1
|
Del Sorbo L, Cerracchio C, Serra F, Canzanella S, Giugliano R, Lambiase S, Aránguiz NP, Esposito M, Amoroso MG, Fusco G, Fiorito F. Canine coronavirus infection is intensified by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Toxicol 2025; 99:2211-2223. [PMID: 39985684 DOI: 10.1007/s00204-025-03981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
In humans as well as in animals, the toxic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) stimulates immunosuppression and increases responsiveness to infectious diseases. The relationship between environmental contaminants and different infectious diseases, including COVID-19, has been described. Nevertheless, reports about the potential impact of TCDD on coronaviruses (CoVs) are limited. In this study, the impact of TCDD (0-100 pg/mL) was assessed during infection in vitro with canine coronavirus (CCoV-II), the alphaCoV causing moderate enteric disease in dogs, although genetic alterations may surprisingly generate new dangerous strains. For instance, outbreaks of lethal infections in dogs were related to highly virulent CCoV strains, and cases of pneumonia and malaise in humans were associated with new canine-feline recombinant strains of CCoV, underlining the cross-species spread capability of CoVs. Herein, during CCoV infection, TCDD induced a substantial growth in virus yield and in the expression of viral nucleocapsid protein in infected groups. Infected cells exhibited alterations in cell morphology, extensively enhanced by TCDD. Moreover, in infection, TCDD modulated the protein levels of aryl hydrocarbon receptor (AHR), a signaling responsive to both environmental contaminant and CoVs infections. Overall, our findings showed that TCDD, playing a role in AHR signaling, may worsen CCoV infection.
Collapse
Affiliation(s)
- Luca Del Sorbo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137, Naples, Italy
| | - Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137, Naples, Italy
| | - Francesco Serra
- Istituto Zooprofilattico del Mezzogiorno, Portici, 80055, Naples, Italy
| | - Silvia Canzanella
- Istituto Zooprofilattico del Mezzogiorno, Portici, 80055, Naples, Italy
| | - Rosa Giugliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137, Naples, Italy
| | - Sara Lambiase
- Istituto Zooprofilattico del Mezzogiorno, Portici, 80055, Naples, Italy
| | | | - Mauro Esposito
- Istituto Zooprofilattico del Mezzogiorno, Portici, 80055, Naples, Italy
| | | | - Giovanna Fusco
- Istituto Zooprofilattico del Mezzogiorno, Portici, 80055, Naples, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137, Naples, Italy.
| |
Collapse
|
2
|
Rashid MM, Ahmed S, Owens L, Hu N, Jaffe A, Homaira N. Asthma-community acquired pneumonia co-diagnosis in children: a scoping review. J Asthma 2024; 61:282-291. [PMID: 37943507 DOI: 10.1080/02770903.2023.2280843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE This scoping review investigated the existing literature and identified the evidence gaps related to diagnosis and management in children aged 2-18 years presenting to hospitals with a co-diagnosis of asthma and community-acquired pneumonia. DATA SOURCES We designed a scoping review following Arksey and O'Malley's scoping review framework and PRISMA extension for a scoping review. We searched literature using five electronic databases: PubMed, CINAHL, Scopus, Web of Science, and Embase from 2003 to June 2023. RESULTS A total of 1599 abstracts with titles were screened and 12 abstracts were selected for full review. Separate guidelines including Modified Global Initiative for Asthma (GINA) guidelines; modified Integrated Management of Childhood Illness (IMCI) guidelines; and a consensus guideline developed by the Pediatric Infectious Diseases Society (PIDS) and Infectious Diseases Society of America (IDSA) were used for diagnosing asthma and CAP individually. Chest X-rays were used in 83.3% (10/12) of studies to establish the co-diagnosis of asthma-CAP in children. Variations were observed in using different laboratory investigations across the studies. Infectious etiologies were detected in five (41.7%) studies. In 75% (9/12) of studies, children with asthma-CAP co-diagnosis were treated with antimicrobials, however, bacterial etiology was not reported in 44.4% (4/9) of the studies. CONCLUSIONS Our scoping review suggests that chest X-rays are commonly used to establish the co-diagnosis of asthma-CAP and antibiotics are often used without laboratory confirmation of a bacterial etiology. Clinical practice guidelines for the management of asthma and pneumonia in children who present with co-diagnosis may standardize clinical care and reduce variation.
Collapse
Affiliation(s)
- Md Mahbubur Rashid
- Faculty of Medicine, School of Clinical Medicine, UNSW, Sydney, Australia
| | - Shamim Ahmed
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Louisa Owens
- Faculty of Medicine, School of Clinical Medicine, UNSW, Sydney, Australia
- Respiratory Department, Sydney Children's Hospital, Sydney, Australia
| | - Nan Hu
- Faculty of Medicine, School of Clinical Medicine, UNSW, Sydney, Australia
| | - Adam Jaffe
- Faculty of Medicine, School of Clinical Medicine, UNSW, Sydney, Australia
- Respiratory Department, Sydney Children's Hospital, Sydney, Australia
| | - Nusrat Homaira
- Faculty of Medicine, School of Clinical Medicine, UNSW, Sydney, Australia
- Respiratory Department, Sydney Children's Hospital, Sydney, Australia
- James P. Grant School of Public Health, BRAC University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Cerracchio C, Del Sorbo L, Serra F, Staropoli A, Amoroso MG, Vinale F, Fiorito F. Fungal metabolite 6-pentyl-α-pyrone reduces canine coronavirus infection. Heliyon 2024; 10:e28351. [PMID: 38545179 PMCID: PMC10966688 DOI: 10.1016/j.heliyon.2024.e28351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 11/11/2024] Open
Abstract
Canine coronavirus (CCoV) can produce a self-limited enteric disease in dogs but, because of notable biological plasticity of coronaviruses (CoVs), numerous mutations as well as recombination events happen leading to the emergence of variants often more dangerous for both animals and humans. Indeed, the emergence of new canine-feline recombinant alphacoronaviruses, recently isolated from humans, highlight the cross-species transmission potential of CoVs. Consequently, new effective antiviral agents are required to treat CoV infections. Among the candidates for the development of drugs against CoVs infection, fungal secondary metabolites (SMs) represent an important source to investigate. Herein, antiviral ability of 6-pentyl-α-pyrone (6 PP), a SM obtained by Trichoderma atroviride, was assessed against CCoV. During in vitro infection, nontoxic concentration of 6 PP significantly increased cell viability, reduced morphological signs of cell death, and inhibited viral replication of CCoV. In addition, we found a noticeable lessening in the expression of aryl hydrocarbon receptor (AhR), a strategic modulator of CoVs infection. Overall, due to the variety of their chemical and biological properties, fungal SMs can decrease the replication of CoVs, thus identifying a suitable in vitro model to screen for potential drugs against CoVs, using a reference strain of CCoV (S/378), non-pathogenic for humans.
Collapse
Affiliation(s)
- Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Luca Del Sorbo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Francesco Serra
- Department of Animal Health, Unit of Virology, Istituto Zooprofilattico del Mezzogiorno, Portici, 80055 Naples, Italy
| | - Alessia Staropoli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Portici, Naples, Italy
| | - Maria Grazia Amoroso
- Department of Animal Health, Unit of Virology, Istituto Zooprofilattico del Mezzogiorno, Portici, 80055 Naples, Italy
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Naples, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
4
|
Benede N, Tincho MB, Walters A, Subbiah V, Ngomti A, Baguma R, Butters C, Hahnle L, Mennen M, Skelem S, Adriaanse M, Facey-Thomas H, Scott C, Day J, Spracklen TF, van Graan S, Balla SR, Moyo-Gwete T, Moore PL, MacGinty R, Botha M, Workman L, Johnson M, Goldblatt D, Zar HJ, Ntusi NA, Zühlke L, Webb K, Riou C, Burgers WA, Keeton RS. Distinct T cell polyfunctional profile in SARS-CoV-2 seronegative children associated with endemic human coronavirus cross-reactivity. iScience 2024; 27:108728. [PMID: 38235336 PMCID: PMC10792240 DOI: 10.1016/j.isci.2023.108728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on SARS-CoV-2 antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
Collapse
Affiliation(s)
- Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Vennesa Subbiah
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Claire Butters
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Lina Hahnle
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Christiaan Scott
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Jonathan Day
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Timothy F. Spracklen
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Strauss van Graan
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sashkia R. Balla
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Rae MacGinty
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Maresa Botha
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Marina Johnson
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Heather J. Zar
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A.B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Liesl Zühlke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Kate Webb
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
- Crick African Network, The Francis Crick Institute, London, UK
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| |
Collapse
|
5
|
Faye MN, Barry MA, Jallow MM, Wade SF, Mendy MP, Sy S, Fall A, Kiori DE, Ndiaye NK, Goudiaby D, Diamanka A, Niang MN, Dia N. Epidemiology of Non-SARS-CoV2 Human Coronaviruses (HCoVs) in People Presenting with Influenza-like Illness (ILI) or Severe Acute Respiratory Infections (SARI) in Senegal from 2012 to 2020. Viruses 2022; 15:20. [PMID: 36680061 PMCID: PMC9864203 DOI: 10.3390/v15010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to emerging coronaviruses (SARS-CoV, MERS, SARS-CoV-2), there are seasonal human coronaviruses (HCoVs): HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1. With a wide distribution around the world, HCoVs are usually associated with mild respiratory disease. In the elderly, young children and immunocompromised patients, more severe or even fatal respiratory infections may be observed. In Africa, data on seasonal HCoV are scarce. This retrospective study investigated the epidemiology and genetic diversity of seasonal HCoVs during nine consecutive years of influenza-like illness surveillance in Senegal. Nasopharyngeal swabs were collected from ILI outpatients or from SARI hospitalized patients. HCoVs were diagnosed by qRT-PCR and the positive samples were selected for molecular characterization. Among 9337 samples tested for HCoV, 406 (4.3%) were positive: 235 (57.9%) OC43, 102 (25.1%) NL63, 58 (14.3%) 229E and 17 (4.2%) HKU1. The four types circulated during the study period and a peak was noted between November and January. Children under five were the most affected. Co-infections were observed between HCoV types (1.2%) or with other viruses (76.1%). Genetically, HCoVs types showed diversity. The results highlighted that the impact of HCoVs must be taken into account in public health; monitoring them is therefore particularly necessary both in the most sensitive populations and in animals.
Collapse
Affiliation(s)
- Modeste Name Faye
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar 12900, Senegal
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Mamadou Malado Jallow
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar 12900, Senegal
| | - Serigne Fallou Wade
- Ecole Supérieure des Sciences Agricoles et de l’Alimentation (ES2A), Université Amadou Makhtar MBOW de Dakar (UAM), Dakar 12900, Senegal
| | - Marie Pedapa Mendy
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar 12900, Senegal
| | - Sara Sy
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Amary Fall
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Davy Evrard Kiori
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | | | - Deborah Goudiaby
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Arfang Diamanka
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar 12900, Senegal
| | | | - Ndongo Dia
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
| |
Collapse
|
6
|
Vlasova AN, Toh TH, Lee JSY, Poovorawan Y, Davis P, Azevedo MSP, Lednicky JA, Saif LJ, Gray GC. Animal alphacoronaviruses found in human patients with acute respiratory illness in different countries. Emerg Microbes Infect 2022; 11:699-702. [PMID: 35156544 PMCID: PMC8890521 DOI: 10.1080/22221751.2022.2040341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 11/04/2022]
Abstract
Here we review the existing evidence of animal alphacoronaviruses (Alphacoronavirus 1 species) circulating in human patients with acute respiratory illness. Thus far, the viruses similar to canine, feline and porcine alphacoronaviruses (including the most recent CCoV-HuPn-2018 and HuCCoV_Z19) have been detected in humans in Haiti, Malaysia, Thailand, and USA. The available data suggest that these viruses emerged in different geographic locations independently and have circulated in humans for at least 20 years. Additional studies are needed to investigate their prevalence and disease impact.
Collapse
Affiliation(s)
- Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, USA
| | - Teck-Hock Toh
- Clinical Research Center, Sibu Hospital, Ministry of Health Malaysia, Sibu, Malaysia
- Faculty of Medicine, SEGi University, Kota Damansara, Selangor, Malaysia
| | - Jeffrey Soon-Yit Lee
- Clinical Research Center, Sibu Hospital, Ministry of Health Malaysia, Sibu, Malaysia
- Faculty of Medicine, SEGi University, Kota Damansara, Selangor, Malaysia
| | - Yong Poovorawan
- Center of Excellence in Viral Hepatitis Research, Department of Pediatrics Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Marli S. P. Azevedo
- National Center for Toxicological Research, Division of Microbiology, U.S. Food and Drug Administration, Jefferson, USA
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, USA
| | - Gregory C. Gray
- Departments of Internal Medicine (Infectious Diseases), Microbiology and Immunology, and Preventive Medicine & Population Health, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
7
|
Cerracchio C, Serra F, Amoroso MG, Fiorito F. Canine Coronavirus Activates Aryl Hydrocarbon Receptor during In Vitro Infection. Viruses 2022; 14:v14112437. [PMID: 36366535 PMCID: PMC9692492 DOI: 10.3390/v14112437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that interacts with substrates, including microbial metabolites. Recent advances reveal that AhR is involved in the host response to coronaviruses (CoVs) infection. Particularly, AhR antagonists decrease the expression of angiotensin-converting enzyme 2 (ACE2) via AhR up-regulation, resulting in suppression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in mammalian cells. Herein, we report that AhR is expressed in canine fibrosarcoma (A72) cells, where it is considerably activated by infection with genotype II of canine coronavirus (CCoV-II). The pharmacological inhibition of AhR, by CH223191, suppressed cell death signs and increased cell viability. Furthermore, the AhR antagonist induced a meaningful decline in virus yield, accompanied by the inhibition of the expression of viral nuclear protein (NP). Fascinatingly, during CCoV infection, a novel co-expression of NP and AhR expression was found. Taken together, our preliminary findings show that infection with CCoV activates AhR, and pharmacologic AhR inhibition reduces CCoV replication, identifying AhR as a possible candidate target for CCoV antiviral therapy.
Collapse
Affiliation(s)
- Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Francesco Serra
- Department of Animal Health, Unit of Virology, Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy
| | - Maria Grazia Amoroso
- Department of Animal Health, Unit of Virology, Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
- Correspondence: (F.F.); Tel.: +39-0812536180
| |
Collapse
|
8
|
Yadana S, Cheun-Arom T, Li H, Hagan E, Mendelsohn E, Latinne A, Martinez S, Putcharoen O, Homvijitkul J, Sathaporntheera O, Rattanapreeda N, Chartpituck P, Yamsakul S, Sutham K, Komolsiri S, Pornphatthananikhom S, Petcharat S, Ampoot W, Francisco L, Hemachudha T, Daszak P, Olival KJ, Wacharapluesadee S. Behavioral-biological surveillance of emerging infectious diseases among a dynamic cohort in Thailand. BMC Infect Dis 2022; 22:472. [PMID: 35578171 PMCID: PMC9109443 DOI: 10.1186/s12879-022-07439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Interactions between humans and animals are the key elements of zoonotic spillover leading to zoonotic disease emergence. Research to understand the high-risk behaviors associated with disease transmission at the human-animal interface is limited, and few consider regional and local contexts. Objective This study employed an integrated behavioral–biological surveillance approach for the early detection of novel and known zoonotic viruses in potentially high-risk populations, in an effort to identify risk factors for spillover and to determine potential foci for risk-mitigation measures. Method Participants were enrolled at two community-based sites (n = 472) in eastern and western Thailand and two hospital (clinical) sites (n = 206) in northeastern and central Thailand. A behavioral questionnaire was administered to understand participants’ demographics, living conditions, health history, and animal-contact behaviors and attitudes. Biological specimens were tested for coronaviruses, filoviruses, flaviviruses, influenza viruses, and paramyxoviruses using pan (consensus) RNA Virus assays. Results Overall 61/678 (9%) of participants tested positive for the viral families screened which included influenza viruses (75%), paramyxoviruses (15%), human coronaviruses (3%), flaviviruses (3%), and enteroviruses (3%). The most salient predictors of reporting unusual symptoms (i.e., any illness or sickness that is not known or recognized in the community or diagnosed by medical providers) in the past year were having other household members who had unusual symptoms and being scratched or bitten by animals in the same year. Many participants reported raising and handling poultry (10.3% and 24.2%), swine (2%, 14.6%), and cattle (4.9%, 7.8%) and several participants also reported eating raw or undercooked meat of these animals (2.2%, 5.5%, 10.3% respectively). Twenty four participants (3.5%) reported handling bats or having bats in the house roof. Gender, age, and livelihood activities were shown to be significantly associated with participants’ interactions with animals. Participants’ knowledge of risks influenced their health-seeking behavior. Conclusion The results suggest that there is a high level of interaction between humans, livestock, and wild animals in communities at sites we investigated in Thailand. This study highlights important differences among demographic and occupational risk factors as they relate to animal contact and zoonotic disease risk, which can be used by policymakers and local public health programs to build more effective surveillance strategies and behavior-focused interventions. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07439-7.
Collapse
Affiliation(s)
- Su Yadana
- EcoHealth Alliance, New York, NY, USA
| | - Thaniwan Cheun-Arom
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | | | | | | - Alice Latinne
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Viet Nam.,Wildlife Conservation Society, Health Program, Bronx, NY, USA
| | | | - Opass Putcharoen
- Division of Infectious Diseases, Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | - Supalak Yamsakul
- The Office of Disease Prevention and Control 5, Ratchaburi, Thailand
| | - Krairoek Sutham
- The Office of Disease Prevention and Control 5, Ratchaburi, Thailand
| | | | | | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases-Health Science Centre, Faculty of Medicine, World Health Organization Collaborating Centre for Research and Training On Viral Zoonoses, Chulalongkorn Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Weenassarin Ampoot
- Thai Red Cross Emerging Infectious Diseases-Health Science Centre, Faculty of Medicine, World Health Organization Collaborating Centre for Research and Training On Viral Zoonoses, Chulalongkorn Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Leilani Francisco
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases-Health Science Centre, Faculty of Medicine, World Health Organization Collaborating Centre for Research and Training On Viral Zoonoses, Chulalongkorn Hospital, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
9
|
Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, Ghosh KK, Krejcar O. Biosensors as Nano-Analytical Tools for COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:7823. [PMID: 34883826 PMCID: PMC8659776 DOI: 10.3390/s21237823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
Selective, sensitive and affordable techniques to detect disease and underlying health issues have been developed recently. Biosensors as nanoanalytical tools have taken a front seat in this context. Nanotechnology-enabled progress in the health sector has aided in disease and pandemic management at a very early stage efficiently. This report reflects the state-of-the-art of nanobiosensor-based virus detection technology in terms of their detection methods, targets, limits of detection, range, sensitivity, assay time, etc. The article effectively summarizes the challenges with traditional technologies and newly emerging biosensors, including the nanotechnology-based detection kit for COVID-19; optically enhanced technology; and electrochemical, smart and wearable enabled nanobiosensors. The less explored but crucial piezoelectric nanobiosensor and the reverse transcription-loop mediated isothermal amplification (RT-LAMP)-based biosensor are also discussed here. The article could be of significance to researchers and doctors dedicated to developing potent, versatile biosensors for the rapid identification of COVID-19. This kind of report is needed for selecting suitable treatments and to avert epidemics.
Collapse
Affiliation(s)
- Anchal Pradhan
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Preeti Lahare
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Priyank Sinha
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Nerul, Navi Mumbai 400706, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Bhanushree Gupta
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Kallol K. Ghosh
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
10
|
Suleman S, Shukla SK, Malhotra N, Bukkitgar SD, Shetti NP, Pilloton R, Narang J, Nee Tan Y, Aminabhavi TM. Point of care detection of COVID-19: Advancement in biosensing and diagnostic methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 414:128759. [PMID: 33551668 PMCID: PMC7847737 DOI: 10.1016/j.cej.2021.128759] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 05/08/2023]
Abstract
The recent outbreak of COVID-19 has created much inconvenience and fear that the virus can seriously affect humans, causing health hazards and death. This pandemic has created much worry and as per the report by World Health Organization (WHO), more than 43 million individuals in 215 countries and territories were affected. People around the world are still struggling to overcome the problems associated with this pandemic. Of all the available methods, reverse-transcriptase polymerase chain reaction (RT-PCR) has been widely practiced for the pandemic detection even though several diagnostic tools are available having varying accuracy and sensitivity. The method offers many advantages making it a life-saving tool, but the method has the limitation of transporting to the nearest pathology lab, thus limiting its application in resource limited settings. This has a risen a crucial need for point-of-care devices for on-site detection. In this venture, biosensors have been used, since they can be applied immediately at the point-of-care. This review will discuss about the available diagnostic methods and biosensors for COVID-19 detection.
Collapse
Affiliation(s)
- Shariq Suleman
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Sudheesh K Shukla
- Institute of Advanced Materials, IAAM. Gammalkilsvagen 18, 590 53, Ulrika, Sweden
| | - Nitesh Malhotra
- Department of Physiotherapy, Faculty of Applied Health Sciences (FAHS), Manav Rachana International Institute of Research and Studies, Faridabad, Haryana, India
| | - Shikandar D Bukkitgar
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Opposite to Airport, Hubballi 580 027, India
| | - Nagaraj P Shetti
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Opposite to Airport, Hubballi 580 027, India
| | - Roberto Pilloton
- Institute of Crystallography of National Research Council (IC-CNR), Rome, Italy
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | | |
Collapse
|
11
|
Smith DR. Review a brief history of coronaviruses in Thailand. J Virol Methods 2020; 289:114034. [PMID: 33285189 PMCID: PMC7831773 DOI: 10.1016/j.jviromet.2020.114034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 10/25/2022]
Abstract
As with many countries around the world, Thailand is currently experiencing restrictions to daily life as a consequence of the worldwide transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is the third respiratory syndrome coronavirus to be introduced into Thailand, following previous importation of cases of the severe acute respiratory syndrome coronavirus (SARS) and the Middle East respiratory syndrome coronavirus (MERS). Unlike SARS and MERS, SARS-CoV-2 was able to establish local transmission in Thailand. In addition to the imported coronaviruses, Thailand has a number of endemic coronaviruses that can affect livestock and pet species, can be found in bats, as well as four human coronaviruses that are mostly associated with the common cold. This article seeks to review what is known on both the endemic and imported coronaviruses in Thailand.
Collapse
Affiliation(s)
- Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
12
|
Cimolai N. Complicating Infections Associated with Common Endemic Human Respiratory Coronaviruses. Health Secur 2020; 19:195-208. [PMID: 33186086 DOI: 10.1089/hs.2020.0067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coronaviruses OC43, 229E, NL63, and HKU1 are endemic human respiratory coronaviruses that typically cause mild to moderate upper respiratory infections, similar to the common cold. They also may cause simple and complicated lower respiratory infections, otitis media, asthma exacerbations, gastroenteritis, and a few systemic complications. These viruses are usually seasonal (with winter dominance) and affect nearly all age groups. The seasonal and annual variation in virus prevalence has implications for understanding the concept of acquired immunity and its persistence or diminution. Coronaviruses generally have outbreak potential in susceptible populations of any age, particularly in patients with comorbidities, who tend to have increased clinical disease. These 4 coronaviruses are often found in the context of what appears to be coinfection with other pathogens, but especially other viruses. If coronaviruses are not specifically tested for, the sole detection of a viral copathogen would suggest the pathogen is the causative agent, when a coronavirus may be culpable, or both. The detection of these viruses in circumstances where respiratory viruses are generally sought in clinical samples is, therefore, justified. These pathogens can be chronically shed from the respiratory tract, which is more likely to occur among immunocompromised and complicated patients. These viruses share the potential for genetic drift. The genome is among the largest of RNA viruses, and the capability of these viruses to further change is likely underestimated. Given the potential disease among humans, it is justified to search for effective antiviral chemotherapy for these viruses and to consider uses in niche situations should effective therapy be defined. Whereas SARS-CoV-2 may follow the epidemiological pattern of SARS-CoV and extinguish slowly over time, there is yet concern that SARS-CoV-2 may establish itself as an endemic human respiratory coronavirus similar to OC43, 2299E, NL63, and HKU1. Until sufficient data are acquired to better understand the potential of SARS-CoV-2, continued work on antiviral therapy and vaccination is imperative.
Collapse
Affiliation(s)
- Nevio Cimolai
- Nevio Cimolai, MD, FRCPC, is a Professor, Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia; he is also Medical Staff, Pathology and Laboratory Medicine, Children's and Women's Health Centre of British Columbia; both in Vancouver, Canada
| |
Collapse
|
13
|
Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019; 12:v12010014. [PMID: 31861926 PMCID: PMC7020001 DOI: 10.3390/v12010014] [Citation(s) in RCA: 701] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Collapse
|
14
|
Friedman N, Alter H, Hindiyeh M, Mendelson E, Shemer Avni Y, Mandelboim M. Human Coronavirus Infections in Israel: Epidemiology, Clinical Symptoms and Summer Seasonality of HCoV-HKU1. Viruses 2018; 10:v10100515. [PMID: 30241410 PMCID: PMC6213580 DOI: 10.3390/v10100515] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Human coronaviruses (HCoVs) cause mild to severe respiratory diseases. Six types of HCoVs have been discovered, the most recent one termed the Middle East respiratory syndrome coronavirus (MERS-CoV). The aim of this study is to monitor the circulation of HCoV types in the population during 2015–2016 in Israel. HCoVs were detected by real-time PCR analysis in 1910 respiratory samples, collected from influenza-like illness (ILI) patients during the winter sentinel influenza survey across Israel. Moreover, 195 HCoV-positive samples from hospitalized patients were detected during one year at Soroka University Medical Center. While no MERS-CoV infections were detected, 10.36% of patients in the survey were infected with HCoV-OC43 (43.43%), HCoV-NL63 (44.95%), and HCoV-229E (11.62%) viruses. The HCoVs were shown to co-circulate with respiratory syncytial virus (RSV) and to appear prior to influenza virus infections. HCoV clinical symptoms were more severe than those of RSV infections but milder than influenza symptoms. Hospitalized patients had similar HCoV types percentages. However, while it was absent from the public winter survey, 22.6% of the patients were HCoV-HKU1 positives, mainly during the spring-summer period.
Collapse
Affiliation(s)
- Nehemya Friedman
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan 5290002, Israel.
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, P.O.B. 39040, Tel-Aviv 69978, Israel.
| | - Hadar Alter
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan 5290002, Israel.
| | - Musa Hindiyeh
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan 5290002, Israel.
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, P.O.B. 39040, Tel-Aviv 69978, Israel.
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan 5290002, Israel.
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, P.O.B. 39040, Tel-Aviv 69978, Israel.
| | - Yonat Shemer Avni
- Department of Microbiology, Immunology and Genetics, and the Clinical Virology Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan 5290002, Israel.
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, P.O.B. 39040, Tel-Aviv 69978, Israel.
| |
Collapse
|
15
|
Soonnarong R, Thongpan I, Payungporn S, Vuthitanachot C, Vuthitanachot V, Vichiwattana P, Vongpunsawad S, Poovorawan Y. Molecular epidemiology and characterization of human coronavirus in Thailand, 2012-2013. SPRINGERPLUS 2016; 5:1420. [PMID: 27625974 PMCID: PMC4999384 DOI: 10.1186/s40064-016-3101-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/18/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Coronavirus causes respiratory infections in humans. To determine the prevalence of human coronavirus (HCoV) infection among patients with influenza-like illness, 5833 clinical samples from nasopharyngeal swabs and aspirates collected between January 2012 and December 2013 were examined. RESULTS HCoV was found in 46 (0.79 %) samples. There were 19 (0.32 %) HCoV-HKU1, 19 (0.32 %) HCoV-NL63, 5 (0.09 %) HCoV-229E, and 3 (0.05 %) HCoV-OC43. None of the sample tested positive for MERS-CoV. The majority (54 %) of the HCoV-positive patients were between the ages of 0 and 5 years. HCoV was detected throughout the 2-year period and generally peaked from May to October, which coincided with the rainy season. Phylogenetic trees based on the alignment of the spike (S) gene sequences suggest an emergence of a new clade for HCoV-229E. CONCLUSIONS The data in this study provide an insight into the prevalence of the recent circulating HCoVs in the region.
Collapse
Affiliation(s)
- Rapeepun Soonnarong
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ilada Thongpan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Preeyaporn Vichiwattana
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Yip CCY, Lam CSF, Luk HKH, Wong EYM, Lee RA, So LY, Chan KH, Cheng VCC, Yuen KY, Woo PCY, Lau SKP. A six-year descriptive epidemiological study of human coronavirus infections in hospitalized patients in Hong Kong. Virol Sin 2016; 31:41-8. [PMID: 26920709 PMCID: PMC7090542 DOI: 10.1007/s12250-016-3714-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
We conducted a six-year epidemiological study on human coronaviruses (HCoVs) circulating in Hong Kong, using 8275 nasopharyngeal samples from patients with acute respiratory tract infections. HCoVs were detected in 77 (0.93%) of the samples by a pan-HCoV RT-PCR assay. The most frequently detected HCoV species was HCoV-OC43 (0.58%), followed by HCoV-229E (0.15%), HCoV-HKU1 (0.13%) and HCoV-NL63 (0.07%). HCoVs were detected throughout the study period (September 2008–August 2014), with the highest detection rate from September 2010 to August 2011 (22/1500, 1.47%). Different seasonal patterns of each HCoV species in Hong Kong were noted. HCoV-OC43 was predominant in the fall and winter, whereas HCoV-HKU1 showed peak activity in winter, with a few cases occurred in spring and summer. HCoV-229E mainly occurred in winter and spring, while HCoV-NL63 was predominant in summer and autumn. HCoVs most commonly infect the elderly and young children, with median age of 79.5 years (range, 22 days to 95 years). Intriguingly, the detection rate of HCoV-OC43 in the age group of > 80 years (26/2380, 1.09%) was significantly higher than that in the age group of 0–10 years (12/2529, 0.47%) (P < 0.05). These data provides new insight into the epidemiology of coronaviruses.![]()
Collapse
Affiliation(s)
- Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Carol S F Lam
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Hayes K H Luk
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Emily Y M Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Rodney A Lee
- Department of Microbiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | - Lok-Yee So
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | - Kwok-Hung Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent C C Cheng
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China. .,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China.
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China. .,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
17
|
Niu P, Shen J, Zhu N, Lu R, Tan W. Two-tube multiplex real-time reverse transcription PCR to detect six human coronaviruses. Virol Sin 2016; 31:85-8. [PMID: 26826078 PMCID: PMC7091384 DOI: 10.1007/s12250-015-3653-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Peihua Niu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jun Shen
- Children's Hospital of Fudan University, Shanghai, 200032, China
| | - Na Zhu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Roujian Lu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenjie Tan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
18
|
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194:145-58. [PMID: 25281913 PMCID: PMC7114389 DOI: 10.1016/j.virusres.2014.09.011] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
Human coronavirus (HCoV) are naturally neuroinvasive in both mice and humans. Both transneuronal and hematogenous route may allow virus invasion of the CNS. Infection of neurons leads to excitotoxicity, neurodegeneration and cell-death. HCoV are potentially associated with human neurological disorders.
Among the various respiratory viruses infecting human beings, coronaviruses are important pathogens, which usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, and various types of respiratory distress syndrome. The respiratory involvement of human coronaviruses has been clearly established since the 1960s. Nevertheless, for almost three decades now, data reported in the scientific literature has also demonstrated that, like it was described for other human viruses, coronaviruses have neuroinvasive capacities since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Neuroinvasive coronaviruses could damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuroimmunopathology) and/or viral replication, which directly induces damage to CNS cells (virus-induced neuropathology). Given all these properties, it has been suggested that these opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of neurologic diseases for which the etiology remains poorly understood. Herein, we present host and viral factors that participate in the regulation of the possible pathogenic processes associated with CNS infection by human coronaviruses and we try to decipher the intricate interplay between virus and host target cells in order to characterize their role in the virus life cycle as well as in the capacity of the cell to respond to viral invasion.
Collapse
Affiliation(s)
- Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Mathieu Meessen-Pinard
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
19
|
Human coronaviruses: Clinical features and phylogenetic analysis. Biomedicine (Taipei) 2013; 3:43-50. [PMID: 32289002 PMCID: PMC7103958 DOI: 10.1016/j.biomed.2012.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/23/2012] [Accepted: 12/19/2012] [Indexed: 12/19/2022] Open
Abstract
Strains of human coronavirus (HCoV), namely HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1, primarily infect the upper respiratory and gastrointestinal tracts and are the most common cause of non-rhinovirus-induced common cold in humans. Although the manifestations of coronavirus infection (i.e., rhinorrhea, sneezing, cough, nasal obstruction, and bronchitis) are generally self-limiting in healthy adults, certain strains such as HCoV-NL63 and HCoV-HKU1 can cause severe lower respiratory tract infection and febrile seizure, especially in infants, people of advanced age, and immunocompromised hosts. In 2003, a novel HCoV strain was identified as the causative agent of the severe acute respiratory syndrome (SARS) epidemic that began in Asia in 2002. The strain has hence been referred to as SARS-CoV. In addition, as recently as September 2012, another novel HCoV, human betacoronavirus 2c EMC2012, was identified as being the cause of fever, renal failure, pneumonia, and severe respiratory distress in two patients in the Middle East. Phylogenetic analysis has revealed highly conserved sequences of ORF1ab, spike, nucleocapsid, and envelope protein genes, but not membrane protein genes, between human betacoronavirus 2c EMC2012 and SARS-CoV. This review focuses on the differences in the genomes of certain HCoV strains, the pathogenesis of said strains, and recent developments in the establishment of therapeutic agents that might aid in the treatment of patients with such infections.
Collapse
|
20
|
Respiratory Viral Infections. TROPICAL INFECTIOUS DISEASES: PRINCIPLES, PATHOGENS AND PRACTICE 2011. [PMCID: PMC7149827 DOI: 10.1016/b978-0-7020-3935-5.00058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Linsuwanon P, Payungporn S, Samransamruajkit R, Posuwan N, Makkoch J, Theanboonlers A, Poovorawan Y. High prevalence of human rhinovirus C infection in Thai children with acute lower respiratory tract disease. J Infect 2009; 59:115-121. [PMID: 19556008 PMCID: PMC7172887 DOI: 10.1016/j.jinf.2009.05.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/22/2009] [Accepted: 05/22/2009] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To determine the prevalence of human rhinoviruses (HRV) infections in children with lower respiratory disease in Thailand and monitor the association between species of HRV and clinical presentation in hospitalized paediatric patients. METHOD Two hundred and eighty-nine nasopharyngeal (NP) suction specimens were collected from hospitalized paediatric patients admitted to King Chulalongkorn Memorial Hospital, Thailand during February 2006-2007. Nucleic acids were extracted from each sample with subsequent amplification of VP4/2 by semi-nested RT-PCR for HRV detection. Other viral respiratory pathogens were also detected by PCR, RT-PCR or real time PCR. Nucleotide sequences of the VP4 region were used for genotyping and phylogenetic tree construction. RESULT In total, 87 of 289 specimens were positive for HRV indicating an annual prevalence of 30%. Wheezing or asthma exacerbation was the most common clinical presentation observed in infected patients. Sequence analysis and phylogenetic tree showed that 29 (33%) and 8 (9%) specimens belonged to HRV-A and HRV-B, respectively. Most of the HRV positive samples were HRV-C (58%). Moreover, species C was predominantly found in the paediatric population of Thailand in raining season (p<0.05). The frequency of co-infection of HRV-C with other respiratory viral pathogens was approximately 40%. CONCLUSION HRV-C represents the predominant species and is one of the etiologic agents in acute lower respiratory tract infection, causes of wheezing and asthma exacerbation in infants and young children in Thailand.
Collapse
Affiliation(s)
- Piyada Linsuwanon
- Center of Excellence in Clinical Virology, Department of Paediatrics, Chulalongkorn University, Rama IV, Patumwan, Bangkok 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
22
|
Jacques J, Moret H, Renois F, Lévêque N, Motte J, Andréoletti L. Human Bocavirus quantitative DNA detection in French children hospitalized for acute bronchiolitis. J Clin Virol 2008; 43:142-7. [PMID: 18644746 PMCID: PMC7172587 DOI: 10.1016/j.jcv.2008.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 04/02/2008] [Accepted: 05/01/2008] [Indexed: 12/21/2022]
Abstract
Background Human Bocavirus (HBoV) is a newly discovered parvovirus whose role as a causative agent of respiratory disease remains unclear. Study design We investigated the presence of HBoV by quantitative PCR in the nasopharyngeal samples of 192 French children consecutively hospitalized for acute bronchiolitis. Other common respiratory viruses were detected using immunofluorescence assays, cell culture detection, or RT-PCR assays. Results HBoV was detected in 24 (12.5%) of 192 study children. In 14/192 cases (7%) HBoV was the sole isolate and in 10/192 (5%) it was part of a mixed viral infection. HBoV was the third most common pathogen detected after respiratory syncytial virus (45/192; 23%) and rhinovirus (24/192; 12%). It occurred more often in infants aged 1–12 months (P = 0.002). Median levels of HBoV DNA genome in respiratory samples were significantly higher in patients with single HBoV infection than in patients with mixed respiratory viral infection with HBoV (4 × 108 copies/ml vs. 2 × 103 copies/ml, P < 0.001). Conclusions Our data suggest that HBoV at a high viral load could be an etiologic agent of respiratory tract disease, whereas the exact role of HBoV at a low viral load, as etiological cause or as pathophysiological co-factor of respiratory diseases, remains to be determined.
Collapse
Affiliation(s)
- Jérôme Jacques
- Laboratoire de Virologie, Centre Hospitalier Universitaire de Reims, France
| | | | | | | | | | | |
Collapse
|
23
|
Current World Literature. Curr Opin Pulm Med 2008; 14:266-73. [DOI: 10.1097/mcp.0b013e3282ff8c19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Dare RK, Fry AM, Chittaganpitch M, Sawanpanyalert P, Olsen SJ, Erdman DD. Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays. J Infect Dis 2007; 196:1321-8. [PMID: 17922396 PMCID: PMC7109921 DOI: 10.1086/521308] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/24/2007] [Indexed: 12/18/2022] Open
Abstract
Background. We sought to determine whether infections with human coronaviruses (HCoVs) 229E, OC43, HKU1, and NL63 are associated with pneumonia and to define the epidemiology of HCoV infection in rural Thailand. Methods. We developed a real-time reverse-transcription polymerase chain reaction (RT-PCR) assay panel for the recognized HCoV types and compared HCoV infections in patients hospitalized with pneumonia, outpatients with influenza-like illness, and asymptomatic control patients between September 2003 and August 2005. Results. During study year 1, 43 (5.9%) of 734 patients with pneumonia had HCoV infections; 72.1% of the infections were with OC43. During study year 2, when control patients were available, 21 (1.8%) of 1156 patients with pneumonia, 12 (2.3%) of 513 outpatients, and 6 (2.1%) of 281 control patients had HCoV infections. Compared with infection in control patients, infection with any HCoV type or with all types combined was not associated with pneumonia (adjusted odds ratio for all HCoV types, 0.67 [95% confidence interval, 0.26–1.75]; P= .40 ). HCoV infections were detected throughout both study years; 93.6% of OC43 infections in the first year occurred from January through March. Conclusions. HCoV infections were infrequently detected in rural Thailand by use of sensitive real-time RTPCR assays. We found no association between HCoV infection and illness. However, we noted year-to-year variation in the prevalence of HCoV strains, which likely influenced our results.
Collapse
Affiliation(s)
- Ryan K Dare
- Respiratory and Gastroenteritis Viruses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | |
Collapse
|