1
|
Guekos A, Saxer J, Salinas Gallegos D, Schweinhardt P. Healthy women show more experimentally induced central sensitization compared with men. Pain 2024; 165:1413-1424. [PMID: 38231588 PMCID: PMC11090033 DOI: 10.1097/j.pain.0000000000003144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/18/2024]
Abstract
ABSTRACT Women more often experience chronic pain conditions than men. Central sensitization (CS) is one key mechanism in chronic pain that can differ between the sexes. It is unknown whether CS processes are already more pronounced in healthy women than in men. In 66 subjects (33 women), a thermal CS induction protocol was applied to the dorsum of one foot and a sham protocol to the other. Spatial extent [cm 2 ] of secondary mechanical hyperalgesia (SMH) and dynamic mechanical allodynia were assessed as subjective CS proxy measures, relying on verbal feedback. Changes in nociceptive withdrawal reflex magnitude (NWR-M) and response rate (NWR-RR) recorded through surface electromyography at the biceps and rectus femoris muscles were used as objective CS proxies. The effect of the CS induction protocol on SMH was higher in women than in men (effect size 2.11 vs 1.68). Nociceptive withdrawal reflex magnitude results were statistically meaningful for women (effect size 0.31-0.36) but not for men (effect size 0.12-0.29). Differences between men and women were not meaningful. Nociceptive withdrawal reflex response rate at the rectus femoris increased in women after CS induction and was statistically different from NWR-RR in men (median differences of 13.7 and 8.4% for 120 and 140% reflex threshold current). The objective CS proxy differences indicate that dorsal horn CS processes are more pronounced in healthy women. The even larger sex differences in subjective CS proxies potentially reflect greater supraspinal influence in women. This study shows that sex differences are present in experimentally induced CS in healthy subjects, which might contribute to women's vulnerability for chronic pain.
Collapse
Affiliation(s)
- Alexandros Guekos
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Decision Neuroscience Lab, Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Janis Saxer
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Diego Salinas Gallegos
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- IQVIA AG, Rotkreuz, Switzerland
| | - Petra Schweinhardt
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Mathew J, Adhia DB, Hall M, De Ridder D, Mani R. EEG-Based Cortical Alterations in Individuals With Chronic Knee Pain Secondary to Osteoarthritis: A Cross-sectional Investigation. THE JOURNAL OF PAIN 2024; 25:104429. [PMID: 37989404 DOI: 10.1016/j.jpain.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Chronic painful knee osteoarthritis (OA) is a disabling physical health condition. Alterations in brain responses to arthritic changes in the knee may explain persistent pain. This study investigated source localized, resting-state electroencephalography activity and functional connectivity in people with knee OA, compared to healthy controls. Adults aged 44 to 85 years with knee OA (n = 37) and healthy control (n = 39) were recruited. Resting-state electroencephalography was collected for 10 minutes and decomposed into infraslow frequency (ISF) to gamma frequency bands. Standard low-resolution electromagnetic brain tomography statistical nonparametric maps were conducted, current densities of regions of interest were compared between groups and correlation analyses were performed between electroencephalography (EEG) measures and clinical pain and functional outcomes in the knee OA group. Standard low-resolution electromagnetic brain tomography nonparametric maps revealed higher (P = .006) gamma band activity over the right insula (RIns) in the knee OA group. A significant (P < .0001) reduction in ISF band activity at the pregenual anterior cingulate cortex, whereas higher theta, alpha, beta, and gamma band activity at the dorsal anterior cingulate cortex, pregenual anterior cingulate cortex, the somatosensory cortex, and RIns in the knee OA group were identified. ISF activity of the dorsal anterior cingulate cortex was positively correlated with pain measures and psychological distress scores. Theta and alpha activity of RIns were negatively correlated with pain interference. In conclusion, aberrations in infraslow and faster frequency EEG oscillations at sensory discriminative, motivational-affective, and descending inhibitory cortical regions were demonstrated in people with chronic painful knee OA. Moreover, EEG oscillations were correlated with pain and functional outcome measures. PERSPECTIVE: This study confirms alterations in the rsEEG oscillations and its relationship with pain experience in people with knee OA. The study provides potential cortical targets and the EEG frequency bands for neuromodulatory interventions for managing chronic pain experience in knee OA.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| | - Divya B Adhia
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Matthew Hall
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| |
Collapse
|
3
|
Yun YJ, Kim GW. Serial changes in diffusion tensor imaging metrics and therapeutic effects of repetitive transcranial magnetic stimulation in post-traumatic headache and depression: A case report. Medicine (Baltimore) 2024; 103:e37139. [PMID: 38552043 PMCID: PMC10977570 DOI: 10.1097/md.0000000000037139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Mild traumatic brain injury patients commonly complain headache and central pain, and the pain accompanies depressive mood change. This case study reports the therapeutic effect of repetitive transcranial magnetic stimulation (rTMS) in mild traumatic brain injury patient with headache and depression through objective serial changes of diffusion tensor imaging (DTI). METHODS The 51-year-old man complained of headache and depression despite conventional treatment for 13 months. We applied 15 times rTMS on the left dorsolateral prefrontal cortex. We checked the pain and depression through numeric rating scale (NRS) and Beck depression inventory (BDI) when admission, discharged, and 1 month after discharge. DTI was performed 3 times; before, during-day of rTMS 6th stimulation, and after-day of rTMS 15th stimulation. Then the reconstructed White matter related to pain and depression was obtained. RESULTS NRS and BDI showed significant improvement and it was maintained 1 year after discharge. DTI-based metrics of the White matters related to pain and depression gradually increased before - during - after rTMS. CONCLUSION Studies focused on examining changes in pain, depression and DTI-based metrics of White matter are rare. This case is significant in that not only pain and depression improved after the rTMS, but also serial changes in White matter were observed in DTI.
Collapse
Affiliation(s)
- Young-Ji Yun
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Gi-Wook Kim
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University – Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Cramer N, Ji Y, Kane MA, Pilli NR, Castro A, Posa L, Van Patten G, Masri R, Keller A. Elevated Serotonin in Mouse Spinal Dorsal Horn Is Pronociceptive. eNeuro 2023; 10:ENEURO.0293-23.2023. [PMID: 37945351 PMCID: PMC10698626 DOI: 10.1523/eneuro.0293-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Serotonergic neurons in the rostral ventral medulla (RVM) contribute to bidirectional control of pain through modulation of spinal and trigeminal nociceptive networks. Deficits in this pathway are believed to contribute to pathologic pain states, but whether changes in serotonergic mechanisms are pro- or antinociceptive is debated. We used a combination of optogenetics and fiber photometry to examine these mechanisms more closely. We find that optogenetic activation of RVM serotonergic afferents in the spinal cord of naive mice produces mechanical hypersensitivity and conditioned place aversion (CPA). Neuropathic pain, produced by chronic constriction injury of the infraorbital nerve (CCI-ION), evoked a tonic increase in serotonin (5HT) concentrations within the spinal trigeminal nucleus caudalis (SpVc), measured with liquid chromatography-tandem mass spectroscopy (LC-MS/MS). By contract, CCI-ION had no effect on the phasic serotonin transients in SpVc, evoked by noxious pinch, and measured with fiber photometry of a serotonin sensor. These findings suggest that serotonin release in the spinal cord is pronociceptive and that an increase in sustained serotonin signaling, rather than phasic or event driven increases, potentiate nociception in models of chronic pain.
Collapse
Affiliation(s)
- Nathan Cramer
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Nageswara R Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Alberto Castro
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Luca Posa
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gabrielle Van Patten
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Radi Masri
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Asaf Keller
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
5
|
Flor H, Noguchi K, Treede RD, Turk DC. The role of evolving concepts and new technologies and approaches in advancing pain research, management, and education since the establishment of the International Association for the Study of Pain. Pain 2023; 164:S16-S21. [PMID: 37831955 DOI: 10.1097/j.pain.0000000000003063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/09/2023] [Indexed: 10/15/2023]
Abstract
ABSTRACT The decades since the inauguration of the International Association for the Study of Pain have witnessed major advances in scientific concepts (such as the biopsychosocial model and chronic primary pain as a disease in its own right) and in new technologies and approaches (from molecular biology to brain imaging) that have inspired innovations in pain research. These have guided progress in pain management and education about pain for healthcare professionals, the general public, and administrative agencies.
Collapse
Affiliation(s)
- Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Koichi Noguchi
- Laboratory of Pain Mechanism Research, Hyogo Medical University, Hyogo, Japan
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dennis C Turk
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Cathenaut L, Schlichter R, Hugel S. Short-term plasticity in the spinal nociceptive system. Pain 2023; 164:2411-2424. [PMID: 37578501 DOI: 10.1097/j.pain.0000000000002999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/08/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Somatosensory information is delivered to neuronal networks of the dorsal horn (DH) of the spinal cord by the axons of primary afferent neurons that encode the intensity of peripheral sensory stimuli under the form of a code based on the frequency of action potential firing. The efficient processing of these messages within the DH involves frequency-tuned synapses, a phenomenon linked to their ability to display activity-dependent forms of short-term plasticity (STP). By affecting differently excitatory and inhibitory synaptic transmissions, these STP properties allow a powerful gain control in DH neuronal networks that may be critical for the integration of nociceptive messages before they are forwarded to the brain, where they may be ultimately interpreted as pain. Moreover, these STPs can be finely modulated by endogenous signaling molecules, such as neurosteroids, adenosine, or GABA. The STP properties of DH inhibitory synapses might also, at least in part, participate in the pain-relieving effect of nonpharmacological analgesic procedures, such as transcutaneous electrical nerve stimulation, electroacupuncture, or spinal cord stimulation. The properties of target-specific STP at inhibitory DH synapses and their possible contribution to electrical stimulation-induced reduction of hyperalgesic and allodynic states in chronic pain will be reviewed and discussed.
Collapse
Affiliation(s)
- Lou Cathenaut
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
7
|
Cramer N, Ji Y, Kane M, Pilli N, Posa L, Patten GV, Masri R, Keller A. Elevated serotonin in mouse spinal dorsal horn is pronociceptive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552838. [PMID: 37645759 PMCID: PMC10461991 DOI: 10.1101/2023.08.10.552838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Serotonergic neurons in the rostral ventral medulla (RVM) contribute to bidirectional control of pain through modulation of spinal and trigeminal nociceptive networks. Deficits in this pathway are believed to contribute to pathological pain states, but whether changes in serotonergic mechanisms are pro or anti-nociceptive are debated. We used a combination of optogenetics and fiber photometry to examine these mechanisms more closely. We find that optogenetic activation of RVM serotonergic afferents in the spinal cord of naïve mice produces mechanical hypersensitivity and conditioned place aversion. Neuropathic pain, produced by chronic constriction injury of the infraorbital nerve (CCI-ION), evoked a tonic increase in serotonin concentrations within the spinal trigeminal nucleus caudalis (SpVc), measured with liquid chromatography-tandem mass spectroscopy (LC-MS/MS). By contract, CCI-ION had no effect on the phasic serotonin transients in SpVc, evoked by noxious pinch, and measured with fiber photometry of a serotonin sensor. These findings suggest that serotonin release in the spinal cord is pronociceptive and that an increase is sustained serotonin signaling, rather than phasic or event driven increases, potentiate nociception in models of chronic pain.
Collapse
Affiliation(s)
- Nathan Cramer
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
| | - Maureen Kane
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Luca Posa
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gabrielle Van Patten
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Radi Masri
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
- UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Asaf Keller
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
8
|
Tanei T, Nishimura Y, Nagashima Y, Ishii M, Nishii T, Fukaya N, Abe T, Kato H, Maesawa S, Saito R. Efficacy of Spinal Cord Stimulation Using Differential Target Multiplexed Stimulation for Intractable Pain of Hereditary Neuropathy with Liability to Pressure Palsies: A Case Report. NMC Case Rep J 2023; 10:203-208. [PMID: 37539362 PMCID: PMC10396390 DOI: 10.2176/jns-nmc.2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 08/05/2023] Open
Abstract
Hereditary neuropathy with liability to pressure palsies is an extremely rare genetic disorder; it is an autosomal dominant disorder with a high incidence of neuropathic and/or musculoskeletal pain. A case of achieving pain relief by spinal cord stimulation using differential target multiplexed stimulation for a 44-year-old female patient with hereditary neuropathy with liability to pressure palsies who was experiencing severe pain in her back, face, and all four limbs is presented. In her early teens, the initial symptoms were numbness and weakness of a limb after movement, which improved spontaneously. Transient pain in her back followed by systemic and persistent muscle weakness and pain developed. Deletion of the gene for peripheral myelin protein 22 was detected by peripheral nerve biopsy. The diagnosis of hereditary neuropathy with liability to pressure palsies was made in her early thirties. A spinal cord stimulation trial was performed because her severe pain continued despite administering many medications. Therefore, two spinal cord stimulation systems were implanted at the C3-5 and Th8-9 levels by two procedures. Pain in her back, arms, and legs decreased from 8 to 1, 5 to 1, and 6 to 2 on the numerical rating scale, respectively. Furthermore, opioid usage was tapered. The pain of hereditary neuropathy with liability to pressure palsies has a complicated pathogenesis and is resistant to pharmacological treatment. Spinal cord stimulation using differential target multiplexed stimulation may be a viable treatment option.
Collapse
Affiliation(s)
- Takafumi Tanei
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Nishimura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshitaka Nagashima
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Motonori Ishii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoya Nishii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Nobuhisa Fukaya
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Abe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroyuki Kato
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Maesawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Bocci T, Priori A. Towards chronic non-invasive stimulation: what can you learn from pain research? Brain Commun 2023; 5:fcad193. [PMID: 37545545 PMCID: PMC10400111 DOI: 10.1093/braincomms/fcad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/13/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
This scientific commentary refers to 'Long-term analgesic effect of trans-spinal direct current stimulation compared to non-invasive motor cortex stimulation in complex regional pain syndrome, by Hodaj et al. (https://doi.org/10.1093/braincomms/fcad191).
Collapse
Affiliation(s)
- Tommaso Bocci
- Clinical Neurology Unit, ASST Santi Paolo & Carlo and Department of Health Sciences, University of Milan, Milan I-20142, Italy
- 'Aldo Ravelli' Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan I-20142, Italy
| | - Alberto Priori
- Clinical Neurology Unit, ASST Santi Paolo & Carlo and Department of Health Sciences, University of Milan, Milan I-20142, Italy
- 'Aldo Ravelli' Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan I-20142, Italy
| |
Collapse
|
10
|
Bułdyś K, Górnicki T, Kałka D, Szuster E, Biernikiewicz M, Markuszewski L, Sobieszczańska M. What Do We Know about Nociplastic Pain? Healthcare (Basel) 2023; 11:1794. [PMID: 37372912 PMCID: PMC10298569 DOI: 10.3390/healthcare11121794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Nociplastic pain is a recently distinguished type of pain, distinct from neuropathic and nociceptive pain, and is well described in the literature. It is often mistaken for central sensitization. Pathophysiology has not been clearly established with regard to alteration of the concentration of spinal fluid elements, the structure of the white and gray matter of the brain, and psychological aspects. Many different diagnostic tools, i.e., the painDETECT and Douleur Neuropathique 4 questionnaires, have been developed to diagnose neuropathic pain, but they can also be applied for nociplastic pain; however, more standardized instruments are still needed in order to assess its occurrence and clinical presentation. Numerous studies have shown that nociplastic pain is present in many different diseases such as fibromyalgia, complex regional pain syndrome type 1, and irritable bowel syndrome. Current pharmacological and nonpharmacological treatments for nociceptive and neuropathic pain are not entirely suitable for treating nociplastic pain. There is an ongoing effort to establish the most efficient way to manage it. The significance of this field has led to several clinical trials being carried out in a short time. The aim of this narrative review was to discuss the currently available evidence on pathophysiology, associated diseases, treatment possibilities, and clinical trials. It is important that physicians widely discuss and acknowledge this relatively new concept in order to provide optimized pain control for patients.
Collapse
Affiliation(s)
- Kacper Bułdyś
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Tomasz Górnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Dariusz Kałka
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Men’s Health Centre in Wrocław, 53-151 Wroclaw, Poland
| | - Ewa Szuster
- Cardiosexology Students Club, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Leszek Markuszewski
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | | |
Collapse
|
11
|
Miranda-Cortés A, Mota-Rojas D, Crosignani-Outeda N, Casas-Alvarado A, Martínez-Burnes J, Olmos-Hernández A, Mora-Medina P, Verduzco-Mendoza A, Hernández-Ávalos I. The role of cannabinoids in pain modulation in companion animals. Front Vet Sci 2023; 9:1050884. [PMID: 36686189 PMCID: PMC9848446 DOI: 10.3389/fvets.2022.1050884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
The use of cannabinoids in both veterinary and human medicine is controversial for legal and ethical reasons. Nonetheless, the availability and therapeutic use of naturally occurring or synthetic phytocannabinoids, such as Δ9-tetrahydrocannabidiol and cannabidiol, have been the focus of attention in studies regarding their medical uses. This review aims to examine the role of cannabinoids in pain modulation by analyzing scientific findings regarding the signaling pathways of the endocannabinoid system and discussing the analgesic effects of synthetic cannabinoids compared to cannabinoid extracts and the extent and involvement of their receptors. In animals, studies have shown the analgesic properties of these substances and the role of the cannabinoid binding -1 (CB1) and cannabinoid binding -2 (CB2) receptors in the endocannabinoid system to modulate acute, chronic and neuropathic pain. This system consists of three main components: endogenous ligands (anandamide and 2-arachidonoylglycerol), G protein-coupled receptors and enzymes that degrade and recycle the ligands. Evidence suggests that their interaction with CB1 receptors inhibits signaling in pain pathways and causes psychoactive effects. On the other hand, CB2 receptors are associated with anti-inflammatory and analgesic reactions and effects on the immune system. Cannabis extracts and their synthetic derivatives are an effective therapeutic tool that contributes to compassionate pain care and participates in its multimodal management. However, the endocannabinoid system interacts with different endogenous ligands and neurotransmitters, thus offering other therapeutic possibilities in dogs and cats, such is the case of those patients who suffer from seizures or epilepsy, contact and atopic dermatitis, degenerative myelopathies, asthma, diabetes and glaucoma, among other inflammatory diseases. Moreover, these compounds have been shown to possess antineoplastic, appetite-stimulating, and antiemetic properties. Ultimately, the study of the endocannabinoid system, its ligands, receptors, mechanism of action, and signaling, has contributed to the development of research that shows that hemp-derived and their synthetic derivatives are an effective therapeutic alternative in the multimodal management of pain in dogs and cats due to their ability to prevent peripheral and central sensitization.
Collapse
Affiliation(s)
- Agatha Miranda-Cortés
- Department of Biological Science, Clinical Pharmacology and Veterinary Anesthesia, Universidad Nacional Autónoma de México (UNAM), FESC, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, (UAM), Mexico City, Mexico
| | - Nadia Crosignani-Outeda
- Department of Clinics and Veterinary Hospital, School of Veterinary, University of Republic, Montevideo, Uruguay
| | - Alejandro Casas-Alvarado
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, (UAM), Mexico City, Mexico
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, Mexico
| | - Adriana Olmos-Hernández
- Department Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco, Mexico City, Mexico
| | - Patricia Mora-Medina
- Livestock Science Department, Universidad Nacional Autónoma de México (UNAM), FESC, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Department Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco, Mexico City, Mexico
| | - Ismael Hernández-Ávalos
- Department of Biological Science, Clinical Pharmacology and Veterinary Anesthesia, Universidad Nacional Autónoma de México (UNAM), FESC, Mexico City, Mexico
| |
Collapse
|
12
|
Satiamurthy R, Yaakob NS, Shah NM, Azmi N, Omar MS. Potential Roles of 5-HT 3 Receptor Antagonists in Reducing Chemotherapy-induced Peripheral Neuropathy (CIPN). Curr Mol Med 2023; 23:341-349. [PMID: 35549869 DOI: 10.2174/1566524022666220512122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
5-HT3 receptor antagonists corresponding to ondansetron, granisetron, tropisetron, and palonosetron are clinically accustomed to treating nausea and emesis in chemotherapy patients. However, current and previous studies reveal novel potentials of those ligands in other diseases involving the nervous system, such as addiction, pruritus, and neurological disorders, such as anxiety, psychosis, nociception, and cognitive function. This review gathers existing studies to support the role of 5-HT3 receptors in CIPN modulation. It has been reported that chemotherapy drugs increase the 5-HT content that binds with the 5-HT3 receptor, which later induces pain. As also shown in pre-clinical and clinical studies that various neuropathic pains could be blocked by the 5-HT3 receptor antagonists, we proposed that 5-HT3 receptor antagonists via 5- HT3 receptors may also inhibit neuropathic pain induced by chemotherapy. Our review suggests that future studies focus more on the 5-HT3 receptor antagonists and their modulation in CIPN to reduce the gap in the current pharmacotherapy for cancer-related pain.
Collapse
Affiliation(s)
- Raajeswari Satiamurthy
- Centre for Drug and Herbal Development, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Syafinaz Yaakob
- Centre for Drug and Herbal Development, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraida Mohamed Shah
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norazrina Azmi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Marhanis Salihah Omar
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
TRPV1: A Common Denominator Mediating Antinociceptive and Antiemetic Effects of Cannabinoids. Int J Mol Sci 2022; 23:ijms231710016. [PMID: 36077412 PMCID: PMC9456209 DOI: 10.3390/ijms231710016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
The most common medicinal claims for cannabis are relief from chronic pain, stimulation of appetite, and as an antiemetic. However, the mechanisms by which cannabis reduces pain and prevents nausea and vomiting are not fully understood. Among more than 450 constituents in cannabis, the most abundant cannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids either directly or indirectly modulate ion channel function. Transient receptor potential vanilloid 1 (TRPV1) is an ion channel responsible for mediating several modalities of pain, and it is expressed in both the peripheral and the central pain pathways. Activation of TRPV1 in sensory neurons mediates nociception in the ascending pain pathway, while activation of TRPV1 in the central descending pain pathway, which involves the rostral ventral medulla (RVM) and the periaqueductal gray (PAG), mediates antinociception. TRPV1 channels are thought to be implicated in neuropathic/spontaneous pain perception in the setting of impaired descending antinociceptive control. Activation of TRPV1 also can cause the release of calcitonin gene-related peptide (CGRP) and other neuropeptides/neurotransmitters from the peripheral and central nerve terminals, including the vagal nerve terminal innervating the gut that forms central synapses at the nucleus tractus solitarius (NTS). One of the adverse effects of chronic cannabis use is the paradoxical cannabis-induced hyperemesis syndrome (HES), which is becoming more common, perhaps due to the wider availability of cannabis-containing products and the chronic use of products containing higher levels of cannabinoids. Although, the mechanism of HES is unknown, the effective treatment options include hot-water hydrotherapy and the topical application of capsaicin, both activate TRPV1 channels and may involve the vagal-NTS and area postrema (AP) nausea and vomiting pathway. In this review, we will delineate the activation of TRPV1 by cannabinoids and their role in the antinociceptive/nociceptive and antiemetic/emetic effects involving the peripheral, spinal, and supraspinal structures.
Collapse
|
14
|
Bilika P, Nijs J, Fandridis E, Dimitriadis Z, Strimpakos N, Kapreli E. In the Shoulder or in the Brain? Behavioral, Psychosocial and Cognitive Characteristics of Unilateral Chronic Shoulder Pain with Symptoms of Central Sensitization. Healthcare (Basel) 2022; 10:1658. [PMID: 36141270 PMCID: PMC9498916 DOI: 10.3390/healthcare10091658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The recognition of central sensitization (CS) is crucial, as it determines the results of rehabilitation. The aim of this study was to examine associations between CS and catastrophizing, functionality, disability, illness perceptions, kinesiophobia, anxiety, and depression in people with chronic shoulder pain (SP). In this cross-sectional study, 64 patients with unilateral chronic SP completed a few questionnaires including the Central Sensitization Inventory, the Oxford Shoulder Score, the Tampa Scale for Kinesiophobia, the Hospital Anxiety and Depression Scale, the Pain Catastrophizing Scale, the Brief Illness Perception Questionnaire and the “arm endurance” test. On the basis of three constructed linear regression models, it was found that pain catastrophizing and depression (model 1: p < 0.001, R = 0.57, R2 = 0.33), functionality (model 2: p < 0.001, R = 0.50, R2 = 0.25), and helplessness (model 3: p < 0.001, R = 0.53, R2 = 0.28) were significant predictors for CS symptoms in chronic SP. Two additional logistic regression models also showed that depression (model 4: p < 0.001, Nagelkerke R2 = 0.43, overall correct prediction 87.5%) and functionality (model 5: p < 0.001, Nagelkerke R2 = 0.26, overall correct prediction 84.4%) can significantly predict the classification of chronic SP as centrally sensitized. Patients who were classified as centrally sensitized (n = 10) were found to have significantly worse functionality, psychological factors (anxiety, depression, kinesiophobia, catastrophizing), and pain intensity (p < 0.05). Catastrophizing, depression, and functionality are predictive factors of CS symptoms in patients with chronic shoulder pain. Health care providers should adopt a precision medicine approach during assessment and a holistic rehabilitation of patients with unilateral chronic SP.
Collapse
Affiliation(s)
- Paraskevi Bilika
- Clinical Exercise Physiology and Rehabilitation Research Laboratory, Physiotherapy Department, University of Thessaly, 35100 Lamia, Greece
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1050 Brussels, Belgium
| | - Emmanouil Fandridis
- Hand-Upper Limb-Microsurgery Department, Attika General Hospital KAT, 14561 Kifissia, Greece
| | - Zacharias Dimitriadis
- Health Assessment and Quality of Life Laboratory, Physiotherapy Department, University of Thessaly, 35100 Lamia, Greece
| | - Nikolaos Strimpakos
- Health Assessment and Quality of Life Laboratory, Physiotherapy Department, University of Thessaly, 35100 Lamia, Greece
| | - Eleni Kapreli
- Clinical Exercise Physiology and Rehabilitation Research Laboratory, Physiotherapy Department, University of Thessaly, 35100 Lamia, Greece
| |
Collapse
|
15
|
Mahmoud MF, Rezq S, Alsemeh AE, Abdelfattah MAO, El-Shazly AM, Daoud R, El Raey MA, Sobeh M. Potamogeton perfoliatus L. Extract Attenuates Neuroinflammation and Neuropathic Pain in Sciatic Nerve Chronic Constriction Injury-Induced Peripheral Neuropathy in Rats. Front Pharmacol 2021; 12:799444. [PMID: 34987408 PMCID: PMC8721232 DOI: 10.3389/fphar.2021.799444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Sciatic nerve injury is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous systems. In our previous work, Potamogeton perfoliatus L. displayed anti-inflammatory, antipyretic and analgesic properties, predominantly via the inhibition of COX-2 enzyme and attenuation of oxidative stress. Herein, we extended our investigations to study the effects of the plant's extract on pain-related behaviors, oxidative stress, apoptosis markers, GFAP, CD68 and neuro-inflammation in sciatic nerve chronic constriction injury (CCI) rat model. The levels of the pro-inflammatory marker proteins in sciatic nerve and brainstem were measured with ELISA 14 days after CCI induction. Pretreatment with the extract significantly attenuated mechanical and cold allodynia and heat hyperalgesia with better potential than the reference drug, pregabalin. In addition, CCI lead to the overexpression of prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), tumor necrosis alpha (TNFα), nuclear factor κB (NF-κB), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and NADPH oxidase-1 (NOX-1) and decreased the catalase level in sciatic nerve and brainstem. The observed neuro-inflammatory changes were accompanied with glial cells activation (increased GFAP and CD68 positive cells), apoptosis (increased Bax) and structural changes in both brainstem and sciatic nerve. The studied extract attenuated the CCI-induced neuro-inflammatory changes, oxidative stress, and apoptosis while it induced the expression of Bcl-2 and catalase in a dose dependent manner. It also decreased the brainstem expression of CD68 and GFAP indicating a possible neuroprotection effect. Taking together, P. perfoliatus may be considered as a novel therapy for neuropathic pain patients after performing the required clinical trials.
Collapse
Affiliation(s)
- Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amira E. Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo, Egypt
| | - Mansour Sobeh
- AgroBioSciences Research, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
16
|
Mongardi L, Visani J, Mantovani G, Vitali C, Ricciardi L, Giordano F, Cavallo MA, Lofrese G, D'andrea M, Roblot P, De Bonis P, Scerrati A. Long term results of Dorsal Root Entry Zone (DREZ) lesions for the treatment of intractable pain: A systematic review of the literature on 1242 cases. Clin Neurol Neurosurg 2021; 210:107004. [PMID: 34739884 DOI: 10.1016/j.clineuro.2021.107004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Different Dorsal root entry zone (DREZ) lesion techniques have been reported as effective treatment for intractable painful conditions, though with contradictory results. Overall, good results were reported especially in specific conditions, such as pain due to brachial plexus avulsion, spinal cord injuries and oncological pain management. However, data on long term results in different clinical conditions are still missing. OBJECTIVE This study aims to systematically review the pertinent literature to evaluate indications, clinical outcomes, and complications of DREZ lesion (DREZotomy), in chronic pain management. METHODS A systematic literature review was conducted according to the PRISMA statement. Papers on DREZotomy for chronic pain in cancer, brachial plexus avulsion, spinal cord injury, post herpetic neuralgia, and phantom limb pain were considered for eligibility. For each category we further identified two sub-group according to the length of follow up: medium term and long term follow up (more than 3 years) respectively. RESULTS 46 papers, and 1242 patients, were included in the present investigation. When considering long term results DREZotomy provided favorable clinical outcomes in brachial plexus avulsion and spinal cord injury, in 60.8% and 55.8% of the cases respectively. Conversely, the success rate was 35.3% in phantom limb pain and 28.2% in post herpetic neuralgia. A poor clinical outcome was reported in over than 25% of the patients suffering from phantom limb pain, post herpetic neuralgia and spinal cord injury. The mean complications rate was 23.58%. While BPA and SCI patients presented stable improvement over time, good outcomes among PHN and PLP groups dropped by - 46.2%; and - 14.7% at long term follow up respectively. CONCLUSION DREZotomy seems to be an effective treatment for chronic pain conditions, especially for brachial plexus avulsion, spinal cord injury and intractable cancer/post-radiation pain. According to the low level of evidence of the pertinent literature, further studies are strongly recommended, to better define potential benefits and limitations of this technique.
Collapse
Affiliation(s)
- Lorenzo Mongardi
- Department of Neurosurgery, Sant'Anna University Hospital, Ferrara, Italy.
| | - Jacopo Visani
- Department of Neurosurgery, Sant'Anna University Hospital, Ferrara, Italy
| | - Giorgio Mantovani
- Department of Neurosurgery, Sant'Anna University Hospital, Ferrara, Italy
| | - Costanza Vitali
- Department of Morphology, Surgery and Experimental Medicine, Section of Anaesthesia and Intensive Care, Azienda Ospedaliero-Universitaria Sant' Anna, University of Ferrara, Ferrara, Italy
| | - Luca Ricciardi
- UO di Neurochirurgia, Pia Fondazione di Culto e Religione Cardinal G. Panico, Tricase, LE, Italy
| | - Flavio Giordano
- Department of Neurosurgery, Children's Hospital A. Meyer, University of Florence, Florence, Italy
| | - Michele Alessandro Cavallo
- Department of Neurosurgery, Sant'Anna University Hospital, Ferrara, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | | | | | - Paul Roblot
- Department of Neurosurgery, University Hospital of Bordeaux, Bordeaux, France
| | - Pasquale De Bonis
- Department of Neurosurgery, Sant'Anna University Hospital, Ferrara, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Alba Scerrati
- Department of Neurosurgery, Sant'Anna University Hospital, Ferrara, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| |
Collapse
|
17
|
Chu J, Shieh JS, Wu K, Guan H, Roche S, Held MFG, Yang H, Guo JJ. Simultaneous or Staged Bilateral Arthroscopic Rotator Cuff Repair: An Observational Study of Intraoperative and Postoperative Outcomes. Orthop J Sports Med 2021; 9:23259671211041994. [PMID: 34708140 PMCID: PMC8543723 DOI: 10.1177/23259671211041994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Bilateral arthroscopic rotator cuff repair (ARCR) is frequently performed in
patients with symptomatic bilateral rotator cuff tears. Purpose: To compare patient-reported outcomes and mobility between simultaneous and
staged bilateral ARCR. Study Design: Cohort study; Level of evidence, 3. Methods: Included were 51 patients who underwent simultaneous (anesthetized once) and
42 patients who underwent staged (anesthetized twice) bilateral ARCR between
January 2014 and January 2018; for the staged group, the interval between
procedures was at least 12 months. All operations were performed by the same
surgeon, and all patients had minimum 24-month follow up in both shoulders.
Patient-reported outcomes and range of motion (ROM) were assessed
preoperatively and postoperatively and compared between groups. Outcome
measures included the Constant-Murley score (CMS) and American Shoulder and
Elbow Surgeons (ASES) score as well as measures of psychological status,
health-related quality of life, activities of daily living (ADL), and
patient satisfaction with the state of one’s shoulders. Results: The mean follow-up times for the staged and simultaneous ARCR groups were
44.1 months (range, 36-60 months) and 37.5 months (range, 25-59 months),
respectively. There were no significant differences in age, tear size, or
fatty degeneration of rotator cuff muscles between the groups. The
cumulative length of hospital stay in the staged group was significantly
longer than in the simultaneous group (P < .001). At the
final follow-up, both groups showed significant improvement in ROM, CMS, and
ASES scores (P < .05). No significant differences
between the groups were observed in terms of ROM, CMS, and ASES scores
postoperatively. At 24 months postoperatively, psychological status and
health-related quality of life in both groups improved significantly
(P < .05), and there were no significant
between-group differences. Patients were able to perform most essential ADL.
Both groups had high patient satisfaction, but patient satisfaction for the
second shoulder of the staged group was lower than that of the simultaneous
group (P = .039). Conclusion: Simultaneous bilateral ARCR was shown to be effective, resulting in similar
improvements in clinical outcomes to staged bilateral ARCR at 2-year
follow-up. In addition to higher patient satisfaction, simultaneous
bilateral ARCR also had a shorter treatment cycle.
Collapse
Affiliation(s)
- Jiabao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ju-Sheng Shieh
- Center for Health Policy and Management Studies, Nanjing University, China
| | - Kailun Wu
- Department of Orthopedics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Huaqing Guan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Stephen Roche
- Orthopaedic Research Unit, Department of Orthopaedic Surgery, Groote Schuur Hospital and Red Cross Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Michael F G Held
- Orthopaedic Research Unit, Department of Orthopaedic Surgery, Groote Schuur Hospital and Red Cross Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiong Jiong Guo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Guidetti M, Ferrucci R, Vergari M, Aglieco G, Naci A, Versace S, Pacheco-Barrios K, Giannoni-Luza S, Barbieri S, Priori A, Bocci T. Effects of Transcutaneous Spinal Direct Current Stimulation (tsDCS) in Patients With Chronic Pain: A Clinical and Neurophysiological Study. Front Neurol 2021; 12:695910. [PMID: 34552550 PMCID: PMC8450534 DOI: 10.3389/fneur.2021.695910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background and Aims: Chronic pain is a complex clinical condition, often devastating for patients and unmanageable with pharmacological treatments. Converging evidence suggests that transcutaneous spinal Direct Current Stimulation (tsDCS) might represent a complementary therapy in managing chronic pain. In this randomized, double-blind and sham-controlled crossover study, we assessed tsDCS effects in chronic pain patients. Methods: Sixteen patients (aged 65.06 ± 16.16 years, eight women) with chronic pain of different etiology underwent sham and anodal tsDCS (anode over the tenth thoracic vertebra, cathode over the somatosensory cortical area: 2.5 mA, 20 min, 5 days for 1 week). As outcomes, we considered the Visual Analog Scale (VAS), the Neuropathic Pain Symptom Inventory (NPSI), and the components of the lower limb flexion reflex (LLFR), i.e., RIII threshold, RII latency and area, RIII latency and area, and flexion reflex (FR) total area. Assessments were conducted before (T0), immediately at the end of the treatment (T1), after 1 week (T2) and 1 month (T3). Results: Compared to sham, anodal tsDCS reduced RIII area at T2 (p = 0.0043) and T3 (p = 0.0012); similarly, FR total area was reduced at T3 (p = 0.03). Clinically, anodal tsDCS dampened VAS at T3 (p = 0.015), and NPSI scores at T1 (p = 0.0012), and T3 (p = 0.0015), whereas sham condition left them unchanged. Changes in VAS and NPSI scores linearly correlated with the reduction in LLFR areas (p = 0.0004). Conclusions: Our findings suggest that tsDCS could modulate nociceptive processing and pain perception in chronic pain syndromes.
Collapse
Affiliation(s)
- Matteo Guidetti
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Roberta Ferrucci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan, Italy.,Azienda Socio-Sanitaria Territoriale-Santi Paolo e Carlo University Hospital, Milan, Italy
| | - Maurizio Vergari
- Neurophysiology Unit, Foundation Istituto di Ricerca e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giada Aglieco
- Neurophysiology Unit, Foundation Istituto di Ricerca e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anisa Naci
- Neurophysiology Unit, Foundation Istituto di Ricerca e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Versace
- Neurophysiology Unit, Foundation Istituto di Ricerca e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kevin Pacheco-Barrios
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Center for Clinical Research Learning, Massachusetts General Hospital, Boston, MA, United States.,Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Stefano Giannoni-Luza
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Center for Clinical Research Learning, Massachusetts General Hospital, Boston, MA, United States
| | - Sergio Barbieri
- Neurophysiology Unit, Foundation Istituto di Ricerca e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan, Italy.,Azienda Socio-Sanitaria Territoriale-Santi Paolo e Carlo University Hospital, Milan, Italy
| | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan, Italy.,Azienda Socio-Sanitaria Territoriale-Santi Paolo e Carlo University Hospital, Milan, Italy
| |
Collapse
|
19
|
Joo SY, Park CH, Cho YS, Seo CH, Ohn SH. Plastic Changes in Pain and Motor Network Induced by Chronic Burn Pain. J Clin Med 2021; 10:jcm10122592. [PMID: 34208281 PMCID: PMC8230805 DOI: 10.3390/jcm10122592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Musculoskeletal diseases with chronic pain are difficult to control because of their association with both central as well as the peripheral nervous system. In burn patients, chronic pain is one of the major complications that cause persistent discomfort. The peripheral mechanisms of chronic pain by burn have been greatly revealed through studies, but the central mechanisms have not been identified. Our study aimed to characterize the cerebral plastic changes secondary to electrical burn (EB) and non-electrical burn (NEB) by measuring cerebral blood volume (CBV). Sixty patients, twenty with electrical burn (EB) and forty with non-electrical burn (NEB), having chronic pain after burn, along with twenty healthy controls, participated in the study. Voxel-wise comparisons of relative CBV maps were made among EB, NEB, and control groups over the entire brain volume. The CBV was measured as an increase and decrease in the pain and motor network including postcentral gyrus, frontal lobe, temporal lobe, and insula in the hemisphere associated with burned limbs in the whole burn group. In the EB group, CBV was decreased in the frontal and temporal lobes in the hemisphere associated with the burned side. In the NEB group, the CBV was measured as an increase or decrease in the pain and motor network in the postcentral gyrus, precentral gyrus, and frontal lobe of the hemisphere associated with the burn-affected side. Among EB and NEB groups, the CBV changes were not different. Our findings provide evidence of plastic changes in pain and motor network in patients with chronic pain by burn.
Collapse
Affiliation(s)
- So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07024, Korea; (S.Y.J.); (Y.S.C.); (C.H.S.)
| | - Chang-hyun Park
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland;
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07024, Korea; (S.Y.J.); (Y.S.C.); (C.H.S.)
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07024, Korea; (S.Y.J.); (Y.S.C.); (C.H.S.)
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
- Correspondence: or
| |
Collapse
|
20
|
Rat dorsal horn neurons primed by stress develop a long-lasting manifest sensitization after a short-lasting nociceptive low back input. Pain Rep 2021; 6:e904. [PMID: 33688602 PMCID: PMC7935483 DOI: 10.1097/pr9.0000000000000904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background A single injection of nerve growth factor (NGF) into a low back muscle induces a latent sensitization of rat dorsal horn neurons (DHNs) that primes for a manifest sensitization by a subsequent second NGF injection. Repeated restraint stress also causes a latent DHN sensitization. Objective In this study, we investigated whether repeated restraint stress followed by a single NGF injection causes a manifest sensitization of DHNs. Methods Rats were stressed repeatedly in a narrow plastic restrainer (1 hour on 12 consecutive days). Control animals were handled but not restrained. Two days after stress paradigm, behavioral tests and electrophysiological in vivo recordings from single DHNs were performed. Mild nociceptive low back input was induced by a single NGF injection into the lumbar multifidus muscle just before the recording started. Results Restraint stress slightly lowered the low back pressure pain threshold (Cohen d = 0.83). Subsequent NGF injection increased the proportion of neurons responsive to deep low back input (control + NGF: 14%, stress + NGF: 39%; P = 0.041), mostly for neurons with input from outside the low back (7% vs 26%; P = 0.081). There was an increased proportion of neurons with resting activity (28% vs 55%; P = 0.039), especially in neurons having deep input (0% vs 26%; P = 0.004). Conclusions The results indicate that stress followed by a short-lasting nociceptive input causes manifest sensitization of DHNs to deep input, mainly from tissue outside the low back associated with an increased resting activity. These findings on neuronal mechanisms in our rodent model suggest how stress might predispose to radiating pain in patients.
Collapse
|
21
|
Regular physical activity reduces the percentage of spinally projecting neurons that express mu-opioid receptors from the rostral ventromedial medulla in mice. Pain Rep 2020; 5:e857. [PMID: 33294758 PMCID: PMC7717783 DOI: 10.1097/pr9.0000000000000857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction Regular physical activity/exercise is an effective nonpharmacological treatment for individuals with chronic pain. Central inhibitory mechanisms, involving serotonin and opioids, are critical to analgesia produced by regular physical activity. The rostral ventromedial medulla (RVM) sends projections to the spinal cord to inhibit or facilitate nociceptive neurons and plays a key role in exercise-induced analgesia. Objective The goal of these studies was to examine if regular physical activity modifies RVM-spinal cord circuitry. Methods Male and female mice received Fluoro-Gold placed on the spinal cord to identify spinally projecting neurons from the RVM and the nucleus raphe obscurus/nucleus raphe pallidus, dermorphin-488 into caudal medulla to identify mu-opioid receptors, and were immunohistochemically stained for either phosphorylated-N-methyl-d-aspartate subunit NR1 (p-NR1) to identify excitatory neurons or tryptophan hydroxylase (TPH) to identify serotonin neurons. The percentage of dermorphin-488-positive cells that stained for p-NR1 (or TPH), and the percentage of dermorphin-488-positive cells that stained for p-NR1 (or TPH) and Fluoro-Gold was calculated. Physically active animals were provided running wheels in their cages for 8 weeks and compared to sedentary animals without running wheels. Animals with chronic muscle pain, induced by 2 intramuscular injections of pH 4.0, were compared to sham controls (pH 7.2). Results Physically active animals had less mu-opioid-expressing neurons projecting to the spinal cord when compared to sedentary animals in the RVM, but not the nucleus raphe obscurus/nucleus raphe pallidus. No changes were observed for TPH. Conclusions These data suggest that regular exercise alters central facilitation so that there is less descending facilitation to result in a net increase in inhibition.
Collapse
|
22
|
Sachau J, Bruckmueller H, Gierthmühlen J, Magerl W, May D, Binder A, Forstenpointner J, Koetting J, Maier C, Tölle TR, Treede RD, Berthele A, Caliebe A, Diesch C, Flor H, Huge V, Maihöfner C, Rehm S, Kersebaum D, Fabig SC, Vollert J, Rolke R, Stemmler S, Sommer C, Westermann A, Cascorbi I, Baron R. The serotonin receptor 2A (HTR2A) rs6313 variant is associated with higher ongoing pain and signs of central sensitization in neuropathic pain patients. Eur J Pain 2020; 25:595-611. [PMID: 33171011 DOI: 10.1002/ejp.1696] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/08/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The serotonin receptor 2A (HTR2A) has been described as an important facilitation mediator of spinal nociceptive processing leading to central sensitization (CS) in animal models of chronic pain. However, whether HTR2A single nucleotide variants (SNVs) modulate neuropathic pain states in patients has not been investigated so far. The aim of this study was to elucidate the potential association of HTR2A variants with sensory abnormalities or ongoing pain in neuropathic pain patients. METHODS At total of 240 neuropathic pain patients and 253 healthy volunteers were included. Patients were phenotypically characterized using standardized quantitative sensory testing (QST). Patients and controls were genotyped for HTR2A g.-1438G > A (rs6311) and c.102C > T (rs6313). Genotype-related differences in QST parameters were assessed considering QST profile clusters, principal somatosensory components and sex. RESULTS There was an equal distribution of rs6313 and linked rs6311 between patients and controls. However, the rs6313 variant was significantly associated with a principal component of pinprick hyperalgesia and dynamic mechanical allodynia, indicating enhanced CS in patients with sensory loss (-0.34 ± 0.15 vs. +0.31 ± 0.11 vs., p < .001). In this cluster, the variant allele was also associated with single QST parameters of pinprick hyperalgesia (MPT, +0.64 ± 0.18 vs. -0.34 ± 0.23 p = .002; MPS, +0.66 ± 0.17 vs. -0.09 ± 0.23, p = .009) and ongoing pain was increased by 30%. CONCLUSIONS The specific association of the rs6313 variant with pinprick hyperalgesia and increased levels of ongoing pain suggests that the HTR2A receptor might be an important modulator in the development of CS in neuropathic pain. SIGNIFICANCE This article presents new insights into serotonin receptor 2A-mediating mechanisms of central sensitization in neuropathic pain patients. The rs6313 variant allele was associated with increased mechanical pinprick sensitivity and increased levels of ongoing pain supporting a contribution of central sensitization in the genesis of ongoing pain providing a possible route for mechanism-based therapies.
Collapse
Affiliation(s)
- Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Janne Gierthmühlen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Walter Magerl
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Denisa May
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Binder
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Judith Koetting
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Christoph Maier
- Department of Pain Management, BG Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Thomas R Tölle
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, München, Germany
| | - Rolf-Detlef Treede
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, München, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carolin Diesch
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Herta Flor
- Department of Clinical and Cognitive Neuroscience, Central Institute for Mental Health, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Volker Huge
- Department of Anaesthesiology, Ludwig Maximilians University Munich, München, Germany
| | - Christian Maihöfner
- Department of Neurology, General Hospital Fürth, University of Erlangen-Nuremberg, Nuremberg, Germany
| | - Stefanie Rehm
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sophie-Charlotte Fabig
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan Vollert
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany.,Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Susanne Stemmler
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Andrea Westermann
- Department of Pain Management, BG Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
23
|
Kang DH, Kim GW. Changes in Diffuse Tensor Imaging and Therapeutic Effect of Repetitive Transcranial Magnetic Stimulation in Traumatic Brain Injury with Central Pain. Brain Sci 2020; 10:brainsci10120929. [PMID: 33276440 PMCID: PMC7759834 DOI: 10.3390/brainsci10120929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Post-trauma chronic pain characterized by central pain is a symptom following traumatic brain injury (TBI). Studies on the effect of repetitive transcranial magnetic stimulation (rTMS) on central pain and the association between central pain and spinothalamic tract (STT) have been reported, but few studies have examined the effect of rTMS in patients with mild TBI with central pain through changes in diffusion tensor imaging (DTI)-based metrics of STT before and after rTMS. This case series aimed to investigate the therapeutic effect of rTMS in TBI with central pain and the changes in diffusion tensor imaging (DTI)-based metrics of the spinothalamic tract (STT) before and after rTMS. This study included four patients who complained of severe pain in the left or right side of the body below the neck area after a car accident. We performed numeric rating scale (NRS), bedside sensory examination, electrodiagnostic study, and DTI-based metrics of the STT before and after rTMS. According to the guidelines of the diagnosis and grading for neuropathic pain, all patients had neuropathic pain corresponding to “probable grade.” In all patients, rTMS was applied to the contralateral M1 cortex on the more painful side. There were no medication changes and other interventions during the rTMS. After rTMS, NRS decreased, bed sensory testing improved, and DTI-based STT metrics increased in all patients compared to before rTMS.
Collapse
Affiliation(s)
- Dong-Ha Kang
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju 54907, Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Gi-Wook Kim
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju 54907, Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: ; Tel.: +82-10-5279-1421
| |
Collapse
|
24
|
Sakloth F, Manouras L, Avrampou K, Mitsi V, Serafini RA, Pryce KD, Cogliani V, Berton O, Jarpe M, Zachariou V. HDAC6-selective inhibitors decrease nerve-injury and inflammation-associated mechanical hypersensitivity in mice. Psychopharmacology (Berl) 2020; 237:2139-2149. [PMID: 32388618 PMCID: PMC7470631 DOI: 10.1007/s00213-020-05525-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND HDAC6 is a class IIB histone deacetylase expressed at many levels of the nociceptive pathway. This study tested the ability of novel and selective HDAC6 inhibitors to alleviate sensory hypersensitivity behaviors in mouse models of peripheral nerve injury and peripheral inflammation. METHODS We utilized the murine spared nerve injury (SNI) model for peripheral nerve injury and the Complete Freund's Adjuvant (CFA) model of peripheral inflammation. We applied the Von Frey assay to monitor mechanical allodynia. RESULTS Using the SNI model, we demonstrate that daily administration of the brain-penetrant HDAC6 inhibitor, ACY-738, abolishes mechanical allodynia in male and in female mice. Importantly, there is no tolerance to the antiallodynic actions of these compounds as they produce a consistent increase in Von Frey thresholds for several weeks. We observed a similar antiallodynic effect when utilizing the HDAC6 inhibitor, ACY-257, which shows limited brain expression when administered systemically. We also demonstrate that ACY-738 and ACY-257 attenuate mechanical allodynia in the CFA model of peripheral inflammation. CONCLUSIONS Overall, our findings suggest that inhibition of HDAC6 provides a promising therapeutic avenue for the alleviation of mechanical allodynia associated with peripheral nerve injury and peripheral inflammation.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Lefteris Manouras
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kleopatra Avrampou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Vasiliki Mitsi
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Randal A Serafini
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Valeria Cogliani
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Olivier Berton
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
- Division of Neuroscience & Behavior, National institute on Drug Abuse (NIDA), 6001 Executive Blvd, Rm 4289, Rockville, MD, 20852, USA
| | - Matthew Jarpe
- Regenacy Pharmaceuticals, 303 Wyman St, Suite 300, Waltham, MA, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA.
| |
Collapse
|
25
|
Ishii Y, Noguchi H, Sato J, Ishii H, Ishii R, Toyabe SI. A Retrospective Comparison of Early Postoperative Pain after the First Vs Second TKA in Scheduled Staged Bilateral TKA. Open Orthop J 2020. [DOI: 10.2174/1874325002014010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Background:
Acute postoperative pain control after Total Knee Arthroplasty (TKA) is important given that poorly controlled, persistent pain can delay rehabilitation. The purpose of this study was to compare pain intensity during the early postoperative period (following the first and second surgeries) in patients who underwent bilateral, scheduled, staged TKAs.
Materials and Methods:
We enrolled 32 patients (64 knees) in this study and evaluated the number of requests for analgesic agents during the first 3 days after TKA, time to walking, and the Wong–Baker FACES pain assessment score (WBS).
Results:
Comparing the postoperative period following the first and second TKA, there were no significant differences in WBS 24, 48, and 72 h postoperatively. The frequency of requests, and the total number of requests for analgesics did not differ when comparing the first and second TKA, at any time point. The total number of analgesic requests exhibited a moderately strong, positive correlation between the first and second TKA (p < 0.001, r = 0.623). Patients’ WBS scores and requests for analgesics showed a moderately strong, positive correlation, but only at 24 h following the second TKA (p = 0.002, r = 0.567). After both TKAs, patients required a median of 1 day to resume walking.
Conclusion:
Patients undergoing staged bilateral TKA experienced equivalent early postoperative pain when comparing their experience following their first and second TKAs. Therefore, regarding pain control following the second TKA, we recommend considering the analgesic administration schedule and requirements of the first TKA.
Collapse
|
26
|
Støve MP, Hirata RP, Palsson TS. Muscle stretching - the potential role of endogenous pain inhibitory modulation on stretch tolerance. Scand J Pain 2020; 19:415-422. [PMID: 30699073 DOI: 10.1515/sjpain-2018-0334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/18/2018] [Indexed: 11/15/2022]
Abstract
Background and aims The effect of stretching on joint range of motion is well documented and is primarily related to changes in the tolerance to stretch, but the mechanisms underlying this change are still largely unknown. The aim of this study was to investigate the influence of a remote, painful stimulus on stretch tolerance. Methods Thirty-four healthy male subjects were recruited and randomly assigned to an experimental pain group (n=17) or a control group (n=17). Passive knee extension range of motion, the activity of hamstring muscles and passive resistive torque were measured with subjects in a seated position. Three consecutive measures were performed with a 5-min interval between. A static stretch protocol was utilized in both groups to examine the effect of stretching and differences in stretch tolerance between groups. Following this, the pain-group performed a cold pressor test which is known to engage the endogenous pain inhibitory system after which measurements were repeated. Results A significant increase in knee extension range of motion was found in the pain group compared with controls (ANCOVA: p<0.05). No difference was found in muscle activity or passive resistive torque between groups (ANCOVA p>0.091). Conclusions Passive knee extension range of motion following stretching increased when following a distant, painful stimulus, potentially engaging the endogenous pain inhibitory systems. Current findings indicate a link between increased tolerance to stretch and endogenous pain inhibition. Implications The current findings may have implications for clinical practice as they indicate that a distant painful stimulus can influence range of motion in healthy individuals. This implies that the modulation of pain has significance for the efficacy of stretching which is important knowledge when prescribing stretching as part of rehabilitation.
Collapse
Affiliation(s)
- Morten Pallisgaard Støve
- Department of Physiotherapy, University College of Northern Denmark (UCN), Selma Lagerløfs Vej 2, 9220 Aalborg East, Denmark, Phone: 004522980862
| | - Rogerio Pessoto Hirata
- SMI® , Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg East, Denmark
| | - Thorvaldur Skuli Palsson
- SMI® , Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg East, Denmark
| |
Collapse
|
27
|
Nijs J, Leysen L, Vanlauwe J, Logghe T, Ickmans K, Polli A, Malfliet A, Coppieters I, Huysmans E. Treatment of central sensitization in patients with chronic pain: time for change? Expert Opin Pharmacother 2019; 20:1961-1970. [DOI: 10.1080/14656566.2019.1647166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jo Nijs
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Laurence Leysen
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Johan Vanlauwe
- Department of Public Health (GEWE), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tine Logghe
- Department of Orthopaedics, University Hospital Brussels, Brussels, Belgium
| | - Kelly Ickmans
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
- Department of Physical and Rehabilitation Medicine, AZ Sint Dimpna hospital, Geel, Belgium
| | - Andrea Polli
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physical and Rehabilitation Medicine, AZ Sint Dimpna hospital, Geel, Belgium
| | - Anneleen Malfliet
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
- Department of Physical and Rehabilitation Medicine, AZ Sint Dimpna hospital, Geel, Belgium
- Research Foundation – Flanders (FWO), Brussels, Belgium
| | - Iris Coppieters
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
- Research Foundation – Flanders (FWO), Brussels, Belgium
| | - Eva Huysmans
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
- Department of Physical and Rehabilitation Medicine, AZ Sint Dimpna hospital, Geel, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Bocci T, De Carolis G, Ferrucci R, Paroli M, Mansani F, Priori A, Valeriani M, Sartucci F. Cerebellar Transcranial Direct Current Stimulation (ctDCS) Ameliorates Phantom Limb Pain and Non-painful Phantom Limb Sensations. THE CEREBELLUM 2019; 18:527-535. [DOI: 10.1007/s12311-019-01020-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Abstract
The autonomic nervous system has widespread innervation to nearly every organ system in the body. In order to understand the basics of autonomic function, knowledge of the neuroanatomy of the autonomic nervous system is necessary. Frequently considered to control the "fight or flight" and "rest and digest" functions, the autonomic nervous system has an intricate network of connections to finely tune the systemic response to nearly any situation. Although traditionally considered two discrete systems (sympathetic and parasympathetic), the enteric nervous system is now considered a third component of the autonomic nervous system. This chapter reviews the background of the neuroanatomical distribution of the autonomic nervous system in order to facilitate understanding the basics of autonomic function.
Collapse
Affiliation(s)
- Christopher H Gibbons
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
30
|
Rhee SM, Kim DH, Kim SH, Jeong HJ, Oh JH. The Clinical Outcomes and Their Associated Factors in Staged Bilateral Arthroscopic Rotator Cuff Repair. Arthroscopy 2018; 34:2799-2807. [PMID: 30195959 DOI: 10.1016/j.arthro.2018.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare perioperative characteristics and postoperative outcomes of both shoulders in patients who underwent arthroscopic bilateral rotator cuff repair sequentially and to assess the associated factors that would affect the anatomic healing in staged bilateral rotator cuff repair. METHODS The study enrolled 64 patients who underwent bilateral rotator cuff repair with follow-up imaging at least 12 months postoperatively. We allocated the shoulders operated on first to the surgery I group and those operated on second to the surgery II group. Visual analog scale (VAS) pain and satisfaction scores, range of motion, the American Shoulder and Elbow Surgeons score, the Simple Shoulder Test score, and healing failure were evaluated. RESULTS Range of motion improved with no significant between-group differences (all P > .05). In the surgery II group, VAS pain and VAS satisfaction scores were significantly worse at 6 months postoperatively (P = .048 and P = .041, respectively) but were comparable at final follow-up (P = .598 and P = .065, respectively). American Shoulder and Elbow Surgeons and Simple Shoulder Test scores at 6 months were worse in the surgery II group (P = .038 and P = .048, respectively) but similar at final follow-up (P = .786 and P = .087, respectively). Tear size was similar between the 2 surgical procedures (κ = 0.537, P < .001). Of the 11 patients with nonhealing in the surgery I group, 7 (63.6%) had subsequent failure in the other shoulder, and if one shoulder had healing failure, the other shoulder had a high possibility of healing failure as well (κ = 0.373, P = .004). CONCLUSIONS Bilateral arthroscopic rotator cuff repair showed good outcomes at final follow-up on both sides. Tear size was closely related in both shoulders, and healing failure after the first rotator cuff repair was an associated factor with healing failure after the second operation. LEVEL OF EVIDENCE Level IV, case series.
Collapse
Affiliation(s)
- Sung-Min Rhee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | | | - Sae Hoon Kim
- Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.
| |
Collapse
|
31
|
Mamet J, Klukinov M, Harris S, Manning DC, Xie S, Pascual C, Taylor BK, Donahue RR, Yeomans DC. Intrathecal administration of AYX2 DNA-decoy produces a long-term pain treatment in rat models of chronic pain by inhibiting the KLF6, KLF9 and KLF15 transcription factors. Mol Pain 2018; 13:1744806917727917. [PMID: 28814144 PMCID: PMC5582654 DOI: 10.1177/1744806917727917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Nociception is maintained by genome-wide regulation of transcription in the dorsal root ganglia—spinal cord network. Hence, transcription factors constitute a promising class of targets for breakthrough pharmacological interventions to treat chronic pain. DNA decoys are oligonucleotides and specific inhibitors of transcription factor activities. A methodological series of in vivo–in vitro screening cycles was performed with decoy/transcription factor couples to identify targets capable of producing a robust and long-lasting inhibition of established chronic pain. Decoys were injected intrathecally and their efficacy was tested in the spared nerve injury and chronic constriction injury models of chronic pain in rats using repetitive von Frey testing. Results Results demonstrated that a one-time administration of decoys binding to the Kruppel-like transcription factors (KLFs) 6, 9, and 15 produces a significant and weeks–month long reduction in mechanical hypersensitivity compared to controls. In the spared nerve injury model, decoy efficacy was correlated to its capacity to bind KLF15 and KLF9 at a specific ratio, while in the chronic constriction injury model, efficacy was correlated to the combined binding capacity to KLF6 and KLF9. AYX2, an 18-bp DNA decoy binding KLF6, KLF9, and KLF15, was optimized for clinical development, and it demonstrated significant efficacy in these models. Conclusions These data highlight KLF6, KLF9, and KLF15 as transcription factors required for the maintenance of chronic pain and illustrate the potential therapeutic benefits of AYX2 for the treatment of chronic pain.
Collapse
|
32
|
Huang YJ, Grau JW. Ionic plasticity and pain: The loss of descending serotonergic fibers after spinal cord injury transforms how GABA affects pain. Exp Neurol 2018; 306:105-116. [PMID: 29729247 PMCID: PMC5994379 DOI: 10.1016/j.expneurol.2018.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
Activation of pain (nociceptive) fibers can sensitize neural circuits within the spinal cord, inducing an increase in excitability (central sensitization) that can foster chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. In adult animals, the co-transporter KCC2 maintains a low intracellular concentration of the anion Cl-. As a result, when the GABA-A receptor is engaged, Cl- flows in the neuron which has a hyperpolarizing (inhibitory) effect. Spinal cord injury (SCI) can down-regulate KCC2 and reverse the flow of Cl-. Under these conditions, engaging the GABA-A receptor can have a depolarizing (excitatory) effect that fosters the development of nociceptive sensitization. The present paper explores how SCI alters GABA function and provides evidence that the loss of descending fibers alters pain transmission to the brain. Prior work has shown that, after SCI, administration of a GABA-A antagonist blocks the development of capsaicin-induced nociceptive sensitization, implying that GABA release plays an essential role. This excitatory effect is linked to serotonergic (5HT) fibers that descend through the dorsolateral funiculus (DLF) and impact spinal function via the 5HT-1A receptor. Supporting this, blocking the 5HT-1A receptor, or lesioning the DLF, emulated the effect of SCI. Conversely, spinal application of a 5HT-1A agonist up-regulated KCC2 and reversed the effect of bicuculline treatment. Finally, lesioning the DLF reversed how a GABA-A antagonist affects a capsaicin-induced aversion in a place conditioning task; in sham operated animals, bicuculline enhanced aversion whereas in DLF-lesioned rats biciculline had an antinociceptive effect.
Collapse
Affiliation(s)
- Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
33
|
Contreras‐Hernández E, Chávez D, Hernández E, Velázquez E, Reyes P, Béjar J, Martín M, Cortés U, Glusman S, Rudomin P. Supraspinal modulation of neuronal synchronization by nociceptive stimulation induces an enduring reorganization of dorsal horn neuronal connectivity. J Physiol 2018; 596:1747-1776. [PMID: 29451306 PMCID: PMC5924834 DOI: 10.1113/jp275228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS The state of central sensitization induced by the intradermic injection of capsaicin leads to structured (non-random) changes in functional connectivity between dorsal horn neuronal populations distributed along the spinal lumbar segments in anaesthetized cats. The capsaicin-induced changes in neuronal connectivity and the concurrent increase in secondary hyperalgesia are transiently reversed by the systemic administration of small doses of lidocaine, a clinically effective procedure to treat neuropathic pain. The effects of both capsaicin and lidocaine are greatly attenuated in spinalized preparations, showing that supraspinal influences play a significant role in the shaping of nociceptive-induced changes in dorsal horn functional neuronal connectivity. We conclude that changes in functional connectivity between segmental populations of dorsal horn neurones induced by capsaicin and lidocaine result from a cooperative adaptive interaction between supraspinal and spinal neuronal networks, a process that may have a relevant role in the pathogenesis of chronic pain and analgesia. ABSTRACT Despite a profusion of information on the molecular and cellular mechanisms involved in the central sensitization produced by intense nociceptive stimulation, the changes in the patterns of functional connectivity between spinal neurones associated with the development of secondary hyperalgesia and allodynia remain largely unknown. Here we show that the state of central sensitization produced by the intradermal injection of capsaicin is associated with structured transformations in neuronal synchronization that lead to an enduring reorganization of the functional connectivity within a segmentally distributed ensemble of dorsal horn neurones. These changes are transiently reversed by the systemic administration of small doses of lidocaine, a clinically effective procedure to treat neuropathic pain. Lidocaine also reduces the capsaicin-induced facilitation of the spinal responses evoked by weak mechanical stimulation of the skin in the region of secondary but not primary hyperalgesia. The effects of both intradermic capsaicin and systemic lidocaine on the segmental correlation and coherence between ongoing cord dorsum potentials and on the responses evoked by tactile stimulation in the region of secondary hyperalgesia are greatly attenuated in spinalized preparations, showing that supraspinal influences are involved in the reorganization of the nociceptive-induced structured patterns of dorsal horn neuronal connectivity. We conclude that the structured reorganization of the functional connectivity between the dorsal horn neurones induced by capsaicin nociceptive stimulation results from cooperative interactions between supraspinal and spinal networks, a process that may have a relevant role in the shaping of the spinal state in the pathogenesis of chronic pain and analgesia.
Collapse
Affiliation(s)
- E. Contreras‐Hernández
- Department of PhysiologyCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMéxico
| | - D. Chávez
- Department of PhysiologyCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMéxico
| | - E. Hernández
- Department of PhysiologyCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMéxico
| | - E. Velázquez
- Department of PhysiologyCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMéxico
| | - P. Reyes
- Department of PhysiologyCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMéxico
| | - J. Béjar
- Universidad Politécnica de CatalunyaBarcelonaTechCataloniaSpain
| | - M. Martín
- Universidad Politécnica de CatalunyaBarcelonaTechCataloniaSpain
| | - U. Cortés
- Universidad Politécnica de CatalunyaBarcelonaTechCataloniaSpain
- Barcelona Supercomputing CenterCataloniaSpain
| | - S. Glusman
- Department of PhysiologyCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMéxico
- Stroger Cook County HospitalChicagoIllinoisUSA
| | - P. Rudomin
- Department of PhysiologyCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMéxico
- El Colegio NacionalMéxico
| |
Collapse
|
34
|
Sandes SMS, Heimfarth L, Brito RG, Santos PL, Gouveia DN, Carvalho AMS, Quintans JSS, da Silva-Júnior EF, de Aquino TM, França PHB, de Araújo-Júnior JX, Albuquerque-Júnior RLC, Zengin G, Schmitt M, Bourguignon JJ, Quintans-Júnior LJ. Evidence for the involvement of TNF-α, IL-1β and IL-10 in the antinociceptive and anti-inflammatory effects of indole-3-guanylhydrazone hydrochloride, an aromatic aminoguanidine, in rodents. Chem Biol Interact 2018; 286:1-10. [PMID: 29499192 DOI: 10.1016/j.cbi.2018.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Indole-3-guanylhydrazone hydrochloride (LQM01) is a new derivative of aminoguanidine hydrochloride, an aromatic aminoguanidine. METHODS Mice were treated with LQM01 (5, 10, 25 or 50 mg/kg, i.p.), vehicle (0.9% saline i.p.) or a standard drug. The mice were subjected to carrageenan-induced pleurisy, abdominal writhing induced by acetic acid, the formalin test and the hot-plate test. The model of non-inflammatory chronic muscle pain induced by saline acid was also used. Mice from the chronic protocol were assessed for withdrawal threshold, muscle strength and motor coordination. LQM01 or vehicle treated mice were evaluated for Fos protein. RESULTS LQM01 inhibits TNF-α and IL-1β production, as well as leukocyte recruitment during inflammation process. The level of IL-10 in LQM01-treated mice increased in pleural fluid. In addition, LQM01 decreased the nociceptive behavior in the acetic acid induced writhing test, the formalin test (both phases) and increased latency time on the hot-plate. LQM01 treatment also decreased mechanical hyperalgesia in mice with chronic muscle pain, with no changes in muscle strength and motor coordination. LQM01 reduced the number of Fos positive cells in the superficial dorsal horn. This compound exhibited antioxidant properties in in vitro assays. CONCLUSIONS LQM01 has an outstanding anti-inflammatory and analgesic profile, probably mediated through a reduction in proinflammatory cytokines release, increase in IL-10 production and reduction in neuron activity in the dorsal horn of the spinal cord in mice. GENERAL SIGNIFICANCE Beneficial effects of LQM01 suggest that it has some important clinical features and can play a role in the management of 'dysfunctional pain' and inflammatory diseases.
Collapse
Affiliation(s)
- Silvia M S Sandes
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Renan G Brito
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Priscila L Santos
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Daniele N Gouveia
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Alexandra M S Carvalho
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Thiago M de Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Paulo H B França
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - João X de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Martine Schmitt
- CNRS, University of Strasbourg, Laboratoire d'Innovation Thérapeutique, UMR 7200, Laboratory of Excellence Médalis, Faculté de Pharmacie, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Jean-Jacques Bourguignon
- CNRS, University of Strasbourg, Laboratoire d'Innovation Thérapeutique, UMR 7200, Laboratory of Excellence Médalis, Faculté de Pharmacie, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
35
|
Characterisation of pain in people with hereditary neuropathy with liability to pressure palsy. J Neurol 2017; 264:2464-2471. [PMID: 29079893 DOI: 10.1007/s00415-017-8648-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Hereditary neuropathy with liability to pressure palsy (HNPP) has historically been considered a pain-free condition, though some people with HNPP also complain of pain. This study characterised persistent pain in people with HNPP. Participants provided cross-sectional demographic data, information on the presence of neurological and persistent pain symptoms, and the degree to which these interfered with daily life. The painDETECT and Central Sensitization Inventory questionnaires were used to indicate potential neuropathic, central sensitisation and musculoskeletal (nociceptive) pain mechanisms. Additionally, participants were asked if they thought that pain was related to/part of HNPP. 32/43 (74%) subjects with HNPP had persistent pain and experience this pain in the last week. Of those with pain, 24 (75%) were likely to have neuropathic pain and 27 (84%) were likely to have central sensitisation. All 32 participants felt that their pain could be related to/part of their HNPP. Significant negative impact of the pain was common. Pain characterisation identified neuropathic pain and/or central sensitisation as common, potential underlying processes. Pain may plausibly be directly related to the underlying pathophysiology of HNPP. Further consideration of including pain as a primary symptom of HNPP is warranted.
Collapse
|
36
|
Araújo-Filho HG, Pereira EWM, Rezende MM, Menezes PP, Araújo AAS, Barreto RSS, Martins AOBPB, Albuquerque TR, Silva BAF, Alcantara IS, Coutinho HDM, Menezes IRA, Quintans-Júnior LJ, Quintans JSS. D-limonene exhibits superior antihyperalgesic effects in a β-cyclodextrin-complexed form in chronic musculoskeletal pain reducing Fos protein expression on spinal cord in mice. Neuroscience 2017; 358:158-169. [PMID: 28673718 DOI: 10.1016/j.neuroscience.2017.06.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Chronic musculoskeletal pain is one of the main symptoms found in Fibromyalgia with unclear etiology and limited pharmacological treatment. The aim of this study was to complex LIM in β-cyclodextrin (LIM-βCD) and then evaluate its antihyperalgesic effect in an animal model of chronic musculoskeletal pain. Differential scanning calorimetry and scanning electron microscopy was used for the characterization of the inclusion complex. Male Swiss mice were used for experimental procedures where mechanical hyperalgesia, thermal hyperalgesia, muscular strength, Fos immunofluorescence was studied after induction of hyperalgesia. Mechanism of action was also investigated through tail flick test and capsaicin-induced nociception. Endothermic events and morphological changes showed that the slurry complex method was the best method for the complexation. After induction of hyperalgesia, the oral administration of LIM-βCD (50mg/kg) significantly increased the paw withdrawal threshold compared to uncomplexed limonene. Fos immunofluorescence showed that both compounds significantly decreased the number of Fos-positive cells in the dorsal horn. In nociceptive tests, FLU was able to reverse the antinociceptive effect of LIM-βCD. After intraplantar administration of capsaicin, LIM was able to significantly decrease time to lick. LIM-βCD has antihyperalgesic action superior to its uncomplexed form, with possible action in the dorsal horn of the spinal cord. These results suggest the possible applicability of LIM, uncomplexed or complexed with βCD, in conditions such as FM and neuropathic pain, for which there are currently only limited pharmacological options.
Collapse
Affiliation(s)
- Heitor G Araújo-Filho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Erik W M Pereira
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Marília M Rezende
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Rosana S S Barreto
- Department of Health Education, Federal University of Sergipe, Largato, SE, Brazil
| | | | - Thaís R Albuquerque
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | - Bruno A F Silva
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | - Isabel S Alcantara
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | | | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
37
|
Starowicz K, Finn DP. Cannabinoids and Pain: Sites and Mechanisms of Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:437-475. [PMID: 28826543 DOI: 10.1016/bs.apha.2017.05.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB1R and CB2R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB1R/non-CB2R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pain Pathophysiology, Krakow, Poland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
38
|
Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017; 158:543-559. [PMID: 28301400 PMCID: PMC5359791 DOI: 10.1097/j.pain.0000000000000831] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide found primarily in the C and Aδ sensory fibers arising from the dorsal root and trigeminal ganglia, as well as the central nervous system. Calcitonin gene-related peptide was found to play important roles in cardiovascular, digestive, and sensory functions. Although the vasodilatory properties of CGRP are well documented, its somatosensory function regarding modulation of neuronal sensitization and of enhanced pain has received considerable attention recently. Growing evidence indicates that CGRP plays a key role in the development of peripheral sensitization and the associated enhanced pain. Calcitonin gene-related peptide is implicated in the development of neurogenic inflammation and it is upregulated in conditions of inflammatory and neuropathic pain. It is most likely that CGRP facilitates nociceptive transmission and contributes to the development and maintenance of a sensitized, hyperresponsive state not only of the primary afferent sensory neurons but also of the second-order pain transmission neurons within the central nervous system, thus contributing to central sensitization as well. The maintenance of a sensitized neuronal condition is believed to be an important factor underlying migraine. Recent successful clinical studies have shown that blocking the function of CGRP can alleviate migraine. However, the mechanisms through which CGRP may contribute to migraine are still not fully understood. We reviewed the role of CGRP in primary afferents, the dorsal root ganglion, and in the trigeminal system as well as its role in peripheral and central sensitization and its potential contribution to pain processing and to migraine.
Collapse
|
39
|
Affiliation(s)
- Bruce Becker
- Department of Emergency Medicine, Division of Sex and Gender in Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Alyson J. McGregor
- Department of Emergency Medicine, Division of Sex and Gender in Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
40
|
Feldreich A, Ernberg M, Rosén A. Reduction in maximum pain after surgery in temporomandibular joint patients is associated with decreased beta-endorphin levels - a pilot study. Int J Oral Maxillofac Surg 2016; 46:97-103. [PMID: 27634689 DOI: 10.1016/j.ijom.2016.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 06/28/2016] [Accepted: 08/12/2016] [Indexed: 01/09/2023]
Abstract
The mechanisms of relief from persistent pain after temporomandibular joint (TMJ) surgery are not well studied. It was hypothesized that if persistent pain is relieved by TMJ surgery, up-regulated parts of the central nervous system will be desensitized and the neuroendocrine opioid release will decrease back to normal levels. Eleven female patients with a mean age of 47.4±19.4 years and with TMJ pain due to chronic closed lock were examined before and 6-24 months after TMJ discectomy. The effects on plasma β-endorphin levels, pain intensity, and pain thresholds were analyzed. Plasma β-endorphin levels (P=0.032), pain at rest (P=0.003), and movement-evoked pain (P=0.008) were all significantly reduced at follow-up. The reduction in plasma β-endorphin levels correlated with a reduction in maximum pain intensity (P=0.024) and with a longer time after surgery (P=0.041). Seven out of eight patients who reported a substantial reduction in maximum pain intensity presented a decrease in β-endorphin levels in the plasma. In conclusion, this pilot study showed a significant reduction in plasma β-endorphin levels and pain intensity at 6-24 months after TMJ surgery; plasma β-endorphin levels were correlated with time after surgery. However, the results must be interpreted with caution since this was a single-centre observational study with a small sample size. If replicated in larger sample sets, the measurement of β-endorphin levels may be of prognostic value for the treatment outcome.
Collapse
Affiliation(s)
- A Feldreich
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - M Ernberg
- Section of Orofacial Pain and Jaw Function and Scandinavian Centre for Orofacial Neurosciences (SCON), Karolinska Institutet, Huddinge, Sweden
| | - A Rosén
- Department of Clinical Dentistry, Division of Oral Surgery and Oral Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
41
|
Vanini G. Sleep Deprivation and Recovery Sleep Prior to a Noxious Inflammatory Insult Influence Characteristics and Duration of Pain. Sleep 2016; 39:133-42. [PMID: 26237772 DOI: 10.5665/sleep.5334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/28/2015] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES Insufficient sleep and chronic pain are public health epidemics. Sleep loss worsens pain and predicts the development of chronic pain. Whether previous, acute sleep loss and recovery sleep determine pain levels and duration remains poorly understood. This study tested whether acute sleep deprivation and recovery sleep prior to formalin injection alter post-injection pain levels and duration. METHODS Male Sprague-Dawley rats (n = 48) underwent sleep deprivation or ad libitum sleep for 9 hours. Thereafter, rats received a subcutaneous injection of formalin or saline into a hind paw. In the recovery sleep group, rats were allowed 24 h between sleep deprivation and the injection of formalin. Mechanical and thermal nociception were assessed using the von Frey test and Hargreaves' method. Nociceptive measures were performed at 1, 3, 7, 10, 14, 17 and 21 days post-injection. RESULTS Formalin caused bilateral mechanical hypersensitivity (allodynia) that persisted for up to 21 days post-injection. Sleep deprivation significantly enhanced bilateral allodynia. There was a synergistic interaction when sleep deprivation preceded a formalin injection. Rats allowed a recovery sleep period prior to formalin injection developed allodynia only in the injected limb, with higher mechanical thresholds (less allodynia) and a shorter recovery period. There were no persistent changes in thermal nociception. CONCLUSION The data suggest that acute sleep loss preceding an inflammatory insult enhances pain and can contribute to chronic pain. The results encourage studies in a model of surgical pain to test whether enhancing sleep reduces pain levels and duration.
Collapse
Affiliation(s)
- Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
42
|
Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins (Basel) 2015; 7:4519-63. [PMID: 26556371 PMCID: PMC4663519 DOI: 10.3390/toxins7114519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.
Collapse
|
43
|
Plasticity-Related PKMζ Signaling in the Insular Cortex Is Involved in the Modulation of Neuropathic Pain after Nerve Injury. Neural Plast 2015; 2015:601767. [PMID: 26457205 PMCID: PMC4592717 DOI: 10.1155/2015/601767] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022] Open
Abstract
The insular cortex (IC) is associated with important functions linked with pain and emotions. According to recent reports, neural plasticity in the brain including the IC can be induced by nerve injury and may contribute to chronic pain. Continuous active kinase, protein kinase Mζ (PKMζ), has been known to maintain the long-term potentiation. This study was conducted to determine the role of PKMζ in the IC, which may be involved in the modulation of neuropathic pain. Mechanical allodynia test and immunohistochemistry (IHC) of zif268, an activity-dependent transcription factor required for neuronal plasticity, were performed after nerve injury. After ζ-pseudosubstrate inhibitory peptide (ZIP, a selective inhibitor of PKMζ) injection, mechanical allodynia test and immunoblotting of PKMζ, phospho-PKMζ (p-PKMζ), and GluR1 and GluR2 were observed. IHC demonstrated that zif268 expression significantly increased in the IC after nerve injury. Mechanical allodynia was significantly decreased by ZIP microinjection into the IC. The analgesic effect lasted for 12 hours. Moreover, the levels of GluR1, GluR2, and p-PKMζ were decreased after ZIP microinjection. These results suggest that peripheral nerve injury induces neural plasticity related to PKMζ and that ZIP has potential applications for relieving chronic pain.
Collapse
|
44
|
Citronellol, a natural acyclic monoterpene, attenuates mechanical hyperalgesia response in mice: Evidence of the spinal cord lamina I inhibition. Chem Biol Interact 2015; 239:111-7. [DOI: 10.1016/j.cbi.2015.06.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/11/2015] [Accepted: 06/30/2015] [Indexed: 11/16/2022]
|
45
|
Sun J, Li L, Yuan S, Zhou Y. Analysis of Early Postoperative Pain in the First and Second Knee in Staged Bilateral Total Knee Arthroplasty: A Retrospective Controlled Study. PLoS One 2015; 10:e0129973. [PMID: 26068371 PMCID: PMC4465893 DOI: 10.1371/journal.pone.0129973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 05/14/2015] [Indexed: 12/24/2022] Open
Abstract
Objective A retrospective analysis of early postoperative pain in the first and second knee in staged bilateral total knee arthroplasty (TKA) to provide a clinical evidence for the change of analgesic strategy. Methods From January 2009 to January 2013, 87 cases which meet the inclusion criterion were retrospectively reviewed. In stage TKA, the postoperative pain in the first and second knee at 24h, 48h, 72h after operation were compared using the visual analogue scale (VAS) score in the rest and maximum knee flexion position. The difference in pain scores (ΔVAS) was also compared between the second and first knee at different time intervals (less than 6 months, 6-12 months, more than 12 months). Results The VAS scores in the second knee were significantly higher than those in the first knee at 24h, 48h after surgery, but with no difference at 72h. The ΔVAS in the group of less than 6 months was significantly higher than of those more than 6 months, and there was no difference in ΔVAS between group of 6-12 months and group of more than 12 months. Conclusions Patient receiving staged bilateral TKA experiences greater postoperative pain within 48h after operation in the second knee than in the first knee, which can provide a clinical evidence to enhance the analgesic strategy in the second operation of the staged bilateral TKA. And for the management of postoperative pain in staged bilateral TKA, it’s better to recommend that the interval between two operations should be more than 6 months, which may reduce the postoperative pain in the second knee, improve patient satisfaction, and speed up patient‘s rehabilitation process.
Collapse
Affiliation(s)
- Jiuyi Sun
- Department of orthopedics, PLA 455 Hospital, Shanghai, China
| | - Lintao Li
- Department of orthopedics, The Second Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Shuai Yuan
- Department of orthopedics, The Second Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Yiqin Zhou
- Department of orthopedics, The Second Affiliated Hospital of Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
46
|
The role of central sensitization in shoulder pain: A systematic literature review. Semin Arthritis Rheum 2015; 44:710-6. [DOI: 10.1016/j.semarthrit.2014.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/29/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
47
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
48
|
Bravo D, Ibarra P, Retamal J, Pelissier T, Laurido C, Hernandez A, Constandil L. Pannexin 1: a novel participant in neuropathic pain signaling in the rat spinal cord. Pain 2014; 155:2108-15. [PMID: 25102401 DOI: 10.1016/j.pain.2014.07.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/30/2014] [Accepted: 07/29/2014] [Indexed: 01/28/2023]
Abstract
Pannexin 1 (panx1) is a large-pore membrane channel expressed in many tissues of mammals, including neurons and glial cells. Panx1 channels are highly permeable to calcium and adenosine triphosphatase (ATP); on the other hand, they can be opened by ATP and glutamate, two crucial molecules for acute and chronic pain signaling in the spinal cord dorsal horn, thus suggesting that panx1 could be a key component for the generation of central sensitization during persistent pain. In this study, we examined the effect of three panx1 blockers, namely, 10panx peptide, carbenoxolone, and probenecid, on C-reflex wind-up activity and mechanical nociceptive behavior in a spared nerve injury neuropathic rat model involving sural nerve transection. In addition, the expression of panx1 protein in the dorsal horn of the ipsilateral lumbar spinal cord was measured in sural nerve-transected and sham-operated control rats. Sural nerve transection resulted in a lower threshold for C-reflex activation by electric stimulation of the injured hindpaw, together with persistent mechanical hypersensitivity to pressure stimuli applied to the paw. Intrathecal administration of the panx1 blockers significantly depressed the spinal C-reflex wind-up activity in both neuropathic and sham control rats, and decreased mechanical hyperalgesia in neuropathic rats without affecting the nociceptive threshold in sham animals. Western blotting showed that panx1 was similarly expressed in the dorsal horn of lumbar spinal cord from neuropathic and sham rats. The present results constitute the first evidence that panx1 channels play a significant role in the mechanisms underlying central sensitization in neuropathic pain.
Collapse
Affiliation(s)
- David Bravo
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Paula Ibarra
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Jeffri Retamal
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Teresa Pelissier
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Laurido
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Alejandro Hernandez
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Luis Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| |
Collapse
|
49
|
Artemisia annua L.: evidence of sesquiterpene lactones' fraction antinociceptive activity. Altern Ther Health Med 2014; 14:266. [PMID: 25065946 PMCID: PMC4122781 DOI: 10.1186/1472-6882-14-266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/15/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Artemisia annua L. has been used for many centuries in Chinese traditional medicine. Artemisinin, the active principle was first isolated and identified in the 1970s becoming the global back bone to the fight against malaria. Our research group previously developed an economic and ecological friendly process to obtain this compound. In the pursuit to also exploit the residue generated throughout the process we further evaluated the pharmacological potential of that extract. METHODS The alcoholic crude extract after artemisinin precipitation maintained an enriched sesquiterpene lactones content with residue artemisinin (1.72%) and deoxyartemisinin (0.31%), used as chemical markers for this sample. This study evaluated the pharmacological potential of the enriched sesquiterpene lactone fraction (Lac-FR) on different nociceptive and inflammatory experimental animal models. Previous findings on the biological properties of lactones obtained from natural products permitted us to explore the antinociceptive activities of these compounds based on in vivo chemical-induced behavioral assays. RESULTS The enriched sesquiterpene lactone fraction (Lac-FR) was administrated by intraperitoneal injection producing a relevant reduction in the reaction time of the animals in both phases of the formalin test, significantly reduced the sensitivity to mechanical allodynia stimulus, reduced the paw edema caused by carrageenan injection and promoted high antinociceptive activity in tail flick model suggesting relationship with the opioid system. Further studies are being undertaken to elucidate the active components involved with the antinociceptive activity as well as evaluation of synergy effect that is seen by combination of substances that is greater than would be expected from consideration of individual contributions. CONCLUSION For the first time, results presented herein provided consistent data to support the potential use of these lactones for pain relief as revealed by chemical-induced nociception assays in mice.
Collapse
|
50
|
Premkumar LS, Pabbidi RM. Diabetic peripheral neuropathy: role of reactive oxygen and nitrogen species. Cell Biochem Biophys 2014; 67:373-83. [PMID: 23722999 DOI: 10.1007/s12013-013-9609-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The prevalence of diabetes has reached epidemic proportions. There are two forms of diabetes: type 1 diabetes mellitus is due to auto-immune-mediated destruction of pancreatic β-cells resulting in absolute insulin deficiency and type 2 diabetes mellitus is due to reduced insulin secretion and or insulin resistance. Both forms of diabetes are characterized by chronic hyperglycemia, leading to the development of diabetic peripheral neuropathy (DPN) and microvascular pathology. DPN is characterized by enhanced or reduced thermal, chemical, and mechanical pain sensitivities. In the long-term, DPN results in peripheral nerve damage and accounts for a substantial number of non-traumatic lower-limb amputations. This review will address the mechanisms, especially the role of reactive oxygen and nitrogen species in the development and progression of DPN.
Collapse
Affiliation(s)
- Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA,
| | | |
Collapse
|