1
|
Ionescu C, Ghidersa M, Ciobica A, Mavroudis I, Kazis D, Petridis FE, Gorgan DL, Balmus IM. Potential Correlation Between Molecular Biomarkers and Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2025; 26:3858. [PMID: 40332547 DOI: 10.3390/ijms26083858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Diagnosing traumatic brain injury (TBI) remains challenging due to an incomplete understanding of its neuropathological mechanisms. TBI is recognised as a complex condition involving both primary and secondary injuries. Although oxidative stress is a non-specific molecular phenomenon observed in various neuropathological conditions, it plays a crucial role in brain injury response and recovery. Due to these aspects, we aimed to evaluate the interaction between some known TBI molecular biomarkers and oxidative stress in providing evidence for its possible relevance in clinical diagnosis and outcome prediction. We found that while many of the currently validated molecular biomarkers interact with oxidative pathways, their patterns of variation could assist the diagnosis, prognosis, and outcomes prediction in TBI cases.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, 700505 Iasi, Romania
| | - Madalina Ghidersa
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, 700505 Iasi, Romania
- "Ioan Haulica" Institute, Apollonia University, 700511 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 2 Teodor Codrescu Street, 700481 Iasi, Romania
| | - Ioannis Mavroudis
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- Department of Neurosciences, Leeds Teaching Hospitals, Leeds LS9 7TF, UK
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Foivos E Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Dragoș Lucian Gorgan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, 700505 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, "Alexandru Ioan Cuza" University of Iasi, 700057 Iasi, Romania
| |
Collapse
|
2
|
Lisi I, Moro F, Mazzone E, Marklund N, Pischiutta F, Kobeissy F, Mao X, Corrigan F, Helmy A, Nasrallah F, Pietro VD, Ngwenya LB, Portela LV, Semple BD, Schneider ALC, Arrastia RD, Menon DK, Smith DH, Wellington C, Loane DJ, Wang KKW, Zanier ER. Exploiting blood-based biomarkers to align preclinical models with human traumatic brain injury. Brain 2025; 148:1062-1080. [PMID: 39514789 PMCID: PMC11967814 DOI: 10.1093/brain/awae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/17/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Rodent models are important research tools for studying the pathophysiology of traumatic brain injury (TBI) and developing new therapeutic interventions for this devastating neurological disorder. However, the failure rate for the translation of drugs from animal testing to human treatments for TBI is 100%. While there are several potential explanations for this, previous clinical trials have relied on extrapolation from preclinical studies for critical design considerations, including drug dose optimization, post-injury drug treatment initiation and duration. Incorporating clinically relevant biomarkers in preclinical studies may provide an opportunity to calibrate preclinical models to identical (or similar) measurements in humans, link to human TBI biomechanics and pathophysiology, and guide therapeutic decisions. To support this translational goal, we conducted a systematic literature review of preclinical TBI studies in rodents measuring blood levels of clinically used GFAP, UCH-L1, NfL, total-Tau (t-Tau) or phosphorylated-Tau (p-Tau) published in PubMed/EMBASE up to 10 April 2024. Although many factors influence clinical TBI outcomes, many of those cannot routinely be assessed in rodent studies (e.g. intracranial pressure monitoring). Thus we focused on blood biomarkers' temporal trajectories and discuss our findings in the context of the latest clinical TBI biomarker data. Of 805 original preclinical studies, 74 met the inclusion criteria, with a median quality score of 5 (25th-75th percentiles: 4-7) on the CAMARADES checklist. GFAP was measured in 43 studies, UCH-L1 in 21, NfL in 20, t-Tau in 19 and p-Tau in seven. Data from rodent models indicate that all biomarkers exhibited injury severity-dependent elevations with distinct temporal profiles. GFAP and UCH-L1 peaked within the first day after TBI (30- and 4-fold increases, respectively, in moderate-to-severe TBI versus sham), with the highest levels observed in the contusion TBI model. NfL peaked within days (18-fold increase) and remained elevated up to 6 months post-injury. GFAP and NfL show a pharmacodynamic response in 64.7% and 60%, respectively, of studies evaluating neuroprotective therapies in preclinical models. However, GFAP's rapid decline post-injury may limit its utility for understanding the response to new therapeutics beyond the hyperacute phase after experimental TBI. Furthermore, as in humans, subacute NfL levels inform on chronic white matter loss after TBI. t-Tau and p-Tau levels increased over weeks after TBI (up to 6- and 16-fold, respectively); however, their relationship with underlying neurodegeneration has yet to be addressed. Further investigation into biomarker levels in the subacute and chronic phases after TBI will be needed to fully understand the pathomechanisms underpinning blood biomarkers' trajectories and select the most suitable experimental model to optimally relate preclinical mechanistic studies to clinical observations in humans. This new approach could accelerate the translation of neuroprotective treatments from laboratory experiments to real-world clinical practices.
Collapse
Affiliation(s)
- Ilaria Lisi
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Federico Moro
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Edoardo Mazzone
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University and Skåne University Hospital, Lund 222 42, Sweden
| | - Francesca Pischiutta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Frances Corrigan
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 670715, USA
| | - Luis V Portela
- Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul—UFRGS, Porto Alegre, RS 90040-060, Brasil
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Andrea L C Schneider
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6021, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramon Diaz Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Douglas H Smith
- Center for Brain Injury and Repair and the Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl Wellington
- Department of Pathology, Djavad Mowafaghain Centre for Brain Health, International Collaboration on Repair Discoveries, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - David J Loane
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 152-160, Ireland
| | - Kevin K W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| |
Collapse
|
3
|
Cao Y, Li H, Li J, Ling T, Yin A, Luo X, Zhou Y, Li J, Jiang H, Wang H, Yang L, Wu H, Li P. Cannabidiol alleviates the inflammatory response in rats with traumatic brain injury through the PGE 2-EP2-cAMP-PKA signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39921353 DOI: 10.3724/abbs.2024183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Traumatic brain injury (TBI) is a recognized global public health problem. However, there are still limitations in the available therapeutic approaches and a lack of clinically effective drugs. Therefore, an in-depth exploration of the secondary pathological mechanism of TBI and the identification of new effective drugs are urgently needed. Cannabidiol (CBD), a component derived from the cannabis plant, has potential therapeutic effects on neurological diseases and has received increasing attention. However, few reports on CBD intervention in TBI patients exist. Here, we use the Feeney free-fall method to establish a rat TBI model. CBD significantly improves neurological deficit scores, neuronal damage and blood-brain barrier permeability in rats and significantly inhibits the expressions of the brain injury markers S-100β and NSE. Mechanistically, CBD attenuates TBI-induced astrocyte activation, reduces inflammation, and attenuates the expressions of inflammatory prostaglandin system indicators. The use of TG6-10-1 (EP2 inhibitor) and H-89 (PKA inhibitor) indicates that CBD attenuates TBI-induced neurological damage via the PGE 2-EP2-cAMP-PKA signaling pathway. Overall, this research provides a novel drug candidate for the treatment of clinical brain trauma.
Collapse
Affiliation(s)
- Yan Cao
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Jiali Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Tenghan Ling
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Aiping Yin
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xinyuan Luo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Ying Zhou
- Department of Electron Microscope Laboratory, Kunming Medical University, Kunming 650500, China
| | - Jinghui Li
- Second Department of Neurosurgery, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Hongyan Jiang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Huawei Wang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Li Yang
- Department of Emergency and Intensive Care Unit, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ping Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
4
|
Chiperi LE, Hagau AC, Tecar C, Hutanu A, Muntean I. Brain-derived neurotrophic factor as a promising neuromarker which could predict psychomotor developmental impairment in children with unrepaired congenital heart defects. Int J Dev Neurosci 2025; 85:e10400. [PMID: 39658254 DOI: 10.1002/jdn.10400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION The aim of the study was to assess the predicting value of neuromarkers for psychomotor performances of congenital heart defect (CHD) patients before surgery, as until now the researchers only evaluated neuromarkers after the surgical treatment of the CHD. METHODS This cross-sectional study included children with CHD who did not receive treatment (interventional or cardiac surgery). Psychomotor development was evaluated using the Denver II Screening Test. Blood samples were collected for neuromarkers analysis: neuron-specific enolase (NSE), protein S100 (pS100), brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP). RESULTS We enrolled 77 children. Patients with CHD experienced more frequent developmental delays compared to healthy children (12-34% in the non-cyanotic group and 26-74% in the cyanotic group). The association between type of CHD and psychomotor impairment was statistically significant (p < 0.0001, RR = 2.604, CI = 2.07-3.26). Neuromarkers value was compared between cyanotic and non-cyanotic groups: NSE and BDNF values were higher in the cyanotic group, respectively, pS100 and GFAP had slightly higher values in the non-cyanotic group. A correlation coefficient of 0.35 (p = 0.023) was obtained between psychomotor development and BDNF level. An AUC of 0.72 was obtained for psychomotor development and BDNF in ROC analysis with the cut-off value of 5895 pg/ml. CONCLUSION BDNF is showing moderate discriminative ability in predicting psychomotor development outcomes in pediatric patients with CHD.
Collapse
Affiliation(s)
- Lacramioara Eliza Chiperi
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Heart Transplant, Targu Mures, Romania
- George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mureș, Romania
| | - Asmaa Carla Hagau
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Heart Transplant, Targu Mures, Romania
- George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mureș, Romania
| | - Cristina Tecar
- Department of Neurosciences, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adina Hutanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, Laboratory of Humoral Immunology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mureș, Romania
| | - Iolanda Muntean
- Clinic of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Transplantation of Targu Mureș, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mureș, 540142, Romania
| |
Collapse
|
5
|
Chiperi LE, Huţanu A, Tecar C, Muntean I. Serum Markers of Brain Injury in Pediatric Patients with Congenital Heart Defects Undergoing Cardiac Surgery: Diagnostic and Prognostic Role. Clin Pract 2023; 13:1253-1265. [PMID: 37887089 PMCID: PMC10605074 DOI: 10.3390/clinpract13050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction: The objectives of this study were to assess the role of neuromarkers like glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF), protein S100 (pS100), and neuron-specific enolase (NSE) as diagnostic markers of acute brain injury and also as prognostic markers for short-term neurodevelopmental impairment. Methods: Pediatric patients with congenital heart defects (CHDs) undergoing elective cardiac surgery were included. Neurodevelopmental functioning was assessed preoperatively and 4-6 months postoperatively using the Denver Developmental Screening Test II. Blood samples were collected preoperatively and postoperatively. During surgery, regional cerebral tissue oxygen saturation was monitored using near-infrared spectroscopy (NIRS). Results: Forty-two patients were enrolled and dichotomized into cyanotic and non-cyanotic groups based on peripheric oxygen saturation. Nineteen patients (65.5%) had abnormal developmental scores in the non-cyanotic group and eleven (84.6%) in the cyanotic group. A good diagnostic model was observed between NIRS values and GFAP in the cyanotic CHD group (AUC = 0.7). A good predicting model was observed with GFAP and developmental scores in the cyanotic CHD group (AUC = 0.667). A correlation was found between NSE and developmental quotient scores (r = 0.09, p = 0.046). Conclusions: From all four neuromarkers studied, only GFAP was demonstrated to be a good diagnostic and prognostic factor in cyanotic CHD patients. NSE had only prognostic value.
Collapse
Affiliation(s)
- Lacramioara Eliza Chiperi
- Clinic of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Heart Transplant, 540136 Targu Mures, Romania
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Huţanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Laboratory of Humoral Immunology, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Cristina Tecar
- Department of Neurosciences, Iuliu Hatieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania
| | - Iolanda Muntean
- Clinic of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Heart Transplant, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
6
|
Munjal NK, Clark RSB, Simon DW, Kochanek PM, Horvat CM. Interoperable and explainable machine learning models to predict morbidity and mortality in acute neurological injury in the pediatric intensive care unit: secondary analysis of the TOPICC study. Front Pediatr 2023; 11:1177470. [PMID: 37456559 PMCID: PMC10338865 DOI: 10.3389/fped.2023.1177470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Background Acute neurological injury is a leading cause of permanent disability and death in the pediatric intensive care unit (PICU). No predictive model has been validated for critically ill children with acute neurological injury. Objectives We hypothesized that PICU patients with concern for acute neurological injury are at higher risk for morbidity and mortality, and advanced analytics would derive robust, explainable subgroup models. Methods We performed a secondary subgroup analysis of the Trichotomous Outcomes in Pediatric Critical Care (TOPICC) study (2011-2013), predicting mortality and morbidity from admission physiology (lab values and vital signs in 6 h surrounding admission). We analyzed patients with suspected acute neurological injury using standard machine learning algorithms. Feature importance was analyzed using SHapley Additive exPlanations (SHAP). We created a Fast Healthcare Interoperability Resources (FHIR) application to demonstrate potential for interoperability using pragmatic data. Results 1,860 patients had suspected acute neurological injury at PICU admission, with higher morbidity (8.2 vs. 3.4%) and mortality (6.2 vs. 1.9%) than those without similar concern. The ensemble regressor (containing Random Forest, Gradient Boosting, and Support Vector Machine learners) produced the best model, with Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.91 [95% CI (0.88, 0.94)] and Average Precision (AP) of 0.59 [0.51, 0.69] for mortality, and decreased performance predicting simultaneous mortality and morbidity (0.83 [0.80, 0.86] and 0.59 [0.51, 0.64]); at a set specificity of 0.995, positive predictive value (PPV) was 0.79 for mortality, and 0.88 for mortality and morbidity. By comparison, for mortality, the TOPICC logistic regression had AUROC of 0.90 [0.84, 0.93], but substantially inferior AP of 0.49 [0.35, 0.56] and PPV of 0.60 at specificity 0.995. Feature importance analysis showed that pupillary non-reactivity, Glasgow Coma Scale, and temperature were the most contributory vital signs, and acidosis and coagulopathy the most important laboratory values. The FHIR application provided a simulated demonstration of real-time health record query and model deployment. Conclusions PICU patients with suspected acute neurological injury have higher mortality and morbidity. Our machine learning approach independently identified previously-known causes of secondary brain injury. Advanced modeling achieves improved positive predictive value in this important population compared to published models, providing a stepping stone in the path to deploying explainable models as interoperable bedside decision-support tools.
Collapse
Affiliation(s)
- Neil K. Munjal
- Department of Pediatrics, University of Wisconsin—Madison, Madison, WI, United States
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Robert S. B. Clark
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Dennis W. Simon
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher M. Horvat
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Lin IH, Kamnaksh A, Aniceto R, McCullough J, Bekdash R, Eklund M, Ghatan PH, Risling M, Svensson M, Bellander BM, Nelson DW, Thelin EP, Agoston DV. Time-Dependent Changes in the Biofluid Levels of Neural Injury Markers in Severe Traumatic Brain Injury Patients-Cerebrospinal Fluid and Cerebral Microdialysates: A Longitudinal Prospective Pilot Study. Neurotrauma Rep 2023; 4:107-117. [PMID: 36895820 PMCID: PMC9989523 DOI: 10.1089/neur.2022.0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Monitoring protein biomarker levels in the cerebrospinal fluid (CSF) can help assess injury severity and outcome after traumatic brain injury (TBI). Determining injury-induced changes in the proteome of brain extracellular fluid (bECF) can more closely reflect changes in the brain parenchyma, but bECF is not routinely available. The aim of this pilot study was to compare time-dependent changes of S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), total Tau, and phosphorylated Tau (p-Tau) levels in matching CSF and bECF samples collected at 1, 3, and 5 days post-injury from severe TBI patients (n = 7; GCS 3-8) using microcapillary-based western analysis. We found that time-dependent changes in CSF and bECF levels were most pronounced for S100B and NSE, but there was substantial patient-to-patient variability. Importantly, the temporal pattern of biomarker changes in CSF and bECF samples showed similar trends. We also detected two different immunoreactive forms of S100B in both CSF and bECF samples, but the contribution of the different immunoreactive forms to total immunoreactivity varied from patient to patient and time point to time point. Our study is limited, but it illustrates the value of both quantitative and qualitative analysis of protein biomarkers and the importance of serial sampling for biofluid analysis after severe TBI.
Collapse
Affiliation(s)
- I-Hsuan Lin
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Jesse McCullough
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Ramsey Bekdash
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Michael Eklund
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Per Hamid Ghatan
- Department of Neuroscience, Uppsala University Hospital, Uppsala, Sweden
| | - Mårten Risling
- Department of Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - David W Nelson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.,Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Biomarkers in Moderate to Severe Pediatric Traumatic Brain Injury: A Review of the Literature. Pediatr Neurol 2022; 130:60-68. [PMID: 35364462 PMCID: PMC9038667 DOI: 10.1016/j.pediatrneurol.2022.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Despite decades of research, outcomes in pediatric traumatic brain injury (pTBI) remain highly variable. Brain biofluid-specific biomarkers from pTBI patients may allow us to diagnose and prognosticate earlier and with a greater degree of accuracy than conventional methods. This manuscript reviews the evidence surrounding current brain-specific biomarkers in pTBI and assesses the temporal relationship between the natural history of the traumatic brain injury (TBI) and measured biomarker levels. METHODS A literature search was conducted in the Ovid, PubMed, MEDLINE, and Cochrane databases seeking relevant publications. The study selection and screening process were documented in a Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram. Extraction forms included developmental stages of patients, type and biofluid source of biomarkers, brain injury type, and other relevant data. RESULTS The search strategy identified 443 articles, of which 150 examining the biomarkers of our interest were included. The references retrieved were examined thoroughly and discussed at length with a pediatric neurocritical care intensivist specializing in pTBI and a Ph.D. scientist with a high degree of involvement in TBI biomarker research, authoring a vast amount of literature in this field. CONCLUSIONS TBI biomarkers might serve as valuable tools in the diagnosis and prognosis of pTBI. However, while each biomarker has its advantages, they are not without limitations, and therefore, further research is critical in pTBI biomarkers.
Collapse
|
9
|
Abstract
Clinicians often miss making the diagnosis of abusive head injury in infants and toddlers who present with mild, non-specific symptoms such as vomiting, fussiness, irritability, trouble sleeping and eating, and seizure. If abusive head injury is missed, the child is likely to go on to experience more severe injury. An extensive review of the medical literature was done to summarize what is known about missed abusive head injury and about how these injuries can be recognized and appropriately evaluated. The following issues will be addressed: the definition of mild head injury, problems encountered when clinicians evaluated mildly ill young children with non-specific symptoms, the risk of missing the diagnosis of mild abusive head trauma, the risks involved in subjecting infants and young children to radiation and/or sedation required for neuroimaging studies, imaging options for suspected neurotrauma in children, clinical prediction rules for evaluating mild head injury in children, laboratory tests than can be helpful in diagnosing mild abusive head injury, history and physical examination when diagnosing or ruling out mild abusive head injury, social and family factors that could be associated with abusive injuries, and interventions that could improve our recognition of mild abusive head injuries. Relevant literature is described and evaluated. The conclusion is that abusive head trauma remains a difficult diagnosis to identify in mildly symptomatic young children.
Collapse
|
10
|
Serum Biomarkers of Regeneration and Plasticity are Associated with Functional Outcome in Pediatric Neurocritical Illness: An Exploratory Study. Neurocrit Care 2021; 35:457-467. [PMID: 33665769 PMCID: PMC9344468 DOI: 10.1007/s12028-021-01199-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND/OBJECTIVE Pediatric neurocritical care survivorship is frequently accompanied by functional impairments. Lack of prognostic biomarkers is a barrier to early identification and management of impairment. We explored the association between blood biomarkers and functional impairment in children with acute acquired brain injury. METHODS This study is a secondary analysis of a randomized control trial evaluating early versus usual care rehabilitation in the pediatric intensive care unit (PICU). Forty-four children (17 [39%] female, median age 11 [interquartile range 6-13] years) with acute acquired brain injury admitted to the PICU were studied. A single center obtained serum samples on admission days 0, 1, 3, 5, and the day closest to hospital discharge. Biomarkers relevant to brain injury (neuron specific enolase [NSE], S100b), inflammation (interleukin [IL-6], C-reactive protein), and regeneration (brain-derived neurotrophic factor [BDNF], vascular endothelial growth factor [VEGF]) were collected. Biomarkers were analyzed using a Luminex® bioassay. Functional status scale (FSS) scores were abstracted from the medical record. New functional impairment was defined as a (worse) FSS score at hospital discharge compared to pre-PICU (baseline). Individual biomarker fluorescence index (FI) values for each sample collection day were correlated with new functional impairment using Spearman rank correlation coefficient (ρ). Trends in repeated measures of biomarker FI over time were explored graphically, and the association between repeated measures of biomarker FI and new functional impairment was analyzed using covariate adjusted linear mixed-effect models. RESULTS Functional impairment was inversely correlated with markers of regeneration and plasticity including BDNF at day 3 (ρ = - 0.404, p = .015), day 5 (ρ = - 0.549, p = 0.005) and hospital discharge (ρ = - 0.420, p = 0.026) and VEGF at day 1 (ρ = - 0.282, p = 0.008) and hospital discharge (ρ = - 0.378, p = 0.047), such that lower levels of both markers at each time point were associated with greater impairment. Similarly, repeated measures of BDNF and VEGF were inversely correlated with new functional impairment (B = - 0.001, p = 0.001 and B = - 0.001, p = 0.003, respectively). NSE, a biomarker of acute brain injury, showed a positive correlation between day 0 levels and new functional impairment (ρ = 0.320, p = 0.044). CONCLUSIONS Blood-based biomarkers of regeneration and plasticity may hold prognostic utility for functional impairment among pediatric patients with neurocritical illness and warrant further investigation.
Collapse
|
11
|
Dalton HJ, Berg RA, Nadkarni VM, Kochanek PM, Tisherman SA, Thiagarajan R, Alexander P, Bartlett RH. Cardiopulmonary Resuscitation and Rescue Therapies. Crit Care Med 2021; 49:1375-1388. [PMID: 34259654 DOI: 10.1097/ccm.0000000000005106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The history of cardiopulmonary resuscitation and the Society of Critical Care Medicine have much in common, as many of the founders of the Society of Critical Care Medicine focused on understanding and improving outcomes from cardiac arrest. We review the history, the current, and future state of cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Heidi J Dalton
- Heart and Vascular Institute and Department of Pediatrics, INOVA Fairfax Medical Center, Falls Church, VA. Department of Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA. Department of Anesthesiology/Critical Care Medicine, Peter Safer Resuscitation Center, Pittsburgh, PA. Department of Surgery, R Adams Cowley Shock Trauma Center, Baltimore, MD. Department of Cardiology, Division of Cardiovascular Critical Care, Boston Children's Hospital, Boston, MA. Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Traumatic brain injury biomarkers in pediatric patients: a systematic review. Neurosurg Rev 2021; 45:167-197. [PMID: 34170424 DOI: 10.1007/s10143-021-01588-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/23/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Traumatic brain injury (TBI) is the main cause of pediatric trauma death and disability worldwide. Recent studies have sought to identify biomarkers of TBI for the purpose of assessing functional outcomes. The aim of this systematic review was to evaluate the utility of TBI biomarkers in the pediatric population by summarizing recent findings in the medical literature. A total of 303 articles were retrieved from our search. An initial screening to remove duplicate studies yielded 162 articles. After excluding all articles that did not meet the inclusion criteria, 56 studies were gathered. Among the 56 studies, 36 analyzed serum biomarkers; 11, neuroimaging biomarkers; and 9, cerebrospinal fluid (CSF) biomarkers. Most studies assessed biomarkers in the serum, reflecting the feasibility of obtaining blood samples compared to obtaining CSF or performing neuroimaging. S100B was the most studied serum biomarker in TBI, followed by SNE and UCH-L1, whereas in CSF analysis, there was no unanimity. Among the different neuroimaging techniques employed, diffusion tensor imaging (DTI) was the most common, seemingly holding diagnostic power in the pediatric TBI clinical setting. The number of cross-sectional studies was similar to the number of longitudinal studies. Our data suggest that S100B measurement has high sensitivity and great promise in diagnosing pediatric TBI, ideally when associated with head CT examination and clinical decision protocols. Further large-scale longitudinal studies addressing TBI biomarkers in children are required to establish more accurate diagnostic protocols and prognostic tools.
Collapse
|
13
|
Nacoti M, Fazzi F, Biroli F, Zangari R, Barbui T, Kochanek PM. Addressing Key Clinical Care and Clinical Research Needs in Severe Pediatric Traumatic Brain Injury: Perspectives From a Focused International Conference. Front Pediatr 2021; 8:594425. [PMID: 33537259 PMCID: PMC7849211 DOI: 10.3389/fped.2020.594425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in children and adolescents. Survivors of severe TBI are more prone to functional deficits, resulting in poorer school performance, poor health-related quality of life (HRQoL), and increased risk of mental health problems. Critical gaps in knowledge of pathophysiological differences between children and adults concerning TBI outcomes, the paucity of pediatric trials and prognostic models and the uncertain extrapolation of adult data to pediatrics pose significant challenges and demand global efforts. Here, we explore the clinical and research unmet needs focusing on severe pediatric TBI to identify best practices in pathways of care and optimize both inpatient and outpatient management of children following TBI.
Collapse
Affiliation(s)
- Mirco Nacoti
- Pediatric Intensive Care Unit, Department of Anesthesia and Intensive Care, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Fazzi
- Pediatric Intensive Care Unit, Department of Anesthesia and Intensive Care, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Biroli
- Fondazione per la Ricerca dell'Ospedale di Bergamo Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Rosalia Zangari
- Fondazione per la Ricerca dell'Ospedale di Bergamo Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Tiziano Barbui
- Fondazione per la Ricerca dell'Ospedale di Bergamo Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Fink EL, Clark RSB, Panigrahy A, Berger R, Wisnowski J, Bluml S, Maloney D, Rubin P, Haller T, Bayir H, Beers SR, Kochanek PM, Fabio A. Personalising Outcomes after Child Cardiac Arrest (POCCA): design and recruitment challenges of a multicentre, observational study. BMJ Open 2020; 10:e039323. [PMID: 33109667 PMCID: PMC7592297 DOI: 10.1136/bmjopen-2020-039323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Blood and imaging biomarkers show promise in prognosticating outcomes after paediatric cardiac arrest in pilot studies. We describe the methods and early recruitment challenges and solutions for an ongoing multicentre (n=14) observational trial, Personalising Outcomes following Child Cardiac Arrest to validate clinical, blood and imaging biomarkers individually and together in a clinically relevant panel. METHODS AND ANALYSIS Children (n=164) between 48 hours and 17 years of age who receive chest compressions irrespective of provider, duration, or event location and are admitted to an intensive care unit are eligible. Blood samples will be taken on days 1-3 for the measurement of brain-focused biomarkers analysed to predict the outcome. Clinically indicated and timed brain MRI and spectroscopy biomarkers will be analysed to predict the outcome. The primary outcome for the trial is survival with favourable (Vineland Adaptive Behavioural Scale score >70) outcome at 1 year. Secondary outcomes include mortality and pre-event and postdischarge measures of emotional, cognitive, physical and family functioning and health-related quality of life. Early enrollment targets were not met due to prolonged regulatory and subcontract processes. Multiple, simultaneous interventions including modification to inclusion criteria, additional sites and site visits were implemented with successful improvement in recruitment. Study procedures including outcomes and biomarker analysis are ongoing. ETHICS AND DISSEMINATION Twelve of 14 sites will use the centralised Institutional Review Board (IRB) at the University of Pittsburgh (PRO14030712). Two sites will use individual IRBs: Children's Healthcare of Atlanta Institutional Review Board and Children's Hospital of Wisconsin IRB. Parents and/or guardians are consented and children assented (when possible) by the site Primary investigator (PI) or research coordinator for enrollment. Study findings will be disseminated through scientific conferences, peer-reviewed journal publications, public study website materials and invited lectures. TRIAL REGISTRATION NUMBER NCT02769026.
Collapse
Affiliation(s)
- Ericka L Fink
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ashok Panigrahy
- Radiology, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Rachel Berger
- Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jessica Wisnowski
- Radiology, USC Keck School of Medicine, Los Angeles, California, USA
| | - Stefan Bluml
- Radiology, USC Keck School of Medicine, Los Angeles, California, USA
| | - David Maloney
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Pamela Rubin
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tamara Haller
- Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sue R Beers
- Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anthony Fabio
- Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
The value of cerebrospinal fluid ubiquitin C-terminal hydrolase-L1 protein as a prognostic predictor of neurologic outcome in post-cardiac arrest patients treated with targeted temperature management. Resuscitation 2020; 151:50-58. [PMID: 32272234 DOI: 10.1016/j.resuscitation.2020.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
Abstract
AIM We evaluated the prognostic value of serum- and cerebrospinal fluid (CSF)-ubiquitin carboxyl-terminal esterase L1 protein (UCHL1) measurements in post- post-out of hospital cardiac arrest (OHCA) patients treated with target temperature management (TTM), to predict neurologic outcome. METHODS This was a prospective single-centre observational cohort study, conducted from April 2018 to September 2019. Serum- and CSF-UCHL1 were obtained immediately (UCHL1initial), 24 h (UCHL124), 48 h (UCHL148), and 72 h (UCHL172) after return of spontaneous circulation (ROSC). The area under the receiver operating characteristic curves (AUROC) and Delong method were used to identify cut-off values of serum- and CSF-UCHL1initial, UCHL124, UCHL148, UCHL172 for predicting neurologic outcomes. RESULTS Of 38 patients enrolled, 16 comprised the poor outcome group. The AUROCs for serum- and CSF-UCHL1initial were 0.71 and 0.93 in predicting poor neurological outcomes, respectively (p = 0.01). The AUROCs for serum- and CSF-UCHL124 were 0.85 and 0.91 (p = 0.24). The AUROCs for serum- and CSF-UCHL148 were 0.90 and 0.97 (p = 0.07). The AUROCs for serum- and CSF-UCHL172 were 0.94 and 0.98 (p = 0.25). CONCLUSION Findings of this study demonstrate that CSF-UCHL1 measured immediately, 24, 48, and 72 h after ROSC is a valuable predictor for evaluating neurologic outcomes, whereas serum-UCHL1 measured at 24, 48, and 72 h after ROSC showed a significant performance in the prognostication of poor outcomes in post-OHCA patients treated with TTM.
Collapse
|
16
|
Drabek T, Kochanek PM. Is there a role for therapeutic hypothermia in critical care? EVIDENCE-BASED PRACTICE OF CRITICAL CARE 2020:179-185.e1. [DOI: 10.1016/b978-0-323-64068-8.00035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Fink EL, Clark RSB, Berger RP, Fabio A, Angus DC, Watson RS, Gianakas JJ, Panigrahy A, Callaway CW, Bell MJ, Kochanek PM. 24 vs. 72 hours of hypothermia for pediatric cardiac arrest: A pilot, randomized controlled trial. Resuscitation 2018; 126:14-20. [PMID: 29454009 DOI: 10.1016/j.resuscitation.2018.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/19/2018] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
AIM Children surviving cardiac arrest (CA) lack proven neuroprotective therapies. The role of biomarkers in assessing response to interventions is unknown. We hypothesized that 72 versus 24 h of hypothermia (HT) would produce more favorable biomarker profiles after pediatric CA. METHODS This single center pilot randomized trial tested HT (33 ± 1 °C) for 24 vs. 72 h in 34 children with CA. Children comatose after return of circulation aged 1 week to 17 years and treated with HT by their physician were eligible. Serum was collected twice daily on days 1-4 and once on day 7. Mortality was assessed at 6 months. RESULTS Patient characteristics, baseline biomarker concentrations, and adverse events were similar between groups. Eight (47%) and 4 (24%) children died in the 24 h and 72 h groups, p = .3. Serum neuron specific enolase (NSE) concentration was increased in the 24 vs. 72 h group at 84 h-96 h (median [interquartile range] 47.7 [3.9, 79.9] vs. 1.4 [0.0, 11.1] ng/ml, p = .02) and on day 7 (18.2 [3.2, 74.0] vs. 2.6 [0.0, 12.8] ng/ml, p = .047). Serum S100b was increased in the 24 h vs. 72 h group at 12 h-24 h, 36 h-84 h, and on day 7, all p < 0.05. HT duration was associated with S100b (but not NSE or MBP) concentration on day 7 in multivariate analyses. CONCLUSION Serum biomarkers show promise as theragnostic tools in pediatric CA. Our biomarker and safety data also suggest that 72 h duration after pediatric CA warrants additional exploration.
Collapse
Affiliation(s)
- Ericka L Fink
- Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA; Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, USA.
| | - Robert S B Clark
- Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - Rachel P Berger
- Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - Anthony Fabio
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Derek C Angus
- Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, USA
| | - R Scott Watson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA USA
| | - John J Gianakas
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ashok Panigrahy
- Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Clifton W Callaway
- Emergency Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - Michael J Bell
- Pediatrics, Children's National Medical Center, Washington, D.C. USA
| | - Patrick M Kochanek
- Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Kramer P, Miera O, Berger F, Schmitt K. Prognostic value of serum biomarkers of cerebral injury in classifying neurological outcome after paediatric resuscitation. Resuscitation 2017; 122:113-120. [PMID: 28939504 DOI: 10.1016/j.resuscitation.2017.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023]
Abstract
AIM To investigate if the serum biomarkers of cerebral injury, neuron-specific enolase and S100b protein, may classify unfavourable neurological outcome after paediatric cardiac arrest. METHODS We performed a retrospective study of neuron-specific enolase and S100b measurements from 95 children treated in our paediatric cardiac intensive care unit after cardiac arrest. Neurological outcome at discharge was evaluated using the paediatric cerebral performance category scale, with unfavourable outcome defined as a change of >1 compared to pre-arrest status or death. RESULTS Fifty-eight patients (61.1%) survived to discharge with 48 (50.5%) having a favourable neurological outcome. We observed significantly higher levels of both biomarkers in the unfavourable outcome group at designated time points (neuron-specific enolase at 24, 48, and 72h and S100b at 12, 24, and 48h after cardiac arrest, p<0.05). Receiver operating characteristic areas under the curve for neuron-specific enolase were 0.83, 0.80, and 0.73 at time points 24, 48, and 72h and 0.87, 0.81, and 0.82 for S100b at 12, 24, and 48h after cardiac arrest, respectively. Neuron-specific enolase measurement at 24h after cardiac arrest was an independent predictor of unfavourable outcome in a multivariable analysis. CONCLUSIONS Neuron-specific enolase and S100b classify unfavourable neurological outcome in this large paediatric cardiac arrest cohort. Further multi-institutional prospective studies to comprehensively evaluate the diagnostic accuracy of these biomarkers under various clinical conditions and to determine reliable cut-off values in children are warranted.
Collapse
Affiliation(s)
- Peter Kramer
- Department of Congenital Heart Disease/Paediatric Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Oliver Miera
- Department of Congenital Heart Disease/Paediatric Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix Berger
- Department of Congenital Heart Disease/Paediatric Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Paediatric Cardiology, Charité - Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site, Oudenarder Straße 16, 13347 Berlin, Germany
| | - Katharina Schmitt
- Department of Congenital Heart Disease/Paediatric Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site, Oudenarder Straße 16, 13347 Berlin, Germany
| |
Collapse
|
19
|
Thelin EP, Zeiler FA, Ercole A, Mondello S, Büki A, Bellander BM, Helmy A, Menon DK, Nelson DW. Serial Sampling of Serum Protein Biomarkers for Monitoring Human Traumatic Brain Injury Dynamics: A Systematic Review. Front Neurol 2017; 8:300. [PMID: 28717351 PMCID: PMC5494601 DOI: 10.3389/fneur.2017.00300] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The proteins S100B, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and neurofilament light (NF-L) have been serially sampled in serum of patients suffering from traumatic brain injury (TBI) in order to assess injury severity and tissue fate. We review the current literature of serum level dynamics of these proteins following TBI and used the term "effective half-life" (t1/2) in order to describe the "fall" rate in serum. MATERIALS AND METHODS Through searches on EMBASE, Medline, and Scopus, we looked for articles where these proteins had been serially sampled in serum in human TBI. We excluded animal studies, studies with only one presented sample and studies without neuroradiological examinations. RESULTS Following screening (10,389 papers), n = 122 papers were included. The proteins S100B (n = 66) and NSE (n = 27) were the two most frequent biomarkers that were serially sampled. For S100B in severe TBI, a majority of studies indicate a t1/2 of about 24 h, even if very early sampling in these patients reveals rapid decreases (1-2 h) though possibly of non-cerebral origin. In contrast, the t1/2 for NSE is comparably longer, ranging from 48 to 72 h in severe TBI cases. The protein GFAP (n = 18) appears to have t1/2 of about 24-48 h in severe TBI. The protein UCH-L1 (n = 9) presents a t1/2 around 7 h in mild TBI and about 10 h in severe. Frequent sampling of these proteins revealed different trajectories with persisting high serum levels, or secondary peaks, in patients with unfavorable outcome or in patients developing secondary detrimental events. Finally, NF-L (n = 2) only increased in the few studies available, suggesting a serum availability of >10 days. To date, automated assays are available for S100B and NSE making them faster and more practical to use. CONCLUSION Serial sampling of brain-specific proteins in serum reveals different temporal trajectories that should be acknowledged. Proteins with shorter serum availability, like S100B, may be superior to proteins such as NF-L in detection of secondary harmful events when monitoring patients with TBI.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Frederick Adam Zeiler
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Clinician Investigator Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - András Büki
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | | | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David W. Nelson
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Translating biomarkers from research to clinical use in pediatric neurocritical care: focus on traumatic brain injury and cardiac arrest. Curr Opin Pediatr 2017; 29:272-279. [PMID: 28319562 DOI: 10.1097/mop.0000000000000488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) and cardiac arrest are important causes of morbidity and mortality in children. Improved diagnosis and outcome prognostication using validated biomarkers could allow clinicians to better tailor therapies for optimal efficacy. RECENT FINDINGS Contemporary investigation has yielded plentiful biomarker candidates of central nervous system (CNS) injury, including macromolecules, genetic, inflammatory, oxidative, and metabolic biomarkers. Biomarkers have yet to be validated and translated into bedside point-of-care or cost-effective and efficient laboratory tests. Validation testing should consider developmental status, injury mechanism, and time trajectory with patient-centered outcomes. SUMMARY Recent investigation of biomarkers of CNS injury may soon improve diagnosis, management, and prognostication in children with traumatic brain injury and cardiac arrest.
Collapse
|
21
|
Jenny CA, Bertocci G, Fukuda T, Rangarajan N, Shams T. Biomechanical Response of the Infant Head to Shaking: An Experimental Investigation. J Neurotrauma 2017; 34:1579-1588. [PMID: 27931172 DOI: 10.1089/neu.2016.4687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Controversy exists regarding whether violent shaking is harmful to infants in the absence of impact. In this study, our objective was to characterize the biomechanical response of the infant head during shaking through use of an instrumented anthropomorphic test device (commonly referred to as a "crash test dummy" or surrogate) representing a human infant and having improved biofidelity. A series of tests were conducted to simulate violent shaking of an infant surrogate. The Aprica 2.5 infant surrogate represented a 5th percentile Japanese newborn. A 50th percentile Japanese adult male was recruited to shake the infant surrogate in the sagittal plane. Triaxial linear accelerometers positioned at the center of mass and apex of the head recorded accelerations during shaking. Five shaking test series, each 3-4 sec in duration, were conducted. Outcome measures derived from accelerometer recordings were examined for trends. Head/neck kinematics were characterized during shaking events; mean peak neck flexion was 1.98 radians (113 degrees) and mean peak neck extension was 2.16 radians (123 degrees). The maximum angular acceleration across all test series was 13,260 radians/sec2 (during chin-to-chest contact). Peak angular velocity was 105.7 radians/sec (during chin-to-chest contact). Acceleration pulse durations ranged from 72.1 to 168.2 ms. Using an infant surrogate with improved biofidelity, we found higher angular acceleration and higher angular velocity than previously reported during infant surrogate shaking experiments. Findings highlight the importance of surrogate biofidelity when investigating shaking.
Collapse
Affiliation(s)
- Carole A Jenny
- 1 Department of Pediatrics, University of Washington School of Medicine , Seattle, Washington
| | - Gina Bertocci
- 2 Department of Bioengineering, University of Louisville , Louisville, Kentucky
| | | | | | | |
Collapse
|
22
|
Abstract
Traumatic brain injury (TBI) is an injury to the brain caused by an external mechanical force, affecting millions of people worldwide. The disease course and prognosis are often unpredictable, and it can be challenging to determine an early diagnosis in case of mild injury as well as to accurately phenotype the injury. There is currently no cure for TBI-drugs having failed repeatedly in clinical trials-but an intense effort has been put to identify effective neuroprotective treatment. The detection of novel biomarkers, to understand more of the disease mechanism, facilitates early diagnosis, predicts disease progression, and develops molecularly targeted therapies that would be of high clinical interest. Over the last decade, there has been an increasing effort and initiative toward finding TBI-specific biomarker candidates. One promising strategy has been to use state-of-the-art neuroproteomics approaches to assess clinical biofluids and compare the cerebrospinal fluid (CSF) and blood proteome between TBI and control patients or between different subgroups of TBI. In this chapter, we summarize and discuss the status of biofluid proteomics in TBI, with a particular focus on the latest findings.
Collapse
|
23
|
Biomarkers of Traumatic Brain Injury: Temporal Changes in Body Fluids. eNeuro 2016; 3:eN-REV-0294-16. [PMID: 28032118 PMCID: PMC5175263 DOI: 10.1523/eneuro.0294-16.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injuries (TBIs) are caused by a hit to the head or a sudden acceleration/deceleration movement of the head. Mild TBIs (mTBIs) and concussions are difficult to diagnose. Imaging techniques often fail to find alterations in the brain, and computed tomography exposes the patient to radiation. Brain-specific biomolecules that are released upon cellular damage serve as another means of diagnosing TBI and assessing the severity of injury. These biomarkers can be detected from samples of body fluids using laboratory tests. Dozens of TBI biomarkers have been studied, and research related to them is increasing. We reviewed the recent literature and selected 12 biomarkers relevant to rapid and accurate diagnostics of TBI for further evaluation. The objective was especially to get a view of the temporal profiles of the biomarkers’ rise and decline after a TBI event. Most biomarkers are rapidly elevated after injury, and they serve as diagnostics tools for some days. Some biomarkers are elevated for months after injury, although the literature on long-term biomarkers is scarce. Clinical utilization of TBI biomarkers is still at a very early phase despite years of active research.
Collapse
|
24
|
Roberts RA, Aschner M, Calligaro D, Guilarte TR, Hanig JP, Herr DW, Hudzik TJ, Jeromin A, Kallman MJ, Liachenko S, Lynch JJ, Miller DB, Moser VC, O'Callaghan JP, Slikker W, Paule MG. Translational Biomarkers of Neurotoxicity: A Health and Environmental Sciences Institute Perspective on the Way Forward. Toxicol Sci 2016; 148:332-40. [PMID: 26609132 PMCID: PMC4659531 DOI: 10.1093/toxsci/kfv188] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurotoxicity has been linked to a number of common drugs and chemicals, yet efficient and accurate methods to detect it are lacking. There is a need for more sensitive and specific biomarkers of neurotoxicity that can help diagnose and predict neurotoxicity that are relevant across animal models and translational from nonclinical to clinical data. Fluid-based biomarkers such as those found in serum, plasma, urine, and cerebrospinal fluid (CSF) have great potential due to the relative ease of sampling compared with tissues. Increasing evidence supports the potential utility of fluid-based biomarkers of neurotoxicity such as microRNAs, F2-isoprostanes, translocator protein, glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1, myelin basic protein, microtubule-associated protein-2, and total tau. However, some of these biomarkers such as those in CSF require invasive sampling or are specific to one disease such as Alzheimer’s, while others require further validation. Additionally, neuroimaging methodologies, including magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, may also serve as potential biomarkers and have several advantages including being minimally invasive. The development of biomarkers of neurotoxicity is a goal shared by scientists across academia, government, and industry and is an ideal topic to be addressed via the Health and Environmental Sciences Institute (HESI) framework which provides a forum to collaborate on key challenging scientific topics. Here we utilize the HESI framework to propose a consensus on the relative potential of currently described biomarkers of neurotoxicity to assess utility of the selected biomarkers using a nonclinical model.
Collapse
Affiliation(s)
- Ruth A Roberts
- *ApconiX, BioHub at Alderley Park, Cheshire SK10 4TG, UK;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David Calligaro
- Eli Lilly & Co., Pharmacology/Toxicology Research Lilly Research Labs, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285
| | | | - Joseph P Hanig
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland 20993
| | - David W Herr
- US EPA, Toxicology Assessment Division, NHEERL, Research Triangle Park, North Carolona 27711
| | | | | | - Mary J Kallman
- Covance, Inc., 8211 SciCor Drive, Indianapolis, Indiana 46214
| | - Serguei Liachenko
- **U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | | | - Diane B Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505; and
| | - Virginia C Moser
- US EPA, Toxicology Assessment Division, NHEERL, Research Triangle Park, North Carolona 27711
| | - James P O'Callaghan
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505; and
| | - William Slikker
- **U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Merle G Paule
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505; and
| |
Collapse
|
25
|
Abstract
Biomarkers are key tools and can provide crucial information on the complex cascade of events and molecular mechanisms underlying traumatic brain injury (TBI) pathophysiology. Obtaining a profile of distinct classes of biomarkers reflecting core pathologic mechanisms could enable us to identify and characterize the initial injury and the secondary pathologic cascades. Thus, they represent a logical adjunct to improve diagnosis, track progression and activity, guide molecularly targeted therapy, and monitor therapeutic response in TBI. Accordingly, great effort has been put into the identification of novel biomarkers in the past 25 years. However, the role of brain injury markers in clinical practice has been long debated, due to inconsistent regulatory standards and lack of reliable evidence of analytical validity and clinical utility. We present a comprehensive overview of the markers currently available while characterizing their potential role and applications in diagnosis, monitoring, drug discovery, and clinical trials in TBI. In reviewing these concepts, we discuss the recent inclusion of brain damage biomarkers in the diagnostic guidelines and provide perspectives on the validation of such markers for their use in the clinic.
Collapse
|
26
|
Glushakova OY, Glushakov AV, Hayes RL. Finding effective biomarkers for pediatric traumatic brain injury. Brain Circ 2016; 2:129-132. [PMID: 30276288 PMCID: PMC6126274 DOI: 10.4103/2394-8108.192518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022] Open
Abstract
As traumatic brain injury (TBI) continues to affect children and young adults worldwide, research on reliable biomarkers grows as a possible aid in determining the severity of injury. However, many studies have revealed that diverse biomarkers such as S100B and myelin basic protein (MBP) have many limitations, such as their elevated normative concentrations in young children. Therefore, the results of these studies have yet to be translated to clinical applications. However, despite the setbacks of research into S100B and MBP, investigators continue to research viable biomarkers, notably glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1), as possible aids in medical decision making. Studies have revealed that GFAP and UCH-L1 actually are better predictors of injury progression than the before-mentioned biomarkers S100B and MBP. In addition, UCH-L1 has demonstrated an ability to detect injury while CT is negative, suggesting an ability to detect acute intracranial lesions. Here, we evaluate research testing levels of GFAP and UCH-L1 on children diagnosed with TBI and compare our results to those of other tested biomarkers. In a recent study done by Hayes et al., GFAP and UCH-L1 demonstrated the potential to recognize children with the possibility of poor outcome, allowing for more specialized treatments with clinical and laboratory applications. Although studies on GFAP and UCH-L1 have for the most part warranted positive results, further studies will be needed to confirm their role as reliable markers for pediatric TBI.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA.,Banyan Biomarkers, Inc., Alachua, FL, USA
| |
Collapse
|
27
|
Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury. Sci Rep 2016; 6:28203. [PMID: 27319802 PMCID: PMC4913316 DOI: 10.1038/srep28203] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023] Open
Abstract
Objective reliable markers to assess traumatic brain injury (TBI) and predict outcome soon after injury are a highly needed tool for optimizing management of pediatric TBI. We assessed serum concentrations of Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in a cohort of 45 children with clinical diagnosis of TBI (Glasgow Coma Scale [GCS] 3–15) and 40 healthy subjects, evaluated their associations with clinical characteristics and outcomes, and compared their performance to previously published data on two well-studied blood biomarkers, S100B and MBP. We observed higher serum levels of GFAP and UCH-L1 in brain-injured children compared with controls and also demonstrated a step-wise increase of biomarker concentrations over the continuum of severity from mild to severe TBI. Furthermore, while we found that only the neuronal biomarker UCH-L1 holds potential to detect acute intracranial lesions as assessed by computed tomography (CT), both markers were substantially increased in TBI patients even with a normal CT suggesting the presence of undetected microstructural injuries. Serum UCH-L1 and GFAP concentrations also strongly predicted poor outcome and performed better than S100B and MBP. Our results point to a role of GFAP and UCH-L1 as candidate biomarkers for pediatric TBI. Further studies are warranted.
Collapse
|
28
|
Dunkley S, McLeod A. Therapeutic hypothermia in patients following traumatic brain injury: a systematic review. Nurs Crit Care 2016; 22:150-160. [PMID: 27150123 DOI: 10.1111/nicc.12242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The efficacy of therapeutic hypothermia in adult patients with traumatic brain injury is not fully understood. The historical use of therapeutic hypothermia at extreme temperatures was associated with severe complications and led to it being discredited. Positive results from animal studies using milder temperatures led to renewed interest. However, recent studies have not convincingly demonstrated the beneficial effects of therapeutic hypothermia in practice. AIM This review aims to answer the question: in adults with a severe traumatic brain injury (TBI), does the use of therapeutic hypothermia compared with normothermia affect neurological outcome? DESIGN Systematic review. METHOD Four major electronic databases were searched, and a hand search was undertaken using selected key search terms. Inclusion and exclusion criteria were applied. The studies were appraised using a systematic approach, and four themes addressing the research question were identified and critically evaluated. RESULTS A total of eight peer-reviewed studies were found, and the results show there is some evidence that therapeutic hypothermia may be effective in improving neurological outcome in adult patients with traumatic brain injury. However, the majority of the trials report conflicting results. Therapeutic hypothermia is reported to be effective at lowering intracranial pressure; however, its efficacy in improving neurological outcome is not fully demonstrated. This review suggests that therapeutic hypothermia had increased benefits in patients with haematoma-type injuries as opposed to those with diffuse injury and contusions. It also suggests that cooling should recommence if rebound intracranial hypertension is observed. CONCLUSION Although the data indicates a trend towards better neurological outcome and reduced mortality rates, higher quality multi-centred randomized controlled trials are required before therapeutic hypothermia is implemented as a standard adjuvant therapy for treating traumatic brain injury. RELEVANCE TO CLINICAL PRACTICE Therapeutic hypothermia can have a positive impact on patient outcome, but more research is required.
Collapse
Affiliation(s)
- Steven Dunkley
- Adult Critical Care Unit, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Anne McLeod
- School of Health Sciences, City University, London, UK
| |
Collapse
|
29
|
Fink EL, Berger RP, Clark RSB, Watson RS, Angus DC, Panigrahy A, Richichi R, Callaway CW, Bell MJ, Mondello S, Hayes RL, Kochanek PM. Exploratory study of serum ubiquitin carboxyl-terminal esterase L1 and glial fibrillary acidic protein for outcome prognostication after pediatric cardiac arrest. Resuscitation 2016; 101:65-70. [PMID: 26855294 PMCID: PMC4792689 DOI: 10.1016/j.resuscitation.2016.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Brain injury is the leading cause of morbidity and death following pediatric cardiac arrest. Serum biomarkers of brain injury may assist in outcome prognostication. The objectives of this study were to evaluate the properties of serum ubiquitin carboxyl-terminal esterase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) to classify outcome in pediatric cardiac arrest. METHODS Single center prospective study. Serum biomarkers were measured at 2 time points during the initial 72 h in children after cardiac arrest (n=19) and once in healthy children (controls, n=43). We recorded demographics and details of the cardiac arrest and resuscitation. We determined the associations between serum biomarker concentrations and Pediatric Cerebral Performance Category (PCPC) at 6 months (favorable (PCPC 1-3) or unfavorable (PCPC 4-6)). RESULTS The initial assessment (time point 1) occurred at a median (IQR) of 10.5 (5.5-17.0)h and the second assessment (time point 2) at 59.0 (54.5-65.0)h post-cardiac arrest. Serum UCH-L1 was higher among children following cardiac arrest than among controls at both time points (p<0.05). Serum GFAP in subjects with unfavorable outcome was higher at time point 2 than in controls (p<0.05). Serum UCH-L1 at time point 1 (AUC 0.782) and both UCH-L1 and GFAP at time point 2 had good classification accuracy for outcome (AUC 0.822 and 0.796), p<0.05 for all. CONCLUSION Preliminary data suggest that serum UCH-L1 and GFAP may be of use to prognosticate outcome after pediatric cardiac arrest at clinically-relevant time points and should be validated prospectively.
Collapse
Affiliation(s)
- Ericka L Fink
- Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA.
| | - Rachel P Berger
- Child Advocacy, Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Robert S B Clark
- Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - R Scott Watson
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, USA
| | - Derek C Angus
- Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, USA
| | - Ashok Panigrahy
- Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Rudolph Richichi
- Statistical Analysis and Measurement Consultants, Inc., Lanexa, VA, USA
| | - Clifton W Callaway
- Emergency Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - Michael J Bell
- Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | | | | | - Patrick M Kochanek
- Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Searching for the Brain's Canary in the Coal Mine. Crit Care Med 2015; 43:2265-6. [PMID: 26376258 DOI: 10.1097/ccm.0000000000001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Berger RP, Fromkin J, Rubin P, Snyder J, Richichi R, Kochanek P. Serum D-dimer concentrations are increased after pediatric traumatic brain injury. J Pediatr 2015; 166:383-8. [PMID: 25454315 PMCID: PMC4469943 DOI: 10.1016/j.jpeds.2014.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/13/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine whether D-dimer would be increased in children with traumatic brain injury (TBI), specifically mild abusive head trauma. STUDY DESIGN D-dimer was measured using multiplex bead technology in 195 children <4 years old (n = 93 controls without TBI, n = 102 cases with TBI) using previously collected serum. D-dimer was then measured prospectively in a clinical setting in 44 children (n = 24 controls, n = 20 cases). Receiver operator curves were generated for prospective data. RESULTS In both the retrospective and prospective cohorts, median (25th-75th percentile) D-dimer was significantly higher in cases vs controls. A receiver operator curve demonstrated an area under the curve of 0.91 (95% CI 0.83-0.99) in the prospective cohort. At a cut-off of 0.59 μg/L, the sensitivity and specificity for identification of a case was 90% and 75%, respectively. CONCLUSIONS Our data suggest that serum D-dimer may be able to be used to identify which young children at risk for abusive head trauma might benefit from a head computed tomography or other additional evaluation. Additional data are needed to better identify the clinical scenarios that may result in false positive or false negative D-dimer concentrations.
Collapse
Affiliation(s)
- Rachel P. Berger
- Associate Professor of Pediatrics, Safar Center for Resuscitation Research, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, University of Pittsburgh, Phone: 412-692-8664, Fax: 412-692-8399
| | - Janet Fromkin
- Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, University of Pittsburgh, Phone: 412-692-8664, Fax: 412-692-8399
| | - Pam Rubin
- Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, University of Pittsburgh, Phone: 412-692-8664, Fax: 412-692-8399
| | - John Snyder
- UPMC Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, Phone: 412-623-7748, Fax: 412-623-1415
| | - Rudolph Richichi
- Statistical Analysis and Measurement Consultants, Inc., P.O. Box 224, Lanexa, VA 23089
| | - Patrick Kochanek
- Safar Center for Resuscitation Research, 3434 Fifth Avenue, Pittsburgh PA 15260, Phone: 412-383-1900
| |
Collapse
|
32
|
Buki A, Kovacs N, Czeiter E, Schmid K, Berger RP, Kobeissy F, Italiano D, Hayes RL, Tortella FC, Mezosi E, Schwarcz A, Toth A, Nemes O, Mondello S. Minor and repetitive head injury. Adv Tech Stand Neurosurg 2015; 42:147-92. [PMID: 25411149 DOI: 10.1007/978-3-319-09066-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in the young, active population and expected to be the third leading cause of death in the whole world until 2020. The disease is frequently referred to as the silent epidemic, and many authors highlight the "unmet medical need" associated with TBI.The term traumatically evoked brain injury covers a heterogeneous group ranging from mild/minor/minimal to severe/non-salvageable damages. Severe TBI has long been recognized to be a major socioeconomical health-care issue as saving young lives and sometimes entirely restituting health with a timely intervention can indeed be extremely cost efficient.Recently it has been recognized that mild or minor TBI should be considered similarly important because of the magnitude of the patient population affected. Other reasons behind this recognition are the association of mild head injury with transient cognitive disturbances as well as long-term sequelae primarily linked to repeat (sport-related) injuries.The incidence of TBI in developed countries can be as high as 2-300/100,000 inhabitants; however, if we consider the injury pyramid, it turns out that severe and moderate TBI represents only 25-30 % of all cases, while the overwhelming majority of TBI cases consists of mild head injury. On top of that, or at the base of the pyramid, are the cases that never show up at the ER - the unreported injuries.Special attention is turned to mild TBI as in recent military conflicts it is recognized as "signature injury."This chapter aims to summarize the most important features of mild and repetitive traumatic brain injury providing definitions, stratifications, and triage options while also focusing on contemporary knowledge gathered by imaging and biomarker research.Mild traumatic brain injury is an enigmatic lesion; the classification, significance, and its consequences are all far less defined and explored than in more severe forms of brain injury.Understanding the pathobiology and pathomechanisms may aid a more targeted approach in triage as well as selection of cases with possible late complications while also identifying the target patient population where preventive measures and therapeutic tools should be applied in an attempt to avoid secondary brain injury and late complications.
Collapse
Affiliation(s)
- Andras Buki
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kemp A, Cowley L, Maguire S. Spinal injuries in abusive head trauma: patterns and recommendations. Pediatr Radiol 2014; 44 Suppl 4:S604-12. [PMID: 25501732 DOI: 10.1007/s00247-014-3066-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/25/2014] [Accepted: 05/21/2014] [Indexed: 11/29/2022]
Abstract
A growing body of scientific evidence suggests that there is an association between occult spinal injury and abusive head trauma (previously known as shaken baby syndrome). Consideration needs to be given to the nature of these injuries, the possible causal mechanisms and what investigations should be undertaken to delineate the full extent of spinal involvement in infants with suspected abusive head trauma. This association has the potential to influence our understanding of the biomechanics and subsequent neuropathology associated with abusive head trauma.
Collapse
Affiliation(s)
- Alison Kemp
- Early Years Research Programme, School of Medicine, Cardiff University, 4th Floor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK,
| | | | | |
Collapse
|
34
|
Serum amyloid A is increased in children with abusive head trauma: a gel-based proteomic analysis. Pediatr Res 2014; 76:280-6. [PMID: 24941216 DOI: 10.1038/pr.2014.86] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/08/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Abusive head trauma (AHT) is the leading cause of death from traumatic brain injury in infants and young children. Identification of mild AHT (Glasgow Coma Scale score: 13-15) is difficult because children can present with nonspecific symptoms and with no history of trauma. METHODS Two-dimensional difference gel electrophoresis combined with mass spectrometry was used to compare the serum protein profile of children with mild AHT and age-matched controls. Protein changes were confirmed by western blots. Western blots were performed using serum from children with mild, moderate, and severe AHT to assess the effect of injury severity on protein intensity. The protein identified--serum amyloid A (SAA)--was then measured by enzyme-linked immunosorbent assay. RESULTS Using serum from 18 mild AHT cases and 20 controls, there were ~1,000 protein spots; 2 were significantly different between groups. Both spots were identified as SAA. There was no relationship between protein levels and injury severity. SAA concentrations measured by enzyme-linked immunosorbent assay were increased in cases vs. controls. CONCLUSION SAA may be a potential biomarker to identify children with mild AHT who present for medical care without a history of trauma and who might otherwise not be recognized as needing a head computed tomography.
Collapse
|
35
|
Imagawa KK, Hamilton A, Ceschin R, Tokar E, Pham P, Bluml S, Wisnowski J, Panigrahy A. Characterization of microstructural injury: a novel approach in infant abusive head trauma-initial experience. J Neurotrauma 2014; 31:1632-8. [PMID: 24831582 DOI: 10.1089/neu.2013.3228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abusive head trauma (AHT) is the leading cause of morbidity and mortality among abused children, yet the neuroanatomical underpinnings of AHT outcome is incompletely understood. The aim of this study was to characterize white matter (WM) abnormalities in infants with AHT using diffusion tensor imaging (DTI) and determine which microstructural abnormalities are associated with poor outcome. Retrospective DTI data from 17 infants (>3 months) with a diagnosis of AHT and a comparison cohort of 34 term infants of similar post-conceptual age (PCA) were compared using a voxel-based DTI analysis of cerebral WM. AHT cases were dichotomously classified into mild/moderate versus severe outcome. Clinical variables and conventional imaging findings were also analyzed in relation to outcome. Outcomes were classified in accordance with the Pediatric Cerebral Performance Category Score (PCPCS). Reduced axial diffusivity (AD) was shown in widespread WM regions in the AHT infants compared with controls as well as in the AHT severe outcome group compared with the AHT mild/moderate outcome group. Reduced mean diffusivity (MD) was also associated with severe outcome. Radial diffusivity (RD), conventional magnetic resonance findings, brain metric measurements, and clinical/laboratory variables (with the exception of Glascow Coma Scale) did not differ among AHT outcome groups. Findings support the unique role of DTI techniques, beyond conventional imaging, in the evaluation of microstructural WM injury of AHT. Reduced AD (likely reflecting axonal damage) and MD were associated with poor clinical outcome. DTI abnormalities may uniquely reflect AHT patterns of axonal injury that are not characterized by conventional imaging, which may have both therapeutic and prognostic implications.
Collapse
Affiliation(s)
- Karen Kay Imagawa
- 1 Department of Pediatrics, Children's Hospital Los Angeles , Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Strathmann FG, Schulte S, Goerl K, Petron DJ. Blood-based biomarkers for traumatic brain injury: Evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem 2014; 47:876-88. [DOI: 10.1016/j.clinbiochem.2014.01.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/05/2014] [Accepted: 01/23/2014] [Indexed: 01/06/2023]
|
37
|
Molecular mechanisms of increased cerebral vulnerability after repeated mild blast-induced traumatic brain injury. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Andrikopoulou M, Almalki A, Farzin A, Cordeiro CN, Johnston MV, Burd I. Perinatal biomarkers in prematurity: early identification of neurologic injury. Int J Dev Neurosci 2014; 36:25-31. [PMID: 24768951 DOI: 10.1016/j.ijdevneu.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, biomarkers have become increasingly utilized as non-invasive tools in the early diagnosis and management of various clinical conditions. In perinatal medicine, the improved survival of extremely premature infants who are at high risk for adverse neurologic outcomes has increased the demand for the discovery of biomarkers in detecting and predicting the prognosis of infants with neonatal brain injury. By enabling the clinician to recognize potential brain damage early, biomarkers could allow clinicians to intervene at the early stages of disease, and to monitor the efficacy of those interventions. This review will first examine the potential perinatal biomarkers for neurologic complications of prematurity, specifically, intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL) and posthemorrhagic hydrocephalus (PHH). It will also evaluate knowledge gained from animal models regarding the pathogenesis of perinatal brain injury in prematurity.
Collapse
Affiliation(s)
- Maria Andrikopoulou
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ahmad Almalki
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Azadeh Farzin
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christina N Cordeiro
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael V Johnston
- Department of Neuroscience, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
39
|
Fink EL, Berger RP, Clark RSB, Watson RS, Angus DC, Richichi R, Panigrahy A, Callaway CW, Bell MJ, Kochanek PM. Serum biomarkers of brain injury to classify outcome after pediatric cardiac arrest*. Crit Care Med 2014; 42:664-74. [PMID: 24164954 PMCID: PMC4478619 DOI: 10.1097/01.ccm.0000435668.53188.80] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Morbidity and mortality in children with cardiac arrest largely result from neurologic injury. Serum biomarkers of brain injury can potentially measure injury to neurons (neuron-specific enolase), astrocytes (S100b), and axons (myelin basic protein). We hypothesized that serum biomarkers can be used to classify outcome from pediatric cardiac arrest. DESIGN Prospective observational study. SETTING Single tertiary pediatric hospital. PATIENTS Forty-three children with cardiac arrest. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We measured serum neuron-specific enolase, S100b, and myelin basic protein on days 1-4 and 7 after cardiac arrest. We recorded demographics, details of the cardiac arrest and resuscitation, and Pediatric Cerebral Performance Category at hospital discharge and 6 months. We analyzed the association of biomarker levels at 24, 48, and 72 hours with favorable (Pediatric Cerebral Performance Category 1-3) or unfavorable (Pediatric Cerebral Performance Category 4-6) outcome and mortality. Forty-three children (49% female; mean age of 5.9 ± 6.3) were enrolled and 17 (40%) died. Serum S100b concentrations peaked earliest, followed by neuron-specific enolase and finally myelin basic protein. Serum neuron-specific enolase and S100b concentrations were increased in the unfavorable versus favorable outcome group and in subjects who died at all time points (all p < 0.05). Serum myelin basic protein at 24 and 72 hours correctly classified survival but not good versus poor outcome. Using best specificity, serum S100b and neuron-specific enolase had optimal positive and negative predictive values at 24 hours to classify both favorable versus unfavorable outcome and survival, whereas serum myelin basic protein's best accuracy occurred at 48 hours. Receiver operator curves for serum S100b and neuron-specific enolase to classify favorable versus unfavorable outcome at 6 months were superior to clinical variables. CONCLUSIONS Preliminary data show that serum S100b, neuron-specific enolase, and myelin basic protein may aid in outcome classification of children surviving cardiac arrest.
Collapse
Affiliation(s)
- Ericka L Fink
- 1Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 2Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 3Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA. 4Statistical Analysis and Measurement Consultants, Inc., Lanexa, VA. 5Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 6Department of Emergency Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Berger RP, Parks S, Fromkin J, Rubin P, Pecora PJ. Assessing the accuracy of the International Classification of Diseases codes to identify abusive head trauma: a feasibility study. Inj Prev 2013; 21:e133-7. [PMID: 24167034 DOI: 10.1136/injuryprev-2013-040924] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess the accuracy of an International Classification of Diseases (ICD) code-based operational case definition for abusive head trauma (AHT). METHODS Subjects were children <5 years of age evaluated for AHT by a hospital-based Child Protection Team (CPT) at a tertiary care paediatric hospital with a completely electronic medical record (EMR) system. Subjects were designated as non-AHT traumatic brain injury (TBI) or AHT based on whether the CPT determined that the injuries were due to AHT. The sensitivity and specificity of the ICD-based definition were calculated. RESULTS There were 223 children evaluated for AHT: 117 AHT and 106 non-AHT TBI. The sensitivity and specificity of the ICD-based operational case definition were 92% (95% CI 85.8 to 96.2) and 96% (95% CI 92.3 to 99.7), respectively. All errors in sensitivity and three of the four specificity errors were due to coder error; one specificity error was a physician error. CONCLUSIONS In a paediatric tertiary care hospital with an EMR system, the accuracy of an ICD-based case definition for AHT was high. Additional studies are needed to assess the accuracy of this definition in all types of hospitals in which children with AHT are cared for.
Collapse
Affiliation(s)
- Rachel P Berger
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Sharyn Parks
- National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Janet Fromkin
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Pamela Rubin
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Peter J Pecora
- Casey Family Programs, School of Social Work, University of Washington, Seattle, Washington, USA
| |
Collapse
|
42
|
Kochanek PM, Berger RP, Fink EL, Au AK, Bayır H, Bell MJ, Dixon CE, Clark RSB. The potential for bio-mediators and biomarkers in pediatric traumatic brain injury and neurocritical care. Front Neurol 2013; 4:40. [PMID: 23637695 PMCID: PMC3636482 DOI: 10.3389/fneur.2013.00040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/15/2013] [Indexed: 01/13/2023] Open
Abstract
The use of biomarkers of brain injury in pediatric neurocritical care has been explored for at least 15 years. Two general lines of research on biomarkers in pediatric brain injury have been pursued: (1) studies of "bio-mediators" in cerebrospinal fluid (CSF) of children after traumatic brain injury (TBI) to explore the components of the secondary injury cascades in an attempt to identify potential therapeutic targets and (2) studies of the release of structural proteins into the CSF, serum, or urine in order to diagnose, monitor, and/or prognosticate in patients with TBI or other pediatric neurocritical care conditions. Unique age-related differences in brain biology, disease processes, and clinical applications mandate the development and testing of brain injury bio-mediators and biomarkers specifically in pediatric neurocritical care applications. Finally, although much of the early work on biomarkers of brain injury in pediatrics has focused on TBI, new applications are emerging across a wide range of conditions specifically for pediatric neurocritical care including abusive head trauma, cardiopulmonary arrest, septic shock, extracorporeal membrane oxygenation, hydrocephalus, and cardiac surgery. The potential scope of the utility of biomarkers in pediatric neurocritical care is thus also discussed.
Collapse
Affiliation(s)
- Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Papa L, Ramia MM, Kelly JM, Burks SS, Pawlowicz A, Berger RP. Systematic review of clinical research on biomarkers for pediatric traumatic brain injury. J Neurotrauma 2013; 30:324-38. [PMID: 23078348 DOI: 10.1089/neu.2012.2545] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract The objective was to systematically review the medical literature and comprehensively summarize clinical research performed on biomarkers for pediatric traumatic brain injury (TBI) and to summarize the studies that have assessed serum biomarkers acutely in determining intracranial lesions on CT in children with TBI. The search strategy included a literature search of PubMed,(®) MEDLINE,(®) and the Cochrane Database from 1966 to August 2011, as well as a review of reference lists of identified studies. Search terms used included pediatrics, children, traumatic brain injury, and biomarkers. Any article with biomarkers of traumatic brain injury as a primary focus and containing a pediatric population was included. The search initially identified 167 articles. Of these, 49 met inclusion and exclusion criteria and were critically reviewed. The median sample size was 58 (interquartile range 31-101). The majority of the articles exclusively studied children (36, 74%), and 13 (26%) were studies that included both children and adults in different proportions. There were 99 different biomarkers measured in these 49 studies, and the five most frequently examined biomarkers were S100B (27 studies), neuron-specific enolase (NSE) (15 studies), interleukin (IL)-6 (7 studies), myelin basic protein (MBP) (6 studies), and IL-8 (6 studies). There were six studies that assessed the relationship between serum markers and CT lesions. Two studies found that NSE levels ≥15 ng/mL within 24 h of TBI was associated with intracranial lesions. Four studies using serum S100B were conflicting: two studies found no association with intracranial lesions and two studies found a weak association. The flurry of research in the area over the last decade is encouraging but is limited by small sample sizes, variable practices in sample collection, inconsistent biomarker-related data elements, and disparate outcome measures. Future studies of biomarkers for pediatric TBI will require rigorous and more uniform research methodology, common data elements, and consistent performance measures.
Collapse
Affiliation(s)
- Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL 32806, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Assessing the use of follow-up skeletal surveys in children with suspected physical abuse. J Trauma Acute Care Surg 2012; 73:972-6. [PMID: 22902733 DOI: 10.1097/ta.0b013e31825a773d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Child physical abuse is an important cause of morbidity and mortality in young children. The skeletal survey (SS) is considered a mandatory part of the evaluation for suspected physical abuse in young children. Literature suggests that a follow-up SS performed 10 to 21 days after the initial SS can provide important additional information, but previous studies evaluating the follow-up SS have been small and included very selective patient populations. METHODS A retrospective descriptive study of a consecutive sample of children who underwent an initial SS and a follow-up SS at a single children's hospital during a 7-year period. Data on demographics, clinical presentation, results, and effect of the follow-up SS on clinical diagnosis were collected. RESULTS Of the 1470 children who underwent an initial SS, 11% (169 of 1470 children) also underwent a follow-up SS. The mean age of the children who underwent both an initial SS and a follow-up SS was 5.8 months. Fourteen percent of the follow-up SS identified previously unrecognized fractures; all of which were healing. There were eight children in whom the information obtained from the follow-up SS resulted in a diagnosis of definite physical abuse; all eight children were younger than 12 months, and in six of these cases, the initial SS did not demonstrate any fractures. CONCLUSION Only a small proportion of children who undergo an initial SS also undergo a follow-up SS. The relatively high proportion of follow-up SS that demonstrated previously unrecognized fracture(s), the young age of children undergoing the follow-up SS, and the high morbidity and mortality of unrecognized/missed child physical abuse in this age group suggest that the follow-up SS should be a routine part of the evaluation of child physical abuse. LEVEL OF EVIDENCE III, observational study.
Collapse
|
45
|
Einav S, Kaufman N, Algur N, Kark JD. Modeling serum biomarkers S100 beta and neuron-specific enolase as predictors of outcome after out-of-hospital cardiac arrest: an aid to clinical decision making. J Am Coll Cardiol 2012; 60:304-11. [PMID: 22813607 DOI: 10.1016/j.jacc.2012.04.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/05/2012] [Accepted: 04/02/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to determine the added value of the serum biomarkers S100 and neuron-specific enolase to clinical characteristics for predicting outcome after out-of-hospital cardiac arrest. BACKGROUND Serum S100 beta (S100B) and neuron-specific enolase concentrations rise after brain injury. METHODS A prolective observational study was conducted among all adult survivors of nontraumatic out-of-hospital cardiac arrest admitted to 1 hospital (April 3, 2008 to April 3, 2011). Three blood samples (on arrival and on days 1 and 3) were drawn for biomarkers, contingent on survival. Follow-up continued until in-hospital death or discharge. Outcomes were defined as good (Cerebral Performance Category score 1 or 2) or poor (Cerebral performance category score 3 to 5). RESULTS A total of 195 patients were included (65.6% men, mean age 73 ± 16 years), with presenting rhythms of asystole in 61.5% and ventricular tachycardia or ventricular fibrillation in 24.1%. Only 43 patients (22.0%) survived to hospital discharge, 26 (13.3%) with good outcomes. Patients with good outcomes had significantly lower S100B levels at all time points and lower neuron-specific enolase levels on days 1 and 3 compared with those with poor outcomes. Independent predictors at admission of a good outcome were younger age, a presenting rhythm of ventricular tachycardia or ventricular fibrillation, and lower S100B level. Predictors on day 3 were younger age and lower day 3 S100B level. The area under the receiver-operating characteristic curve of the admission-day model was 0.932 with and 0.880 without biomarker data (p = 0.027 for the difference). CONCLUSIONS Risk stratification after out-of-hospital cardiac arrest using both clinical and biomarker data is feasible. The biomarkers, although adding an ostensibly modest 5.2% to the area under the receiver-operating characteristic curve, substantially reduced the level of uncertainty in decision making. Nevertheless, current biomarkers cannot replace societal considerations in determining acceptable levels of uncertainty. (Protein S100 Beta as a Predictor of Resuscitation Outcome; NCT00814814).
Collapse
|
46
|
Rau TF, Lu Q, Sharma S, Sun X, Leary G, Beckman ML, Hou Y, Wainwright MS, Kavanaugh M, Poulsen DJ, Black SM. Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction. PLoS One 2012; 7:e40881. [PMID: 22984394 PMCID: PMC3439445 DOI: 10.1371/journal.pone.0040881] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 06/18/2012] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.
Collapse
Affiliation(s)
- Thomas F. Rau
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Qing Lu
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Shruti Sharma
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Xutong Sun
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Gregory Leary
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Matthew L. Beckman
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Yali Hou
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Mark S. Wainwright
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Children's Memorial Hospital, 2300 Children's Plaza, Chicago, Illinois, United States of America
| | - Michael Kavanaugh
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - David J. Poulsen
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
- * E-mail: (SMB); (DJP)
| | - Stephen M. Black
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America
- * E-mail: (SMB); (DJP)
| |
Collapse
|
47
|
Zoltewicz JS, Scharf D, Yang B, Chawla A, Newsom KJ, Fang L. Characterization of Antibodies that Detect Human GFAP after Traumatic Brain Injury. Biomark Insights 2012; 7:71-9. [PMID: 22798722 PMCID: PMC3394595 DOI: 10.4137/bmi.s9873] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
After traumatic brain injury (TBI), glial fibrillary acidic protein (GFAP) and other brain-derived proteins and their breakdown products are released into biofluids such as CSF and blood. Recently, a sandwich ELISA was constructed that measured GFAP concentrations in CSF or serum from human mild-moderate TBI patients. The goals of the present study were to characterize the same two antibodies used in this ELISA, and to determine which GFAP bands are detected by this antibody combination. Here, both antibodies recognized GFAP specifically in human brain and post-TBI CSF in a cluster of bands ranging from 50–38 kDa, that resembled bands from calpain-cleaved GFAP. By immunoprecipitation, the anti-GFAP Capture antibody recovered full length GFAP and its breakdown products from human brain lysate and post-TBI CSF. These findings demonstrate that the anti-GFAP ELISA antibodies non-preferentially detect intact GFAP and GFAP breakdown products, underscoring their utility for detecting brain injury in human patients.
Collapse
|
48
|
Advanced neuromonitoring and imaging in pediatric traumatic brain injury. Crit Care Res Pract 2012; 2012:361310. [PMID: 22675618 PMCID: PMC3363371 DOI: 10.1155/2012/361310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 03/22/2012] [Indexed: 12/22/2022] Open
Abstract
While the cornerstone of monitoring following severe pediatric traumatic brain injury is serial neurologic examinations, vital signs, and intracranial pressure monitoring, additional techniques may provide useful insight into early detection of evolving brain injury. This paper provides an overview of recent advances in neuromonitoring, neuroimaging, and biomarker analysis of pediatric patients following traumatic brain injury.
Collapse
|
49
|
Au AK, Aneja RK, Bell MJ, Bayir H, Feldman K, Adelson PD, Fink EL, Kochanek PM, Clark RSB. Cerebrospinal fluid levels of high-mobility group box 1 and cytochrome C predict outcome after pediatric traumatic brain injury. J Neurotrauma 2012; 29:2013-21. [PMID: 22540160 DOI: 10.1089/neu.2011.2171] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that is passively released from damaged and necrotic cells, and actively released from immune cells. In contrast, cytochrome c is released from mitochondria in apoptotic cells, and is considered a reliable biomarker of apoptosis. Thus, HMGB1 and cytochrome c may in part reflect the degree of necrosis and apoptosis present after traumatic brain injury (TBI), where both are felt to contribute to cell death and neurological morbidity. Ventricular cerebrospinal fluid (CSF) was obtained from children admitted to the intensive care unit (ICU) after TBI (n=37). CSF levels of HMGB1 and cytochrome c were determined at four time intervals (0-24 h, 25-48 h, 49-72 h, and>72 h after injury) using enzyme-linked immunosorbent assay (ELISA). Lumbar CSF from children without TBI served as controls (n=12). CSF HMGB1 levels were: control=1.78±0.29, 0-24 h=5.73±1.45, 25-48 h=5.16±1.73, 49-72 h=4.13±0.75,>72 h=3.80±0.90 ng/mL (mean±SEM). Peak HMGB1 levels were inversely and independently associated with favorable Glasgow Outcome Scale (GOS) scores at 6 mo (0.49 [0.24-0.97]; OR [5-95% CI]). CSF cytochrome c levels were: control=0.37±0.10, 0-24 h=0.69±0.15, 25-48 h=0.82±0.48, 49-72 h=1.52±1.08,>72 h=1.38±1.02 ng/mL (mean±SEM). Peak cytochrome c levels were independently associated with abusive head trauma (AHT; 24.29 [1.77-334.03]) and inversely and independently associated with favorable GOS scores (0.42 [0.18-0.99]). In conclusion, increased CSF levels of HMGB1 and cytochrome c were associated with poor outcome after TBI in infants and children. These data are also consistent with the designation of HMGB1 as a "danger signal." Distinctly increased CSF cytochrome c levels in infants and children with AHT and poor outcome suggests that apoptosis may play an important role in this unique patient population.
Collapse
Affiliation(s)
- Alicia K Au
- Department of Critical Care Medicine, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Berger RP, Hayes RL, Richichi R, Beers SR, Wang KKW. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and αII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J Neurotrauma 2012; 29:162-7. [PMID: 22022780 DOI: 10.1089/neu.2011.1989] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Predicting outcome after pediatric traumatic brain injury (TBI) is important for providing information to families and prescribing rehabilitation services. Previously published studies evaluating the ability of serum biomarkers to predict outcome after pediatric TBI have focused on three markers: neuron-specific enolase (NSE), S100B, and myelin-basic protein (MBP), all of which have important limitations. The study objectives were to measure serum concentrations of two novel serum biomarkers, ubiquitin C-terminal hydrolase (UCH-L1) and αII-spectrin breakdown product 145 kDa (SBDP145), in children with TBI and healthy controls and to assess the ability of these markers to predict outcome as assessed by a dichotomous Glasgow Outcome Scale (GOS) score. We also sought to compare the predictive ability of UCH-L1 and SBDP145 to that of the clinical gold standard, the Glasgow Coma Scale (GCS) score, and to that of the well-accepted biomarkers NSE, S100B, and MBP. Serum UCH-L1 and SBDP145 concentrations were significantly greater in subjects than in controls. The increase in UCH-L1 and SBDP145 was exclusively seen in subjects with moderate and severe TBI; there was no increase after mild TBI. Both markers had a significant negative partial correlation with the GCS after controlling for age. Both UCH-L1 and SBDP145 were correlated with GOS, and this correlation was stronger than the correlations with NSE, S100B, or MBP. These results suggest that these two markers may be useful in assessing outcome after moderate and severe pediatric TBI.
Collapse
Affiliation(s)
- Rachel P Berger
- Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania 15224, USA.
| | | | | | | | | |
Collapse
|