/2022] Open
|
15
|
Prenatal diagnosis and molecular cytogenetic characterization of a familial small supernumerary marker chromosome derived from the acrocentric chromosome 14/22. Taiwan J Obstet Gynecol 2022; 61:364-367. [DOI: 10.1016/j.tjog.2022.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
|
16
|
Target enrichment long-read sequencing with adaptive sampling can determine the structure of the small supernumerary marker chromosomes. J Hum Genet 2022; 67:363-368. [PMID: 35027654 DOI: 10.1038/s10038-021-01004-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 12/04/2021] [Indexed: 12/23/2022]
Abstract
Structural analysis of small supernumerary marker chromosomes (sSMCs) has revealed that many have complex structures. Structural analysis of sSMCs by whole genome sequencing using short-read sequencers is challenging however because most present with a low level of mosaicism and consist of a small region of the involved chromosome. In this present study, we applied adaptive sampling using nanopore long-read sequencing technology to enrich the target region and thereby attempted to determine the structure of two sSMCs with complex structural rearrangements previously revealed by cytogenetic microarray. In adaptive sampling, simple specification of the target region in the FASTA file enables to identify whether or not the sequencing DNA is included in the target, thus promoting efficient long-read sequencing. To evaluate the target enrichment efficiency, we performed conventional pair-end short-read sequencing in parallel. Sequencing with adaptive sampling achieved a target enrichment at about a 11.0- to 11.5-fold higher coverage rate than conventional pair-end sequencing. This enabled us to quickly identify all breakpoint junctions and determine the exact sSMC structure as a ring chromosome. In addition to the microhomology and microinsertion at the junctions, we identified inverted repeat structure in both sSMCs, suggesting the common generation mechanism involving replication impairment. Adaptive sampling is thus an easy and beneficial method of determining the structures of complex chromosomal rearrangements.
Collapse
|
17
|
A rare familial rearrangement of chromosomes 9 and 15 associated with intellectual disability: a clinical and molecular study. Mol Cytogenet 2021; 14:47. [PMID: 34607577 PMCID: PMC8489072 DOI: 10.1186/s13039-021-00565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022] Open
Abstract
Background There are many reports on rearrangements occurring separately in the regions of chromosomes 9p and 15q affected in the case under study. 15q duplication syndrome is caused by the presence of at least one extra maternally derived copy of the Prader–Willi/Angelman critical region. Trisomy 9p is the fourth most frequent chromosome anomaly with a clinically recognizable syndrome often accompanied by intellectual disability. Here we report a new case of a patient with maternally derived unique complex sSMC resulting in partial trisomy of both chromosomes 9 and 15 associated with intellectual disability. Case presentation We characterise a supernumerary derivative chromosome 15: 47,XY,+der(15)t(9;15)(p21.2;q13.2), likely resulting from 3:1 malsegregation during maternal gametogenesis. Chromosomal analysis showed that a phenotypically normal mother is a carrier of balanced translocation t(9;15)(p21.1;q13.2). Her 7-year-old son showed signs of intellectual disability and a number of physical abnormalities including bilateral cryptorchidism and congenital megaureter. The child’s magnetic resonance imaging showed changes in brain volume and in structural and functional connectivity revealing phenotypic changes caused by the presence of the extra chromosome material, whereas the mother’s brain MRI was normal. Sequence analyses of the microdissected der(15) chromosome detected two breakpoint regions: HSA9:25,928,021-26,157,441 (9p21.2 band) and HSA15:30,552,104-30,765,905 (15q13.2 band). The breakpoint region on chromosome HSA9 is poor in genetic features with several areas of high homology with the breakpoint region on chromosome 15. The breakpoint region on HSA15 is located in the area of a large segmental duplication. Conclusions We discuss the case of these phenotypic and brain MRI features in light of reported signatures for 9p partial trisomy and 15 duplication syndromes and analyze how the genomic characteristics of the found breakpoint regions have contributed to the origin of the derivative chromosome. We recommend MRI for all patients with a developmental delay, especially in cases with identified rearrangements, to accumulate more information on brain phenotypes related to chromosomal syndromes. Supplementary Information The online version contains supplementary material available at 10.1186/s13039-021-00565-y.
Collapse
|
18
|
Yao TY, Wu WJ, Law KS, Lee MH, Chang SP, Lee DJ, Lin WH, Chen M, Ma GC. Prenatal Diagnosis of True Fetal Mosaicism with Small Supernumerary Marker Chromosome Derived from Chromosome 16 by Funipuncture and Molecular Cytogenetics Including Chromosome Microarray. Diagnostics (Basel) 2021; 11:diagnostics11081457. [PMID: 34441391 PMCID: PMC8391486 DOI: 10.3390/diagnostics11081457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023] Open
Abstract
This study examined the molecular characterization of a prenatal case with true fetal mosaicism of small supernumerary marker chromosome 16 (sSMC(16)). A 41-year-old female underwent amniocentesis at 19 weeks of gestation due to advanced maternal age. Chromosomal analysis for cultured amniocytes revealed a karyotype of 47,XY,+mar[4]/46,XY[16]. Spectral karyotyping and metaphase fluorescence in situ hybridization (FISH) demonstrated that the sSMC was derived from chromosome 16 (47,XY,+mar.ish der(16)(D16Z1+)[13/20]). Confined placental mosaicism was initially suspected because the prenatal ultrasound revealed a normal structure and the pregnancy was uneventful. However, interphase FISH of cord blood performed at 28 weeks of gestation showed 20% mosaicism of trisomy chromosome 16 (nuc ish(D16Z2×3)[40/200]). Chromosome microarray analysis further demonstrated 55% mosaicism of an 8.02 Mb segmental duplication at the subcentromeric region of 16p12.1p11.1 (arr[GRCh37] 16p12.1p11.1(27021975_35045499)×3[0.55]). The results demonstrated a true fetal mosaicism of sSMC(16) involving chromosome16p12.1p11.1 that is associated with chromosome 16p11.2 duplication syndrome (OMIM #614671). After non-directive genetic counseling, the couple opted for late termination of pregnancy. This case illustrated the use of multiple molecular cytogenetic tools to elucidate the origin and structure of sSMC, which is crucial for prenatal counseling, decision making, and clinical management.
Collapse
Affiliation(s)
- Tien-Yu Yao
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan; (T.-Y.Y.); (W.-J.W.)
| | - Wan-Ju Wu
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan; (T.-Y.Y.); (W.-J.W.)
- PhD Programs in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (M.-H.L.); (S.-P.C.)
| | - Kim-Seng Law
- Department of Obstetrics and Gynecology, Tung’s Taichung MetroHarbor Hospital, Taichung 43344, Taiwan;
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli 35665, Taiwan
- Department of Life Science, National Chung Hsin University, Taichung 40227, Taiwan
| | - Mei-Hui Lee
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (M.-H.L.); (S.-P.C.)
| | - Shun-Ping Chang
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (M.-H.L.); (S.-P.C.)
| | - Dong-Jay Lee
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Wen-Hsiang Lin
- Welgene Biotechnology Company, Nangang Business Park, Taipei 11503, Taiwan;
| | - Ming Chen
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan; (T.-Y.Y.); (W.-J.W.)
- PhD Programs in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (M.-H.L.); (S.-P.C.)
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Molecular Biotechnology, Da-Yeh University, Changhua 51591, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Gwo-Chin Ma
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (M.-H.L.); (S.-P.C.)
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan;
| |
Collapse
|
19
|
Chen J, Guo M, Luo M, Deng S, Tian Q. Clinical characteristics and management of Turner patients with a small supernumerary marker chromosome. Gynecol Endocrinol 2021; 37:730-734. [PMID: 33870841 DOI: 10.1080/09513590.2021.1911992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To summarize the clinical characteristics of Turner syndrome (TS) with a small supernumerary marker chromosome (sSMC) and discuss the clinical significance and management of TS patients with sSMC. METHODS A retrospective analysis was conducted on the clinical data of 244 patients with disorders of sexual development admitted to Peking Union Medical College Hospital from February 1984 to July 2020. RESULTS Among the 244 patients with a disorder of sexual development, 69 cases of TS were identified in which 13 patients had sSMC. Their ages ranged from 3 to 28 years old with an average of 14.31 ± 6.40 years. All 13 sSMC-positive patients had typical clinical manifestations of TS except ambiguous genitalia in four cases. SRY gene testing was performed in 11sSMC-positive patients and 10 patients were positive for SRY and one was negative. Among the 10 SRY-positive patients, two cases had hirsutism and clitoral enlargement and two cases had clitoral enlargement only. Nine sSMC and SRY-positive patients underwent gonadectomy and one had left gonadal gonadoblastoma with seminoma in situ and right gonadal seminoma in situ. CONCLUSIONS Although the sSMC positive detection rate in DSD patients is uncommon (5.33% in our sample), the positive SRY detection rate in sSMC-positive TS patients was extremely high in our TS patients. And TS patients with sSMC and SRY positive had a significantly increased risk of gonadal germ cell tumors. Routine SRY screening should be performed in TS patients with sSMC, and a gonadectomy should be performed in TS patients with sSMC and SRY positive to prevent the occurrence of tumors.
Collapse
Affiliation(s)
| | | | | | | | - Qinjie Tian
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Sun ML, Zhang HG, Liu XY, Yue FG, Jiang YT, Li SB, Liu RZ. Prenatal diagnosis and molecular cytogenetic characterization of a small supernumerary marker chromosome (sSMC) inherited from her mosaic sSMC(15) mother and a literature review. Taiwan J Obstet Gynecol 2021; 59:963-967. [PMID: 33218423 DOI: 10.1016/j.tjog.2020.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE We characterized a maternally inherited small supernumerary marker chromosome (sSMC) derived from chromosome 15 according to prenatal detection and made a review on the prenatal sSMC(15) cases with mosaic maternal inheritance. CASE REPORT A 29-year-old woman underwent amniocentesis at 19 weeks of gestation due to the high risk of Down syndrome in maternal serum screening. No abnormalities were observed in prenatal ultrasound findings. G-banding analysis revealed a karyotype of 47,XX,+mar. Subsequently, we recalled the couple back for chromosomal analysis. The father's karyotype was normal while the mother's karyotype was 47,XX,+mar[15]/46,XX[35]. Molecular genetic analysis was utilized to identify the marker chromosome. The chromosomal microarray analysis (CMA) results of the mother showed there existed microduplications in the locus of 14q32.33, 15q21.1, 19p12 and Xq26.2, respectively. Then Fluorescence in situ hybridization (FISH) using specific probes for chromosomes 13/21, 14/22, and 15 was applied on the mother and the fetus. And the marker chromosomes for the mother and the fetus were all finally identified as inv dup(15) (D15Z1++, SNRPN-, PML-), which illustrated that the fetus inherited the sSMC(15) from her mother. Finally, a healthy female infant was delivered with no phenotypic abnormalities at 39 weeks. CONCLUSION The combined utilization of the molecular genetic technologies, such as FISH and CMA, plays a critical role in the identification of the origins and genetic constitutions of sSMC, which would make a significant contribution to genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Mei-Ling Sun
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Hong-Guo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Xiang-Yin Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Fa-Gui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Yu-Ting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Shi-Bo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, OK, USA
| | - Rui-Zhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
21
|
Blyth U, Craciunas L, Hudson G, Choudhary M. Maternal germline factors associated with aneuploid pregnancy loss: a systematic review. Hum Reprod Update 2021; 27:866-884. [PMID: 33969392 DOI: 10.1093/humupd/dmab010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Miscarriage describes the spontaneous loss of pregnancy before the threshold of viability; the vast majority occur before 12 weeks of gestation. Miscarriage affects one in four couples and is the most common complication of pregnancy. Chromosomal abnormalities of the embryo are identified in ∼50% of first trimester miscarriages; aneuploidy accounts for 86% of these cases. The majority of trisomic miscarriages are of maternal origin with errors occurring during meiotic division of the oocytes. Chromosome segregation errors in oocytes may be sporadic events secondary to advancing maternal age; however, there is increasing evidence to suggest possible maternal germline contributions to this. OBJECTIVE AND RATIONALE The objective of this review was to appraise critically the existing evidence relating to maternal germline factors associated with pregnancy loss secondary to embryo aneuploidy, identify limitations in the current evidence base and establish areas requiring further research. SEARCH METHODS The initial literature search was performed in September 2019 and updated in January 2021 using the electronic databases OVID MEDLINE, EMBASE and the Cochrane Library. No time or language restrictions were applied to the searches and only primary research was included. Participants were women who had suffered pregnancy loss secondary to numerical chromosomal abnormalities of the embryo. Study identification and subsequent data extraction were performed by two authors independently. The Newcastle-Ottawa Scale was used to judge the quality of the included studies. The results were synthesized narratively. OUTCOMES The literature search identified 2198 titles once duplicates were removed, of which 21 were eligible for inclusion in this systematic review. They reported on maternal germline factors having variable degrees of association with pregnancy loss of aneuploid origin. The Online Mendelian Inheritance in Man (OMIM) gene ontology database was used as a reference to establish the functional role currently attributed to the genes reported. The majority of the cases reported and included were secondary to the inheritance of maternal structural factors such as Robertsonian translocations, deletions and insertions. Germline factors with a plausible role in aneuploid pregnancy loss of maternal origin included skewed X-inactivation and CGG repeats in the fragile X mental retardation (FMR1) gene. Studies that reported the association of single gene mutations with aneuploid pregnancy loss were conflicting. Single gene mutations with an uncertain or no role in aneuploid pregnancy loss included mutations in synaptonemal complex protein 3 (SYCP3), mitotic polo-like kinase 4 (PLK4) and meiotic stromal antigen 3 (STAG3) spindle integrity variants and 5,10-methylenetetrahydrofolate reductase (MTHFR). WIDER IMPLICATIONS Identifying maternal genetic factors associated with an increased risk of aneuploidy will expand our understanding of cell division, non-disjunction and miscarriage secondary to embryo aneuploidy. The candidate germline factors identified may be incorporated in a screening panel for women suffering miscarriage of aneuploidy aetiology to facilitate counselling for subsequent pregnancies.
Collapse
Affiliation(s)
- Ursula Blyth
- Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Laurentiu Craciunas
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Meenakshi Choudhary
- Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Abdullah, Li C, Zhao M, Wang X, Li X, Xing J. Hypogonadotropic hypogonadism associated with another small supernumerary marker chromosome (sSMC) derived from chromosome 22, a case report. Transl Androl Urol 2021; 10:1797-1802. [PMID: 33968667 PMCID: PMC8100857 DOI: 10.21037/tau-20-1087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The idiopathic hypogonadotropic hypogonadism (IHH) is portrayed as missing or fragmented pubescence, cryptorchidism, small penis, and infertility. Clinically it is characterized by the low level of sex steroids and gonadotropins, normal radiographic findings of the hypothalamic-pituitary areas, and normal baseline and reserve testing of the rest of the hypothalamic-pituitary axes. Delay puberty and infertility result from an abnormal pattern of episodic GnRH secretion. Mutation in a wide range of genes can clarify ~40% of the reasons for IHH, with the majority remaining hereditarily uncharacterized. New and innovative molecular tools enhance our understanding of the molecular controls underlying pubertal development. In this report, we aim to present a 26-year-old male of IHH associated with a small supernumerary marker chromosome (sSMC) that originated from chromosome 22. The G-banding analysis revealed a karyotype of 47,XY,+mar. High-throughput DNA sequencing identified an 8.54 Mb duplication of 22q11.1-q11.23 encompassing all the region of 22q11 duplication syndrome. Pedigree analysis showed that his mother has carried a balanced reciprocal translocation between Chromosomes 22 and X[t(X;22)]. To the best of our knowledge, this is the second confirmed case of IHH with an sSMC deriving from chromosome 22. Based on our study, the duplicated chromosome fragment 22q11.1-q11.23 might be the reason for the phenotype of our case. Meanwhile, High-throughput DNA sequencing combined with cytogenetic analysis can provide a more accurate clinical diagnosis for patients carrying sSMCs.
Collapse
Affiliation(s)
- Abdullah
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui Li
- Centre for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minggang Zhao
- Centre for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiang Wang
- Centre for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xu Li
- Centre for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junping Xing
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Marchina E, Forti M, Tonelli M, Maccarini S, Malvestiti F, Piantoni C, Filippini E, Fazzi E, Borsani G. Molecular characterization of a complex small supernumerary marker chromosome derived from chromosome 18p: an addition to the literature. Mol Cytogenet 2021; 14:6. [PMID: 33472639 PMCID: PMC7818575 DOI: 10.1186/s13039-020-00519-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 12/01/2022] Open
Abstract
Background Small supernumerary marker chromosomes (sSMC) are a heterogeneous group of structurally abnormal chromosomes, with an incidence of 0,044% in newborns that increases up to almost 7 times in developmentally retarded patients. sSMC from all 24 chromosome have been described, most of them originate from the group of the acrocentric, with around half deriving from the chromosome 15. Non-acrocentric sSMC are less common and, in the 30 percent of the cases, are associated with phenotypic effect. Complex sSMC consist of chromosomal material derived from more than one chromosome. Genotype–phenotype correlations in patients with sSMC are difficult to assess. Clinical features depend on factors such as its size, genetic content, the involvement of imprinted genes which may be influenced by uniparental disomy and the level of mosaicism. Trisomy of the short arm of chromosome 18 (18p) is an infrequent finding and does not appear to be associated with a specific syndrome. However, mild intellectual disability with or without other anomalies is reported in almost one-third of the patients. Case presentation Here we present clinical and molecular characterization of a new case of de novo complex sSMC consisting of the entire short arm of chromosome 18p associated with a centromere of either chromosome 13 or 21, evidenced in a 5-year-old boy during diagnostic workup for moderate intellectual disability and dysmorphisms. To date, only seven cases of isolated trisomy 18p due to a sSMC have been reported, three of which have been characterized by array CGH. In two of them the breakpoints and the size of the duplication have been described. In the manuscript we also reviewed cases reported in the DECIPHER database carrying similar duplication and also considered smaller duplications within the region of interest, in order to evaluate the presence of critical regions implicated in the pathological phenotype. Conclusions Our case provides additional information about phenotypic effects of pure trisomy 18p, confirms chromosomal microarray analysis as gold standard to characterize complex sSMC, and supplies additional elements for genetic counselling.
Collapse
Affiliation(s)
- Eleonora Marchina
- Laboratory of Cytogenetics and Molecular Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Michela Forti
- Laboratory of Cytogenetics and Molecular Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mariella Tonelli
- Laboratory of Cytogenetics and Molecular Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Maccarini
- Laboratory of Cytogenetics and Molecular Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Chiara Piantoni
- Unit of Child Neurology and Psychiatry, Civil Hospital, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elena Filippini
- Unit of Child Neurology and Psychiatry, Civil Hospital, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elisa Fazzi
- Unit of Child Neurology and Psychiatry, Civil Hospital, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Giuseppe Borsani
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
24
|
Karamysheva TV, Gayner TA, Muzyka VV, Orishchenko KE, Rubtsov NB. Two Separate Cases: Complex Chromosomal Abnormality Involving Three Chromosomes and Small Supernumerary Marker Chromosome in Patients with Impaired Reproductive Function. Genes (Basel) 2020; 11:genes11121511. [PMID: 33348590 PMCID: PMC7766715 DOI: 10.3390/genes11121511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
For medical genetic counseling, estimating the chance of a child being born with chromosome abnormality is crucially important. Cytogenetic diagnostics of parents with a balanced karyotype are a special case. Such chromosome rearrangements cannot be detected with comprehensive chromosome screening. In the current paper, we consider chromosome diagnostics in two cases of chromosome rearrangement in patients with balanced karyotype and provide the results of a detailed analysis of complex chromosomal rearrangement (CCR) involving three chromosomes and a small supernumerary marker chromosome (sSMC) in a patient with impaired reproductive function. The application of fluorescent in situ hybridization, microdissection, and multicolor banding allows for describing analyzed karyotypes in detail. In the case of a CCR, such as the one described here, the probability of gamete formation with a karyotype, showing a balance of chromosome regions, is extremely low. Recommendation for the family in genetic counseling should take into account the obtained result. In the case of an sSMC, it is critically important to identify the original chromosome from which the sSMC has been derived, even if the euchromatin material is absent. Finally, we present our view on the optimal strategy of identifying and describing sSMCs, namely the production of a microdissectional DNA probe from the sSMC combined with a consequent reverse painting.
Collapse
MESH Headings
- Abnormal Karyotype
- Abortion, Habitual/genetics
- Adult
- Chromosome Aberrations
- Chromosome Painting
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 16/ultrastructure
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 3/ultrastructure
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/ultrastructure
- DNA Probes
- Female
- Gene Duplication
- Genetic Counseling
- Humans
- In Situ Hybridization, Fluorescence
- Infertility, Female/genetics
- Infertility, Male/genetics
- Male
- Metaphase
- Mutagenesis, Insertional
Collapse
Affiliation(s)
- Tatyana V. Karamysheva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.V.M.); (K.E.O.); (N.B.R.)
- Correspondence: ; Tel.: +7-(383)-363-49-63 (ext. 1332)
| | - Tatyana A. Gayner
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Center of New Medical Technologies, 630090 Novosibirsk, Russia
| | - Vladimir V. Muzyka
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.V.M.); (K.E.O.); (N.B.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.V.M.); (K.E.O.); (N.B.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay B. Rubtsov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.V.M.); (K.E.O.); (N.B.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
25
|
Kumar MJ, Gowrishankar K, Hemagowri V, Kadandale J. A de novo marker chromosome 15 in a child with isolated developmental delay. J Genet 2020. [DOI: 10.1007/s12041-020-01231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Uzar T, Szczerbal I, Serwanska-Leja K, Nowacka-Woszuk J, Gogulski M, Bugaj S, Switonski M, Komosa M. Congenital Malformations in a Holstein-Fresian Calf with a Unique Mosaic Karyotype: A Case Report. Animals (Basel) 2020; 10:ani10091615. [PMID: 32927643 PMCID: PMC7552221 DOI: 10.3390/ani10091615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Congenital malformations, defined as defects of morphogenesis present at birth, are an important problem in livestock production, if they are caused by hereditary mutations. They can lead to animal death, reduce their productive ability and influence animal welfare. Thus, the identification of the causes of congenital abnormalities are greatly needed. In the present report, we described a Holstein-Fresian calf with multiple congenital malformations including head asymmetry, the relocation of the frontal sinus and eye orbits, hypoplastic thymus, ductus Botalli, unfinished obliteration in umbilical arteries, and a bilateral series of tooth germs in the temporal region. Cytogenetic examination revealed a unique mosaic karyotype with a small marker chromosome, which could not be identified by standard banding techniques. It can be assumed that the presence the marker chromosome may be associated with observed congenital malformations in the studied calf. Abstract A Holstein-Fresian calf with multiple congenital malformations was subjected postmortem to anatomical and genetic investigation. The calf was small (20 kg), had shortened limbs and was unable to stand up. It lived only 44 days. Detailed anatomical investigation revealed the following features: head asymmetry, the relocation of the frontal sinus and eye orbits, hypoplastic thymus without neck part, ductus Botalli, unfinished obliteration in umbilical arteries, and a bilateral series of tooth germs in the temporal region. Cytogenetic examination, performed on in vitro cultured fibroblasts, showed a unique mosaic karyotype with a marker chromosome—60,XX[9 2%]/60,XX,+mar[8%], which was for the first time described in cattle. No other chromosome abnormalities indicating chromosome instabilities, like chromatid breaks or gaps were identified, thus teratogenic agent exposure during pregnancy was excluded. The marker chromosome (mar) was small and it was not possible to identify its origin, however, sequential DAPI/C (4’,6-diamidino-2-phenylindole) band staining revealed a large block of constitutive heterochromatin, which is characteristic for centromeric regions of bovine autosomes. We suppose that the identified marker chromosome was a result of somatic deletion in an autosome and its presence could be responsible for the observed developmental malformations. In spite of the topographic distance among the affected organs, we expected a relationship between anatomical abnormalities. To the of our best knowledge, this is the first case of a mosaic karyotype with a cell line carrying a small marker chromosome described in a malformed calf.
Collapse
Affiliation(s)
- Tomasz Uzar
- Department of Animal Anatomy, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland; (T.U.); (K.S.-L.)
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (I.S.); (J.N.-W.); (S.B.); (M.S.)
| | - Katarzyna Serwanska-Leja
- Department of Animal Anatomy, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland; (T.U.); (K.S.-L.)
| | - Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (I.S.); (J.N.-W.); (S.B.); (M.S.)
| | - Maciej Gogulski
- University Centre for Veterinary Medicine, Szydlowska 43, 60-656 Poznan, Poland;
- Department of Preclinical Sciences and Infectious Diseases, University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Szymon Bugaj
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (I.S.); (J.N.-W.); (S.B.); (M.S.)
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (I.S.); (J.N.-W.); (S.B.); (M.S.)
| | - Marcin Komosa
- Department of Animal Anatomy, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland; (T.U.); (K.S.-L.)
- Correspondence: ; Tel.: +48-61-848-76-26
| |
Collapse
|
27
|
Characterization and Association of Marker Chromosomes with Male Infertility. JOURNAL OF MEN'S HEALTH 2020. [DOI: 10.15586/jomh.v16i3.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Slimani W, Jelloul A, Al-Rikabi A, Sallem A, Hasni Y, Chachia S, Ernez A, Chaieb A, Bibi M, Liehr T, Saad A, Mougou-Zerelli S. Small supernumerary marker chromosomes (sSMC) and male infertility: characterization of five new cases, review of the literature, and perspectives. J Assist Reprod Genet 2020; 37:1729-1736. [PMID: 32399795 PMCID: PMC7376793 DOI: 10.1007/s10815-020-01811-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/06/2020] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To characterize small supernumerary marker chromosomes (sSMC) in infertile males RESEARCH QUESTION: Are molecular cytogenetic methods still relevant for the identification and characterization of sSMC in the era of next-generation sequencing? METHODS In this paper, we report five males with oligoasthenozoospermia or azoospermia with a history of recurrent pregnancy loss in partnership in four cases. R-banding karyotyping and fluorescence in situ hybridization (FISH) analysis were performed and showed sSMC in all five cases. Microdissection and reverse-FISH were performed in one case. RESULTS One sSMC, each, was derived from chromosome 15 and an X-chromosome; two sSMC were derivatives of chromosome 22. The fifth sSMC was a ring chromosome 4 complemented by a deletion of the same region 4p14 to 4p16.1 in one of the normal chromosomes 4. All markers were mosaics except one of sSMC(22). CONCLUSION Through this study, we emphasize the necessity of a proper combination of high-throughput techniques with conventional cytogenetic and FISH methods. This could provide a personalized diagnostic and accurate results for the patients suffering from infertility or RPL. We also highlight FISH analyses, which are essential tools for detecting sSMC in infertile patients. In fact, despite its entire composition of heterochromatin, sSMC can have effects on spermatogenesis by producing mechanical perturbations during meiosis and increasing meiotic nondisjunction rate. This would contribute to understand the exact chromosomal mechanism disrupting the natural and the assisted reproduction leading to offer a personalized support.
Collapse
Affiliation(s)
- Wafa Slimani
- Department of Cytogenetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
- Unité de Services Communs en Génétique Humaine, Université de Sousse, Faculté de Médecine de Sousse, Sousse, Tunisia
| | - Afef Jelloul
- Department of Cytogenetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | | | - Amira Sallem
- Department of Cytogenetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Yosra Hasni
- Department of Endocrinology-Diabetology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Salma Chachia
- Department of Obstetrics and Gynecology, Farhat Hached University Hospital, Sousse, Tunisia
| | | | - Anouar Chaieb
- Department of Obstetrics and Gynecology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Mohamed Bibi
- Department of Obstetrics and Gynecology, Farhat Hached University Hospital, Sousse, Tunisia
| | | | - Ali Saad
- Department of Cytogenetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
- Unité de Services Communs en Génétique Humaine, Université de Sousse, Faculté de Médecine de Sousse, Sousse, Tunisia
| | - Soumaya Mougou-Zerelli
- Department of Cytogenetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia.
- Unité de Services Communs en Génétique Humaine, Université de Sousse, Faculté de Médecine de Sousse, Sousse, Tunisia.
| |
Collapse
|
29
|
Karamysheva TV, Gayner TA, Zakirova EG, Rubtsov NB. New Sight on Assessment of Clinical Value of Human Supernumerary Marker Chromosomes. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Zhou L, Zheng Z, Wu L, Xu C, Wu H, Xu X, Tang S. Molecular delineation of small supernumerary marker chromosomes using a single nucleotide polymorphism array. Mol Cytogenet 2020; 13:19. [PMID: 32514314 PMCID: PMC7251855 DOI: 10.1186/s13039-020-00486-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background Defining the phenotype-genotype correlation of small supernumerary marker chromosomes (sSMCs) remains a challenge in prenatal diagnosis. We karyotyped 20,481 amniotic fluid samples from pregnant women and explored the molecular characteristics of sSMCs using a single nucleotide polymorphism (SNP) array. Results Out of the 20,481 samples, 15 abnormal karyotypes with sSMC were detected (frequency: 0.073%) and the chromosomal origin was successfully identified by SNP array in 14 of them. The origin of sSMCs were mainly acrocentric-derived chromosomes and the Y chromosome. Two cases of sSMC combined with uniparental disomy (UPD) were detected, UPD(1) and UPD(22). More than half of the cases of sSMC involved mosaicism (8/15) and pathogenicity (9/15) in prenatal diagnosis. A higher prevalence of mosaicism for non-acrocentric chromosomes than acrocentric chromosomes was also revealed. One sSMC derived from chromosome 3 with a neocentromere revealed a 24.99-Mb pathogenic gain of the 3q26.31q29 region on the SNP array, which presented as an abnormal ultrasound indicating nasal bone hypoplasia. Conclusion The clinical phenotypes of sSMCs are variable and so further genetic testing and parental karyotype analysis are needed to confirm the characteristics of sSMCs. The SNP array used here allows a detailed characterisation of the sSMC and establishes a stronger genotype-phenotype correlation, thus allowing detailed genetic counselling for prenatal diagnosis.
Collapse
Affiliation(s)
- Lili Zhou
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China
| | - Zhaoke Zheng
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China
| | - Lianpeng Wu
- Key laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000 People's Republic of China
| | - Chenyang Xu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China
| | - Hao Wu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China
| | - Xueqin Xu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China
| | - Shaohua Tang
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China.,Key laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000 People's Republic of China
| |
Collapse
|
31
|
Chen CP, Ko TM, Chen CY, Chern SR, Wu PS, Chen SW, Wu FT, Pan CW, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 3. Taiwan J Obstet Gynecol 2020; 58:864-868. [PMID: 31759544 DOI: 10.1016/j.tjog.2019.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of a small supernumerary marker chromosome (sSMC) derived from chromosome 3. CASE REPORT A 36-year-old woman underwent amniocentesis at 19 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 47,XX,+mar[6]/46,XX[18]. The mother's karyotype was 47,XX,+mar[4]/46,XX[46]. The father's karyotype was 46.XY. Array comparative genomic hybridization (aCGH) analysis of uncultured amniocytes revealed a result of arr 3q11.1q12.1 (93,575,285-98,956,687) × 2-3 [GRCh37 (hg19)]. Prenatal ultrasound findings were unremarkable. The parents elected to continue the pregnancy, and a 2470-g female baby was delivered at 37 weeks of gestation without phenotypic abnormalities. The cord blood had a karyotype of 47,XX,+mar[8]/46,XX[32]. aCGH analysis of cord blood revealed a result of arr 3q11.1q11.2 (93,649,973-97,137,764) × 2.4 [GRCh37 (hg19)] with a log2 ratio of 0.25 and a 30-40% mosaicism for 3.488-Mb dosage increase in 3q11.1-q11.2 encompassing four [Online Mendelian Inheritance in Man (OMIM)] genes of PROS1, ARL13B, NSUN3 and EPHA6. Metaphase fluorescence in situ hybridization (FISH) analysis confirmed 30% (6/20 cells) mosaicism for the sSMC(3) in the blood lymphocytes. CONCLUSION aCGH and FISH analyses are useful for perinatal investigation of a prenatally detected sSMC.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Tsang-Ming Ko
- Genephile Bioscience Laboratory, Ko's Obstetrics and Gynecology, Taipei, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Wen Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
32
|
Shao HY, Miao ZY, Liu XY, Hou XF, Wu H. Molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 8 associated with congenital hypoplasia of the tongue and review of the literature. Taiwan J Obstet Gynecol 2020; 59:323-326. [PMID: 32127158 DOI: 10.1016/j.tjog.2020.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To present molecular cytogenetic characterization of mosaic supernumerary ring chromosome 8 which has trisomy of a region of chromosome 8p12-q21.13 associated with congenital hypoplasia of the tongue and review of the literature. CASE REPORT A 27 year-old woman presented with congenital hypoplasia of the tongue. The chromosome karyotype of peripheral blood lymphocytes was detected by conventional cytogenetic analysis. The genome copy number variations were detected by SNP array. Conventional cytogenetic analysis of the peripheral blood revealed a karyotype of 47,XX,+mar[60]/46,XX[40]. SNP array revealed that there was a duplication of 45.2 Mb at arr[hg19] 8p12q21.13(36,013,636-81,263,140) × 2-3. CONCLUSION With this study a patient involving mosaic trisomy 8p12-q21.13 along with clinical properties, is described and compared to previously reported cases involving a small supernumerary marker chromosome (sSMC) derived from chromosome 8.
Collapse
Affiliation(s)
- Hui-Yuan Shao
- Medical Laboratory Center, The Affiliated Yantai Yu Huang Ding Hospital of Qingdao University Medical College, Shandong, China
| | - Zong-Yu Miao
- Medical Laboratory Center, The Affiliated Yantai Yu Huang Ding Hospital of Qingdao University Medical College, Shandong, China
| | - Xiao-Yan Liu
- Medical Laboratory Center, The Affiliated Yantai Yu Huang Ding Hospital of Qingdao University Medical College, Shandong, China
| | - Xiao-Fei Hou
- Medical Laboratory Center, The Affiliated Yantai Yu Huang Ding Hospital of Qingdao University Medical College, Shandong, China
| | - Hong Wu
- Medical Laboratory Center, The Affiliated Yantai Yu Huang Ding Hospital of Qingdao University Medical College, Shandong, China.
| |
Collapse
|
33
|
Altıner Ş, Yürür Kutlay N, Ilgın Ruhi H. Mosaic Small Supernumerary Marker Chromosome Derived from Five Discontinuous Regions of Chromosome 8 in a Patient with Neutropenia and Oral Aphthous Ulcer. Cytogenet Genome Res 2020; 160:11-17. [PMID: 31982875 DOI: 10.1159/000505805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 11/19/2022] Open
Abstract
Small supernumerary marker chromosomes (sSMCs) are characterized as additional centric chromosome fragments which are too small to be classified by cytogenetic banding alone and smaller than or equal to the size of chromosome 20 of the same metaphase spread. Here, we report a patient who presented with slight neutropenia and oral aphthous ulcers. A mosaic de novo sSMC, which originated from 5 discontinuous regions of chromosome 8, was detected in the patient. Formation of the sSMC(8) can probably be explained by a multi-step process beginning with maternal meiotic nondisjunction, followed by post-zygotic anaphase lag, and resulting in chromothripsis. Chromothripsis is a chromosomal rearrangement which occurs by breakage of one or more chromosomes leading to a fusion of surviving chromosome pieces. This case is a good example for emphasizing the importance of conventional karyotyping from PHA-induced peripheral blood lymphocytes and examining tissues other than bone marrow in patients with inconsistent genotype and phenotype.
Collapse
|
34
|
Jiang Y, Yue F, Wang R, Zhang H, Li L, Li L, Li S, Liu R. Molecular cytogenetic characterization of an isodicentric Yq and a neocentric isochromosome Yp in an azoospermic male. Mol Med Rep 2019; 21:918-926. [PMID: 31974623 DOI: 10.3892/mmr.2019.10883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/10/2019] [Indexed: 11/06/2022] Open
Abstract
Isodicentric Y chromosomes are considered one of the most common structural abnormalities of the Y chromosome. Neocentric marker chromosomes, with neocentromeres, have drawn increasing attention in recent years. The present study reported an azoospermic male with a neocentric isochromosome Yp, neo(Yp), and an isodicentric Yq, idic(Yq). The karyotype was analyzed using G‑banding, chromosome microarray analysis (CMA), and fluorescence in situ hybridization (FISH) with various detection probes, including sex‑determining region on the Y chromosome (SRY) and Y centromeric, applied at the same time. G‑banding initially revealed the karyotype 47,X,i(Y)(q10),+mar. CMA indicated the presence of an extra Y chromosome, seemingly equivalent to 47,XYY males. FISH delineated the existence of two centromeres on the idic(Yq). For the marker chromosome, two SRY signals were detected instead of the Y‑specific centromere signal, and a visual centromere was observed. This indicated the possible existence of a neocentromere in the marker chromosome, located in the connected region in Yp11.2 band. Finally, the patient's karyotype was established as 47,X,idic(Y)(p11.2), neo(Y)(pter→Yp11.2::Yp11.2→pter). The findings suggested that both idic(Yq) and neo(Yp) could be the main causes of the patient's azoospermia, despite the fact that the partial disomy of Ypter to Yp11.2 did not lead to any major malformations. The present study not only improves the understanding of karyotype/phenotype relationships between neocentric marker Y chromosomes and male infertility, but also supports the hypothesis that the combined application of molecular cytogenetic analysis could aid in reliably confirming breakpoints, origins, and the constitution of the marker chromosomes.
Collapse
Affiliation(s)
- Yuting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fagui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruixue Wang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Leilei Li
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Linlin Li
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
35
|
Cheng D, Yuan S, Yi D, Luo K, Xu F, Gong F, Lu C, Lu G, Lin G, Tan YQ. Analysis of molecular cytogenetic features and PGT-SR for two infertile patients with small supernumerary marker chromosomes. J Assist Reprod Genet 2019; 36:2533-2539. [PMID: 31720922 PMCID: PMC6911115 DOI: 10.1007/s10815-019-01611-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022] Open
Abstract
RESEARCH QUESTION Can preimplantation genetic testing for structural rearrangement (PGT-SR) with next-generation sequencing (NGS) be used to infertile patients carrying small supernumerary marker chromosomes (sSMCs)? DESIGN In this study, two infertile patients carrying ring sSMCs were recruited. Different molecular cytogenetic techniques were performed to identify the features of the two sSMCs, followed by clinical PGT-SR cycles. RESULTS The results of G-banding and FISH showed that patient 1's sSMC originated from the 8p23-p10 region, with a resulting karyotype of [ 47,XY, del(8)(p23p10), +r(8)(p23p10).ish del(8)(CEP8+,subtle 8p+,subtle 8q+),r(8)(CEP8+,subtle 8p-,subtle 8q-)[55/60].arr(1-22) ×2,(X,Y)×1]. The sSMC of patient 2 was derived from chromosome 3 and further microdissection with next-generation sequencing (MicroSeq) revealed it contained the region of chromosome 3 between 93,504,855 and 103,839,892 bp (GRCh37), which involved 52 known genes. So the karyotype of patient 2 was 47,XX, +mar.ish der(3)(CEP3+,subtle 3p-,subtle 3q-)[49/60].arr[GRCh37] 3q11.2q13.1(93,500,001_103,839,892) ×3(0.5). PGT-SR with NGS was performed to provide reproductive guidance for the two patients. For patient 1, four balanced euploid embryos and four embryos with partial trisomy/monosomy of (8p23.1-8p11.21) were obtained, and a balanced euploid embryo was successfully implanted and had resulted in a healthy baby. For patient 2, an embryo with monosomy of sex chromosomes and another embryo with a duplication at (3q11-q13.1), neither of which was available for implantation. CONCLUSIONS The identification of the origins and structural characteristics of rare sSMCs should rely on different molecular cytogenetic techniques. PGT-SR is an alternative fertility treatment for these patients carrying sSMCs. This study may provide directions for the assisted reproductive therapy for infertile patients with sSMC.
Collapse
Affiliation(s)
- Dehua Cheng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Key Laboratory of Human Stem Cell and Reproductive Engineering, Ministry of Health, Changsha, China
| | - Shimin Yuan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Duo Yi
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Keli Luo
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Key Laboratory of Human Stem Cell and Reproductive Engineering, Ministry of Health, Changsha, China
| | - Fang Xu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fei Gong
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Key Laboratory of Human Stem Cell and Reproductive Engineering, Ministry of Health, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Changfu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Key Laboratory of Human Stem Cell and Reproductive Engineering, Ministry of Health, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Key Laboratory of Human Stem Cell and Reproductive Engineering, Ministry of Health, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Key Laboratory of Human Stem Cell and Reproductive Engineering, Ministry of Health, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
- Key Laboratory of Human Stem Cell and Reproductive Engineering, Ministry of Health, Changsha, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, China.
| |
Collapse
|
36
|
Molecular Characterization of Mosaicism for a Small Supernumerary Marker Chromosome Derived from Chromosome Y in an Infertile Male with Apparently Normal Phenotype: A Case Report and Literature Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9398275. [PMID: 31828149 PMCID: PMC6885818 DOI: 10.1155/2019/9398275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/14/2019] [Accepted: 11/01/2019] [Indexed: 01/31/2023]
Abstract
Small supernumerary marker chromosomes (sSMCs), equal in size or smaller than chromosome 20 of the same metaphase, can hardly be identified through traditional banding technique. They are usually associated with intelligent disability, growth retardation, and infertility, but the genotype-phenotype correlations are still complicated for their complex origins and constitutions. Herein, we identified a 26-year-old Chinese infertile male who carried a mosaic sSMC and was diagnosed as severe oligospermia. The G-banding analysis initially described his karyotype as mos 47, XY, +mar[32]/46, XY[18]. The chromosomal microarray analysis results showed a 25.5 Mb gain in Yp11.31q11.23 and a 0.15 Mb loss in Yq12. Two SRY signals were discovered in the “seemingly” normal chromosome Y in both cell lines using SRY probe: one normal SRY was located on the distal tip of the short arm of chromosome Y while the other SRY was located on the terminal of long arm in the same chromosome Y. The sSMC(Y) was finally identified as der(Y) (pter ⟶ q11.23) (SRY-). To our knowledge, the chromosomal Y anomalies, SRY gene translocated from der(Y) (pter ⟶ q11.23) to qter of normal chromosome Y, were not reported before. Our findings indicated that the mosaic presence of sSMC(Y) may be the main cause of severe oligospermia although no other apparent abnormalities were observed in the proband. Further research on association between sSMC(Y) and spermatogenesis impairment should be investigated. It is recommended measures of traditional and molecular cytogenetic analysis should be taken to determine the origins and constitutions of sSMC so as to offer more appropriate genetic counseling for the infertile sSMC carriers.
Collapse
|
37
|
Bertini V, Giuliani C, Ferreri MI, Orsini A, Bonuccelli A, Peroni D, Bonaglia C, Valetto A. A prenatal case with multiple supernumerary markers identified as derivatives of chromosomes 13, 15, and 20: molecular cytogenetic characterization and review of the literature. J Matern Fetal Neonatal Med 2019; 34:2918-2922. [PMID: 31570022 DOI: 10.1080/14767058.2019.1670808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiple small supernumerary marker chromosomes (sSMCs) are among the rarest cytogenetic abnormalities as they represent roughly 1.4% of cases with sSMCs. We report on a prenatal case presenting de novo multiple sSMCs; these sSMCs were characterized by array CGH and FISH and resulted deriving from three different chromosomes: a der(13), a der(15) and a der(20). The co-presence of der(13), der(20), and der(15) have not been reported yet. The clinical consequences of this marker combination cannot be precisely predicted. However, according to the publicly available databases, the partial trisomies of chromosome 13 and 20 have probably a pathogenic effect. It is worth noting that a cooperative effect, due to interactions among genes harbored on the three derivatives, cannot be excluded, making the genetic counseling challenging.
Collapse
Affiliation(s)
- Veronica Bertini
- Cytogenetics Unit, Department of Laboratory Medicine, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Cecilia Giuliani
- Cytogenetics Unit, Department of Laboratory Medicine, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Maria Immacolata Ferreri
- Cytogenetics Unit, Department of Laboratory Medicine, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Alessandro Orsini
- Section Of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alice Bonuccelli
- Section Of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego Peroni
- Section Of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCSS Eugenio Medea, Bosisio Parini, Italy
| | - Angelo Valetto
- Cytogenetics Unit, Department of Laboratory Medicine, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| |
Collapse
|
38
|
Zeng J, Huang M, Lin J, Zhang X, Lan F. Small Supernumerary Ring Chromosome Derived from an Inverted Duplication of 13q11.2q14 in a Fetus with Coarctation of the Aorta. Cytogenet Genome Res 2019; 158:199-204. [PMID: 31315112 DOI: 10.1159/000501599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 11/19/2022] Open
Abstract
Here, we report a molecular characterization of a small supernumerary marker chromosome (sSMC) derived from the most proximal region of 13q present in a fetus with coarctation of the aorta at ultrasound examination during prenatal diagnosis. Cultured umbilical cord blood cells showed a de novo extra ring-shaped sSMC in 76% of the cells using a standard banding technique. SNP array revealed a tetrasomy of about 28.4 Mb in the long arm of chromosome 13 from band 13q11 to 13q14.11 in the fetus's cells. Metaphase/interphase FISH using specific probes located at 13q11, 13q12.11, and 13q14.11, respectively, demonstrated that the supernumerary ring chromosome was derived from an inverted duplication of the region 13q11q14.11 with a conventional centromere. To the best of our knowledge, this is the first time that an inverted duplication of the most proximal region 13q11q14.11 in a ring chromosome is characterized. The findings we presented here deepen our understanding of the clinical consequences of tetrasomy in this region and may be of help for further studies of critical regions in chromosome 13.
Collapse
|
39
|
Zhang H, Liu X, Geng D, Yue F, Jiang Y, Liu R, Wang R. Molecular cytogenetic characterization of a mosaic small supernumerary marker chromosome derived from chromosome Y in an azoospermic male: A case report. Medicine (Baltimore) 2019; 98:e16661. [PMID: 31348322 PMCID: PMC6708658 DOI: 10.1097/md.0000000000016661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Small supernumerary marker chromosomes (sSMCs) can be usually discovered in the patients with mental retardation, infertile couples, and prenatal fetus. We aim to characterize the sSMC and explore the correlation between with sSMC and male infertility. PATIENT CONCERNS A 26-year-old Chinese male was referred for infertility consultation in our center after 1 year of regular unprotected coitus and no pregnancy. DIAGNOSIS Cytogenetic G-banding analysis initially described a mosaic karyotype 47,X,Yqh-,+mar[28]/46,X,Yqh-[22] for the proband, while his father showed a normal karyotype. The chromosome microarray (CMA) analysis showed there existed a duplication of Yp11.32q11.221, a deletion of Yq11.222q12, a duplication of 20p11.1 for the patient. Azoospermia factor (AZF) microdeletion analysis for the patient showed that he presented a de novo AZFb+c deletion. Fluorescence in situ hybridization further confirmed the sSMC was an sSMC(Y) with SRY signal, Y centromere, and Yq deletion. INTERVENTIONS The patient would choose artificial reproductive technology to get his offspring according to the genetic counseling. OUTCOMES The sSMC in our patient was proved to be an sSMC(Y), derived from Yq deletion. The spermatogenesis failure of the proband might be due to the synthetic action of sSMC(Y) mosaicism and AZFb+c microdeletion. LESSONS It is nearly impossible to detect the chromosomal origin of sSMC through traditional banding techniques. The molecular cytogenetic characterization could be performed for identification of sSMC so that comprehensive genetic counseling would be offered.
Collapse
Affiliation(s)
- Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Xiangyin Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Dongfeng Geng
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Fagui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Yuting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Ruixue Wang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| |
Collapse
|
40
|
Abstract
Recent reports have demonstrated that oncogene amplification on extrachromosomal DNA (ecDNA) is a frequent event in cancer, providing new momentum to explore a phenomenon first discovered several decades ago. The direct consequence of ecDNA gains in these cases is an increase in DNA copy number of the oncogenes residing on the extrachromosomal element. A secondary effect, perhaps even more important, is that the unequal segregation of ecDNA from a parental tumour cell to offspring cells rapidly increases tumour heterogeneity, thus providing the tumour with an additional array of responses to microenvironment-induced and therapy-induced stress factors and perhaps providing an evolutionary advantage. This Perspectives article discusses the current knowledge and potential implications of oncogene amplification on ecDNA in cancer.
Collapse
Affiliation(s)
- Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Vineet Bafna
- Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, San Diego, La Jolla, CA, USA.
- UCSD School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
41
|
Rare Case of a Heterozygous Microdeletion 9q21.11-q21.2: Clinical and Genetic Characteristics. Balkan J Med Genet 2019; 21:59-62. [PMID: 30984527 PMCID: PMC6454245 DOI: 10.2478/bjmg-2018-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intellectual disability is affecting 3.0-4.0% of the general population. Copy number variants (CNVs) are a significant cause leading to neurodevelopmental disorders such as intellectual disability, epilepsy, autism spectrum disorders and developmental delay. The use of single nucleotide polymorphism (SNP)-array and array comparative genomic hybridization (aCGH) as diagnostic tools has led to the recognition of new microdeletion/microduplication syndromes associated with neurodevelopmental disorders. It is also useful for further characterization of marker chromosomes. Here, we report a girl with mild intellectual disability and mild facial dysmorphisms. Cytogenetic analysis showed a marker chromosome in some percent of the cells and was followed by SNP-array karyotyping that detected, in addition, a 9655 Mb de novo interstitial deletion at 9q21.1-9q21.2.
Collapse
|
42
|
Retrospectively investigating the 12-year experience of prenatal diagnosis of small supernumerary marker chromosomes through array comparative genomic hybridization. Taiwan J Obstet Gynecol 2019; 58:139-144. [PMID: 30638468 DOI: 10.1016/j.tjog.2018.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE This study retrospectively evaluated the incidences of small supernumerary marker chromosomes (sSMCs) in prenatal diagnoses and detected with gain of pathogenic copy number variation through array comparative genomic hybridization (CGH) in a laboratory in Taiwan. MATERIALS AND METHODS We retrospectively searched and reviewed the sSMC cases detected during prenatal diagnoses in the Youthgene medical laboratory, between 2004 and 2015 and used array CGH to successfully analyze 45 of 47,XN,+mar or 47,XN + mar/46,XN. RESULTS A total of 68,087 cases of amniocentesis were analyzed, of which 59 were identified as sSMCs. The overall frequency of sSMCs was 0.087%, and 7 of 45 sSMCs were identified with gain of pathogenic copy number variation (CNV). CONCLUSION Array CGH offers useful tools that can be used to detect small fragments of chromosomal abnormalities and sSMC origins in prenatal diagnosis. In this study, we successfully used array CGH to detect 7 out of 45 sSMCs, which were identified with gain in pathogenic CNV.
Collapse
|
43
|
Maggiolini FAM, Cantsilieris S, D’Addabbo P, Manganelli M, Coe BP, Dumont BL, Sanders AD, Pang AWC, Vollger MR, Palumbo O, Palumbo P, Accadia M, Carella M, Eichler EE, Antonacci F. Genomic inversions and GOLGA core duplicons underlie disease instability at the 15q25 locus. PLoS Genet 2019; 15:e1008075. [PMID: 30917130 PMCID: PMC6436712 DOI: 10.1371/journal.pgen.1008075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
Human chromosome 15q25 is involved in several disease-associated structural rearrangements, including microdeletions and chromosomal markers with inverted duplications. Using comparative fluorescence in situ hybridization, strand-sequencing, single-molecule, real-time sequencing and Bionano optical mapping analyses, we investigated the organization of the 15q25 region in human and nonhuman primates. We found that two independent inversions occurred in this region after the fission event that gave rise to phylogenetic chromosomes XIV and XV in humans and great apes. One of these inversions is still polymorphic in the human population today and may confer differential susceptibility to 15q25 microdeletions and inverted duplications. The inversion breakpoints map within segmental duplications containing core duplicons of the GOLGA gene family and correspond to the site of an ancestral centromere, which became inactivated about 25 million years ago. The inactivation of this centromere likely released segmental duplications from recombination repression typical of centromeric regions. We hypothesize that this increased the frequency of ectopic recombination creating a hotspot of hominid inversions where dispersed GOLGA core elements now predispose this region to recurrent genomic rearrangements associated with disease.
Collapse
Affiliation(s)
| | - Stuart Cantsilieris
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Pietro D’Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Michele Manganelli
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Beth L. Dumont
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Ashley D. Sanders
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, Heidelberg, Germany
| | | | - Mitchell R. Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital “Cardinale G. Panico”, Via San Pio X n°4, Tricase, LE, Italy
| | - Massimo Carella
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, United States of America
| | - Francesca Antonacci
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
44
|
Slimani W, Ben Khelifa H, Dimassi S, Chioukh FZ, Jelloul A, Kammoun M, Hannachi H, Bouslah S, Jammali N, Sanlaville D, Saad A, Mougou-Zerelli S. Clinical and molecular findings in nine new cases of tetrasomy 18p syndrome: FISH and array CGH characterization. Mol Cytogenet 2019; 12:5. [PMID: 30774715 PMCID: PMC6368812 DOI: 10.1186/s13039-019-0414-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Small Supernumerary Marker Chromosomes (sSMC) are rare chromosomal abnormalities, which have abnormal banding arrangement and take many shapes. Several disorders have been correlated with sSMC presence. The aim of this study is to characterize the sSMC derived from chromosome 18 by Fluorescence in situ hybridization (FISH) and Array Comparative Genomic Hybridization (aCGH). RESULTS Nine children with dysmorphic features have been investigated. They have these features in common: a triangular face, low-set ears, a large mouth with a thin upper lip, and a horizontal palpebral fissure. Epicanthus and strabismus were present in two patients. In addition, we have noticed microcephaly and mental and/or developmental delay with low birth weight. However, two patients had standard birth weight; one patient had hypospadias; two had skin problems; and three showed different congenital heart defects. One patient had corpus callosum hypoplasia. Systematic karyotype analysis revealed a de novo supernumerary chromosome. Array CGH showed a gain in copy number on the short arm of chromosome 18 in the nine cases. In one case, the sSMC seemed to be in mosaic. The breakpoints of the marker were identified using aCGH and FISH. Thus, the sSMC led to 18p tetrasomy with approximately 14 Mb lengths, between 364344 and 14763575 based on the human genome version 18. CONCLUSIONS These results have been completed by FISH in order to ascertain the shape of the sSMC. Our results confirm the uniqueness and particularity of the iso18p syndrome on the phenotypic as well as on the genetic level.
Collapse
Affiliation(s)
- Wafa Slimani
- Laboratory of Human cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Hela Ben Khelifa
- Laboratory of Human cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Sarra Dimassi
- Laboratory of Human cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | | | - Afef Jelloul
- Laboratory of Human cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Molka Kammoun
- Laboratory of Human cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Hanene Hannachi
- Laboratory of Human cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Sarra Bouslah
- Pediatric department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Nesrine Jammali
- Department of Child psychiatry, Fattouma Bourguiba Hospital, Monastir, Tunisia
| | | | - Ali Saad
- Laboratory of Human cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
- Université de Sousse, Faculté de Médecine de Sousse, Hopital Farhat Hached, UR035P2, 4000 Sousse, Tunisia
| | - Soumaya Mougou-Zerelli
- Laboratory of Human cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
- Université de Sousse, Faculté de Médecine de Sousse, Hopital Farhat Hached, UR035P2, 4000 Sousse, Tunisia
| |
Collapse
|
45
|
Saberzadeh J, Miri MR, Dianatpour M, Behzad Behbahani A, Tabei MB, Alipour M, Faghihi MA, Fardaei M. The First Case of a Small Supernumerary Marker Chromosome 18 in a Klinefelter Fetus: A Case Report. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:65-69. [PMID: 30666078 PMCID: PMC6330521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Small supernumerary marker chromosomes (sSMCs), or markers, are abnormal chromosomal fragments that can be hereditary or de novo. Despite the importance of sSMCs diagnosis, de novo sSMCs are rarely detected during the prenatal diagnosis process. Usually, prenatally diagnosed de novo sSMCs cannot be correlated with a particular phenotype without knowing their chromosomal origin and content; therefore, molecular cytogenetic techniques are applied to achieve this goal. The present study aimed to characterize an sSMC in a case of Klinefelter syndrome using an in-house microsatellite analysis method and fluorescent in situ hybridization (FISH) technique. Amniotic fluid was collected from a pregnant woman who was considered to have risk factors for trisomy higher than the screening cut-off. Karyotype analysis was followed by the amplification of different microsatellite loci and FISH technique. Karyotype analysis identified a fetus with an extra X chromosome and also an sSMC with unknown identity. Further investigation of the parents showed that the sSMC is de novo. Microsatellite amplification by quantitative fluorescent PCR (QF-PCR) and FISH analysis showed that the sSMC is a derivative of chromosome 18. Eventually, the patient decided to terminate the pregnancy. Here, the first case of the coincidence of sSMC 18 in a Klinefelter fetus is reported.
Collapse
Affiliation(s)
- Jamileh Saberzadeh
- Medical Biotechnology Department, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Mohammad Reza Miri
- Medical Biotechnology Department, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Mehdi Dianatpour
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran;
,Transgenic Technology Research center, Shiraz University of Medical Sciences, Shiraz, Iran;
,Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Mohammad Bagher Tabei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran;
,Transgenic Technology Research center, Shiraz University of Medical Sciences, Shiraz, Iran;
,Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Mohsen Alipour
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Mohammad Ali Faghihi
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran;
,Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran;
,Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Majid Fardaei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran;
,Transgenic Technology Research center, Shiraz University of Medical Sciences, Shiraz, Iran;
,Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| |
Collapse
|
46
|
Bellucco FT, Fock RA, de Oliveira-Júnior HR, Perez AB, Melaragno MI. Complex Small Supernumerary Marker Chromosome Leading to Partial 4q/21q Duplications: Clinical Implication and Review of the Literature. Cytogenet Genome Res 2018; 156:173-178. [DOI: 10.1159/000494682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 11/19/2022] Open
Abstract
Complex small marker chromosomes (sSMCs) consist of chromosomal material derived from more than 1 chromosome. Complex sSMCs derived from chromosomes 4 and 21 are rare, with only 7 cases reported. Here, we describe a patient who presented with a complex sSMC derived from a maternal translocation between chromosomes 4 and 21, which was revealed by G-banding, MLPA, and array techniques. The marker chromosome der(21)t(4;21)(q32.1; q21.2)mat is composed of a 25.6-Mb 21pterq21.2 duplication and a 32.1-Mb 4q32.1q35.2 duplication. In comparison to patients with sSMCs derived from chromosomes 4 and 21, our patient showed a similar phenotype with neuropsychomotor developmental delay and facial dysmorphism as the most important finding, being a composition of the findings found in pure 4q and 21q duplications. The wide range of phenotypes associated with sSMCs emphasizes the importance of detailed cytogenomic analyses for an accurate diagnosis, prognosis, and genetic counseling.
Collapse
|
47
|
Čulić V, Lasan-Trcić R, Liehr T, Lebedev IN, Pivić M, Pavelic J, Vulić R. A Familial Small Supernumerary Marker Chromosome 15 Associated with Cryptic Mosaicism with Two Different Additional Marker Chromosomes Derived de novo from Chromosome 9: Detailed Case Study and Implications for Recurrent Pregnancy Loss. Cytogenet Genome Res 2018; 156:179-184. [DOI: 10.1159/000494822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 11/19/2022] Open
Abstract
We report a case of familial small supernumerary marker chromosome 15 in a phenotypically normal female with 4 recurrent spontaneous abortions and a healthy child. The initial karyotype showed a small, bisatellited, apparently metacentric marker chromosome, 47,XX,+idic(15)(q11.1), maternally inherited. The proband's mother was mosaic for the idic(15)(q11.1) without pregnancy loss. Reexamination of the proband's karyotype revealed cryptic mosaicism for 1 ring and 1 minute chromosome derived de novo from chromosome 9 in 2% of the metaphases. In FISH analysis, the patient's karyotype was mos 47,XX,+idic(15)(q11.1)mat[100]/49,XX,+idic(15)(q11.1)mat,+r(9;9;9;9),+der(9)dn[2]. The second spontaneous abortion had trisomy 9 (47,XX,+9); the third had mosaic trisomy 9 in 21% of the nuclei and isodicentric chromosome 15 in 36% of the nuclei (mos 48,XN,+9,+idic(15)(q11.1)/47,XN,+9/47,XN,+idic(15)(q11.1)/46,XN). The first and fourth abortions were not cytogenetically studied. The cause of the spontaneous abortions in this patient is likely the cryptic mosaicism for ring and minute chromosomes 9, and gonadal mosaicism is most probable, due to the 2 abortions.
Collapse
|
48
|
Jetybayev IY, Bugrov AG, Dzuybenko VV, Rubtsov NB. B Chromosomes in Grasshoppers: Different Origins and Pathways to the Modern B s. Genes (Basel) 2018; 9:genes9100509. [PMID: 30340429 PMCID: PMC6209997 DOI: 10.3390/genes9100509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 01/05/2023] Open
Abstract
B chromosomes (Bs) were described in most taxa of eukaryotes and in around 11.9% of studied Orthopteran species. In some grasshopper species, their evolution has led to many B chromosome morphotypes. We studied the Bs in nine species (Nocaracris tardus, Nocaracris cyanipes, Aeropus sibiricus, Chorthippus jacobsoni, Chorthippus apricarius, Bryodema gebleri, Asiotmethis heptapotamicus songoricus, Podisma sapporensis, and Eyprepocnemis plorans), analyzing their possible origin and further development. The studied Bs consisted of C-positive or C-positive and C-negative regions. Analyzing new data and considering current hypotheses, we suggest that Bs in grasshoppers could arise through different mechanisms and from different chromosomes of the main set. We gave our special attention to the Bs with C-negative regions and suggest a new hypothesis of B chromosome formation from large or medium autosomes. This hypothesis includes dissemination of repetitive sequences and development of intercalary heterochromatic blocks in euchromatic chromosome arm followed by deletion of euchromatic regions located between them. The hypothesis is based on the findings of the Eyprepocnemis plorans specimens with autosome containing numerous intercalary repeat clusters, analysis of C-positive Bs in Eyprepocnemis plorans and Podisma sapporensis containing intercalary and terminal C-negative regions, and development of heterochromatic neo-Y chromosome in some Pamphagidae grasshoppers.
Collapse
Affiliation(s)
- Ilyas Yerkinovich Jetybayev
- The Federal Research Center Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Lavrentjev Ave., 10, 630090 Novosibirsk, Russia.
- Institute of Systematics and Ecology of Animals, Russian Academy of Sciences, Siberian Branch, Frunze str. 11, 630091 Novosibirsk, Russia.
| | - Alexander Gennadievich Bugrov
- Institute of Systematics and Ecology of Animals, Russian Academy of Sciences, Siberian Branch, Frunze str. 11, 630091 Novosibirsk, Russia.
- Novosibirsk State University, Pirogov str., 2, 630090 Novosibirsk, Russia.
| | | | - Nikolay Borisovich Rubtsov
- The Federal Research Center Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Lavrentjev Ave., 10, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogov str., 2, 630090 Novosibirsk, Russia.
| |
Collapse
|
49
|
Sequence Composition and Evolution of Mammalian B Chromosomes. Genes (Basel) 2018; 9:genes9100490. [PMID: 30309007 PMCID: PMC6211034 DOI: 10.3390/genes9100490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
B chromosomes (Bs) revealed more than a hundred years ago remain to be some of the most mysterious elements of the eukaryotic genome. Their origin and evolution, DNA composition, transcriptional activity, impact on adaptiveness, behavior in meiosis, and transfer to the next generation require intensive investigations using modern methods. Over the past years, new experimental techniques have been applied and helped us gain a deeper insight into the nature of Bs. Here, we consider mammalian Bs, taking into account data on their DNA sequencing, transcriptional activity, positions in nuclei of somatic and meiotic cells, and impact on genome functioning. Comparative cytogenetics of Bs suggests the existence of different mechanisms of their formation and evolution. Due to the long and complicated evolvement of Bs, the similarity of their morphology could be explained by the similar mechanisms involved in their development while the difference between Bs even of the same origin could appear due to their positioning at different stages of their evolution. A complex analysis of their DNA composition and other features is required to clarify the origin and evolutionary history of Bs in the species studied. The intraspecific diversity of Bs makes this analysis a very important element of B chromosome studies.
Collapse
|
50
|
Sequencing of Supernumerary Chromosomes of Red Fox and Raccoon Dog Confirms a Non-Random Gene Acquisition by B Chromosomes. Genes (Basel) 2018; 9:genes9080405. [PMID: 30103445 PMCID: PMC6116037 DOI: 10.3390/genes9080405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
B chromosomes (Bs) represent a variable addition to the main karyotype in some lineages of animals and plants. Bs accumulate through non-Mendelian inheritance and become widespread in populations. Despite the presence of multiple genes, most Bs lack specific phenotypic effects, although their influence on host genome epigenetic status and gene expression are recorded. Previously, using sequencing of isolated Bs of ruminants and rodents, we demonstrated that Bs originate as segmental duplications of specific genomic regions, and subsequently experience pseudogenization and repeat accumulation. Here, we used a similar approach to characterize Bs of the red fox (Vulpes vulpes L.) and the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray). We confirm the previous findings of the KIT gene on Bs of both species, but demostrate an independent origin of Bs in these species, with two reused regions. Comparison of gene ensembles in Bs of canids, ruminants, and rodents once again indicates enrichment with cell-cycle genes, development-related genes, and genes functioning in the neuron synapse. The presence of B-chromosomal copies of genes involved in cell-cycle regulation and tissue differentiation may indicate importance of these genes for B chromosome establishment.
Collapse
|