1
|
Darwish AB, Salama A, Younis MM. Neuroprotective efficiency of celecoxib vesicular bilosomes for the management of lipopolysaccharide-induced Alzheimer in mice employing 2 3 full factorial design. Inflammopharmacology 2024; 32:3925-3942. [PMID: 39017993 PMCID: PMC11550292 DOI: 10.1007/s10787-024-01522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The aim of this study was to develop and evaluate bilosomes loaded with Celecoxib (CXB) for the efficient treatment of Alzheimer. The thin-film hydration approach was utilized in the formulation of CXB bilosomes (CXB-BLs). The study used a 23-factorial design to investigate the impact of several formulation variables. Three separate parameters were investigated: bile salt type (X1), medication amount (X2), and lipid-bile salt ratio (X3). The dependent responses included entrapment efficiency (Y1: EE %), particle size (Y2: PS), and zeta potential (Y3: ZP). The formulation factors were statistically optimized using the Design-Expert® program. The vesicles demonstrated remarkable CXB encapsulation efficiency, ranging from 94.16 ± 1.91 to 98.38 ± 0.85%. The vesicle sizes ranged from 241.8 ± 6.74 to 352 ± 2.34 nm. The produced formulations have high negative zeta potential values, indicating strong stability. Transmission electron microscopy (TEM) revealed that the optimized vesicles had a spherical form. CXB release from BLs was biphasic, with the release pattern following Higuchi's model. In vivo studies confirmed the efficiency of CXB-BLs in management of lipopolysaccharide-induced Alzheimer as CXB-BLs ameliorated cognitive dysfunction, decreased acetylcholinesterase (AChE), and inhibited neuro-inflammation and neuro-degeneration through reducing Toll-like receptor (TLR4), and Interleukin-1β (IL-1β) levels. The findings suggested that the created CXB-BLs could be a potential drug delivery strategy for Alzheimer's treatment.
Collapse
Affiliation(s)
- Asmaa Badawy Darwish
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Mostafa Mohammed Younis
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Asthana A, Tripathi S, Agarwal R. Role of Nonsteroidal Anti-Inflammatory Drugs as a Protective Factor in Alzheimer's Disease: A Systematic Review and Meta-Analysis. Neurol India 2024; 72:1144-1151. [PMID: 39690983 DOI: 10.4103/ni.ni_1073_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/06/2023] [Indexed: 12/19/2024]
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disease, affecting more than two-third cases of dementia in the world. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used anti-inflammatory analgesic agents, representing 7.7% of worldwide prescriptions, of which 90% are in patients over 65 years old. Based on mixed findings by different randomized clinical trials (RCTs), a systematic review and meta-analysis were conducted to develop a better understanding of the protective role of NSAIDs in AD. Database search was Pubmed, WebScience, and Embase. RCTs investigating the effect of NSAIDs on AD or test scores assessing cognitive function in people without AD at baseline were included. Two indicators were the Mini-Mental State Examination (MMSE) Score and Hazard Ratio. 09 studies were included in the present Meta-analysis. For the MMSE score difference, the pooled effect size was - 0.06 (-0.22, 0.10) which was not statistically significant (P value = 0.47). For the MMSE score, the pooled effect size was - 0.0036(-0.0320, 0.0248), which was also not statistically significant (P value = 0.87). For Hazard Ratio (HR), the pooled HR calculated using the random effect model was 1.20 (95% CI: 0.95, 1.51), which was not statistically significant (P value = 0.15). Present meta-analysis shows that NSAIDs, in general, are not effective in the treatment of AD. They also have no protective effect against the development of AD on their sustained use.
Collapse
Affiliation(s)
- Akash Asthana
- Department of Statistics, Institute of Sciences, Lucknow University, Lucknow, Uttar Pradesh, India
| | - Shashank Tripathi
- Department of Statistics, Institute of Sciences, Lucknow University, Lucknow, Uttar Pradesh, India
| | - Rachna Agarwal
- Department of Neurochemistry, Institute of Human Behaviour and Allied Sciences, Delhi, India
| |
Collapse
|
3
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
4
|
Larson KC, Martens LH, Marconi M, Dejesus C, Bruhn S, Miller TA, Tate B, Levenson JM. Preclinical translational platform of neuroinflammatory disease biology relevant to neurodegenerative disease. J Neuroinflammation 2024; 21:37. [PMID: 38297405 PMCID: PMC10832185 DOI: 10.1186/s12974-024-03029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Neuroinflammation is a key driver of neurodegenerative disease, however the tools available to model this disease biology at the systems level are lacking. We describe a translational drug discovery platform based on organotypic culture of murine cortical brain slices that recapitulate disease-relevant neuroinflammatory biology. After an acute injury response, the brain slices assume a chronic neuroinflammatory state marked by transcriptomic profiles indicative of activation of microglia and astrocytes and loss of neuronal function. Microglia are necessary for manifestation of this neuroinflammation, as depletion of microglia prior to isolation of the brain slices prevents both activation of astrocytes and robust loss of synaptic function genes. The transcriptomic pattern of neuroinflammation in the mouse platform is present in published datasets derived from patients with amyotrophic lateral sclerosis, Huntington's disease, and frontotemporal dementia. Pharmacological utility of the platform was validated by demonstrating reversal of microglial activation and the overall transcriptomic signature with transforming growth factor-β. Additional anti-inflammatory targets were screened and inhibitors of glucocorticoid receptors, COX-2, dihydrofolate reductase, and NLRP3 inflammasome all failed to reverse the neuroinflammatory signature. Bioinformatics analysis of the neuroinflammatory signature identified protein tyrosine phosphatase non-receptor type 11 (PTPN11/SHP2) as a potential target. Three structurally distinct inhibitors of PTPN11 (RMC-4550, TN0155, IACS-13909) reversed the neuroinflammatory disease signature. Collectively, these results highlight the utility of this novel neuroinflammatory platform for facilitating identification and validation of targets for neuroinflammatory neurodegenerative disease drug discovery.
Collapse
Affiliation(s)
- Kelley C Larson
- Vigil Neuroscience, Watertown, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Lauren H Martens
- , Neumora Therapeutics, Watertown, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Michael Marconi
- Department of Molecular Pathology, Massachusetts General Hospital, Boston, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Christopher Dejesus
- Atalanta Therapeutics, Boston, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Suzanne Bruhn
- Charcot-Marie-Tooth Association, Glenolden, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Thomas A Miller
- Walden Biosciences, Cambridge, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Barbara Tate
- FARA, Homestead, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Jonathan M Levenson
- FireCyte Therapeutics, Beverly, USA.
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA.
| |
Collapse
|
5
|
Li Z, Wang H, Yin Y. Peripheral inflammation is a potential etiological factor in Alzheimer's disease. Rev Neurosci 2024; 35:99-120. [PMID: 37602685 DOI: 10.1515/revneuro-2023-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Peripheral inflammation could constitute a risk factor for AD. This review summarizes the research related to peripheral inflammation that appears to have a relationship with Alzheimer's disease. We find there are significant associations between AD and peripheral infection induced by various pathogens, including herpes simplex virus type 1, cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, Porphyromonas gingivalis, Helicobacter pylori, and Toxoplasma gondii. Chronic inflammatory diseases are also reported to contribute to the pathophysiology of AD. The mechanisms by which peripheral inflammation affects the pathophysiology of AD are complex. Pathogen-derived neurotoxic molecule composition, disrupted BBB, and dysfunctional neurogenesis may all play a role in peripheral inflammation, promoting the development of AD. Anti-pathogenic medications and anti-inflammatory treatments are reported to decrease the risk of AD. Studies that could improve understanding the associations between AD and peripheral inflammation are needed. If our assumption is correct, early intervention against inflammation may be a potential method of preventing and treating AD.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| |
Collapse
|
6
|
Loeffler DA. Antibody-Mediated Clearance of Brain Amyloid-β: Mechanisms of Action, Effects of Natural and Monoclonal Anti-Aβ Antibodies, and Downstream Effects. J Alzheimers Dis Rep 2023; 7:873-899. [PMID: 37662616 PMCID: PMC10473157 DOI: 10.3233/adr-230025] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Immunotherapeutic efforts to slow the clinical progression of Alzheimer's disease (AD) by lowering brain amyloid-β (Aβ) have included Aβ vaccination, intravenous immunoglobulin (IVIG) products, and anti-Aβ monoclonal antibodies. Neither Aβ vaccination nor IVIG slowed disease progression. Despite conflicting phase III results, the monoclonal antibody Aducanumab received Food and Drug Administration (FDA) approval for treatment of AD in June 2021. The only treatments unequivocally demonstrated to slow AD progression to date are the monoclonal antibodies Lecanemab and Donanemab. Lecanemab received FDA approval in January 2023 based on phase II results showing lowering of PET-detectable Aβ; phase III results released at that time indicated slowing of disease progression. Topline results released in May 2023 for Donanemab's phase III trial revealed that primary and secondary end points had been met. Antibody binding to Aβ facilitates its clearance from the brain via multiple mechanisms including promoting its microglial phagocytosis, activating complement, dissolving fibrillar Aβ, and binding of antibody-Aβ complexes to blood-brain barrier receptors. Antibody binding to Aβ in peripheral blood may also promote cerebral efflux of Aβ by a peripheral sink mechanism. According to the amyloid hypothesis, for Aβ targeting to slow AD progression, it must decrease downstream neuropathological processes including tau aggregation and phosphorylation and (possibly) inflammation and oxidative stress. This review discusses antibody-mediated mechanisms of Aβ clearance, findings in AD trials involving Aβ vaccination, IVIG, and anti-Aβ monoclonal antibodies, downstream effects reported in those trials, and approaches which might improve the Aβ-clearing ability of monoclonal antibodies.
Collapse
Affiliation(s)
- David A. Loeffler
- Beaumont Research Institute, Department of Neurology, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
7
|
Stopschinski BE, Weideman RA, McMahan D, Jacob DA, Little BB, Chiang HS, Saez Calveras N, Stuve O. Microglia as a cellular target of diclofenac therapy in Alzheimer's disease. Ther Adv Neurol Disord 2023; 16:17562864231156674. [PMID: 36875711 PMCID: PMC9974624 DOI: 10.1177/17562864231156674] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 03/07/2023] Open
Abstract
Alzheimer's disease (AD) is an untreatable cause of dementia, and new therapeutic approaches are urgently needed. AD pathology is defined by extracellular amyloid plaques and intracellular neurofibrillary tangles. Research of the past decades has suggested that neuroinflammation plays a critical role in the pathophysiology of AD. This has led to the idea that anti-inflammatory treatments might be beneficial. Early studies investigated non-steroidal anti-inflammatory drugs (NSAIDS) such as indomethacin, celecoxib, ibuprofen, and naproxen, which had no benefit. More recently, protective effects of diclofenac and NSAIDs in the fenamate group have been reported. Diclofenac decreased the frequency of AD significantly compared to other NSAIDs in a large retrospective cohort study. Diclofenac and fenamates share similar chemical structures, and evidence from cell and mouse models suggests that they inhibit the release of pro-inflammatory mediators from microglia with leads to the reduction of AD pathology. Here, we review the potential role of diclofenac and NSAIDs in the fenamate group for targeting AD pathology with a focus on its potential effects on microglia.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Danni McMahan
- Pharmacy Service, Dallas VA Medical Center, Dallas, TX, USA
| | - David A Jacob
- Veterans Integrated Service Network 17, Arlington, TX, USA
| | - Bertis B Little
- School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nil Saez Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Neurology Section, Dallas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, USA
| |
Collapse
|
8
|
Advanced therapeutic strategies targeting microglia: beyond neuroinflammation. Arch Pharm Res 2022; 45:618-630. [PMID: 36166145 DOI: 10.1007/s12272-022-01406-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
For a long time, microglia have been recognized as the main culprits of neuroinflammatory responses because they are primary phagocytes present in the parenchyma of the central nervous system (CNS). However, with the evolving concept of microglial biology, advanced and precise approaches, rather than the global inhibition of activated microglia, have been proposed in the management of neurological disorders. Yolk sac-derived resident microglia have heterogeneous composition according to brain region, sex, and diseases. They play a key role in the maintenance of CNS homeostasis and as primary phagocytes. The perturbation of microglia development can induce neurodevelopmental disorders. Microglia aggravate or alleviate neuroinflammation according to microenvironment and their spatiotemporal dynamics. They are long-lived cells and repopulate via their proliferation or external monocyte engraft. Based on this evolving concept, understanding advanced therapeutic strategies targeting microglia can give us an opportunity to discover novel therapies for neurological disorders.
Collapse
|
9
|
Kosyreva AM, Sentyabreva AV, Tsvetkov IS, Makarova OV. Alzheimer’s Disease and Inflammaging. Brain Sci 2022; 12:brainsci12091237. [PMID: 36138973 PMCID: PMC9496782 DOI: 10.3390/brainsci12091237] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease is one of the most common age-related neurodegenerative disorders. The main theory of Alzheimer’s disease progress is the amyloid-β cascade hypothesis. However, the initial mechanisms of insoluble forms of amyloid-β formation and hyperphosphorylated tau protein in neurons remain unclear. One of the factors, which might play a key role in senile plaques and tau fibrils generation due to Alzheimer’s disease, is inflammaging, i.e., systemic chronic low-grade age-related inflammation. The activation of the proinflammatory cell phenotype is observed during aging, which might be one of the pivotal mechanisms for the development of chronic inflammatory diseases, e.g., atherosclerosis, metabolic syndrome, type 2 diabetes mellitus, and Alzheimer’s disease. This review discusses the role of the inflammatory processes in developing neurodegeneration, activated during physiological aging and due to various diseases such as atherosclerosis, obesity, type 2 diabetes mellitus, and depressive disorders.
Collapse
|
10
|
El-Malah AA, Gineinah MM, Deb PK, Khayyat AN, Bansal M, Venugopala KN, Aljahdali AS. Selective COX-2 Inhibitors: Road from Success to Controversy and the Quest for Repurposing. Pharmaceuticals (Basel) 2022; 15:827. [PMID: 35890126 PMCID: PMC9318302 DOI: 10.3390/ph15070827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
The introduction of selective COX-2 inhibitors (so-called 'coxibs') has demonstrated tremendous commercial success due to their claimed lower potential of serious gastrointestinal adverse effects than traditional NSAIDs. However, following the repeated questioning on safety concerns, the coxibs 'controversial me-too' saga increased substantially, inferring to the risk of cardiovascular complications, subsequently leading to the voluntary withdrawal of coxibs (e.g., rofecoxib and valdecoxib) from the market. For instance, the makers (Pfizer and Merck) had to allegedly settle individual claims of cardiovascular hazards from celecoxib and valdecoxib. Undoubtedly, the lessons drawn from this saga revealed the flaws in drug surveillance and regulation, and taught science to pursue a more integrated translational approach for data acquisition and interpretation, prompting science-based strategies of risk avoidance in order to sustain the value of such drugs, rather than their withdrawal. Looking forward, coxibs are now being studied for repurposing, given their possible implications in the management of a myriad of diseases, including cancer, epilepsy, psychiatric disorders, obesity, Alzheimer's disease, and so on. This article briefly summarizes the development of COX-2 inhibitors to their market impression, followed by the controversy related to their toxicity. In addition, the events recollected in hindsight (the past lessons), the optimistic step towards drug repurposing (the present), and the potential for forthcoming success (the future) are also discussed.
Collapse
Affiliation(s)
- Afaf A. El-Malah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| | - Magdy M. Gineinah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Ahdab N. Khayyat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Anfal S. Aljahdali
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| |
Collapse
|
11
|
Hanna L, Poluyi E, Ikwuegbuenyi C, Morgan E, Imaguezegie G. Peripheral inflammation and neurodegeneration; a potential for therapeutic intervention in Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). EGYPTIAN JOURNAL OF NEUROSURGERY 2022. [DOI: 10.1186/s41984-022-00150-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Degeneration of the central nervous system (CNS), also known as neurodegeneration, describes an age-associated progressive loss of the structure and function of neuronal materials, leading to functional and mental impairments.
Main body
Neuroinflammation contributes to the continuous worsening of neurodegenerative states which are characterised by functional and mental impairments due to the progressive loss of the structure and function of neuronal materials. Some of the most common neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Whilst neuroinflammation is a key contributor to the progression of such disease states, it is not the single cause as there are multiple factors which contribute. Theoretically, non-steroidal anti-inflammatory drugs (NSAIDs) have potential to target neuroinflammation to reduce the severity of disease states. Whilst some animal models investigating the effects of NSAIDs on the risk of neurodegenerative diseases have shown a beneficial effect, this is not always the case and a large number of clinical trials have not shown the same finding.
Conclusion
Further investigation using more advanced research methods is required to better understand neuroinflammatory pathways and understand if there is still a potential window for NSAID efficacy.
Collapse
|
12
|
Arbo BD, Schimith LE, Goulart dos Santos M, Hort MA. Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. Eur J Pharmacol 2022; 919:174800. [DOI: 10.1016/j.ejphar.2022.174800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
|
13
|
Onaolapo OJ, Olofinnade AT, Ojo FO, Onaolapo AY. Neuroinflammation and Oxidative Stress in Alzheimer's Disease; Can Nutraceuticals and Functional Foods Come to the Rescue? Antiinflamm Antiallergy Agents Med Chem 2022; 21:75-89. [PMID: 36043770 DOI: 10.2174/1871523021666220815151559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD), the most prevalent form of age-related dementia, is typified by progressive memory loss and spatial awareness with personality changes. The increasing socioeconomic burden associated with AD has made it a focus of extensive research. Ample scientific evidence supports the role of neuroinflammation and oxidative stress in AD pathophysiology, and there is increasing research into the possible role of anti-inflammatory and antioxidative agents as disease modifying therapies. While, the result of numerous preclinical studies has demonstrated the benefits of anti-inflammatory agents, these benefits however have not been replicated in clinical trials, necessitating a further search for more promising anti-inflammatory agents. Current understanding highlights the role of diet in the development of neuroinflammation and oxidative stress, as well as the importance of dietary interventions and lifestyle modifications in mitigating them. The current narrative review examines scientific literature for evidence of the roles (if any) of dietary components, nutraceuticals and functional foods in the prevention or management of AD. It also examines how diet/ dietary components could modulate oxidative stress/inflammatory mediators and pathways that are crucial to the pathogenesis and/or progression of AD.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Department of Pharmacology, Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Ikeja, Lagos State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Adejoke Y Onaolapo
- Department of Anatomy, Behavioural Neuroscience Unit, Neurobiology Subdivision, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
14
|
Pinho J, Quintas-Neves M, Dogan I, Reetz K, Reich A, Costa AS. Incident stroke in patients with Alzheimer's disease: systematic review and meta-analysis. Sci Rep 2021; 11:16385. [PMID: 34385535 PMCID: PMC8361108 DOI: 10.1038/s41598-021-95821-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/29/2021] [Indexed: 11/09/2022] Open
Abstract
Vascular mechanisms are increasingly recognized in the pathophysiology of Alzheimer's disease (AD), but less is known about the occurrence of stroke in AD patients. We aimed to quantify the risk of stroke in patients with AD and compare the incidence rates (IR) of stroke in individuals without AD. Systematic search of Embase and MEDLINE between 1970 and 2020. Inclusion criteria: reports with ≥ 50 patients with non-familial AD, which reported the occurrence of stroke (all types) and/or ischemic stroke and/or intracerebral hemorrhage (ICH) during follow-up. Meta-analyses of pooled data using random-effects model were performed. IR were calculated for each study. Incidence rate ratios (IRR) were calculated for studies presenting a control-group without AD. Among 5109 retrieved studies, 29 (0.6%) fulfilled the inclusion criteria, reporting a total of 61,824 AD patients. In AD patients the IR were 15.4/1000 person-years for stroke (all types), 13.0/1000 person-years for ischemic stroke and 3.4/1000 person-years for ICH. When compared to controls without AD, incidence rate for ICH in AD patients was significantly higher (IRR = 1.67, 95%CI 1.43-1.96), but similar for ischemic stroke. Incident stroke is not a rare event in AD population. AD is associated with an increased risk of intracerebral hemorrhage which warrants further clarification.
Collapse
Affiliation(s)
- João Pinho
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsst. 30, 52074, Aachen, Germany.
| | - Miguel Quintas-Neves
- Neuroradiology Department, Hospital de Braga, Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B´s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Imis Dogan
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsst. 30, 52074, Aachen, Germany.,JARA Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsst. 30, 52074, Aachen, Germany.,JARA Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsst. 30, 52074, Aachen, Germany
| | - Ana Sofia Costa
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsst. 30, 52074, Aachen, Germany.,JARA Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Clark AL, Weigand AJ, Thomas KR, Solders SK, Delano-Wood L, Bondi MW, Bernier RA, Sundermann EE, Banks SJ, Bangen KJ. Elevated Inflammatory Markers and Arterial Stiffening Exacerbate Tau but Not Amyloid Pathology in Older Adults with Mild Cognitive Impairment. J Alzheimers Dis 2021; 80:1451-1463. [PMID: 33682714 DOI: 10.3233/jad-201382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Age-related cerebrovascular and neuroinflammatory processes have been independently identified as key mechanisms of Alzheimer's disease (AD), although their interactive effects have yet to be fully examined. OBJECTIVE The current study examined 1) the influence of pulse pressure (PP) and inflammatory markers on AD protein levels and 2) links between protein biomarkers and cognitive function in older adults with and without mild cognitive impairment (MCI). METHODS This study included 218 ADNI (81 cognitively normal [CN], 137 MCI) participants who underwent lumbar punctures, apolipoprotein E (APOE) genotyping, and cognitive testing. Cerebrospinal (CSF) levels of eight pro-inflammatory markers were used to create an inflammation composite, and amyloid-beta 1-42 (Aβ42), phosphorylated tau (p-tau), and total tau (t-tau) were quantified. RESULTS Multiple regression analyses controlling for age, education, and APOE ɛ4 genotype revealed significant PP x inflammation interactions for t-tau (B = 0.88, p = 0.01) and p-tau (B = 0.84, p = 0.02); higher inflammation was associated with higher levels of tau within the MCI group. However, within the CN group, analyses revealed a significant PP x inflammation interaction for Aβ42 (B = -1.01, p = 0.02); greater inflammation was associated with higher levels of Aβ42 (indicative of lower cerebral amyloid burden) in those with lower PP. Finally, higher levels of tau were associated with poorer memory performance within the MCI group only (p s < 0.05). CONCLUSION PP and inflammation exert differential effects on AD CSF proteins and provide evidence that vascular risk is associated with greater AD pathology across our sample of CN and MCI older adults.
Collapse
Affiliation(s)
- Alexandra L Clark
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA.,University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | - Alexandra J Weigand
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,San Diego State University/University of California, San Diego (SDSU/UCSD), La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | - Seraphina K Solders
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Lisa Delano-Wood
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA.,University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | - Mark W Bondi
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA.,University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | - Rachel A Bernier
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Erin E Sundermann
- University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | - Sarah J Banks
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Katherine J Bangen
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | | |
Collapse
|
16
|
Akter R, Rahman MH, Behl T, Chowdhury MAR, Manirujjaman M, Bulbul IJ, Elshenaw SE, Tit DM, Bungau S. Prospective Role of Polyphenolic Compounds in the Treatment of Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:430-450. [DOI: 10.2174/1871527320666210218084444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023]
Abstract
:
Aging is an important stage of the human life cycle and the primary risk factor for neurodegenerative diseases (ND). The aging process contributes to modifications in cells, which may lead to a lack of nutrient signaling, disrupted cellular activity, increased oxidative pressure, cell homeostasis depletion, genomic instability, misfolded protein aggregation, impaired cellular protection, and telomere reduction. The neuropathologies found in Alzheimer's disease (AD) and Parkinson's disease (PD) are internally and extrinsically compound environmental stressors which may be partially alleviated by using different phytochemicals. The new therapies for ND are restricted as they are primarily targeted at final disease progression, including behavioral shifts, neurological disorders, proteinopathies, and neuronal failure. This review presents the role of phytochemicals-related polyphenolic compounds as an accompanying therapy model to avoid neuropathologies linked to AD, PD and to simultaneously enhance two stochastic stressors, namely inflammation and oxidative stress, promoting their disease pathologies. Therefore, this approach represents a prophylactic way to target risk factors that rely on their action against ND that does not occur through current pharmacological agents over the life of a person.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | - Manirujjaman Manirujjaman
- Institute of Health and Biomedical Innovation (IHBI), School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Kelvin Grove, Australia
| | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Shimaa E. Elshenaw
- Center of stem cell and regenerative medicine, Zewail City for Science, Egypt
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| |
Collapse
|
17
|
Elmaleh DR, Farlow MR, Conti PS, Tompkins RG, Kundakovic L, Tanzi RE. Developing Effective Alzheimer's Disease Therapies: Clinical Experience and Future Directions. J Alzheimers Dis 2020; 71:715-732. [PMID: 31476157 PMCID: PMC6839593 DOI: 10.3233/jad-190507] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) clinical trials, focused on disease modifying drugs and conducted in patients with mild to moderate AD, as well as prodromal (early) AD, have failed to reach efficacy endpoints in improving cognitive function in most cases to date or have been terminated due to adverse events. Drugs that have reached clinical stage were reviewed using web resources (such as clinicaltrials.gov, alzforum.org, company press releases, and peer reviewed literature) to identify late stage (Phase II and Phase III) efficacy clinical trials and summarize reasons for their failure. For each drug, only the latest clinical trials and ongoing trials that aimed at improving cognitive function were included in the analysis. Here we highlight the potential reasons that have hindered clinical success, including clinical trial design and choice of outcome measures, heterogeneity of patient populations, difficulties in diagnosing and staging the disease, drug design, mechanism of action, and toxicity related to the long-term use. We review and suggest approaches for AD clinical trial design aimed at improving our ability to identify novel therapies for this devastating disease.
Collapse
Affiliation(s)
- David R Elmaleh
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,AZTherapies Inc., Boston, MA, USA
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter S Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ronald G Tompkins
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
18
|
Mhillaj E, Papi M, Paciello F, Silvestrini A, Rolesi R, Palmieri V, Perini G, Fetoni AR, Trabace L, Mancuso C. Celecoxib Exerts Neuroprotective Effects in β-Amyloid-Treated SH-SY5Y Cells Through the Regulation of Heme Oxygenase-1: Novel Insights for an Old Drug. Front Cell Dev Biol 2020; 8:561179. [PMID: 33134292 PMCID: PMC7550645 DOI: 10.3389/fcell.2020.561179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
The formation and aggregation of amyloid-β-peptide (Aβ) into soluble and insoluble species represent the pathological hallmarks of Alzheimer’s disease (AD). Over the last few years, however, soluble Aβ (sAβ) prevailed over fibrillar Aβ (fAβ) as determinant of neurotoxicity. One of the main therapeutic strategies for challenging neurodegeneration is to fight against neuroinflammation and prevent free radical-induced damage: in this light, the heme oxygenase/biliverdin reductase (HO/BVR) system is considered a promising drug target. The aim of this work was to investigate whether or not celecoxib (CXB), a selective inhibitor of the pro-inflammatory cyclooxygenase-2, modulates the HO/BVR system and prevents lipid peroxidation in SH-SY5Y neuroblastoma cells. Both sAβ (6.25–50 nM) and fAβ (1.25–50 nM) dose-dependently over-expressed inducible HO (HO-1) after 24 h of incubation, reaching statistical significance at 25 and 6.25 nM, respectively. Interestingly, CXB (1–10 μM, for 1 h) further enhanced Aβ-induced HO-1 expression through the nuclear translocation of the transcriptional factor Nrf2. Furthermore, 10 μM CXB counteracted the Aβ-induced ROS production with a mechanism fully dependent on HO-1 up-regulation; nevertheless, 10 μM CXB significantly counteracted only 25 nM sAβ-induced lipid peroxidation damage in SH-SY5Y neurons by modulating HO-1. Both carbon monoxide (CORM-2, 50 nM) and bilirubin (50 nM) significantly prevented ROS production in Aβ-treated neurons and favored both the slowdown of the growth rate of Aβ oligomers and the decrease in oligomer/fibril final size. In conclusion, these results suggest a novel mechanism through which CXB is neuroprotective in subjects with early AD or mild cognitive impairment.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabiola Paciello
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Silvestrini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giordano Perini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Cesare Mancuso
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
19
|
Rivers-Auty J, Mather AE, Peters R, Lawrence CB, Brough D. Anti-inflammatories in Alzheimer's disease-potential therapy or spurious correlate? Brain Commun 2020; 2:fcaa109. [PMID: 33134914 PMCID: PMC7585697 DOI: 10.1093/braincomms/fcaa109] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
Epidemiological evidence suggests non-steroidal anti-inflammatory drugs reduce the risk of Alzheimer’s disease. However, clinical trials have found no evidence of non-steroidal anti-inflammatory drug efficacy. This incongruence may be due to the wrong non-steroidal anti-inflammatory drugs being tested in robust clinical trials or the epidemiological findings being caused by confounding factors. Therefore, this study used logistic regression and the innovative approach of negative binomial generalized linear mixed modelling to investigate both prevalence and cognitive decline, respectively, in the Alzheimer’s Disease Neuroimaging dataset for each commonly used non-steroidal anti-inflammatory drug and paracetamol. Use of most non-steroidal anti-inflammatories was associated with reduced Alzheimer’s disease prevalence yet no effect on cognitive decline was observed. Paracetamol had a similar effect on prevalence to these non-steroidal anti-inflammatory drugs suggesting this association is independent of the anti-inflammatory effects and that previous results may be due to spurious associations. Interestingly, diclofenac use was significantly associated with both reduce incidence and slower cognitive decline warranting further research into the potential therapeutic effects of diclofenac in Alzheimer’s disease.
Collapse
Affiliation(s)
- Jack Rivers-Auty
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK.,Medical Sciences, Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart 7000, Australia
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich, Norfolk NR4 7UA, UK.,University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Ruth Peters
- School of Psychology, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney 2031, Australia
| | - Catherine B Lawrence
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Luo W, Luo Y, Yang J. Proteomics-based screening of the target proteins associated with antidepressant-like effect and mechanism of nimesulide. Sci Rep 2020; 10:11052. [PMID: 32632112 PMCID: PMC7338510 DOI: 10.1038/s41598-020-66420-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/19/2020] [Indexed: 11/25/2022] Open
Abstract
Nimesulide is an inhibitor of COX-2 with antioxidant and anti-inflammatory effects. However, few studies have explored the antidepressant mechanism of nimesulide. Here, we evaluated the therapeutic effects of nimesulide on CUMS rats. iTRAQ technology was used to identify the differentially expressed protein in the hippocampus between CUMS and nimesulide-treated rats to identify the possible molecular mechanism of its effects. We found that nimesulide had positive effects on depressive-like behaviors and inflammatory factors in depressed rats. Using proteomics technologies, we screened 16 differentially expressed proteins in CUMS-exposed rats after nimesulide treatment, 5 of which were related to inflammation. Overall, these results show that nimesulide might mediate its antidepressant effect on depressed rats through the inhibition of oxidative stress inflammatory response.
Collapse
Affiliation(s)
- Wen Luo
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China
| | - Ying Luo
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China
| | - Junqing Yang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| |
Collapse
|
21
|
Stuve O, Weideman RA, McMahan DM, Jacob DA, Little BB. Diclofenac reduces the risk of Alzheimer's disease: a pilot analysis of NSAIDs in two US veteran populations. Ther Adv Neurol Disord 2020; 13:1756286420935676. [PMID: 32647537 PMCID: PMC7325551 DOI: 10.1177/1756286420935676] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Our aim was to determine whether specific nonsteroidal anti-inflammatory (NSAID) agents are associated with a decreased frequency of Alzheimer’s disease (AD). Materials and methods: Days of drug exposure were determined for diclofenac, etodolac, and naproxen using US Department of Veterans Affairs (VA) pharmacy transaction records, combined from two separate VA sites. AD diagnosis was established by the International Classification of Diseases, ninth revision (ICD-9)/ICD-10 diagnostic codes and the use of AD medications. Cox regression survival analysis was used to evaluate the association between AD frequency and NSAID exposure over time. Age at the end of the study and the medication-based disease burden index (a comorbidity index) were used as covariates. Results: Frequency of AD was significantly lower in the diclofenac group (4/1431, 0.28%) compared with etodolac (328/14,646, 2.24%), and naproxen (202/12,203, 1.66%). For regression analyses, naproxen was chosen as the comparator drug, since it has been shown to have no effect on the development of AD. Compared with naproxen, etodolac had no effect on the development of AD, hazard ratio (HR) 1.00 [95% confidence interval (CI): 0.84–1.20, p = 0.95]. In contrast, diclofenac had a significantly lower HR of AD compared with naproxen, HR 0.25 (95% CI: 0.09–0.68, p <0.01). After site effects were controlled for, age at end of the study (HR = 1.08, 95% CI: 1.07–1.09, p <0.001) was also found to influence the development of AD, and the medication-based disease burden index was a strong predictor for AD, HR 5.17 (95% CI: 4.60–5.81) indicating that as comorbidities increase, the risk for AD increases very significantly. Conclusion: Diclofenac, which has been shown to have active transport into the central nervous system, and which has been shown to lower amyloid beta and interleukin 1 beta, is associated with a significantly lower frequency of AD compared with etodolac and naproxen. These results are compelling, and parallel animal studies of the closely related fenamate NSAID drug class.
Collapse
Affiliation(s)
- Olaf Stuve
- Department of Neurology and Neurotherapeutics, University of Texas, Southwestern Medical School, Neurology Section (111H), Dallas VA Medical Center, 4500 Lancaster Road, Dallas, TX 75216, USA
| | | | | | - David A Jacob
- Pharmacy Service, Veterans Integrated Service Network 17, Arlington, TX, USA
| | - Bertis B Little
- School of Public Health and Information Sciences, University of Louisville, KY, USA
| |
Collapse
|
22
|
Kabir MT, Uddin MS, Mamun AA, Jeandet P, Aleya L, Mansouri RA, Ashraf GM, Mathew B, Bin-Jumah MN, Abdel-Daim MM. Combination Drug Therapy for the Management of Alzheimer's Disease. Int J Mol Sci 2020; 21:E3272. [PMID: 32380758 PMCID: PMC7246721 DOI: 10.3390/ijms21093272] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Even though the number of AD patients is rapidly growing, there is no effective treatment for this neurodegenerative disorder. At present, implementation of effective treatment approaches for AD is vital to meet clinical needs. In AD research, priorities concern the development of disease-modifying therapeutic agents to be used in the early phases of AD and the optimization of the symptomatic treatments predominantly dedicated to the more advanced AD stages. Until now, available therapeutic agents for AD treatment only provide symptomatic treatment. Since AD pathogenesis is multifactorial, use of a multimodal therapeutic intervention addressing several molecular targets of AD-related pathological processes seems to be the most practical approach to modify the course of AD progression. It has been demonstrated through numerous studies, that the clinical efficacy of combination therapy (CT) is higher than that of monotherapy. In case of AD, CT is more effective, mostly when started early, at slowing the rate of cognitive impairment. In this review, we have covered the major studies regarding CT to combat AD pathogenesis. Moreover, we have also highlighted the safety, tolerability, and efficacy of CT in the treatment of AD.
Collapse
Affiliation(s)
- Md. Tanvir Kabir
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, 51687 Reims CEDEX 2, France;
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France;
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, India;
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
23
|
Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, Baldacci F, Toschi N, Garaci F, Chiesa PA, Verdooner SR, Akman-Anderson L, Hernández F, Ávila J, Emanuele E, Valenzuela PL, Lucía A, Watling M, Imbimbo BP, Vergallo A, Lista S. A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease. Front Immunol 2020; 11:456. [PMID: 32296418 PMCID: PMC7137904 DOI: 10.3389/fimmu.2020.00456] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation commences decades before Alzheimer's disease (AD) clinical onset and represents one of the earliest pathomechanistic alterations throughout the AD continuum. Large-scale genome-wide association studies point out several genetic variants—TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, and HLA-DRB5-HLA-DRB1—potentially linked to neuroinflammation. Most of these genes are involved in proinflammatory intracellular signaling, cytokines/interleukins/cell turnover, synaptic activity, lipid metabolism, and vesicle trafficking. Proteomic studies indicate that a plethora of interconnected aberrant molecular pathways, set off and perpetuated by TNF-α, TGF-β, IL-1β, and the receptor protein TREM2, are involved in neuroinflammation. Microglia and astrocytes are key cellular drivers and regulators of neuroinflammation. Under physiological conditions, they are important for neurotransmission and synaptic homeostasis. In AD, there is a turning point throughout its pathophysiological evolution where glial cells sustain an overexpressed inflammatory response that synergizes with amyloid-β and tau accumulation, and drives synaptotoxicity and neurodegeneration in a self-reinforcing manner. Despite a strong therapeutic rationale, previous clinical trials investigating compounds with anti-inflammatory properties, including non-steroidal anti-inflammatory drugs (NSAIDs), did not achieve primary efficacy endpoints. It is conceivable that study design issues, including the lack of diagnostic accuracy and biomarkers for target population identification and proof of mechanism, may partially explain the negative outcomes. However, a recent meta-analysis indicates a potential biological effect of NSAIDs. In this regard, candidate fluid biomarkers of neuroinflammation are under analytical/clinical validation, i.e., TREM2, IL-1β, MCP-1, IL-6, TNF-α receptor complexes, TGF-β, and YKL-40. PET radio-ligands are investigated to accomplish in vivo and longitudinal regional exploration of neuroinflammation. Biomarkers tracking different molecular pathways (body fluid matrixes) along with brain neuroinflammatory endophenotypes (neuroimaging markers), can untangle temporal–spatial dynamics between neuroinflammation and other AD pathophysiological mechanisms. Robust biomarker–drug codevelopment pipelines are expected to enrich large-scale clinical trials testing new-generation compounds active, directly or indirectly, on neuroinflammatory targets and displaying putative disease-modifying effects: novel NSAIDs, AL002 (anti-TREM2 antibody), anti-Aβ protofibrils (BAN2401), and AL003 (anti-CD33 antibody). As a next step, taking advantage of breakthrough and multimodal techniques coupled with a systems biology approach is the path to pursue for developing individualized therapeutic strategies targeting neuroinflammation under the framework of precision medicine.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - Robert Nisticò
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,School of Pharmacy, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Filippo Baldacci
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Department of Radiology, "Athinoula A. Martinos" Center for Biomedical Imaging, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Patrizia A Chiesa
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | | | - Alejandro Lucía
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Research Institute of the Hospital 12 de Octubre ("imas"), Madrid, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Parma, Italy
| | - Andrea Vergallo
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
24
|
Patnode CD, Perdue LA, Rossom RC, Rushkin MC, Redmond N, Thomas RG, Lin JS. Screening for Cognitive Impairment in Older Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2020; 323:764-785. [PMID: 32096857 DOI: 10.1001/jama.2019.22258] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Early identification of cognitive impairment may improve patient and caregiver health outcomes. OBJECTIVE To systematically review the test accuracy of cognitive screening instruments and benefits and harms of interventions to treat cognitive impairment in older adults (≥65 years) to inform the US Preventive Services Task Force. DATA SOURCES MEDLINE, PubMed, PsycINFO, and Cochrane Central Register of Controlled Trials through January 2019, with literature surveillance through November 22, 2019. STUDY SELECTION Fair- to good-quality English-language studies of cognitive impairment screening instruments, and pharmacologic and nonpharmacologic treatments aimed at persons with mild cognitive impairment (MCI), mild to moderate dementia, or their caregivers. DATA EXTRACTION AND SYNTHESIS Independent critical appraisal and data abstraction; random-effects meta-analyses and qualitative synthesis. MAIN OUTCOMES AND MEASURES Sensitivity, specificity; patient, caregiver, and clinician decision-making; patient function, quality of life, and neuropsychiatric symptoms; caregiver burden and well-being. RESULTS The review included 287 studies with more than 280 000 older adults. One randomized clinical trial (RCT) (n = 4005) examined the direct effect of screening for cognitive impairment on patient outcomes, including potential harms, finding no significant differences in health-related quality of life at 12 months (effect size, 0.009 [95% CI, -0.063 to 0.080]). Fifty-nine studies (n = 38 531) addressed the accuracy of 49 screening instruments to detect cognitive impairment. The Mini-Mental State Examination was the most-studied instrument, with a pooled sensitivity of 0.89 (95% CI, 0.85 to 0.92) and specificity of 0.89 (95% CI, 0.85 to 0.93) to detect dementia using a cutoff of 23 or less or 24 or less (15 studies, n = 12 796). Two hundred twenty-four RCTs and 3 observational studies including more than 240 000 patients or caregivers addressed the treatment of MCI or mild to moderate dementia. None of the treatment trials were linked with a screening program; in all cases, participants were persons with known cognitive impairment. Medications approved to treat Alzheimer disease (donepezil, galantamine, rivastigmine, and memantine) improved scores on the ADAS-Cog 11 by 1 to 2.5 points over 3 months to 3 years. Psychoeducation interventions for caregivers resulted in a small benefit for caregiver burden (standardized mean difference, -0.24 [95% CI, -0.36 to -0.13) over 3 to 12 months. Intervention benefits were small and of uncertain clinical importance. CONCLUSIONS AND RELEVANCE Screening instruments can adequately detect cognitive impairment. There is no empirical evidence, however, that screening for cognitive impairment improves patient or caregiver outcomes or causes harm. It remains unclear whether interventions for patients or caregivers provide clinically important benefits for older adults with earlier detected cognitive impairment or their caregivers.
Collapse
Affiliation(s)
- Carrie D Patnode
- Kaiser Permanente Evidence-based Practice Center, Center for Health Research, Kaiser Permanente, Portland, Oregon
| | - Leslie A Perdue
- Kaiser Permanente Evidence-based Practice Center, Center for Health Research, Kaiser Permanente, Portland, Oregon
| | | | - Megan C Rushkin
- Kaiser Permanente Evidence-based Practice Center, Center for Health Research, Kaiser Permanente, Portland, Oregon
| | - Nadia Redmond
- Kaiser Permanente Evidence-based Practice Center, Center for Health Research, Kaiser Permanente, Portland, Oregon
| | - Rachel G Thomas
- Kaiser Permanente Evidence-based Practice Center, Center for Health Research, Kaiser Permanente, Portland, Oregon
| | - Jennifer S Lin
- Kaiser Permanente Evidence-based Practice Center, Center for Health Research, Kaiser Permanente, Portland, Oregon
| |
Collapse
|
25
|
Ferrer MD, Busquets-Cortés C, Capó X, Tejada S, Tur JA, Pons A, Sureda A. Cyclooxygenase-2 Inhibitors as a Therapeutic Target in Inflammatory Diseases. Curr Med Chem 2019; 26:3225-3241. [PMID: 29756563 DOI: 10.2174/0929867325666180514112124] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 02/07/2023]
Abstract
Inflammation plays a crucial role in the development of many complex diseases and disorders including autoimmune diseases, metabolic syndrome, neurodegenerative diseases, and cardiovascular pathologies. Prostaglandins play a regulatory role in inflammation. Cyclooxygenases are the main mediators of inflammation by catalyzing the initial step of arachidonic acid metabolism and prostaglandin synthesis. The differential expression of the constitutive isoform COX-1 and the inducible isoform COX-2, and the finding that COX-1 is the major form expressed in the gastrointestinal tract, lead to the search for COX-2-selective inhibitors as anti-inflammatory agents that might diminish the gastrointestinal side effects of traditional non-steroidal anti-inflammatory drugs (NSAIDs). COX-2 isoform is expressed predominantly in inflammatory cells and decidedly upregulated in chronic and acute inflammations, becoming a critical target for many pharmacological inhibitors. COX-2 selective inhibitors happen to show equivalent efficacy with that of conventional NSAIDs, but they have reduced gastrointestinal side effects. This review would elucidate the most recent findings on selective COX-2 inhibition and their relevance to human pathology, concretely in inflammatory pathologies characterized by a prolonged pro-inflammatory status, including autoimmune diseases, metabolic syndrome, obesity, atherosclerosis, neurodegenerative diseases, chronic obstructive pulmonary disease, arthritis, chronic inflammatory bowel disease and cardiovascular pathologies.
Collapse
Affiliation(s)
- Miguel D Ferrer
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Carla Busquets-Cortés
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain
| | - Xavier Capó
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Josep A Tur
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Pons
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Sureda
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Golde TE. Harnessing Immunoproteostasis to Treat Neurodegenerative Disorders. Neuron 2019; 101:1003-1015. [PMID: 30897353 DOI: 10.1016/j.neuron.2019.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Immunoproteostasis is a term used to reflect interactions between the immune system and the proteinopathies that are presumptive "triggers" of many neurodegenerative disorders. The study of immunoproteostasis is bolstered by several observations. Mutations or rare variants in genes expressed in microglial cells, known to regulate immune functions, or both can cause, or alter risk for, various neurodegenerative disorders. Additionally, genetic association studies identify numerous loci harboring genes that encode proteins of known immune function that alter risk of developing Alzheimer's disease (AD) and other neurodegenerative proteinopathies. Further, preclinical studies reveal beneficial effects and liabilities of manipulating immune pathways in various neurodegenerative disease models. Although there are concerns that manipulation of the immune system may cause more harm than good, there is considerable interest in developing immune modulatory therapies for neurodegenerative disorders. Herein, I highlight the promise and challenges of harnessing immunoproteostasis to treat neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Todd E Golde
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, University of Florida, Gainesville, FL 32607, USA.
| |
Collapse
|
27
|
Prokop S, Lee VMY, Trojanowski JQ. Neuroimmune interactions in Alzheimer's disease-New frontier with old challenges? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:183-201. [PMID: 31699314 PMCID: PMC6939624 DOI: 10.1016/bs.pmbts.2019.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The perceived role of the immune system in neurodegenerative diseases has undergone drastic changes over time. Initially considered as a passive bystander, then condemned as a mediator of neurodegeneration and now established as an important player in the pathogenetic cascade, neuroimmune interactions have come a long way to arrive center stage in Alzheimer's disease research. Despite major breakthroughs in recent years, basic questions remain unanswered as conflicting data describe immune overactivation, inadequate response or exhaustion of the immune system in neurodegenerative diseases. Furthermore, difficulties in translating in vitro and in vivo studies in model systems to the complex human disease condition with multiple overlapping pathologies and the long disease duration in patients suffering from neurodegenerative diseases have hampered progress. Development of novel, advanced model systems, as well as new technologies to interrogate existing disease models and valuable collections of human tissue samples, including brain tissue in parallel with improved imaging and biomarker technologies are guiding the way to better understand the role of the immune system in Alzheimer's disease with hopes for more effective interventions in the future.
Collapse
Affiliation(s)
- Stefan Prokop
- Department of Pathology, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States; Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States; McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, AD Center Core (ADCC), Center for Neurodegenerative Disease Research, University of Pennsylvania (PENN), School of Medicine, Philadelphia, PA, United States
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, AD Center Core (ADCC), Center for Neurodegenerative Disease Research, University of Pennsylvania (PENN), School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
28
|
Baranger K, van Gijsel-Bonnello M, Stephan D, Carpentier W, Rivera S, Khrestchatisky M, Gharib B, De Reggi M, Benech P. Long-Term Pantethine Treatment Counteracts Pathologic Gene Dysregulation and Decreases Alzheimer's Disease Pathogenesis in a Transgenic Mouse Model. Neurotherapeutics 2019; 16:1237-1254. [PMID: 31267473 PMCID: PMC6985318 DOI: 10.1007/s13311-019-00754-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The low-molecular weight thiol pantethine, known as a hypolipidemic and hypocholesterolemic agent, is the major precursor of co-enzyme A. We have previously shown that pantethine treatment reduces amyloid-β (Aβ)-induced IL-1β release and alleviates pathological metabolic changes in primary astrocyte cultures. These properties of pantethine prompted us to investigate its potential benefits in vivo in the 5XFAD (Tg) mouse model of Alzheimer's disease (AD).1.5-month-old Tg and wild-type (WT) male mice were submitted to intraperitoneal administration of pantethine or saline control solution for 5.5 months. The effects of such treatments were investigated by performing behavioral tests and evaluating astrogliosis, microgliosis, Αβ deposition, and whole genome expression arrays, using RNAs extracted from the mice hippocampi. We observed that long-term pantethine treatment significantly reduced glial reactivity and Αβ deposition, and abrogated behavioral alteration in Tg mice. Moreover, the transcriptomic profiles revealed that after pantethine treatment, the expression of genes differentially expressed in Tg mice, and in particular those known to be related to AD, were significantly alleviated. Most of the genes overexpressed in Tg compared to WT were involved in inflammation, complement activation, and phagocytosis and were found repressed upon pantethine treatment. In contrast, pantethine restored the expression of a significant number of genes involved in the regulation of Αβ processing and synaptic activities, which were downregulated in Tg mice. Altogether, our data support a beneficial role for long-term pantethine treatment in preserving CNS crucial functions altered by Aβ pathogenesis in Tg mice and highlight the potential efficiency of pantethine to alleviate AD pathology.
Collapse
Affiliation(s)
- Kevin Baranger
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Manuel van Gijsel-Bonnello
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
- Present Address: MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre and School of Life Science - Division of Cell Signalling and Immunology, Welcome Trust Building, University of Dundee, Dundee, DD1 5EH UK
| | - Delphine Stephan
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Wassila Carpentier
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), F-75013 Paris, France
| | - Santiago Rivera
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | | | - Bouchra Gharib
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Max De Reggi
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Philippe Benech
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
29
|
Eden BD, Rice AJ, Lovett TD, Toner OM, Geissler EP, Bowman WE, Young SC. Microwave-assisted synthesis and in vitro stability of N-benzylamide non-steroidal anti-inflammatory drug conjugates for CNS delivery. Bioorg Med Chem Lett 2019; 29:1487-1491. [PMID: 30987893 DOI: 10.1016/j.bmcl.2019.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
Abstract
More effective delivery of non-steroidal anti-inflammatory drugs (NSAIDs) to the brain could treat the underlying inflammatory pathology of a range of CNS diseases and conditions. Use of a blood-brain barrier shuttle such as the N-benzylamide moiety, which has been largely unexplored for this purpose, could improve the brain bioavailabilities of NSAIDs. A series of novel N-benzylamide NSAID conjugates was synthesized via a three-step process with a microwave-assisted bimolecular nucleophilic substitution as the final step. We explored conditions to promote substitution over a competing elimination reaction, which was successfully suppressed with isopropyl alcohol solvent. All molecules exhibit physicochemical properties consistent with those of brain-penetrant molecules. Furthermore, they exhibit long (>48 h) half-lives in phosphate-buffered saline (PBS; pH 7.4) and short to moderate half-lives in human plasma. N-Benzylamide NSAID conjugates represent promising CNS drug discovery leads.
Collapse
Affiliation(s)
- Brandon D Eden
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Andrew J Rice
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Troy D Lovett
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Olivia M Toner
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Evan P Geissler
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - William E Bowman
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Sherri C Young
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States.
| |
Collapse
|
30
|
Erdal A, Ballard C, Vahia IV, Husebo BS. Analgesic treatments in people with dementia - how safe are they? A systematic review. Expert Opin Drug Saf 2019; 18:511-522. [PMID: 31038371 DOI: 10.1080/14740338.2019.1614166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION People with dementia may be unable to verbally express pain and suffer from untreated pain. Use of analgesics in people with dementia has increased during the last decade, in particular opioid analgesics with high potential for adverse effects. AREAS COVERED This article presents a systematic review of the current evidence for safety and tolerability of analgesic drugs from randomized controlled trials in people with dementia. Relevant trials were identified by a literature search in the EMBASE, MEDLINE, and Cochrane databases from inception to November 2018. The search included the main terms 'dementia' and 'analgesic' or their subterms, and was filtered to limit results to clinical trials. EXPERT OPINION Although pain treatment is increasingly recognized as an important clinical issue in people with advanced dementia, there is currently a lack of evidence to support safety evaluations of commonly used analgesics in this group. To inform treatment decisions and enable care providers to appropriately monitor patients at risk of adverse effects, it is necessary to conduct well-designed clinical trials to investigate the relative efficacy and safety of analgesics in people with dementia, with particular emphasis on harmful effects of long-term opioid use as well as short-term use of nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ane Erdal
- a Department of Global Public Health and Primary Care , Centre for Elderly and Nursing Home Medicine, University of Bergen , Bergen , Norway
| | | | - Ipsit Vihang Vahia
- c McLean Institute for Technology in Psychiatry and Geriatric Psychiatry Outpatient Services , McLean Hospital , Belmont , MA , USA
- d Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| | - Bettina Sandgathe Husebo
- a Department of Global Public Health and Primary Care , Centre for Elderly and Nursing Home Medicine, University of Bergen , Bergen , Norway
- e Department of Health and Care , Municipality of Bergen , Bergen , Norway
| |
Collapse
|
31
|
Dionisio-Santos DA, Olschowka JA, O'Banion MK. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer's disease. J Neuroinflammation 2019; 16:74. [PMID: 30953557 PMCID: PMC6449993 DOI: 10.1186/s12974-019-1453-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is considered one of the cardinal features of Alzheimer’s disease (AD). Neuritic plaques composed of amyloid β and neurofibrillary tangle-laden neurons are surrounded by reactive astrocytes and microglia. Exposure of microglia, the resident myeloid cell of the CNS, to amyloid β causes these cells to acquire an inflammatory phenotype. While these reactive microglia are important to contain and phagocytose amyloid plaques, their activated phenotype impacts CNS homeostasis. In rodent models, increased neuroinflammation promoted by overexpression of proinflammatory cytokines can cause an increase in hyperphosphorylated tau and a decrease in hippocampal function. The peripheral immune system can also play a detrimental or beneficial role in CNS inflammation. Systemic inflammation can increase the risk of developing AD dementia, and chemokines released directly by microglia or indirectly by endothelial cells can attract monocytes and T lymphocytes to the CNS. These peripheral immune cells can aid in amyloid β clearance or modulate microglia responses, depending on the cell type. As such, several groups have targeted the peripheral immune system to modulate chronic neuroinflammation. In this review, we focus on the interplay of immunomodulating factors and cell types that are being investigated as possible therapeutic targets for the treatment or prevention of AD.
Collapse
Affiliation(s)
- Dawling A Dionisio-Santos
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA
| | - John A Olschowka
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY, 14642, USA.
| |
Collapse
|
32
|
Nichols MR, St-Pierre MK, Wendeln AC, Makoni NJ, Gouwens LK, Garrad EC, Sohrabi M, Neher JJ, Tremblay ME, Combs CK. Inflammatory mechanisms in neurodegeneration. J Neurochem 2019; 149:562-581. [PMID: 30702751 DOI: 10.1111/jnc.14674] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/28/2022]
Abstract
This review discusses the profound connection between microglia, neuroinflammation, and Alzheimer's disease (AD). Theories have been postulated, tested, and modified over several decades. The findings have further bolstered the belief that microglia-mediated inflammation is both a product and contributor to AD pathology and progression. Distinct microglia phenotypes and their function, microglial recognition and response to protein aggregates in AD, and the overall role of microglia in AD are areas that have received considerable research attention and yielded significant results. The following article provides a historical perspective of microglia, a detailed discussion of multiple microglia phenotypes including dark microglia, and a review of a number of areas where microglia intersect with AD and other pathological neurological processes. The overall breadth of important discoveries achieved in these areas significantly strengthens the hypothesis that neuroinflammation plays a key role in AD. Future determination of the exact mechanisms by which microglia respond to, and attempt to mitigate, protein aggregation in AD may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Michael R Nichols
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Département de médecine moléculaire, Université Laval, Québec, Quebec, Canada
| | - Ann-Christin Wendeln
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nyasha J Makoni
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Lisa K Gouwens
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Evan C Garrad
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Mona Sohrabi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Département de médecine moléculaire, Université Laval, Québec, Quebec, Canada
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
33
|
Ji Y, Wang X, Kalicki C, Menta BW, Baumgardner M, Koppel SJ, Weidling IW, Perez-Ortiz J, Wilkins HM, Swerdlow RH. Effects of Microglial Cytokines on Alzheimer's Disease-Related Phenomena. J Alzheimers Dis 2019; 67:1021-1034. [PMID: 30714956 PMCID: PMC6568259 DOI: 10.3233/jad-180820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent association studies indicate several genes highly expressed by microglia influence Alzheimer's disease (AD) risk, which suggests microglial function contributes to this disease. Here, we evaluated how one component of microglial function, cytokine release, affects AD-related phenomena. First, we used a 3-hour lipopolysaccharide (LPS) treatment to activate mouse BV2 microglial cells. Next, we removed the LPS-containing medium, added LPS-free medium, and after 6 hours collected the medium conditioned by the activated BV2 microglial cells. We then exposed human neuronal SH-SY5Y cells to the conditioned medium for 24 hours. At the end of the 24-hour exposure, we assessed amyloid-β protein precursor (AβPP), tau, apolipoprotein E (ApoE), and lipid status. The amount of AβPP was unaffected, although a slight decrease in soluble AβPPα suggested a subtle reduction in AβPP non-amyloidogenic processing occurred. Tau mRNA increased, but total and phosphorylated tau levels were unchanged. ApoE mRNA increased, while ApoE protein levels were lower. Per cell lipid droplet number decreased and lipid oxidation increased. These results show cytokine release by activated microglial cells can influence specific AD-relevant physiologies and pathologies.
Collapse
Affiliation(s)
- Yan Ji
- University of Kansas Alzheimer's Disease Center, Kansas, USA.,Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaowan Wang
- University of Kansas Alzheimer's Disease Center, Kansas, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Colin Kalicki
- University of Kansas Alzheimer's Disease Center, Kansas, USA
| | - Blaise W Menta
- University of Kansas Alzheimer's Disease Center, Kansas, USA
| | - Megan Baumgardner
- University of Kansas Alzheimer's Disease Center, Kansas, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Scott J Koppel
- University of Kansas Alzheimer's Disease Center, Kansas, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ian W Weidling
- University of Kansas Alzheimer's Disease Center, Kansas, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Judit Perez-Ortiz
- University of Kansas Alzheimer's Disease Center, Kansas, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Kansas, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
34
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
35
|
Presta I, Vismara M, Novellino F, Donato A, Zaffino P, Scali E, Pirrone KC, Spadea MF, Malara N, Donato G. Innate Immunity Cells and the Neurovascular Unit. Int J Mol Sci 2018; 19:E3856. [PMID: 30513991 PMCID: PMC6321635 DOI: 10.3390/ijms19123856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have clarified many still unknown aspects related to innate immunity and the blood-brain barrier relationship. They have also confirmed the close links between effector immune system cells, such as granulocytes, macrophages, microglia, natural killer cells and mast cells, and barrier functionality. The latter, in turn, is able to influence not only the entry of the cells of the immune system into the nervous tissue, but also their own activation. Interestingly, these two components and their interactions play a role of great importance not only in infectious diseases, but in almost all the pathologies of the central nervous system. In this paper, we review the main aspects in the field of vascular diseases (cerebral ischemia), of primitive and secondary neoplasms of Central Nervous System CNS, of CNS infectious diseases, of most common neurodegenerative diseases, in epilepsy and in demyelinating diseases (multiple sclerosis). Neuroinflammation phenomena are constantly present in all diseases; in every different pathological state, a variety of innate immunity cells responds to specific stimuli, differentiating their action, which can influence the blood-brain barrier permeability. This, in turn, undergoes anatomical and functional modifications, allowing the stabilization or the progression of the pathological processes.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Marco Vismara
- Department of Cell Biotechnologies and Hematology, University "La Sapienza" of Rome, 00185 Rome, Italy.
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100 Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Paolo Zaffino
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Elisabetta Scali
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Krizia Caterina Pirrone
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Maria Francesca Spadea
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Giuseppe Donato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
36
|
Herman F, Westfall S, Brathwaite J, Pasinetti GM. Suppression of Presymptomatic Oxidative Stress and Inflammation in Neurodegeneration by Grape-Derived Polyphenols. Front Pharmacol 2018; 9:867. [PMID: 30210334 PMCID: PMC6122113 DOI: 10.3389/fphar.2018.00867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/17/2018] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative disorders constitute a group of multifaceted conditions characterized by the progressive loss of neurons and synaptic connections consequent to a combination of specific genetic predispositions and stochastic stressors. The neuropathologies observed in both Alzheimer's and Parkinson's disease are in part attributed to compounding intrinsic and extrinsic environmental stressors, which we propose may be limited by the administration of specific grape derived phytochemicals and their metabolized derivatives, specifically polyphenols isolated from grape botanicals. Current therapies for neurodegenerative disorders are limited as they solely target the final disease pathologies including behavioral changes, cognitive deficits, proteinopathies and neuronal loss; however, this strategy is not a sustainable approach toward managing disease onset or progression. This review discusses the application of grape derived polyphenols as an adjunctive treatment paradigm for the prevention of neuropathologies associated with Alzheimer's disease, Parkinson's disease and Chronic Traumatic Encephalopathy by simultaneously ameliorating two stochastic stressors that facilitate their disease pathologies: inflammation and oxidative stress. The biophysical attributes of grape-derived polyphenols buffer against redox potential dependent peripheral and neuroinflammation and down regulate the activation of inflammasomes in microglia and astrocytes, which could provide a novel mechanism through which grape-derived polyphenols simultaneously suppress risk factors across pathologically distinct neurodegenerative conditions. This approach therefore offers a prophylactic mode, not feasible through current pharmacological agents, to target activity dependent risk factors for neurodegenerative disorders that manifest over an individual's lifetime.
Collapse
Affiliation(s)
- Francis Herman
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
- Department of Genomic Sciences, Mount Sinai School of Medicine, New York, NY, United States
| | - Susan Westfall
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
- Department of Genomic Sciences, Mount Sinai School of Medicine, New York, NY, United States
| | - Justin Brathwaite
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
- Department of Genomic Sciences, Mount Sinai School of Medicine, New York, NY, United States
| | - Giulio M. Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
- Department of Genomic Sciences, Mount Sinai School of Medicine, New York, NY, United States
- James J. Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
37
|
Mason A, Holmes C, Edwards CJ. Inflammation and dementia: Using rheumatoid arthritis as a model to develop treatments? Autoimmun Rev 2018; 17:919-925. [PMID: 30005856 DOI: 10.1016/j.autrev.2018.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
Dementia is a major international public health problem which looks set to grow as the ageing population increases. Despite large amounts of investment there has been relatively little progress in developing new therapies to combat this. There is a growing body of evidence that both local and systemic inflammation are important in dementia; with cerebral inflammation occurring secondarily to beta-amyloid plaques, raised levels of serum inflammatory molecules and cytokines being present in Alzheimer's disease patients and systemic inflammation being associated with cerebral microvasculature disease in vascular dementia. Observational studies had suggested that non-steroidal anti-inflammatory drugs may reduce the risk of dementia, but subsequent interventional studies have been disappointing. More recently some observational studies have suggested a protective effect from conventional synthetic disease modifying anti-rheumatic drugs (csDMARDS) and tumour necrosis factor inhibiting (TNFi) biological therapies. Treatments for inflammatory rheumatic diseases have previously been repurposed and used successfully in other diseases, such as TNFi for inflammatory bowel disease. There are also studies looking at the use of csDMARDs such as methotrexate to improve outcomes after cardiovascular events. Ongoing interventional trials are currently looking at whether therapies designed to treat inflammatory and autoimmune diseases have the potential to be used to treat dementia.
Collapse
Affiliation(s)
- Alice Mason
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Christopher J Edwards
- University Hospital Southampton NHS Foundation Trust, Southampton, UK; MSK Research Unit, NIHR Clinical Research Facility, University of Southampton & University Hospital Southampton NHS Foundation Trust, UK.
| |
Collapse
|
38
|
Luo Y, Kuang S, Li H, Ran D, Yang J. cAMP/PKA-CREB-BDNF signaling pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress. Oncotarget 2018; 8:35558-35572. [PMID: 28415673 PMCID: PMC5482598 DOI: 10.18632/oncotarget.16009] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
To investigate the mechanism of cyclooxygenase 2 (COX2) in learning and memory impairments in rats subjected to chronic unpredictable mild stress (CUMS), meloxicam was used intragastrically to inhibit the activity of cyclooxygenase 2. Moreover, cyclooxygenase 2 over-expressing or RNA interfere lentivirus was injected intraventricularly to increase or decrease the enzyme's expression, respectively. The body weights and sucrose consumption were used to analyze depressive behaviors, while the Morris water maze and step-down-type passive avoidance tests were carried out to evaluate the learning-memory functions. The levels of inflammatory cytokines were measured to estimate inflammation and the contents of cyclic adenosine monophosphate (cAMP) were used to measure the levels of the second messenger. Changes in cyclooxygenase 2 mRNA levels were analyzed using reverse transcription polymerase chain reaction. Moreover, the expression of cyclooxygenase 2, brain-derived neurotrophic factor (BDNF), prostaglandins receptor 3 (EP3), protein kinase A (PKA), cAMP response element binding protein (CREB), and phosphorylated CREB were estimated using immunohistochemical staining or western blotting. The results showed that CUMS led to significant depressive-like behaviors and learning and memory dysfunctions. Also, the cAMP levels decreased significantly, while levels of inflammatory cytokines and prostaglandins E2 increased significantly. The expressions of PKA, BDNF, phosphorylated CREB/CREB declined and cyclooxygenase 2 was increased. Meloxicam and cyclooxygenase 2 RNA interfere lentivirus reversed the changes caused by CUMS while cyclooxygenase 2-overexpressing lentivirus worsened these abnormalities. The findings also showed that CUMS increased cyclooxygenase 2 expression, which can cause learning and memory impairments, mainly through activating the hippocampal neuronal cAMP/PKA-CREB-BDNF signaling pathways.
Collapse
Affiliation(s)
- Ying Luo
- Department of Pharmacology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Shengnan Kuang
- Department of Pharmacology, Chongqing Medical University, Chongqing, China.,Department of Pharmacy, People's Hospital of Rongchang, Chongqing, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Dongzhi Ran
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| |
Collapse
|
39
|
Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis 2018; 9:143-150. [PMID: 29392089 PMCID: PMC5772852 DOI: 10.14336/ad.2017.0306] [Citation(s) in RCA: 501] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
NSAIDs, non-steroidal anti-inflammatory drugs, are one of the most commonly prescribed pain medications. It is a highly effective drug class for pain and inflammation; however, NSAIDs are known for multiple adverse effects, including gastrointestinal bleeding, cardiovascular side effects, and NSAID induced nephrotoxicity. As our society ages, it is crucial to have comprehensive knowledge of this class of medication in the elderly population. Therefore, we reviewed the pharmacodynamics and pharmacokinetics, current guidelines for NSAIDs use, adverse effect profile, and drug interaction of NSAIDs and commonly used medications in the elderly.
Collapse
Affiliation(s)
| | | | - Katie Melhado
- Department of Medicine, Einstein Medical Center, Philadelphia, Pennsylvania, PA 19141, USA.
| | - Janani Rangaswami
- Division of Nephrology, Department of Medicine, Einstein Medical Center, Philadelphia, PA 19144, USA
| |
Collapse
|
40
|
Wood PL, Cebak JE, Woltjer RL. Diacylglycerols as biomarkers of sustained immune activation in Proteinopathies associated with dementia. Clin Chim Acta 2018; 476:107-110. [DOI: 10.1016/j.cca.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022]
|
41
|
Molteni M, Rossetti C. Neurodegenerative diseases: The immunological perspective. J Neuroimmunol 2017; 313:109-115. [PMID: 29153601 DOI: 10.1016/j.jneuroim.2017.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Increasing evidence supports the notion that the neurodegenerative process occurring in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS) does not only imply the neuronal compartment but also involves a strong interaction with the immunological cells of the Central Nervous System (CNS), primarily microglia. Starting from the observation that the neurodegenerative disorders are frequent in elderly individuals, who have an immunological background that possibly favors this process, it is evident that a dysregulation of innate immune response triggered by misfolded and aggregated proteins, or by endogenous molecules released by injured neurons, directly contributes to disease pathogenesis and progression. There are important differences in the immunological processes occurring in AD, PD, ALS involving microglial function. Furthermore, although the contribution of adaptive immune cells in AD seems to be modest, in PD and especially in ALS models, T cells can influence microglial phenotype, inducing neuroprotection. A better understanding of the immunological mechanisms involved in the different phases of the neurodegenerative processes observed in AD, PD, ALS could effectively contribute to the development of new preventive and therapeutic strategies for such diseases.
Collapse
Affiliation(s)
- Monica Molteni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Via Dunant, 3, 21100 Varese, Italy.
| | - Carlo Rossetti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Via Dunant, 3, 21100 Varese, Italy
| |
Collapse
|
42
|
Ying HZ, Chen Q, Zhang WY, Zhang HH, Ma Y, Zhang SZ, Fang J, Yu CH. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol Med Rep 2017; 16:7879-7889. [PMID: 28983598 PMCID: PMC5779870 DOI: 10.3892/mmr.2017.7641] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
The platelet‑derived growth factor (PDFG) signaling pathway exerts persistent activation in response to a variety of stimuli and facilitates the progression of hepatic fibrosis. Since this pathway modulates a broad spectrum of cellular processes, including cell growth, differentiation, inflammation and carcinogenesis, it has emerged as a therapeutic target for hepatic fibrosis and liver‑associated disorders. The present review exhibits the current knowledge of the role of the PDGF signaling pathway and its pathological profiles in hepatic fibrosis, and assesses the potential of inhibitors which have been investigated in the experimental hepatic fibrosis model, in addition to the clinical challenges associated with these inhibitors.
Collapse
Affiliation(s)
- Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Qin Chen
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wen-You Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Yue Ma
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Song-Zhao Zhang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
43
|
Webster L, Groskreutz D, Grinbergs-Saull A, Howard R, O'Brien JT, Mountain G, Banerjee S, Woods B, Perneczky R, Lafortune L, Roberts C, McCleery J, Pickett J, Bunn F, Challis D, Charlesworth G, Featherstone K, Fox C, Goodman C, Jones R, Lamb S, Moniz-Cook E, Schneider J, Shepperd S, Surr C, Thompson-Coon J, Ballard C, Brayne C, Burke O, Burns A, Clare L, Garrard P, Kehoe P, Passmore P, Holmes C, Maidment I, Murtagh F, Robinson L, Livingston G. Development of a core outcome set for disease modification trials in mild to moderate dementia: a systematic review, patient and public consultation and consensus recommendations. Health Technol Assess 2017; 21:1-192. [PMID: 28625273 PMCID: PMC5494514 DOI: 10.3310/hta21260] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is currently no disease-modifying treatment available to halt or delay the progression of the disease pathology in dementia. An agreed core set of the best-available and most appropriate outcomes for disease modification would facilitate the design of trials and ensure consistency across disease modification trials, as well as making results comparable and meta-analysable in future trials. OBJECTIVES To agree a set of core outcomes for disease modification trials for mild to moderate dementia with the UK dementia research community and patient and public involvement (PPI). DATA SOURCES We included disease modification trials with quantitative outcomes of efficacy from (1) references from related systematic reviews in workstream 1; (2) searches of the Cochrane Dementia and Cognitive Improvement Group study register, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature, EMBASE, Latin American and Caribbean Health Sciences Literature and PsycINFO on 11 December 2015, and clinical trial registries [International Standard Randomised Controlled Trial Number (ISRCTN) and clinicaltrials.gov] on 22 and 29 January 2016; and (3) hand-searches of reference lists of relevant systematic reviews from database searches. REVIEW METHODS The project consisted of four workstreams. (1) We obtained related core outcome sets and work from co-applicants. (2) We systematically reviewed published and ongoing disease modification trials to identify the outcomes used in different domains. We extracted outcomes used in each trial, recording how many used each outcome and with how many participants. We divided outcomes into the domains measured and searched for validation data. (3) We consulted with PPI participants about recommended outcomes. (4) We presented all the synthesised information at a conference attended by the wider body of National Institute for Health Research (NIHR) dementia researchers to reach consensus on a core set of outcomes. RESULTS We included 149 papers from the 22,918 papers screened, referring to 125 individual trials. Eighty-one outcomes were used across trials, including 72 scales [31 cognitive, 12 activities of daily living (ADLs), 10 global, 16 neuropsychiatric and three quality of life] and nine biological techniques. We consulted with 18 people for PPI. The conference decided that only cognition and biological markers are core measures of disease modification. Cognition should be measured by the Mini Mental State Examination (MMSE) or the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog), and brain changes through structural magnetic resonance imaging (MRI) in a subset of participants. All other domains are important but not core. We recommend using the Neuropsychiatric Inventory for neuropsychiatric symptoms: the Disability Assessment for Dementia for ADLs, the Dementia Quality of Life Measure for quality of life and the Clinical Dementia Rating scale to measure dementia globally. LIMITATIONS Most of the trials included participants with Alzheimer's disease, so recommendations may not apply to other types of dementia. We did not conduct economic analyses. The PPI consultation was limited to members of the Alzheimer's Society Research Network. CONCLUSIONS Cognitive outcomes and biological markers form the core outcome set for future disease modification trials, measured by the MMSE or ADAS-Cog, and structural MRI in a subset of participants. FUTURE WORK We envisage that the core set may be superseded in the future, particularly for other types of dementia. There is a need to develop an algorithm to compare scores on the MMSE and ADAS-Cog. STUDY REGISTRATION The project was registered with Core Outcome Measures in Effectiveness Trials [ www.comet-initiative.org/studies/details/819?result=true (accessed 7 April 2016)]. The systematic review protocol is registered as PROSPERO CRD42015027346. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Lucy Webster
- Division of Psychiatry, University College London, London, UK
| | - Derek Groskreutz
- Division of Psychology and Language Sciences, University College London, London, UK
| | | | - Rob Howard
- Division of Psychiatry, University College London, London, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gail Mountain
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Sube Banerjee
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Bob Woods
- Dementia Services Development Centre Wales, Bangor University, Bangor, UK
| | - Robert Perneczky
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Louise Lafortune
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Charlotte Roberts
- International Consortium for Health Outcomes Measurement, London, UK
| | | | | | - Frances Bunn
- Centre for Research in Primary and Community Care, University of Hertfordshire, Hatfield, UK
| | - David Challis
- Personal Social Services Research Unit, University of Manchester, Manchester, UK
| | - Georgina Charlesworth
- Research Department of Clinical, Educational, and Health Psychology, University College London, London, UK
| | | | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Claire Goodman
- Centre for Research in Primary and Community Care, University of Hertfordshire, Hatfield, UK
| | - Roy Jones
- Research Institute for the Care of Older People, University of Bath, Bath, UK
| | - Sallie Lamb
- Oxford Clinical Trials Research Unit, University of Oxford, Oxford, UK
| | - Esme Moniz-Cook
- Faculty of Health and Social Care, University of Hull, Hull, UK
| | - Justine Schneider
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Sasha Shepperd
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Claire Surr
- School of Health & Community Studies, Leeds Beckett University, Leeds, UK
| | - Jo Thompson-Coon
- Collaboration for Leadership in Applied Health Research and Care South West Peninsula, University of Exeter, Exeter, UK
| | - Clive Ballard
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Orlaith Burke
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alistair Burns
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Linda Clare
- Collaboration for Leadership in Applied Health Research and Care South West Peninsula, University of Exeter, Exeter, UK
- School of Psychology, University of Exeter, Exeter, UK
- Centre for Research in Ageing and Cognitive Health, University of Exeter Medical School, Exeter, UK
| | - Peter Garrard
- Neuroscience Research Centre, St George's, University of London, UK
| | - Patrick Kehoe
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peter Passmore
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Clive Holmes
- School of Medicine, University of Southampton, Southampton, UK
| | - Ian Maidment
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | - Fliss Murtagh
- Cicely Saunders Institute, King's College London, London, UK
| | - Louise Robinson
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Gill Livingston
- Division of Psychiatry, University College London, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
- North Thames Collaboration for Leadership in Applied Health Research and Care, London, UK
| |
Collapse
|
44
|
Terzi M, Altun G, Şen S, Kocaman A, Kaplan AA, Yurt KK, Kaplan S. The use of non-steroidal anti-inflammatory drugs in neurological diseases. J Chem Neuroanat 2017; 87:12-24. [PMID: 28341179 DOI: 10.1016/j.jchemneu.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/14/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have been in use for many years and constitute a large part of prescriptions issued in daily practice. Although NSAIDs are used for many diseases in neurology, they have also been tested as a new therapeutic option for various other diseases. While their effects on headache and cerebrovascular diseases are well known, little is known about their impact on neurodegenerative diseases. This review discusses the use, effects and safety of NSAIDs in neurological diseases.
Collapse
Affiliation(s)
- Murat Terzi
- Department of Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Sedat Şen
- Department of Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Adem Kocaman
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
45
|
Villa V, Thellung S, Bajetto A, Gatta E, Robello M, Novelli F, Tasso B, Tonelli M, Florio T. Novel celecoxib analogues inhibit glial production of prostaglandin E2, nitric oxide, and oxygen radicals reverting the neuroinflammatory responses induced by misfolded prion protein fragment 90-231 or lipopolysaccharide. Pharmacol Res 2016; 113:500-514. [PMID: 27667770 DOI: 10.1016/j.phrs.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022]
Abstract
We tested the efficacy of novel cyclooxygenase 2 (COX-2) inhibitors in counteracting glia-driven neuroinflammation induced by the amyloidogenic prion protein fragment PrP90-231 or lipopolysaccharide (LPS). In search for molecules with higher efficacy than celecoxib, we focused our study on its 2,3-diaryl-1,3-thiazolidin-4-one analogues. As experimental models, we used the immortalized microglial cell line N9, rat purified microglial primary cultures, and mixed cultures of astrocytes and microglia. Microglia activation in response to PrP90-231 or LPS was characterized by growth arrest, morphology changes and the production of reactive oxygen species (ROS). Moreover, PrP90-231 treatment caused the overexpression of the inducible nitric oxide synthase (iNOS) and COX-2, with the consequent nitric oxide (NO), and prostaglandin E2 (PGE2) accumulation. These effects were challenged by different celecoxib analogues, among which Q22 (3-[4-(sulfamoyl)phenyl]-2-(4-tolyl)thiazolidin-4-one) inhibited microglia activation more efficiently than celecoxib, lowering both iNOS and COX-2 activity and reducing ROS release. During neurodegenerative diseases, neuroinflammation induced by amyloidogenic peptides causes the activation of both astrocytes and microglia with these cell populations mutually regulating each other. Thus the effects of PrP90-231 and LPS were also studied on mixed glial cultures containing astrocytes and microglia. PrP90-231 treatment elicited different responses in the co-cultures induced astrocyte proliferation and microglia growth arrest, resulting in a differential ability to release proinflammatory molecules with the production of NO and ROS mainly attributable on microglia, while COX-2 expression was induced also in astrocytes. Q22 effects on both NO and PGE2 secretion were more significant in the mixed glial cultures than in purified microglia, demonstrating Q22 ability to revert the functional interaction between astrocytes and microglia. These results demonstrate that Q22 is a powerful drug able to revert glial neuroinflammatory responses and might represent a lead to explore the chemical space around celecoxib frameworks to design even more effective agents, paving the way to novel approaches to contrast the neuroinflammation-dependent toxicity.
Collapse
Affiliation(s)
- Valentina Villa
- Laboratory of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genoa, Italy
| | - Stefano Thellung
- Laboratory of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genoa, Italy
| | - Adriana Bajetto
- Laboratory of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genoa, Italy
| | - Elena Gatta
- Department of Physics, University of Genova, Genoa, Italy
| | - Mauro Robello
- Department of Physics, University of Genova, Genoa, Italy
| | - Federica Novelli
- Department of Pharmacy, University of Genova, 16132 Genoa, Italy
| | - Bruno Tasso
- Department of Pharmacy, University of Genova, 16132 Genoa, Italy
| | - Michele Tonelli
- Department of Pharmacy, University of Genova, 16132 Genoa, Italy
| | - Tullio Florio
- Laboratory of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genoa, Italy.
| |
Collapse
|
46
|
Deardorff WJ, Grossberg GT. Targeting neuroinflammation in Alzheimer’s disease: evidence for NSAIDs and novel therapeutics. Expert Rev Neurother 2016; 17:17-32. [DOI: 10.1080/14737175.2016.1200972] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - George T Grossberg
- Department of Psychiatry, St. Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
47
|
Calsolaro V, Edison P. Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimers Dement 2016; 12:719-32. [DOI: 10.1016/j.jalz.2016.02.010] [Citation(s) in RCA: 738] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 02/14/2016] [Accepted: 02/25/2016] [Indexed: 01/19/2023]
Affiliation(s)
| | - Paul Edison
- Neurology Imaging Unit; Imperial College London; UK
| |
Collapse
|
48
|
Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer's disease: a systematic review and meta-analysis of treatment effect. Drugs Aging 2016; 32:139-47. [PMID: 25644018 DOI: 10.1007/s40266-015-0239-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the cause of more than two-thirds of all dementia cases. Although there is no effective treatment against this disorder, its association with neuroinflammation suggests that non-steroidal anti-inflammatory drugs (NSAIDs) might represent a potential therapeutic option. OBJECTIVE The objective of this study was to evaluate the efficacy of NSAIDs in the treatment of AD using a meta-analysis approach. METHODS MEDLINE, Web of Science, Science Direct, and the Cochrane Library were used to search all the randomized controlled trials that have evaluated the efficacy of NSAIDs as a treatment for AD (up to 1 October 2014). The overall effect of NSAIDs versus placebo was determined using a random effects model meta-analysis where we compared changes (i.e., mean differences pre- vs. post-treatment) between the two conditions in test scores indicative of cognition, disease severity, and related outcomes. RESULTS Seven studies were finally included in the meta-analysis. Diclofenac/misoprostol, nimesulide, naproxen, rofecoxib, ibuprofen, indomethacin, tarenflurbil, and celecoxib were the NSAIDs used in these reports. The results of the AD Assessment Scale-cognitive subscale (ADAS-cog), the Clinical Dementia Rating Scale sum-of-boxes (CDR-SOB), and the Mini-Mental State Examination (MMSE) showed no statistical or clinical significance of NSAIDs treatment compared with placebo, i.e., mean differences of -0.24 (95% Confidence Interval (CI) -1.04 to 0.57; P = 0.52), -0.07 (95% CI -0.7 to 0.56; P = 0.82), and 0.35 (95% CI -0.34 to 1.04; P = 0.32), respectively. CONCLUSION Current preliminary evidence suggests no beneficial effect of NSAIDs on cognition or overall AD severity. Thus, although more research is needed in the field, the evidence available does not support the use of NSAIDs for AD treatment.
Collapse
|
49
|
Shukuri M, Mawatari A, Ohno M, Suzuki M, Doi H, Watanabe Y, Onoe H. Detection of Cyclooxygenase-1 in Activated Microglia During Amyloid Plaque Progression: PET Studies in Alzheimer's Disease Model Mice. J Nucl Med 2015; 57:291-6. [PMID: 26585055 DOI: 10.2967/jnumed.115.166116] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Cyclooxygenase (COX), a prostanoid-synthesizing enzyme, is considered to be involved in the neuroinflammatory process of neurodegenerative diseases. However, the role of COX in the progression of neurodegeneration is not well understood. We hypothesized that in vivo imaging of COX by PET will contribute to elucidation of the function of COX during the neurodegenerative process in Alzheimer's disease (AD). (11)C-labeled ketoprofen methyl ester (racemic (RS)-(11)C-KTP-Me) developed recently by our group is a useful PET probe for in vivo imaging of COX-1 during neuroinflammation. The (S)-enantiomer of ketoprofen is known to be pharmacologically more active than the (R)-enantiomer. We thus synthesized (11)C-labeled (S)-ketoprofen methyl ester ((S)-(11)C-KTP-Me) as an improved PET probe specific for COX-1 and applied it for investigation of the changes in COX-1 during the progression of AD in a mouse model. METHODS The specificity of (S)-(11)C-KTP-Me for COXs was examined in PET studies with rats that had intrastriatal injection of lipopolysaccharide. To determine the details of changes in COX-1 during progression of amyloid-β (Aβ) plaque formation in amyloid precursor protein transgenic (APP-Tg) mice, we performed immunohistochemical studies and ex vivo autoradiography with (S)-(11)C-KTP-Me. RESULTS PET studies using hemispheric lipopolysaccharide injection into rats revealed that the sensitivity of (S)-(11)C-KTP-Me in neuroinflammation was much higher than that of (RS)-(11)C-KTP-Me and (R)-(11)C-KTP-Me; these results closely corresponded to the inhibitory activities of each enantiomer against COX-1 estimated by an in vitro assay. In APP-Tg mice, (S)-(11)C-KTP-Me administration resulted in progressive and significant increases in accumulation of radioactivity in the brain from 16 to 24 mo old in accordance with the histopathologic appearance of abundant Aβ plaques and activated microglia, whereas few changes in radioactivity accumulation and few Aβ plaques were seen in age-matched wild-type control mice. High-radioactivity accumulation by (S)-(11)C-KTP-Me was markedly observed in the frontal cortex and hippocampus in which COX-1-expressing activated microglia tightly surrounded and enclosed large and more intensely stained Aβ plaques, indicating neuroinflammation that originated with Aβ. CONCLUSION (S)-(11)C-KTP-Me is a potent PET probe that is highly selective for COX-1. Studies using APP-Tg mice demonstrated that (S)-(11)C-KTP-Me could detect activated microglia that are associated with amyloid plaque progression, suggesting the involvement of COX-1 in the neuroinflammatory process in AD.
Collapse
Affiliation(s)
- Miho Shukuri
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan Laboratory of Physical Chemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan; and
| | - Aya Mawatari
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| | - Masahiro Ohno
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| | - Masaaki Suzuki
- National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hisashi Doi
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| | - Yasuyoshi Watanabe
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| | - Hirotaka Onoe
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| |
Collapse
|
50
|
Abstract
The molecular mechanism of neuronal loss and synaptic damage in Alzheimer's disease (AD), Parkinson's disease dementia (PDD), frontotemporal dementia (FTD) and Lewy body dementia (LBD) is poorly understood and could differ among different types of neurodegenerative processes. However, the presence of neuroinflammation is a common feature of dementia. In this setting, reactive microgliosis, oxidative damage and mitochondrial dysfunction are associated with the pathogenesis of all types of neurodegenerative dementia. Moreover, an increased body of evidence suggests that microglia may play a central role in AD progression. In this paper, we review the scientific literature on neuroinflammation related to the most common neurodegenerative dementias (AD, PDD, FTD and LBD) focussing on the possible molecular mechanisms and the available clinical evidence. Furthermore, we discuss the neuroimaging techniques that are currently used for the study of neuroinflammation in human brain.
Collapse
Affiliation(s)
- Giuseppe Pasqualetti
- Division of Brain Sciences, Department of Medicine, Imperial College London, 1st Floor B Block, Du Cane Road, London, W12 0NN, UK
| | | | | |
Collapse
|