1
|
Jaszczuk I, Winkler I, Koczkodaj D, Skrzypczak M, Filip A. The Role of Cluster C19MC in Pre-Eclampsia Development. Int J Mol Sci 2022; 23:ijms232213836. [PMID: 36430313 PMCID: PMC9699419 DOI: 10.3390/ijms232213836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Pre-eclampsia is a placenta-related complication occurring in 2-10% of all pregnancies. miRNAs are a group of non-coding RNAs regulating gene expression. There is evidence that C19MC miRNAs are involved in the development of the placenta. Deregulation of chromosome 19 microRNA cluster (C19MC) miRNAs expression leads to impaired cell differentiation, abnormal trophoblast invasion and pathological angiogenesis, which can lead to the development of pre-eclampsia. Information was obtained through a review of articles available in PubMed Medline. Articles on the role of the C19MC miRNA in the development of pre-eclampsia published in 2009-2022 were analyzed. This review article summarizes the current data on the role of the C19MC miRNA in the development of pre-eclampsia. They indicate a significant increase in the expression of most C19MC miRNAs in placental tissue and a high level of circulating fractions in serum and plasma, both in the first and/or third trimester in women with PE. Only for miR-525-5p, low levels of plasma expression were noted in the first trimester, and in the placenta in the third trimester. The search for molecular factors indicating the development of pre-eclampsia before the onset of clinical symptoms seems to be a promising diagnostic route. Identifying women at risk of developing pre-eclampsia at the pre-symptomatic stage would avoid serious complications in both mothers and fetuses. We believe that miRNAs belonging to cluster C19MC could be promising biomarkers of pre-eclampsia development.
Collapse
Affiliation(s)
- Ilona Jaszczuk
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| | - Izabela Winkler
- Second Department of Gynecological Oncology, St. John’s Center of Oncology of the Lublin Region, Jaczewski Street 7, 20-090 Lublin, Poland
- Correspondence:
| | - Dorota Koczkodaj
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| | - Maciej Skrzypczak
- Second Department of Gynecology, Lublin Medical University, Jaczewski Street 8, 20-954 Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| |
Collapse
|
2
|
Hjort L, Novakovic B, Cvitic S, Saffery R, Damm P, Desoye G. Placental DNA Methylation in pregnancies complicated by maternal diabetes and/or obesity: State of the Art and research gaps. Epigenetics 2022; 17:2188-2208. [PMID: 35950598 DOI: 10.1080/15592294.2022.2111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SUMMARYMaternal diabetes and/or obesity in pregnancy are undoubtedly associated with later disease-risk in the offspring. The placenta, interposed between the mother and the fetus, is a potential mediator of this risk through epigenetic mechanisms, including DNA methylation. In recent years, multiple studies have identified differentially methylated CpG sites in the placental tissue DNA in pregnancies complicated by diabetes and obesity. We reviewed all published original research relevant to this topic and analyzed our findings with the focus of identifying overlaps, contradictions and gaps. Most studies focused on the association of gestational diabetes and/or hyperglycemia in pregnancy and DNA methylation in placental tissue at term. We identified overlaps in results related to specific candidate genes, but also observed a large research gap of pregnancies affected by type 1 diabetes. Other unanswered questions relate to analysis of specific placental cell types and the timing of DNA methylation change in response to diabetes and obesity during pregnancy. Maternal metabolism is altered already in the first trimester involving structural and functional changes in the placenta, but studies into its effects on placental DNA methylation during this period are lacking and urgently needed. Fetal sex is also an important determinant of pregnancy outcome, but only few studies have taken this into account. Collectively, we provide a reference work for researchers working in this large and evolving field. Based on the results of the literature review, we formulate suggestions for future focus of placental DNA methylation studies in pregnancies complicated by diabetes and obesity.
Collapse
Affiliation(s)
- Line Hjort
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Environmental Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Silvija Cvitic
- Department of Pediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Austria
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Peter Damm
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept. of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Shibata S, Kobayashi EH, Kobayashi N, Oike A, Okae H, Arima T. Unique features and emerging in vitro models of human placental development. Reprod Med Biol 2020; 19:301-313. [PMID: 33071632 PMCID: PMC7542016 DOI: 10.1002/rmb2.12347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background The placenta is an essential organ for the normal development of mammalian fetuses. Most of our knowledge on the molecular mechanisms of placental development has come from the analyses of mice, especially histopathological examination of knockout mice. Choriocarcinoma and immortalized cell lines have also been used for basic research on the human placenta. However, these cells are quite different from normal trophoblast cells. Methods In this review, we first provide an overview of mouse and human placental development with particular focus on the differences in the anatomy, transcription factor networks, and epigenetic characteristics between these species. Next, we discuss pregnancy complications associated with abnormal placentation. Finally, we introduce emerging in vitro models to study the human placenta, including human trophoblast stem (TS) cells, trophoblast and endometrium organoids, and artificial embryos. Main findings The placental structure and development differ greatly between humans and mice. The recent establishment of human TS cells and trophoblast and endometrial organoids enhances our understanding of the mechanisms underlying human placental development. Conclusion These in vitro models will greatly advance our understanding of human placental development and potentially contribute to the elucidation of the causes of infertility and other pregnancy complications.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Eri H Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Norio Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Akira Oike
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Hiroaki Okae
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Takahiro Arima
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
4
|
Xu H, Zhao L, Feng X, Ma Y, Chen W, Zou L, Yang Q, Sun J, Yu H, Jiao B. Landscape of genomic imprinting and its functions in the mouse mammary gland. J Mol Cell Biol 2020; 12:857-869. [PMID: 32369566 PMCID: PMC7883822 DOI: 10.1093/jmcb/mjaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022] Open
Abstract
Genomic imprinting is an epigenetic modification of DNA, whereby gene expression is restricted to either maternally or paternally inherited alleles. Imprinted genes (IGs) in the placenta and embryo are essential for growth regulation and nutrient supply. However, despite being an important nutrition delivery organ, studies on mammary gland genomic imprinting remain limited. In this study, we found that both the number of IGs and their expression levels decreased during development of the mouse mammary gland. IG expression was lineage-specific and related to mammary gland development and lactation. Meta-analysis of single-cell RNA sequencing data revealed that mammary gland IGs were co-expressed in a network that regulated cell stemness and differentiation, which was confirmed by our functional studies. Accordingly, our data indicated that IGs were essential for the self-renewal of mammary gland stem cells and IG decline was correlated with mammary gland maturity. Taken together, our findings revealed the importance of IGs in a poorly studied nutrition-related organ, i.e. the mammary gland, thus providing a reference for further studies on genomic imprinting.
Collapse
Affiliation(s)
- Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Lina Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Xu Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yujie Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Zou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
5
|
Farhadova S, Gomez-Velazquez M, Feil R. Stability and Lability of Parental Methylation Imprints in Development and Disease. Genes (Basel) 2019; 10:genes10120999. [PMID: 31810366 PMCID: PMC6947649 DOI: 10.3390/genes10120999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
DNA methylation plays essential roles in mammals. Of particular interest are parental methylation marks that originate from the oocyte or the sperm, and bring about mono-allelic gene expression at defined chromosomal regions. The remarkable somatic stability of these parental imprints in the pre-implantation embryo—where they resist global waves of DNA demethylation—is not fully understood despite the importance of this phenomenon. After implantation, some methylation imprints persist in the placenta only, a tissue in which many genes are imprinted. Again here, the underlying epigenetic mechanisms are not clear. Mouse studies have pinpointed the involvement of transcription factors, covalent histone modifications, and histone variants. These and other features linked to the stability of methylation imprints are instructive as concerns their conservation in humans, in which different congenital disorders are caused by perturbed parental imprints. Here, we discuss DNA and histone methylation imprints, and why unravelling maintenance mechanisms is important for understanding imprinting disorders in humans.
Collapse
|
6
|
Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet 2019; 21:27-43. [PMID: 31534202 DOI: 10.1038/s41576-019-0169-4] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.
Collapse
Affiliation(s)
- Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Courtney W Hanna
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Wendy Dean
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
7
|
Rempel LA, Krautkramer MM, Parrish JJ, Miles JR. Impact of seasonality, storage of semen, and sperm head-shape on whole tissue methylation and expression of methylation responsive candidate genes in swine placenta and fetal livers from summer and winter breedings. Mol Reprod Dev 2019; 86:465-475. [PMID: 30767330 DOI: 10.1002/mrd.23125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
Abstract
Epigenetics includes the study of external factors that can influence the expression of genes by altering the accessibility of DNA through methylation. To investigate the epigenetic influence of season, sperm head shape, and semen storage on placental and fetal tissues, pregnancies were generated in the summer or winter using boar semen from either least or most sperm head shape change, collected during cool or warm seasons, and stored as cooled-extended or cryopreserved. The lowest (p < 0.05) ratios of 5-methylcytosine to 5-hydroxymethylcytosine activity (5mC:5hmC) in fetal liver were from summer breedings and in placental tissues from winter breedings. The relative expression of placental CDH1 tended ( p < 0.10) to be greater in placenta generated from cryopreserved semen or semen collected during cool periods. The relative expression of placental GNAS was affected ( p < 0.05) by the interaction of breeding and semen collection seasons. Cryopreserved semen increased ( p < 0.05) the placental relative expression of GNAS. Placental MEST and RHOBTB3 tended ( p < 0.10) to have a greater relative expression from pregnancies generated using semen collected during cool periods used during winter breedings. Within fetal liver, the relative expression of GNAS and HGF was greater ( p < 0.05) from winter breedings. Interaction of winter breedings and least sperm head shape change tended ( p < 0.10) to have the greatest fetal liver expression of CDH1. Seasonality of semen collection, breeding, and the effect on sperm head shape change had an influence on the expression of genes with known differentially methylated regions or response to methylation activity from embryonic and extraembryonic tissues.
Collapse
Affiliation(s)
- Lea A Rempel
- U.S. Department of Agriculture, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska
| | | | - John J Parrish
- Department of Animal Science, University of Wisconsin, Madison, Wisconsin
| | - Jeremy R Miles
- U.S. Department of Agriculture, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska
| |
Collapse
|
8
|
Muyle A, Zemp N, Fruchard C, Cegan R, Vrana J, Deschamps C, Tavares R, Hobza R, Picard F, Widmer A, Marais GAB. Genomic imprinting mediates dosage compensation in a young plant XY system. NATURE PLANTS 2018; 4:677-680. [PMID: 30104649 DOI: 10.1038/s41477-018-0221-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/16/2018] [Indexed: 05/06/2023]
Abstract
Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes1. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals2-4. However, the early steps in the evolution of dosage compensation remain unknown, and dosage compensation is poorly understood in plants5. Here, we describe a dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males, but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno6 for the evolution of X inactivation in mammals.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France.
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Cécile Fruchard
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Radim Cegan
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Vrana
- Institute of Experimental Botany, Center of the Hana Region for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Raquel Tavares
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Roman Hobza
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Institute of Experimental Botany, Center of the Hana Region for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Franck Picard
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Gabriel A B Marais
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| |
Collapse
|
9
|
Mackin SJ, Thakur A, Walsh CP. Imprint stability and plasticity during development. Reproduction 2018; 156:R43-R55. [PMID: 29743259 DOI: 10.1530/rep-18-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
There have been a number of recent insights in the area of genomic imprinting, the phenomenon whereby one of two autosomal alleles is selected for expression based on the parent of origin. This is due in part to a proliferation of new techniques for interrogating the genome that are leading researchers working on organisms other than mouse and human, where imprinting has been most studied, to become interested in looking for potential imprinting effects. Here, we recap what is known about the importance of imprints for growth and body size, as well as the main types of locus control. Interestingly, work from a number of labs has now shown that maintenance of the imprint post implantation appears to be a more crucial step than previously appreciated. We ask whether imprints can be reprogrammed somatically, how many loci there are and how conserved imprinted regions are in other species. Finally, we survey some of the methods available for examining DNA methylation genome-wide and look to the future of this burgeoning field.
Collapse
Affiliation(s)
- Sarah-Jayne Mackin
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Avinash Thakur
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| |
Collapse
|
10
|
Halm ST, Bottomley MA, Almutairi MM, Di Fulvio M, Halm DR. Survival and growth of C57BL/6J mice lacking the BK channel, Kcnma1: lower adult body weight occurs together with higher body fat. Physiol Rep 2017; 5:5/4/e13137. [PMID: 28242822 PMCID: PMC5328773 DOI: 10.14814/phy2.13137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 11/29/2022] Open
Abstract
Big conductance potassium (BK) channels contribute to K+ flow and electrical behavior in many cell types. Mice made null for the gene (Kcnma1) producing the BK channel (BKKO) exhibit numerous deficits in physiological functions. Breeding mice lacking a single allele of Kcnma1 (C57BL/6J background) had litter sizes of approximately eight pups. For the period of maternal care (P0–P21), pup deaths peaked at P1 with a second less severe interval of death peaking near P13. Early deaths were twice as likely during a 20‐month period of building construction compared with the quiescent period after cessation of construction. Births during construction were not consistent with Mendelian predictions indicating the likelihood of a specific disadvantage induced by this environmental stressor. Later BKKO pup deaths (~P13) also were more numerous than Mendelian expectations. After weaning, weight gain was slower for BKKO mice compared with wild‐type littermates: 5 g less for male BKKO mice and 4 g less for female BKKO mice. Body composition determined by quantitative magnetic resonance indicated a higher fat proportion for wild‐type female mice compared with males, as well as a higher hydration ratio. Both male and female BKKO mice showed higher fat proportions than wild‐type, with female BKKO mice exhibiting greater variation. Together, these results indicate that BKKO mice suffered disadvantages that lead to prenatal and perinatal death. A metabolic difference likely related to glucose handling led to the smaller body size and distinct composition for BKKO mice, suggesting a diversion of energy supplies from growth to fat storage.
Collapse
Affiliation(s)
- Susan T Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Michael A Bottomley
- Department of Mathematics and Statistics, Statistical Consulting Center, Wright State University, Dayton, Ohio
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Maurico Di Fulvio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Dan R Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
11
|
Vincent RN, Gooding LD, Louie K, Chan Wong E, Ma S. Altered DNA methylation and expression of PLAGL1 in cord blood from assisted reproductive technology pregnancies compared with natural conceptions. Fertil Steril 2016; 106:739-748.e3. [PMID: 27178226 DOI: 10.1016/j.fertnstert.2016.04.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate DNA methylation and expression of imprinted genes and an imprinted gene network (IGN) in neonates conceived via assisted reproductive technology (ART). DESIGN Case control. SETTING Research institution. PATIENT(S) Two hundred sixty-four cases of cord blood and/or placental villi from neonates (101 IVF, 81 ICSI, 82 naturally conceived). INTERVENTION(S) Placentas were obtained at birth for biopsy and cord blood extraction. MAIN OUTCOME MEASURE(S) DNA methylation and expression of imprinted genes. RESULT(S) DNA methylation at the PLAGL1 differentially methylated region (DMR) was significantly higher in IVF cord blood (48.0%) compared with controls (46.0%). No differences were found in DNA methylation between conception modes for KvDMR1 and LINE-1 in cord blood and placenta as well as PLAGL1 and PEG10 in placenta villi. PLAGL1 expression was lower in both IVF and ICSI cord blood groups than in controls (relative quantification of 0.65, 0.74, 0.89, respectively). Analyzing the expression of 3 genes in a PLAGL1 regulated IGN revealed different expression between conception modes and a significant correlation to PLAGL1 expression in only one (KCNQ1OT1). CONCLUSION(S) Our results suggest a stability of DNA methylation at imprinted DMRs; however, we show PLAGL1 methylation/expression to be altered after ART. As PLAGL1 expression correlated with only one of the three IGN genes in cord blood, we propose there is a more complex mechanism of regulating the IGN that may involve other genes and epigenetic modifications in this tissue. Further research investigating IGN-implicated genes in various neonatal tissues is warranted to elucidate the full effects ART-induced alterations to PLAGL1 and the IGN may have on fetal growth/development.
Collapse
Affiliation(s)
- Rebecca N Vincent
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke D Gooding
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenny Louie
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edgar Chan Wong
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sai Ma
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Parthenogenesis and Human Assisted Reproduction. Stem Cells Int 2015; 2016:1970843. [PMID: 26635881 PMCID: PMC4655294 DOI: 10.1155/2016/1970843] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/20/2015] [Accepted: 06/24/2015] [Indexed: 11/17/2022] Open
Abstract
Parthenogenetic activation of human oocytes obtained from infertility treatments has gained new interest in recent years as an alternative approach to create embryos with no reproductive purpose for research in areas such as assisted reproduction technologies itself, somatic cell, and nuclear transfer experiments and for derivation of clinical grade pluripotent embryonic stem cells for regenerative medicine. Different activating methods have been tested on human and nonhuman oocytes, with varying degrees of success in terms of parthenote generation rates, embryo development stem cell derivation rates. Success in achieving a standardized artificial activation methodology for human oocytes and the subsequent potential therapeutic gain obtained from these embryos depends mainly on the availability of gametes donated from infertility treatments. This review will focus on the creation of parthenotes from clinically unusable oocytes for derivation and establishment of human parthenogenetic stem cell lines and their potential applications in regenerative medicine.
Collapse
|
13
|
Sanli I, Feil R. Chromatin mechanisms in the developmental control of imprinted gene expression. Int J Biochem Cell Biol 2015; 67:139-47. [PMID: 25908531 DOI: 10.1016/j.biocel.2015.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Hundreds of protein-coding genes and regulatory non-coding RNAs (ncRNAs) are subject to genomic imprinting. The mono-allelic DNA methylation marks that control imprinted gene expression are somatically maintained throughout development, and this process is linked to specific chromatin features. Yet, at many imprinted genes, the mono-allelic expression is lineage or tissue-specific. Recent studies provide mechanistic insights into the developmentally-restricted action of the 'imprinting control regions' (ICRs). At several imprinted domains, the ICR expresses a long ncRNA that mediates chromatin repression in cis (and probably in trans as well). ICRs at other imprinted domains mediate higher-order chromatin structuration that enhances, or prevents, transcription of close-by genes. Here, we present how chromatin and ncRNAs contribute to developmental control of imprinted gene expression and discuss implications for disease. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Ildem Sanli
- Institute of Molecular Genetics (IGMM), UMR-5535, CNRS, University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), UMR-5535, CNRS, University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
14
|
Tarrade A, Panchenko P, Junien C, Gabory A. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol 2015; 218:50-8. [DOI: 10.1242/jeb.110320] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent and rapid worldwide increase in non-communicable diseases challenges the assumption that genetic factors are the primary contributors to such diseases. A new concept of the ‘developmental origins of health and disease’ (DOHaD) is at stake and therefore requires a paradigm shift. Maternal obesity and malnutrition predispose offspring to develop metabolic syndrome, a vicious cycle leading to transmission to subsequent generation(s), with differences in response and susceptibility according to the sex of the individual. The placenta is a programming agent of adult health and disease. Adaptations of placental phenotype in response to maternal diet and metabolic status alter fetal nutrient supply. This implies important epigenetic changes that are, however, still poorly documented in DOHaD studies, particularly concerning overnutrition. The aim of this review is to discuss the emerging knowledge on the relationships between the effect of maternal nutrition or metabolic status on placental function and the risk of diseases later in life, with a specific focus on epigenetic mechanisms and sexual dimorphism. Explaining the sex-specific causal variables and how males versus females respond and adapt to environmental perturbations should help physicians and patients to anticipate disease susceptibility.
Collapse
Affiliation(s)
- Anne Tarrade
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Polina Panchenko
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Claudine Junien
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
- UVSQ, Université Versailles-Saint-Quentin-en-Yvelines, France
| | - Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
15
|
Nelissen ECM, Dumoulin JCM, Busato F, Ponger L, Eijssen LM, Evers JLH, Tost J, van Montfoort APA. Altered gene expression in human placentas after IVF/ICSI. Hum Reprod 2014; 29:2821-31. [PMID: 25316457 DOI: 10.1093/humrep/deu241] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION Is gene expression in placental tissue of IVF/ICSI patients altered when compared with a spontaneously conceived group, and are these alterations due to loss of imprinting (LOI) in the case of imprinted genes? SUMMARY ANSWER An altered imprinted gene expression of H19 and Pleckstrin homology-like domain family A member 2 (PHLDA2), which was not due to LOI, was observed in human placentas after IVF/ICSI and several biological pathways were significantly overrepresented and mostly up-regulated. WHAT IS KNOWN ALREADY Genomic imprinting plays an important role in placental biology and in placental adaptive responses triggered by external stimuli. Changes in placental development and function can have dramatic effects on the fetus and its ability to cope with the intrauterine environment. An increased frequency of placenta-related problems as well as an adverse perinatal outcome is seen in IVF/ICSI derived pregnancies, but the role of placental epigenetic deregulation is not clear yet. STUDY DESIGN AND PARTICIPANTS In this prospective cohort study, a total of 115 IVF/ICSI and 138 control couples were included during pregnancy. After applying several exclusion criteria (i.e. preterm birth or stillbirth, no placental samples, pregnancy complications or birth defects), respectively, 81 and 105 placentas from IVF/ICSI and control pregnancies remained for analysis. Saliva samples were collected from both parents. METHODS We quantitatively analysed the mRNA expression of several growth-related imprinted genes [H19, insulin-like growth factor 2 (IGF2), PHLDA2, cyclin-dependent kinase inhibitor 1C (CDKN1C), mesoderm-specific transcript homolog (MEST) isoform α and β by quantitative PCR] after standardization against three housekeeping genes [Succinate dehydrogenase A (SDHA), YWHAZ and TATA-binding protein (TBP)]. A quantitative allele-specific expression analysis of the differentially expressed imprinted genes was performed to investigate LOI, independent of the mechanism of imprinting. Furthermore, a microarray analysis was carried out (n = 10 in each group) to investigate the expression of non-imprinted genes as well. MAIN RESULTS AND THE ROLE OF CHANCE Both H19 and PHLDA2 showed a significant change, respectively, a 1.3-fold (P = 0.033) and 1.5-fold (P = 0.002) increase in mRNA expression in the IVF/ICSI versus control group. However, we found no indication that there is an increased frequency of LOI in IVF/ICSI placental samples. Genome-wide mRNA expression revealed 13 significantly overrepresented biological pathways involved in metabolism, immune response, transmembrane signalling and cell cycle control, which were mostly up-regulated in the IVF/ICSI placental samples. LIMITATIONS, REASONS FOR CAUTION Only a subset of samples was found to be fully informative, which unavoidably led to lower sample numbers for our LOI analysis. Our study cannot distinguish whether the reported differences in the IVF/ICSI group are exclusively attributable to the IVF/ICSI technique itself or to the underlying subfertility of the patients. WIDER IMPLICATIONS OF THE FINDINGS Whether these placental adaptations observed in pregnancies conceived by IVF/ICSI might be connected to an adverse perinatal outcome after IVF remains unknown. However, it is possible that these differences affect fetal development and long-term patterns of gene expression, as well as maternal gestational physiology. STUDY FUNDING/COMPETING INTERESTS Partly funded by an unrestricted research grant by Organon BV (now MSD BV) and GROW School for Oncology and Developmental Biology without any role in study design, data collection and analysis or preparation of the manuscript. No conflict of interests to declare. TRIAL REGISTRATION NUMBER Dutch Trial Registry (NTR) number 1298.
Collapse
Affiliation(s)
- Ewka C M Nelissen
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - John C M Dumoulin
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Florence Busato
- Laboratory for Epigenetics and Environment, CEA-Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Loïc Ponger
- MNHN CNRS UMR7196, Paris, France INSERM U565, Paris, France
| | - Lars M Eijssen
- Department of Bioinformatics-BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - Johannes L H Evers
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, CEA-Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Aafke P A van Montfoort
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
16
|
Spencer HG, Clark AG. Non-conflict theories for the evolution of genomic imprinting. Heredity (Edinb) 2014; 113:112-8. [PMID: 24398886 PMCID: PMC4105448 DOI: 10.1038/hdy.2013.129] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023] Open
Abstract
Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci.
Collapse
Affiliation(s)
- H G Spencer
- Allan Wilson Centre for Molecular Ecology & Evolution and Gravida: National Centre for Growth & Development, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - A G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
Wolf JB, Brandvain Y. Gene interactions in the evolution of genomic imprinting. Heredity (Edinb) 2014; 113:129-37. [PMID: 24619179 PMCID: PMC4105456 DOI: 10.1038/hdy.2014.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/24/2022] Open
Abstract
Numerous evolutionary theories have been developed to explain the epigenetic phenomenon of genomic imprinting. Here, we explore a subset of theories wherein non-additive genetic interactions can favour imprinting. In the simplest genic interaction--the case of underdominance--imprinting can be favoured to hide effectively low-fitness heterozygous genotypes; however, as there is no asymmetry between maternally and paternally inherited alleles in this model, other means of enforcing monoallelic expression may be more plausible evolutionary outcomes than genomic imprinting. By contrast, more successful interaction models of imprinting rely on an asymmetry between the maternally and paternally inherited alleles at a locus that favours the silencing of one allele as a means of coordinating the expression of high-fitness allelic combinations. For example, with interactions between autosomal loci, imprinting functionally preserves high-fitness genotypes that were favoured by selection in the previous generation. In this scenario, once a focal locus becomes imprinted, selection at interacting loci favours a matching imprint. Uniparental transmission generates similar asymmetries for sex chromosomes and cytoplasmic factors interacting with autosomal loci, with selection favouring the expression of either maternal or paternally derived autosomal alleles depending on the pattern of transmission of the uniparentally inherited factor. In a final class of models, asymmetries arise when genes expressed in offspring interact with genes expressed in one of its parents. Under such a scenario, a locus evolves to have imprinted expression in offspring to coordinate the interaction with its parent's genome. We illustrate these models and explore key links and differences using a unified framework.
Collapse
Affiliation(s)
- J B Wolf
- Department of Biology and Biochemistry, University of Bath, Bath, Claverton Down, UK
| | - Y Brandvain
- Department of Plant Biology, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
18
|
Gabory A, Vigé A, Ferry L, Attig L, Jais JP, Jouneau L, Junien C. Male and Female Placentas Have Divergent Transcriptomic and Epigenomic Responses to Maternal Diets: Not Just Hormones. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-02591-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
19
|
Keverne EB. Mammalian viviparity: a complex niche in the evolution of genomic imprinting. Heredity (Edinb) 2014; 113:138-44. [PMID: 24569636 DOI: 10.1038/hdy.2014.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/17/2013] [Accepted: 01/14/2014] [Indexed: 12/22/2022] Open
Abstract
Evolution of mammalian reproductive success has witnessed a strong dependence on maternal resources through placental in utero development. Genomic imprinting, which has an active role in mammalian viviparity, also reveals a biased role for matrilineal DNA in its regulation. The co-existence of three matrilineal generations as one (mother, foetus and post-meiotic oocytes) has provided a maternal niche for transgenerational co-adaptive selection pressures to operate. In utero foetal growth has required increased maternal feeding in advance of foetal energetic demands; the mammary glands are primed for milk production in advance of birth, while the maternal hypothalamus is hormonally primed by the foetal placenta for nest building and post-natal care. Such biological forward planning resulted from maternal-foetal co-adaptation facilitated by co-expression of the same imprinted allele in the developing hypothalamus and placenta. This co-expression is concurrent with the placenta interacting with the adult maternal hypothalamus thereby providing a transgenerational template on which selection pressures may operate ensuring optimal maternalism in this and the next generation. Invasive placentation has further required the maternal immune system to adapt and positively respond to the foetal allotype. Pivotal to these mammalian evolutionary developments, genomic imprinting emerged as a monoallelic gene dosage regulatory mechanism of tightly interconnected gene networks providing developmental genetic stability for in utero development.
Collapse
Affiliation(s)
- E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Hossain MM, Tesfaye D, Salilew-Wondim D, Held E, Pröll MJ, Rings F, Kirfel G, Looft C, Tholen E, Uddin J, Schellander K, Hoelker M. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy. BMC Genomics 2014; 15:43. [PMID: 24438674 PMCID: PMC3904697 DOI: 10.1186/1471-2164-15-43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 01/08/2014] [Indexed: 01/03/2023] Open
Abstract
Background Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. Results This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. Conclusion These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer.
Collapse
Affiliation(s)
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
McGraw S, Oakes CC, Martel J, Cirio MC, de Zeeuw P, Mak W, Plass C, Bartolomei MS, Chaillet JR, Trasler JM. Loss of DNMT1o disrupts imprinted X chromosome inactivation and accentuates placental defects in females. PLoS Genet 2013; 9:e1003873. [PMID: 24278026 PMCID: PMC3836718 DOI: 10.1371/journal.pgen.1003873] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 08/28/2013] [Indexed: 01/04/2023] Open
Abstract
The maintenance of key germline derived DNA methylation patterns during preimplantation development depends on stores of DNA cytosine methyltransferase-1o (DNMT1o) provided by the oocyte. Dnmt1omat−/− mouse embryos born to Dnmt1Δ1o/Δ1o female mice lack DNMT1o protein and have disrupted genomic imprinting and associated phenotypic abnormalities. Here, we describe additional female-specific morphological abnormalities and DNA hypomethylation defects outside imprinted loci, restricted to extraembryonic tissue. Compared to male offspring, the placentae of female offspring of Dnmt1Δ1o/Δ1o mothers displayed a higher incidence of genic and intergenic hypomethylation and more frequent and extreme placental dysmorphology. The majority of the affected loci were concentrated on the X chromosome and associated with aberrant biallelic expression, indicating that imprinted X-inactivation was perturbed. Hypomethylation of a key regulatory region of Xite within the X-inactivation center was present in female blastocysts shortly after the absence of methylation maintenance by DNMT1o at the 8-cell stage. The female preponderance of placental DNA hypomethylation associated with maternal DNMT1o deficiency provides evidence of additional roles beyond the maintenance of genomic imprints for DNA methylation events in the preimplantation embryo, including a role in imprinted X chromosome inactivation. During oocyte growth and maturation, vital proteins and enzymes are produced to ensure that, when fertilized, a healthy embryo will arise. When this natural process is interrupted, one or more of these essential elements can fail to be produced thus compromising the health of the future embryo. We are using a mouse model, lacking an enzyme (DNMT1o) produced in the oocyte and only required post-fertilization in the early embryo for the maintenance of inherited DNA methylation marks. Here, we reveal that oocytes lacking DNMT1o, when fertilized, generated conceptuses with a wide variety of placental abnormalities. These placental abnormalities were more frequent and severe in females, and showed specific genomic regions constantly deprived of their normal methylation marks. The affected genomic regions were concentrated on the X chromosome. Interestingly, we also found that a region important for the regulation of the X chromosome inactivation process was hypomethylated in female blastocysts and was associated with sex-specific abnormalities in the placenta, relaxation of imprinted X chromosome inactivation, and disruption of DNA methylation later in development. Our findings provide a novel unanticipated role for DNA methylation events taking place within the first few days of life specifically in female preimplantation embryos.
Collapse
Affiliation(s)
- Serge McGraw
- Departments of Pharmacology & Therapeutics, Pediatrics and Human Genetics, Research Institute at The Montreal Children's Hospital of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Christopher C. Oakes
- Department of Epigenomics and Cancer Risk Factors, The German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Josée Martel
- Departments of Pharmacology & Therapeutics, Pediatrics and Human Genetics, Research Institute at The Montreal Children's Hospital of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - M. Cecilia Cirio
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Pauline de Zeeuw
- Departments of Pharmacology & Therapeutics, Pediatrics and Human Genetics, Research Institute at The Montreal Children's Hospital of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Winifred Mak
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christoph Plass
- Department of Epigenomics and Cancer Risk Factors, The German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - J. Richard Chaillet
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacquetta M. Trasler
- Departments of Pharmacology & Therapeutics, Pediatrics and Human Genetics, Research Institute at The Montreal Children's Hospital of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
Holman L, Kokko H. The evolution of genomic imprinting: costs, benefits and long-term consequences. Biol Rev Camb Philos Soc 2013; 89:568-87. [DOI: 10.1111/brv.12069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 09/15/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Luke Holman
- Centre of Excellence in Biological Interactions, Division of Ecology, Evolution & Genetics; Research School of Biology, Australian National University; Daley Road, Canberra Australian Capital Territory 0200 Australia
| | - Hanna Kokko
- Centre of Excellence in Biological Interactions, Division of Ecology, Evolution & Genetics; Research School of Biology, Australian National University; Daley Road, Canberra Australian Capital Territory 0200 Australia
| |
Collapse
|
23
|
Buckberry S, Bianco-Miotto T, Roberts CT. Imprinted and X-linked non-coding RNAs as potential regulators of human placental function. Epigenetics 2013; 9:81-9. [PMID: 24081302 DOI: 10.4161/epi.26197] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pregnancy outcome is inextricably linked to placental development, which is strictly controlled temporally and spatially through mechanisms that are only partially understood. However, increasing evidence suggests non-coding RNAs (ncRNAs) direct and regulate a considerable number of biological processes and therefore may constitute a previously hidden layer of regulatory information in the placenta. Many ncRNAs, including both microRNAs and long non-coding transcripts, show almost exclusive or predominant expression in the placenta compared with other somatic tissues and display altered expression patterns in placentas from complicated pregnancies. In this review, we explore the results of recent genome-scale and single gene expression studies using human placental tissue, but include studies in the mouse where human data are lacking. Our review focuses on the ncRNAs epigenetically regulated through genomic imprinting or X-chromosome inactivation and includes recent evidence surrounding the H19 lincRNA, the imprinted C19MC cluster microRNAs, and X-linked miRNAs associated with pregnancy complications.
Collapse
Affiliation(s)
- Sam Buckberry
- The Robinson Institute; Research Centre for Reproductive Health; School of Paediatrics and Reproductive Health; The University of Adelaide; Adelaide, SA Australia
| | - Tina Bianco-Miotto
- The Robinson Institute; Research Centre for Reproductive Health; School of Paediatrics and Reproductive Health; The University of Adelaide; Adelaide, SA Australia; School of Agriculture Food & Wine; The University of Adelaide; Adelaide, SA Australia
| | - Claire T Roberts
- The Robinson Institute; Research Centre for Reproductive Health; School of Paediatrics and Reproductive Health; The University of Adelaide; Adelaide, SA Australia
| |
Collapse
|
24
|
Abstract
Parent-of-origin effects occur when the phenotypic effect of an allele depends on whether it is inherited from the mother or the father. Several phenomena can cause parent-of-origin effects, but the best characterized is parent-of-origin-dependent gene expression associated with genomic imprinting. The development of new mapping approaches applied to the growing abundance of genomic data has demonstrated that imprinted genes can be important contributors to complex trait variation. Therefore, to understand the genetic architecture and evolution of complex traits, including complex diseases and traits of agricultural importance, it is crucial to account for these parent-of-origin effects. Here, we discuss patterns of phenotypic variation associated with imprinting, evidence supporting its role in complex trait variation and approaches for identifying its molecular signatures.
Collapse
|
25
|
Ashbrook DG, Hager R. Empirical testing of hypotheses about the evolution of genomic imprinting in mammals. Front Neuroanat 2013; 7:6. [PMID: 23641202 PMCID: PMC3639422 DOI: 10.3389/fnana.2013.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023] Open
Abstract
The close interaction between mother and offspring in mammals is thought to contribute to the evolution of genomic imprinting or parent-of-origin dependent gene expression. Empirical tests of theories about the evolution of imprinting have been scant for several reasons. Models make different assumptions about the traits affected by imprinted genes and the scenarios in which imprinting is predicted to have been selected for. Thus, competing hypotheses cannot readily be tested against each other. Further, it is far from clear how predictions about expression patterns of genes with specific phenotypic effects can be tested given current methodology of assaying gene expression levels, be it in the brain or in other tissues. We first set out a scenario for testing competing hypotheses and delineate the different assumptions and predictions of models. We then outline how predictions may be tested using mouse models such as intercrosses or recombinant inbred (RI) systems that can be phenotyped for traits relevant to imprinting theories. Further, we briefly discuss different molecular approaches that may be used in conjunction with experiments to ascertain expression patterns of imprinted genes and thus the testing of predictions.
Collapse
Affiliation(s)
- David G Ashbrook
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester Manchester, UK
| | | |
Collapse
|
26
|
Pang W, Stradiotto D, Krych L, Karlskov-Mortensen P, Vogensen FK, Nielsen DS, Fredholm M, Hansen AK. Selective inbreeding does not increase gut microbiota similarity in BALB/c mice. Lab Anim 2013; 46:335-7. [PMID: 23097567 DOI: 10.1258/la.2012.012040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammatory diseases in mouse models are under strong impact from the gut microbiota. Therefore increased interindividual gut microbiota similarity may be seen as a way to reduce group sizes in mouse experiments. The composition of the gut microbiota is to a high extent defined by genetics, and it is known that selecting siblings as mothers even in inbred colonies may increase the gut microbiota similarity among the mice with 3-4%. We therefore hypothesized that selective breeding of mice aiming at a high similarity in the gut microbiota would increase the interindividual similarity of the gut microbiota. BALB/cCrl mice were, however, found to have a mean heterozygosity of only 0.8% in their genome, and selection of breeders with a high similarity in the gut microbiota for three generations did not change the overall gut microbiota similarity, which was 66% in the P generation and 66%, 64% and 63% in the F1, F2 and F3 generations, respectively. Increased gut microbiota similarity in closely related mice in inbred mouse colonies is, therefore, more likely to be caused by other factors, such as imprinting or different intrauterine conditions, rather than by residual heterozygosity.
Collapse
Affiliation(s)
- Wanyong Pang
- Section of Biomedicine, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Systems genetics implicates cytoskeletal genes in oocyte control of cloned embryo quality. Genetics 2013; 193:877-96. [PMID: 23307892 DOI: 10.1534/genetics.112.148866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cloning by somatic cell nuclear transfer is an important technology, but remains limited due to poor rates of success. Identifying genes supporting clone development would enhance our understanding of basic embryology, improve applications of the technology, support greater understanding of establishing pluripotent stem cells, and provide new insight into clinically important determinants of oocyte quality. For the first time, a systems genetics approach was taken to discover genes contributing to the ability of an oocyte to support early cloned embryo development. This identified a primary locus on mouse chromosome 17 and potential loci on chromosomes 1 and 4. A combination of oocyte transcriptome profiling data, expression correlation analysis, and functional and network analyses yielded a short list of likely candidate genes in two categories. The major category-including two genes with the strongest genetic associations with the traits (Epb4.1l3 and Dlgap1)-encodes proteins associated with the subcortical cytoskeleton and other cytoskeletal elements such as the spindle. The second category encodes chromatin and transcription regulators (Runx1t1, Smchd1, and Chd7). Smchd1 promotes X chromosome inactivation, whereas Chd7 regulates expression of pluripotency genes. Runx1t1 has not been associated with these processes, but acts as a transcriptional repressor. The finding that cytoskeleton-associated proteins may be key determinants of early clone development highlights potential roles for cytoplasmic components of the oocyte in supporting nuclear reprogramming. The transcriptional regulators identified may contribute to the overall process as downstream effectors.
Collapse
|
28
|
Novakovic B, Saffery R. The ever growing complexity of placental epigenetics – Role in adverse pregnancy outcomes and fetal programming. Placenta 2012; 33:959-70. [DOI: 10.1016/j.placenta.2012.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/02/2012] [Accepted: 10/06/2012] [Indexed: 02/01/2023]
|
29
|
Genomic imprinting leads to less selectively maintained polymorphism on X chromosomes. Genetics 2012; 192:1455-64. [PMID: 23023005 DOI: 10.1534/genetics.112.145607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Population-genetic models are developed to investigate the consequences of viability selection at a diallelic X-linked locus subject to genomic imprinting. Under complete paternal-X inactivation, a stable polymorphism is possible under the same conditions as for paternal-autosome inactivation with differential selection on males and females. A necessary but not sufficient condition is that there is sexual conflict, with selection acting in opposite directions in males and females. In contrast, models of complete maternal-X inactivation never admit a stable polymorphism and alleles will either be fixed or lost from the population. Models of complete paternal-X inactivation are more complex than corresponding models of maternal-X inactivation, as inactivation of paternally derived X chromosomes in females screens these chromosomes from selection for a generation. We also demonstrate that polymorphism is possible for incomplete X inactivation, but that the parameter conditions are more restrictive than for complete paternal-X inactivation. Finally, we investigate the effects of recurrent mutation in our models and show that deleterious alleles in mutation-selection balance at imprinted X-linked loci are at frequencies rather similar to those with corresponding selection pressures and mutation rates at unimprinted loci. Overall, our results add to the reasons for expecting less selectively maintained allelic variation on X chromosomes.
Collapse
|
30
|
Stringer JM, Suzuki S, Pask AJ, Shaw G, Renfree MB. Selected imprinting of INS in the marsupial. Epigenetics Chromatin 2012; 5:14. [PMID: 22929229 PMCID: PMC3502105 DOI: 10.1186/1756-8935-5-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/25/2012] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED BACKGROUND In marsupials, growth and development of the young occur postnatally, regulated by milk that changes in composition throughout the long lactation. To initiate lactation in mammals, there is an absolute requirement for insulin (INS), a gene known to be imprinted in the placenta. We therefore examined whether INS is imprinted in the mammary gland of the marsupial tammar wallaby (Macropus eugenii) and compared its expression with that of insulin-like growth factor 2 (IGF2). RESULTS INS was expressed in the mammary gland and significantly increased, while IGF2 decreased, during established milk production. Insulin and IGF2 were both detected in the mammary gland macrophage cells during early lactation and in the alveolar cells later in lactation. Surprisingly, INS, which was thought only to be imprinted in the therian yolk sac, was imprinted and paternally expressed in the liver of the developing young, monoallelically expressed in the tammar mammary gland and biallelic in the stomach and intestine. The INS transcription start site used in the liver and mammary gland was differentially methylated. CONCLUSIONS This is the first study to identify tissue-specific INS imprinting outside the yolk sac. These data suggest that there may be an advantage of selective monoallelic expression in the mammary gland and that this may influence the growth of the postnatal young. These results are not consistent with the parental conflict hypothesis, but instead provide support for the maternal-infant co-adaptation hypothesis. Thus, imprinting in the mammary gland maybe as critical for postnatal growth and development in mammals as genomic imprinting in the placenta is prenatally.
Collapse
Affiliation(s)
- Jessica M Stringer
- ARC Centre of Excellence in Kangaroo Genomics, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | | | | | | | | |
Collapse
|
31
|
Stoop D, Baumgarten M, Haentjens P, Polyzos NP, De Vos M, Verheyen G, Camus M, Devroey P. Obstetric outcome in donor oocyte pregnancies: a matched-pair analysis. Reprod Biol Endocrinol 2012; 10:42. [PMID: 22672289 PMCID: PMC3488499 DOI: 10.1186/1477-7827-10-42] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/04/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To investigate the obstetrical and perinatal impact of oocyte donation, a cohort of women who conceived after OD was compared with a matched control group of women who became pregnant through in vitro fertilisation with autologous oocytes (AO). METHODS A matched-pair analysis has been performed at the Centre for Reproductive Medicine of the UZ Brussel, Dutch speaking Free University of Brussel. A total of 410 pregnancies resulted in birth beyond 20 weeks of gestation occurring over a period of 10 years, including 205 oocyte donation pregnancies and 205 ICSI pregnancies with autologous oocytes (AO). Patients in the OD group were matched on a one-to-one basis with the AO group in terms of age, ethnicity, parity and plurality. Matched groups were compared using paired t-tests for continuous variables and McNemar test for categorical variables. A conditional logistic regression analyses was performed adjusting for paternal age, age of the oocyte donor, number of embryos transferred, and singleton/twin pregnancy. RESULTS Oocyte donation was associated with an increased risk of pregnancy induced hypertension (PIH) (matched OR: 1.502 CI: 1.024-2.204), and first trimester bleeding (matched OR: 1.493 CI: 1.036-2.15). No differences were observed between the two matched groups with regard to gestational age, mean birth weight and length, head circumference and Apgar scores. CONCLUSIONS Oocyte donation is associated with an increased risk for PIH and first trimester bleeding independent of the recipients' age, parity and plurality, and independent of the age of the donor or the partner. However, oocyte donation has no impact on the overall perinatal outcome.
Collapse
Affiliation(s)
- Dominic Stoop
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, B-1090, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Novakovic B, Saffery R. DNA methylation profiling highlights the unique nature of the human placental epigenome. Epigenomics 2012; 2:627-38. [PMID: 22122048 DOI: 10.2217/epi.10.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As the 'gateway' to the fetus, the placenta is subject to a myriad of environmental factors, each with the potential to alter placental epigenetic and gene expression profile. This can have direct consequences for the developing fetus and potentially even long-term health implications. As a result, interest in placental epigenetics generally, and changes occurring in placenta-associated disease, has intensified over recent years. This article will discuss the general features of placental DNA methylation and will describe current technologies for profiling genome-wide DNA methylation patterns in this tissue, the approaches to data analysis and some of the major findings from recent studies.
Collapse
Affiliation(s)
- Boris Novakovic
- Developmental Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital & Department of Paediatrics, University of Melbourne, Parkville, Victoria, 3052, Australia.
| | | |
Collapse
|
33
|
Lambertini L, Marsit CJ, Sharma P, Maccani M, Ma Y, Hu J, Chen J. Imprinted gene expression in fetal growth and development. Placenta 2012; 33:480-6. [PMID: 22465419 DOI: 10.1016/j.placenta.2012.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 01/01/2023]
Abstract
Experimental studies showed that genomic imprinting is fundamental in fetoplacental development by timely regulating the expression of the imprinted genes to overlook a set of events determining placenta implantation, growth and embryogenesis. We examined the expression profile of 22 imprinted genes which have been linked to pregnancy abnormalities that may ultimately influence childhood development. The study was conducted in a subset of 106 placenta samples, overrepresented with small and large for gestational age cases, from the Rhode Island Child Health Study. We investigated associations between imprinted gene expression and three fetal development parameters: newborn head circumference, birth weight, and size for gestational age. Results from our investigation show that the maternally imprinted/paternally expressed gene ZNF331 inversely associates with each parameter to drive smaller fetal size, while paternally imprinted/maternally expressed gene SLC22A18 directly associates with the newborn head circumference promoting growth. Multidimensional Scaling analysis revealed two clusters within the 22 imprinted genes which are independently associated with fetoplacental development. Our data suggest that cluster 1 genes work by assuring cell growth and tissue development, while cluster 2 genes act by coordinating these processes. Results from this epidemiologic study offer solid support for the key role of imprinting in fetoplacental development.
Collapse
Affiliation(s)
- L Lambertini
- Department of Preventive Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Golbabapour S, Abdulla MA, Hajrezaei M. A concise review on epigenetic regulation: insight into molecular mechanisms. Int J Mol Sci 2011; 12:8661-94. [PMID: 22272098 PMCID: PMC3257095 DOI: 10.3390/ijms12128661] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/07/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms are responsible for the regulation of transcription of imprinted genes and those that induce a totipotent state. Starting just after fertilization, DNA methylation pattern undergoes establishment, reestablishment and maintenance. These modifications are important for normal embryo and placental developments. Throughout life and passing to the next generation, epigenetic events establish, maintain, erase and reestablish. In the context of differentiated cell reprogramming, demethylation and activation of genes whose expressions contribute to the pluripotent state is the crux of the matter. In this review, firstly, regulatory epigenetic mechanisms related to somatic cell nuclear transfer (SCNT) reprogramming are discussed, followed by embryonic development, and placental epigenetic issues.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| | - Mahmood Ameen Abdulla
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| | - Maryam Hajrezaei
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| |
Collapse
|
35
|
Serman L, Dodig D. Impact of DNA methylation on trophoblast function. Clin Epigenetics 2011; 3:7. [PMID: 22414254 PMCID: PMC3303467 DOI: 10.1186/1868-7083-3-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 11/01/2011] [Indexed: 12/21/2022] Open
Abstract
The influence of epigenetics is evident in many fields of medicine today. This is also true in placentology, where versatile epigenetic mechanisms that regulate expression of genes have shown to have important influence on trophoblast implantation and placentation. Such gene regulation can be established in different ways and on different molecular levels, the most common being the DNA methylation. DNA methylation has been shown today as an important predictive component in assessing clinical prognosis of certain malignant tumors; in addition, it opens up new possibilities for non-invasive prenatal diagnosis utilizing cell-free fetal DNA methods. By using a well known demethylating agent 5-azacytidine in pregnant rat model, we have been able to change gene expression and, consequently, the processes of trophoblast differentiation and placental development. In this review, we describe how changes in gene methylation effect trophoblast development and placentation and offer our perspective on use of trophoblast epigenetic research for better understanding of not only placenta development but cancer cell growth and invasion as well.
Collapse
Affiliation(s)
- L Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
36
|
Okae H, Hiura H, Nishida Y, Funayama R, Tanaka S, Chiba H, Yaegashi N, Nakayama K, Sasaki H, Arima T. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum Mol Genet 2011; 21:548-58. [PMID: 22025075 DOI: 10.1093/hmg/ddr488] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the vertebrate groups, only mammals are subject to a specialized epigenetic process termed genomic imprinting in which genes are preferentially expressed from one parental allele. Imprinted expression has been reported for >100 mouse genes and, for approximately one-quarter of these genes, the imprinted expression is specific to the placenta (or extraembryonic tissues). This seemingly placenta-specific imprinted expression has garnered much attention, as has the apparent lack of conserved imprinting between the human and mouse placenta. In this study, we used a novel approach to re-investigate the placenta-specific expression using embryo transfer and trophoblast stem cells. We analyzed 20 genes previously reported to show maternal allele-specific expression in the placenta, and only 8 genes were confirmed to be imprinted. Other genes were likely to be falsely identified as imprinted due to their relatively high expression in contaminating maternal cells. Next, we performed a genome-wide transcriptome assay and identified 133 and 955 candidate imprinted genes with paternal allele- and maternal allele-specific expression. Of those we analyzed in detail, 1/6 (Gab1) of the candidates for paternal allele-specific expression and only 1/269 (Ano1) candidates for maternal allele-specific expression were authentically imprinted genes. Imprinting of Ano1 and Gab1 was specific to the placenta and neither gene displayed allele-specific promoter DNA methylation. Imprinting of ANO1, but not GAB1, was conserved in the human placenta. Our findings impose a considerable revision of the current views of placental imprinting.
Collapse
Affiliation(s)
- Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Many questions about the regulation, functional specialization, computational prediction, and evolution of genomic imprinting would be better addressed by having an exhaustive genome-wide catalog of genes that display parent-of-origin differential expression. As a first-pass scan for novel imprinted genes, we performed mRNA-seq experiments on embryonic day 17.5 (E17.5) mouse placenta cDNA samples from reciprocal cross F1 progeny of AKR and PWD mouse strains and quantified the allele-specific expression and the degree of parent-of-origin allelic imbalance. We confirmed the imprinting status of 23 known imprinted genes in the placenta and found that 12 genes reported previously to be imprinted in other tissues are also imprinted in mouse placenta. Through a well-replicated design using an orthogonal allelic-expression technology, we verified 5 novel imprinted genes that were not previously known to be imprinted in mouse (Pde10, Phf17, Phactr2, Zfp64, and Htra3). Our data suggest that most of the strongly imprinted genes have already been identified, at least in the placenta, and that evidence supports perhaps 100 additional weakly imprinted genes. Despite previous appearance that the placenta tends to display an excess of maternally expressed imprinted genes, with the addition of our validated set of placenta-imprinted genes, this maternal bias has disappeared.
Collapse
|
38
|
Ruden DM, Lu X. Hsp90 affecting chromatin remodeling might explain transgenerational epigenetic inheritance in Drosophila. Curr Genomics 2011; 9:500-8. [PMID: 19506739 PMCID: PMC2691676 DOI: 10.2174/138920208786241207] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/08/2008] [Accepted: 08/14/2008] [Indexed: 01/01/2023] Open
Abstract
Transgenerational epigenetic inheritance, while poorly understood, is of great interest because it might help explain the increase in the incidence of diseases with an environmental contribution in humans, such as cancer, diabetes, and heart disease. Here, we review five Drosophila examples of transgenerational epigenetic inheritance and propose a unified mechanism that involves Polycomb Response Element/Trithorax Response Element (PRE/TRE) occupancy by either Polycomb Group (PcG) protein complexes or Trithorax group (TrxG) complexes. Among their other activities, PcG complexes cause histone 3 lysine 27 tri-methylation associated with repressed chromatin, whereas Trithorax group (TrxG) complexes induce histone 3 lysine 4 tri-methylation associated with actively transcribed chromatin. In this model, Hsp90 is an environmentally sensitive chromatin remodeling regulator that causes a switch in the chromatin from a permissive state to a non-permissive state for transcription. Consistent with this model, Hsp90 has recently been shown to be a chaperone for Tah1p (TPR-containing protein associated with Hsp90) and Pih1p (protein interacting with Hsp90), which connect to the chromatin remodelling factor Rvb1p (RuvB-like protein 1)/Rvb2p in yeast [1]. Also, Hsp90 is required for optimal activity of the histone H3 lysine-4 methyltransferase SMYD3 in mammals [2, 3]. Since PcG and TrxG complexes are involved in the post-translational modifications of histones, and since such modifications have been shown to be required to maintain imprinted marks, this unified mechanism might also help to explain transgenerational epigenetic inheritance in humans.
Collapse
Affiliation(s)
- Douglas M Ruden
- Wayne State University, Institute for Environmental Health Sciences, 2727 2 Ave, Room 4000, Detroit, MI 48201, USA
| | | |
Collapse
|
39
|
Fowden AL, Coan PM, Angiolini E, Burton GJ, Constancia M. Imprinted genes and the epigenetic regulation of placental phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:281-8. [PMID: 21108957 DOI: 10.1016/j.pbiomolbio.2010.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/06/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.
Collapse
Affiliation(s)
- A L Fowden
- Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB23EG, United Kingdom.
| | | | | | | | | |
Collapse
|
40
|
Longtine MS, Nelson DM. Placental dysfunction and fetal programming: the importance of placental size, shape, histopathology, and molecular composition. Semin Reprod Med 2011; 29:187-96. [PMID: 21710395 DOI: 10.1055/s-0031-1275515] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Normal function of the placenta is pivotal for optimal fetal growth and development. Fetal programming commonly is associated with placental dysfunction that predisposes to obstetric complications and suboptimal fetal outcomes. We consider several clinical phenotypes for placental dysfunction that likely predispose to fetal programming. Some of these reflect abnormal development of the chorioallantoic placenta in size, shape, or histopathology. Others result when exogenous stressors in the maternal environment combine with maladaptation of the placental response to yield small placentas with limited reserve, as typical of early-onset intrauterine growth restriction and preeclampsia. Still others reflect epigenetic changes, including altered expression of imprinted genes, altered enzymatic activity, or altered efficiencies in nutrient transport. Although the human placenta is a transient organ that persists only 9 months, the effects of this organ on the offspring remain for a lifetime.
Collapse
Affiliation(s)
- Mark S Longtine
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
41
|
Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, Boileau P, Le Bouc Y, Deal CL, Lillycrop K, Scharfmann R, Sheppard A, Skinner M, Szyf M, Waterland RA, Waxman DJ, Whitelaw E, Ong K, Albertsson-Wikland K. Child health, developmental plasticity, and epigenetic programming. Endocr Rev 2011; 32:159-224. [PMID: 20971919 PMCID: PMC3365792 DOI: 10.1210/er.2009-0039] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs.
Collapse
Affiliation(s)
- Z Hochberg
- Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Grazul-Bilska AT, Johnson ML, Borowicz PP, Minten M, Bilski JJ, Wroblewski R, Velimirovich M, Coupe LR, Redmer DA, Reynolds LP. Placental development during early pregnancy in sheep: cell proliferation, global methylation, and angiogenesis in the fetal placenta. Reproduction 2011; 141:529-40. [DOI: 10.1530/rep-10-0505] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To characterize early fetal placental development, gravid uterine tissues were collected from pregnant ewes every other day from day 16 to 30 after mating. Determination of 1) cell proliferation was based on Ki67 protein immunodetection; 2) global methylation was based on 5-methyl-cytosine (5mC) expression and mRNA expression for DNA methyltransferases (DNMTs)1,3a, and3b; and 3) vascular development was based on smooth muscle cell actin immunolocalization and on mRNA expression of several factors involved in the regulation of angiogenesis in fetal membranes (FMs). Throughout early pregnancy, the labeling index (proportion of proliferating cells) was very high (21%) and did not change. Expression of 5mC and mRNA forDNMT3bdecreased, but mRNA forDNMT1and3aincreased. Blood vessels were detected in FM on days 18–30 of pregnancy, and their number per tissue area did not change. The patterns of mRNA expression for placental growth factor, vascular endothelial growth factor, and their receptorsFLT1andKDR; angiopoietins 1 and 2 and their receptorTEK; endothelial nitric oxide synthase and the NO receptorGUCY13B; and hypoxia inducing factor 1 α changed in FM during early pregnancy. These data demonstrate high cellular proliferation rates, and changes in global methylation and mRNA expression of factors involved in the regulation of DNA methylation and angiogenesis in FM during early pregnancy. This description of cellular and molecular changes in FM during early pregnancy will provide the foundation for determining the basis of altered placental development in pregnancies compromised by environmental, genetic, or other factors.
Collapse
|
43
|
Aberrant expression of imprinted genes in post-implantation rat embryos. Life Sci 2011; 88:634-43. [DOI: 10.1016/j.lfs.2011.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/06/2011] [Accepted: 01/20/2011] [Indexed: 11/19/2022]
|
44
|
Extra-embryonic-specific imprinted expression is restricted to defined lineages in the post-implantation embryo. Dev Biol 2011; 353:420-31. [PMID: 21354127 DOI: 10.1016/j.ydbio.2011.02.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 02/06/2023]
Abstract
A subset of imprinted genes in the mouse have been reported to show imprinted expression that is restricted to the placenta, a short-lived extra-embryonic organ. Notably, these so-called "placental-specific" imprinted genes are expressed from both parental alleles in embryo and adult tissues. The placenta is an embryonic-derived organ that is closely associated with maternal tissue, and as a consequence, maternal contamination can be mistaken for maternal-specific imprinted expression. The complexity of the placenta, which arises from multiple embryonic lineages, poses additional problems in accurately assessing allele-specific repressive epigenetic modifications in genes that also show lineage-specific silencing in this organ. These problems require that extra evidence be obtained to support the imprinted status of genes whose imprinted expression is restricted to the placenta. We show here that the extra-embryonic visceral yolk sac (VYS), a nutritive membrane surrounding the developing embryo, shows a similar "extra-embryonic-lineage-specific" pattern of imprinted expression. We present an improved enzymatic technique for separating the bilaminar VYS and show that this pattern of imprinted expression is restricted to the endoderm layer. Finally, we show that VYS "extra-embryonic-lineage-specific" imprinted expression is regulated by DNA methylation in a similar manner as shown for genes showing multi-lineage imprinted expression in extra-embryonic, embryonic, and adult tissues. These results show that the VYS is an improved model for studying the epigenetic mechanisms regulating extra-embryonic-lineage-specific imprinted expression.
Collapse
|
45
|
Gallou-Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross MS, Taurelle J, Vigé A, Breton C, Reusens B, Remacle C, Vieau D, Ekström TJ, Jais JP, Junien C. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 2010; 5:e14398. [PMID: 21200436 PMCID: PMC3006175 DOI: 10.1371/journal.pone.0014398] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable. METHODS AND FINDINGS We investigated whether a high-fat diet (HFD) during pregnancy modified the expression of imprinted genes and local and global DNA methylation patterns in the placenta. Pregnant mice were fed a HFD or a control diet (CD) during the first 15 days of gestation. We compared gene expression patterns in total placenta homogenates, for male and female offspring, by the RT-qPCR analysis of 20 imprinted genes. Sexual dimorphism and sensitivity to diet were observed for nine genes from four clusters on chromosomes 6, 7, 12 and 17. As assessed by in situ hybridization, these changes were not due to variation in the proportions of the placental layers. Bisulphite-sequencing analysis of 30 CpGs within the differentially methylated region (DMR) of the chromosome 17 cluster revealed sex- and diet-specific differential methylation of individual CpGs in two conspicuous subregions. Bioinformatic analysis suggested that these differentially methylated CpGs might lie within recognition elements or binding sites for transcription factors or factors involved in chromatin remodelling. Placental global DNA methylation, as assessed by the LUMA technique, was also sexually dimorphic on the CD, with lower methylation levels in male than in female placentae. The HFD led to global DNA hypomethylation only in female placenta. Bisulphite pyrosequencing showed that neither B1 nor LINE repetitive elements could account for these differences in DNA methylation. CONCLUSIONS A HFD during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes important in the control of many cellular, metabolic and physiological functions potentially involved in adaptation and/or evolution. These findings highlight the importance of studying both sexes in epidemiological protocols and dietary interventions.
Collapse
Affiliation(s)
- Catherine Gallou-Kabani
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Anne Gabory
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
- INRA, UMR1198, UMR INRA/ENV Maisons-Alfort/CNRS: Biologie du Développement et Reproduction, (ENV Maisons-Alfort; CNRS), Physiologie Animale et Systèmes d'Elevage, Centre de recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Jörg Tost
- Laboratoire d'Epigénétique, CEA - Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Mohsen Karimi
- Laboratory for Medical Epigenetics, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Mayeur
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Jean Lesage
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Elsa Boudadi
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Marie-Sylvie Gross
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Julien Taurelle
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Alexandre Vigé
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Christophe Breton
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Brigitte Reusens
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Claude Remacle
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Didier Vieau
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Tomas J. Ekström
- Laboratory for Medical Epigenetics, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claudine Junien
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
- INRA, UMR1198, UMR INRA/ENV Maisons-Alfort/CNRS: Biologie du Développement et Reproduction, (ENV Maisons-Alfort; CNRS), Physiologie Animale et Systèmes d'Elevage, Centre de recherche de Jouy-en-Josas, Jouy-en-Josas, France
| |
Collapse
|
46
|
Yamazawa K, Ogata T, Ferguson-Smith AC. Uniparental disomy and human disease: an overview. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:329-34. [PMID: 20803655 DOI: 10.1002/ajmg.c.30270] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Uniparental disomy (UPD) refers to the situation in which both homologues of a chromosomal region/segment have originated from only one parent. This can involve the entire chromosome or only a small segment. As a consequence of UPD, or uniparental duplication/deficiency of part of a chromosome, there are two types of developmental risk: aberrant dosage of genes regulated by genomic imprinting and homozygosity of a recessive mutation. UPD models generated by reciprocal and Robertsonian translocation heterozygote intercrosses have been a powerful tool to investigate genomic imprinting in mice, whereas novel UPD patients such as those with cystic fibrosis and Prader-Willi syndrome, triggered the clarification of recessive diseases and genomic imprinting disorders in human. Newly developed genomic technologies as well as conventional microsatellite marker methods have been contributing to the functional and mechanistic investigation of UPD, leading to not only the acquisition of clinically valuable information, but also the further clarification of diverse genetic processes and disease pathogenesis.
Collapse
Affiliation(s)
- Kazuki Yamazawa
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | | | | |
Collapse
|
47
|
Nelissen ECM, van Montfoort APA, Dumoulin JCM, Evers JLH. Epigenetics and the placenta. Hum Reprod Update 2010; 17:397-417. [PMID: 20959349 DOI: 10.1093/humupd/dmq052] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The placenta is of utmost importance for intrauterine fetal development and growth. Deregulation of placentation can lead to adverse outcomes for both mother and fetus, e.g. gestational trophoblastic disease (GTD), pre-eclampsia and fetal growth retardation. A significant factor in placental development and function is epigenetic regulation. METHODS This review summarizes the current knowledge in the field of epigenetics in relation to placental development and function. Relevant studies were identified by searching PubMed, Medline and reference sections of all relevant studies and reviews. RESULTS Epigenetic regulation of the placenta evolves during preimplantation development and further gestation. Epigenetic marks, like DNA methylation, histone modifications and non-coding RNAs, affect gene expression patterns. These expression patterns, including the important parent-of-origin-dependent gene expression resulting from genomic imprinting, play a pivotal role in proper fetal and placental development. Disturbed placental epigenetics has been demonstrated in cases of intrauterine growth retardation and small for gestational age, and also appears to be involved in the pathogenesis of pre-eclampsia and GTD. Several environmental effects have been investigated so far, e.g. ethanol, oxygen tension as well as the effect of several aspects of assisted reproduction technologies on placental epigenetics. CONCLUSIONS Studies in both animals and humans have made it increasingly clear that proper epigenetic regulation of both imprinted and non-imprinted genes is important in placental development. Its disturbance, which can be caused by various environmental factors, can lead to abnormal placental development and function with possible consequences for maternal morbidity, fetal development and disease susceptibility in later life.
Collapse
Affiliation(s)
- Ewka C M Nelissen
- Department of Obstetrics and Gynaecology, Research Institute Growth & Development (GROW), Center for Reproductive Medicine, Maastricht University Medical Centre, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefèvre A, Coullin P, Moore GE, Cavaillé J. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 2010; 19:3566-82. [PMID: 20610438 DOI: 10.1093/hmg/ddq272] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Imprinted genes play crucial roles in mammalian development and disruption of their expression is associated with many human disorders including tumourigenesis; yet, the actual number of imprinted genes in the human genome remains a matter of debate. Here, we report on the unexpected finding that the chromosome 19 microRNA cluster (C19MC), the largest human microRNA gene cluster discovered so far, is regulated by genomic imprinting with only the paternally inherited allele being expressed in the placenta. DNA methylation profiling identified a differentially methylated region (C19MC-DMR1) that overlaps an upstream CpG-rich promoter region associated with short tandem repeats. It displays a maternal-specific methylation imprint acquired in oocytes and generates a complex population of large, compartimentalized non-coding RNA (ncRNA) species retained in close proximity to the C19MC transcription site. This occurs adjacent to, but not within, a poorly characterized nuclear Alu-rich domain. Interestingly, C19MC maps near another imprinted gene, the maternally expressed ZNF331 gene, and therefore may define a novel, previously unrecognized large imprinted primate-specific chromosomal domain. Altogether, our study adds C19MC to the growing list of imprinted repeated small RNA gene clusters and further strengthens the potential involvement of small ncRNAs in the function and/or the evolution of imprinted gene networks.
Collapse
Affiliation(s)
- Marie Noguer-Dance
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Oh-McGinnis R, Jones MJ, Lefebvre L. Applications of the site-specific recombinase Cre to the study of genomic imprinting. Brief Funct Genomics 2010; 9:281-93. [PMID: 20601421 DOI: 10.1093/bfgp/elq017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of gene targeting approaches has had a tremendous impact on the functional analysis of the mouse genome. A specific application of this technique has been the adaptation of the bacteriophage P1 Cre/loxP site-specific recombinase system which allows for the precise recombination between two loxP sites, resulting in deletion or inversion of the intervening sequences. Because of the efficiency of this system, it can be applied to conditional deletions of relatively short coding sequences or regulatory elements but also to more extensive chromosomal rearrangement strategies. Both mechanistic and functional studies of genomic imprinting have benefited from the development of the Cre/loxP technology. Since imprinted genes within large chromosomal regions are regulated by the action of cis-acting sequences known as imprinting centers, chromosomal engineering approaches are particularly well suited to the elucidation of long-range mechanisms controlling the imprinting of autosomal genes. Here we review the applications of the Cre/loxP technology to the study of genomic imprinting, highlight important insights gained from these studies and discuss future directions in the field.
Collapse
Affiliation(s)
- Rosemary Oh-McGinnis
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
50
|
Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome. PLoS One 2010; 5:e10947. [PMID: 20532033 PMCID: PMC2881032 DOI: 10.1371/journal.pone.0010947] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/06/2010] [Indexed: 11/26/2022] Open
Abstract
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.
Collapse
|