1
|
Zhang D, Li J, Zhao L, Yang Z, Wu C, Liu Y, Li W, Jin Z, Ma J. Mitochondrial DNA Leakage Promotes Persistent Pancreatic Acinar Cell Injury in Acute Pancreatitis via the cGAS-STING-NF-κB Pathway. Inflammation 2024:10.1007/s10753-024-02132-0. [PMID: 39180578 DOI: 10.1007/s10753-024-02132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Previous research has shown that the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in macrophages can promote severe acute pancreatitis through the release of inflammatory factors. The role of this pathway in pancreatic acinar cells, however, has not been studied, and understanding its mechanism could be crucial. We analysed plasma from 50 acute pancreatitis (AP) patients and 10 healthy donors using digital PCR, which links mitochondrial DNA (mtDNA) levels to the severity of AP. Single-cell sequencing of the pancreas during AP revealed differentially expressed genes and pathways in acinar cells. Experimental studies using mouse and cell models, which included mtDNA staining and quantitative PCR, revealed mtDNA leakage and the activation of STING-related pathways, indicating potential inflammatory mechanisms in AP. In conclusion, our study revealed that the mtDNA-STING-nuclear factor κB(NF-κB) pathway in pancreatic acinar cells could be a novel pathogenic factor in AP.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Jiayu Li
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
- College of Basic Medical Science, Naval Medical University, Shanghai, 200433, China
| | - Linlin Zhao
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhenghui Yang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Chang Wu
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yue Liu
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Wanshun Li
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
- College of Basic Medical Science, Naval Medical University, Shanghai, 200433, China
| | - Zhendong Jin
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jiayi Ma
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
3
|
Yang DJ, Chen KL, Lv ZY, Zhou B, Zhou ZG, Li Y. PD-L1 blockade in mitigating severe acute pancreatitis induced pancreatic damage through modulation of immune cell apoptosis. Int Immunopharmacol 2024; 133:112081. [PMID: 38652963 DOI: 10.1016/j.intimp.2024.112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Acute pancreatitis (AP) is a prevalent gastrointestinal disorder. The immune response plays a crucial role in AP progression. However, the impact of immune regulatory checkpoint PD-L1 on severe acute pancreatitis (SAP) remains uncertain. Hence, this study aimed to examine the influence of PD-L1 on SAP. We assessed PD-L1 expression in neutrophils and monocytes obtained from SAP patients. We induced SAP in C57BL/6J mice, PD-L1 gene-deficient mice, and PD-L1 humanized mice using intraperitoneal injections of cerulein plus lipopolysaccharide. Prior to the initial cerulein injection, a PD-L1 inhibitor was administered. Pancreatic tissues were collected for morphological and immunohistochemical evaluation, and serum levels of amylase, lipase, and cytokines were measured. Flow cytometry analysis was performed using peripheral blood cells. The expression of PD-L1 in neutrophils and monocytes was significantly higher in SAP patients compared to healthy individuals. Likewise, the expression of PD-L1 in inflammatory cells in the peripheral blood of SAP-induced C57BL/6J mice was notably higher than in the control group. In mice with PD-L1 deficiency, SAP model exhibited lower pancreatic pathology scores, amylase, lipase, and cytokine levels compared to wild-type mice. PD-L1 deletion resulted in reduced neutrophil apoptosis, leading to an earlier peak in neutrophil apoptosis. Furthermore, it decreased early monocyte apoptosis and diminished the peak of T lymphocyte apoptosis. Within the SAP model, administration of a PD-L1 inhibitor reduced pancreatic pathology scores, amylase, lipase, and cytokine levels in both C57BL/6J mice and PD-L1 humanized mice. These findings suggest that inhibiting PD-L1 expression can alleviate the severity of SAP.
Collapse
Affiliation(s)
- Du-Jiang Yang
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China; Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Ke-Ling Chen
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Zhao-Ying Lv
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Bin Zhou
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Zong-Guang Zhou
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China.
| |
Collapse
|
4
|
Kang H, Hu Q, Yang Y, Huang G, Li J, Zhao X, Zhu L, Su H, Tang W, Wan M. Urolithin A's Role in Alleviating Severe Acute Pancreatitis via Endoplasmic Reticulum-Mitochondrial Calcium Channel Modulation. ACS NANO 2024; 18:13885-13898. [PMID: 38757565 DOI: 10.1021/acsnano.4c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Severe acute pancreatitis (SAP), characterized by pancreatic acinar cell death, currently lacks effective targeted therapies. Ellagic acid (EA), rich in pomegranate, shows promising anti-inflammatory and antioxidant effects in SAP treatment. However, the roles of other forms of EA, such as plant extracellular vesicles (EVs) extracted from pomegranate, and Urolithin A (UA), converted from EA through gut microbiota metabolism in vivo, have not been definitively elucidated. Our research aimed to compare the effects of pomegranate-derived EVs (P-EVs) and UA in the treatment of SAP to screen an effective formulation and to explore its mechanisms in protecting acinar cells in SAP. By comparing the protective effects of P-EVs and UA on injured acinar cells, UA showed superior therapeutic effects than P-EVs. Subsequently, we further discussed the mechanism of UA in alleviating SAP inflammation. In vivo animal experiments found that UA could not only improve the inflammatory environment of pancreatic tissue and peripheral blood circulation in SAP mice but also revealed that the mechanism of UA in improving SAP might be related to mitochondria and endoplasmic reticulum (ER) through the results including pancreatic tissue transcriptomics and transmission electron microscopy. Further research found that UA could regulate ER-mitochondrial calcium channels and reduce pancreatic tissue necroptosis. In vitro experiments of mouse pancreatic organoids and acinar cells also confirmed that UA could improve pancreatic inflammation by regulating the ER-mitochondrial calcium channel and necroptosis pathway proteins. This study not only explored the therapeutic effect of plant EVs on SAP but also revealed that UA could alleviate SAP by regulating ER-mitochondrial calcium channel and reducing acinar cell necroptosis, providing insights into the pathogenesis and potential treatment of SAP.
Collapse
Affiliation(s)
- Hongxin Kang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Hu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Yang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gaigai Huang
- Clinical Laboratory, First People's Hospital of Shuangliu District, Chengdu 610299, China
| | - Juan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianlin Zhao
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lv Zhu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hang Su
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenfu Tang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meihua Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Laboratory, First People's Hospital of Shuangliu District, Chengdu 610299, China
| |
Collapse
|
5
|
Zhang T, Chen S, Li L, Jin Y, Liu S, Liu Z, Shi F, Xie L, Guo P, Cannon AC, Ergashev A, Yao H, Huang C, Zhang B, Wu L, Sun H, Chen S, Shan Y, Yu Z, Tolosa EJ, Liu J, Fernandez-Zapico ME, Ma F, Chen G. PFKFB3 controls acinar IP3R-mediated Ca2+ overload to regulate acute pancreatitis severity. JCI Insight 2024; 9:e169481. [PMID: 38781030 PMCID: PMC11383365 DOI: 10.1172/jci.insight.169481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Acute pancreatitis (AP) is among the most common hospital gastrointestinal diagnoses; understanding the mechanisms underlying the severity of AP is critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in 2 independent genetically engineered mouse models of AP. PFKFB3 was elevated in AP and severe AP (SAP), and KO of Pfkfb3 abrogated the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies, we defined the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together, our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this condition.
Collapse
Affiliation(s)
- Tan Zhang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shengchuan Chen
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Liang Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuepeng Jin
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhu Liu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengyu Shi
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifen Xie
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Panpan Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE key laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Andrew C. Cannon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Akmal Ergashev
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Chaohao Huang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baofu Zhang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Wu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siming Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yunfeng Shan
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ezequiel J. Tolosa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE key laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Feng Ma
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Gang Chen
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
7
|
Lan WP, Guo W, Zhou X, Li Z. Research trends on traditional Chinese medicine and acute pancreatitis: A bibliometric analysis from 2007 to mid-2023. Heliyon 2024; 10:e25659. [PMID: 38455538 PMCID: PMC10918020 DOI: 10.1016/j.heliyon.2024.e25659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Traditional Chinese Medicine (TCM) is a unique medical system of historic significance, holding substantial influence within China and beyond. In recent years, the efficacy of TCM in treating acute pancreatitis has been substantiated. Despite over two decades of development in this domain, a bibliometric analysis illustrating TCM's role in acute pancreatitis remains scarce. OBJECTIVE This study aims to conduct a comprehensive analysis of findings in the field of acute pancreatitis and TCM using machine learning and text-analyzing methodologies. The intent is to provide scientific and intuitive support to researchers and clinicians. METHODS We searched the Web of Science Core Collection database for publications and related literature from 2007 to mid-2023. Tools such as Excel, Citespace V, and Vosviewer were utilized for bibliometric analysis. That included assessing published and cited counts, co-authorship mapping, co-citation analysis, burst detection, and keyword analysis. RESULTS The study revealed a fluctuating growth trend in the number of publications and citations since 2007. As many as 147 institutions from 13 countries, with a total of 756 authors, have published 202 papers in 76 academic journals. Sichuan University in China and Tang Wenfu have been recognized as the most influential national institution and author. The most frequently published journal is "Pancreas", while the most cited is the "World Journal of Gastroenterology". Commonly used single herbs in this field include Baicalin, Emodin, Rhubarb, and Salvia miltiorrhizae. Frequently used herbal formulations include Da chengqi decoction, Chaiqin chengqi decoction, and Qing yi decoction. Current research hotspots primarily surround concepts like hmgb1, nf-kappab, nfr2, oxidative stress, exosomes, nlrp3, pyroptosis, etc. Potential future research themes could relate to pharmacology, reducing hmgb1, inflammatory response, cell activation, Qing Yi-decoction, etc. This review holds significant guiding importance for clinical and scientific research into TCM treatment for acute pancreatitis in the future.
Collapse
Affiliation(s)
- Wang-peng Lan
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, Affiliated Traditional Medicine Hospital of Southwest Medical University, Lu zhou, 646000, China
- Department of Spleen and Stomach Diseases, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou, Sichuan, 646000, China
| | - Wen Guo
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, Affiliated Traditional Medicine Hospital of Southwest Medical University, Lu zhou, 646000, China
- Department of Spleen and Stomach Diseases, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou, Sichuan, 646000, China
| | - Xin Zhou
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, Affiliated Traditional Medicine Hospital of Southwest Medical University, Lu zhou, 646000, China
- Department of Spleen and Stomach Diseases, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou, Sichuan, 646000, China
| | - Zhi Li
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, Affiliated Traditional Medicine Hospital of Southwest Medical University, Lu zhou, 646000, China
- Department of Spleen and Stomach Diseases, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou, Sichuan, 646000, China
| |
Collapse
|
8
|
Li Y, Ding X, Wu X, Ding L, Yang Y, Jiang X, Liu X, Zhang X, Su J, Xu J, Yang Z. A non-human primate derived anti-P-selectin glycoprotein ligand-1 antibody curtails acute pancreatitis by alleviating the inflammatory responses. Acta Pharm Sin B 2023; 13:4461-4476. [PMID: 37969726 PMCID: PMC10638517 DOI: 10.1016/j.apsb.2023.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023] Open
Abstract
Acute pancreatitis (AP) is a devastating disease characterized by an inflammatory disorder of the pancreas. P-selectin glycoprotein ligand-1 (PSGL-1) plays a crucial role in the initial steps of the adhesive at process to inflammatory sites, blockade of PSGL-1 might confer potent anti-inflammatory effects. In this study, we generated two non-human primate derived monoclonal antibodies capable of efficiently targeting human PSGL-1, RH001-6 and RH001-22, which were screened from immunized rhesus macaques. We found that RH001-6, can effectively block the binding of P-selectin to PSGL-1, and abolish the adhesion of leukocytes to endothelial cells in vitro. In vivo, we verified that RH001-6 relieved inflammatory responses and pancreatic injury in both caerulein and l-arginine induced AP models. We also evaluated the safety profile after RH001-6 treatment in mice, and verified that RH001-6 did not cause any significant pathological damages in vivo. Taken together, we developed a novel non-human primate derived PSGL-1 blocking antibody with high-specificity, named RH001-6, which can interrupt the binding of PSGL-1 and P-selectin and attenuate inflammatory responses during AP. Therefore, RH001-6 is highly potential to be further developed into therapeutics against acute inflammatory diseases, such as AP.
Collapse
Affiliation(s)
- Yuhan Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiangqing Ding
- Shanghai Sinobay Biotechnology Company (Limited), Shanghai 201500, China
| | - Xianxian Wu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 200083, China
| | - Yuhui Yang
- Capital Medical University, Beijing 100069, China
| | - Xiaoliang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xing Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xu Zhang
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianqing Xu
- Shanghai Sinobay Biotechnology Company (Limited), Shanghai 201500, China
- Chongqing Institutes for Life Science Innovation, Chongqing 400715, China
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| |
Collapse
|
9
|
Qiu M, Zhou X, Zippi M, Goyal H, Basharat Z, Jagielski M, Hong W. Comprehensive review on the pathogenesis of hypertriglyceridaemia-associated acute pancreatitis. Ann Med 2023; 55:2265939. [PMID: 37813108 PMCID: PMC10563627 DOI: 10.1080/07853890.2023.2265939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
It is well known, that the inflammatory process that characterizes acute pancreatitis (AP) can lead to both pancreatic damage and systemic inflammatory response syndrome (SIRS). During the last 20 years, there has been a growing incidence of episodes of acute pancreatitis associated with hypertriglyceridaemia (HTAP). This review provides an overview of triglyceride metabolism and the potential mechanisms that may contribute to developing or exacerbating HTAP. The article comprehensively discusses the various pathological roles of free fatty acid, inflammatory response mechanisms, the involvement of microcirculation, serum calcium overload, oxidative stress and the endoplasmic reticulum, genetic polymorphism, and gut microbiota, which are known to trigger or escalate this condition. Future perspectives on HTAP appear promising, with ongoing research focused on developing more specific and effective treatment strategies.
Collapse
Affiliation(s)
- Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiaoying Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Hemant Goyal
- Department of Surgery, University of TX Health Sciences Center, Houston, TX, United States
| | | | - Mateusz Jagielski
- Department of General, Gastroenterological and Oncological Surgery, Nicolaus Copernicus University in Toruń, Poland
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
10
|
Lee C, Xin G, Li F, Wan C, Yu X, Feng L, Wen A, Cao Y, Huang W. Calcium/P53/Ninjurin 1 Signaling Mediates Plasma Membrane Rupture of Acinar Cells in Severe Acute Pancreatitis. Int J Mol Sci 2023; 24:11554. [PMID: 37511311 PMCID: PMC10380776 DOI: 10.3390/ijms241411554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Ninjurin 1 (NINJ1) is a double-transmembrane cell-surface protein that might mediate plasma membrane rupture (PMR) and the diffusion of inflammatory factors. PMR is a characteristic of acinar cell injury in severe acute pancreatitis (SAP). However, the involvement of NINJ1 in mediating the PMR of acinar cells in SAP is currently unclear. Our study has shown that NINJ1 is expressed in acinar cells, and the expression is significantly upregulated in sodium-taurocholate-induced SAP. The knockout of NINJ1 delays PMR in acinar cells and alleviates SAP. Moreover, we observed that NINJ1 expression is mediated by Ca2+ concentration in acinar cells. Importantly, we found that Ca2+ overload drives mitochondrial stress to upregulate the P53/NINJ1 pathway, inducing PMR in acinar cells, and amlodipine, a Ca2+ channel inhibitor, can reduce the occurrence of PMR by decreasing the concentration of Ca2+. Our results demonstrate the mechanism by which NINJ1 induces PMR in SAP acinar cells and provide a potential new target for treatment of SAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wen Huang
- Department of Emergency Medicine and Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Pandol SJ, Gottlieb RA. Calcium, mitochondria and the initiation of acute pancreatitis. Pancreatology 2022; 22:838-845. [PMID: 35941013 DOI: 10.1016/j.pan.2022.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis is characterized by necrosis of its parenchymal cells and influx and activation of inflammatory cells that further promote injury and necrosis. This review is intended to discuss the central role of disorders of calcium metabolism and mitochondrial dysfunction in the mechanism of pancreatitis development. The disorders are placed in context of calcium and mitochondria in physiologic function of the pancreas. Moreover, we discuss potential therapeutics for preventing pathologic calcium signals that injure mitochondria and interventions that promote the removal of injured mitochondria and regenerate new and heathy populations of mitochondria.
Collapse
Affiliation(s)
- Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Roberta A Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
12
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Damage associated molecular patterns and neutrophil extracellular traps in acute pancreatitis. Front Cell Infect Microbiol 2022; 12:927193. [PMID: 36034701 PMCID: PMC9411527 DOI: 10.3389/fcimb.2022.927193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Previous researches have emphasized a trypsin-centered theory of acute pancreatitis (AP) for more than a century. With additional studies into the pathogenesis of AP, new mechanisms have been explored. Among them, the role of immune response bears great importance. Pro-inflammatory substances, especially damage-associated molecular patterns (DAMPs), play an essential role in activating, signaling, and steering inflammation. Meanwhile, activated neutrophils attach great importance to the immune defense by forming neutrophil extracellular traps (NETs), which cause ductal obstruction, premature trypsinogen activation, and modulate inflammation. In this review, we discuss the latest advances in understanding the pathological role of DAMPs and NETs in AP and shed light on the flexible crosstalk between these vital inflammatory mediators. We, then highlight the potentially promising treatment for AP targeting DAMPs and NETs, with a focus on novel insights into the mechanism, diagnosis, and management of AP.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| |
Collapse
|
13
|
Pallagi P, Görög M, Papp N, Madácsy T, Varga Á, Crul T, Szabó V, Molnár M, Dudás K, Grassalkovich A, Szederkényi E, Lázár G, Venglovecz V, Hegyi P, Maléth J. Bile acid- and ethanol-mediated activation of Orai1 damages pancreatic ductal secretion in acute pancreatitis. J Physiol 2022; 600:1631-1650. [PMID: 35081662 DOI: 10.1113/jp282203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sustained intracellular Ca2+ overload in pancreatic acinar and ductal cells is a hallmark of biliary and alcohol-induced acute pancreatitis, which leads to impaired ductal ion and fluid secretion. Orai1 is a plasma membrane Ca2+ channel that mediates extracellular Ca2+ influx upon endoplasmic reticulum Ca2+ depletion. Our results showed that Orai1 is expressed on the luminal plasma membrane of the ductal cells and selective Orai1 inhibition impaired Stim1-dependent extracellular Ca2+ influx evoked by bile acids or ethanol combined with non-oxidative ethanol metabolites. The prevention of sustained extracellular Ca2+ influx protected ductal cell secretory functions in in vitro models and maintained exocrine pancreatic secretion in in vivo AP models. Orai1 inhibition prevents the bile acid-, and alcohol-induced damage of the pancreatic ductal secretion and holds the potential of improving the outcome of acute pancreatitis. ABSTRACT Regardless of its etiology, sustained intracellular Ca2+ overload is a well-known hallmark of acute pancreatitis (AP). Toxic Ca2+ elevation induces pancreatic ductal cell damage characterized by impaired ion- and fluid secretion -essential to wash out the protein-rich fluid secreted by acinar cells while maintaining the alkaline intra-ductal pH under physiological conditions- and mitochondrial dysfunction. While prevention of ductal cell injury decreases the severity of AP, no specific drug target has yet been identified in the ductal cells. Although Orai1 -a store operated Ca2+ influx channel- is known to contribute to sustained Ca2+ overload in acinar cells, details concerning its expression and function in ductal cells are currently lacking. In this study, we demonstrate that functionally active Orai1 channels reside dominantly in the apical plasma membrane of pancreatic ductal cells. Selective CM5480-mediated Orai1 inhibition impairs Stim1-dependent extracellular Ca2+ influx evoked by bile acids or ethanol combined with non-oxidative ethanol metabolites. Furthermore, prevention of sustained extracellular Ca2+ influx protects ductal cell secretory function in vitro and decrease pancreatic ductal cell death. Finally, Orai1-inhibition partially restores and maintains proper exocrine pancreatic secretion in in vivo AP models. In conclusion, our results indicate that Orai1 inhibition prevents AP-related ductal cell function impairment and holds the potential of improving disease outcome. Abstract figure legend This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Petra Pallagi
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Marietta Görög
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Noémi Papp
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Tamara Madácsy
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Árpád Varga
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Tim Crul
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Melinda Molnár
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Krisztina Dudás
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | | | | | - György Lázár
- Department of Surgery, University of Szeged, Szeged
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Department of Medicine, University of Szeged, Szeged, Hungary.,Hungary Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.,Institute for Translational Medicine and First Department Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - József Maléth
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Li H, Xie J, Guo X, Yang G, Cai B, Liu J, Yue M, Tang Y, Wang G, Chen S, Guo J, Qi X, Wang D, Zheng H, Liu W, Yu H, Wang C, Zhu SJ, Guo F. Bifidobacterium spp. and their metabolite lactate protect against acute pancreatitis via inhibition of pancreatic and systemic inflammatory responses. Gut Microbes 2022; 14:2127456. [PMID: 36195972 PMCID: PMC9542615 DOI: 10.1080/19490976.2022.2127456] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a critical illness characterized by a severe systemic inflammatory response resulting in persistent multiple organ failure and sepsis. The intestinal microbiome is increasingly appreciated to play a crucial role in modulation of AP disease outcome, but limited information is available about the identity and mechanism of action for specific commensal bacteria involved in AP-associated inflammation. Here we show that Bifidobacteria, particularly B. animalis, can protect against AP by regulating pancreatic and systemic inflammation in germ-free (GF) and oral antibiotic-treated (Abx) mouse models. Colonization by B. animalis and administration of its metabolite lactate protected Abx and GF mice from AP by reducing serum amylase concentration, ameliorating pancreatic lesions and improving survival rate after retrograde injection of sodium taurocholate. B. animalis relieved macrophage-associated local and systemic inflammation of AP in a TLR4/MyD88- and NLRP3/Caspase1-dependent manner through its metabolite lactate. Supporting our findings from the mouse study, clinical AP patients exhibited a decreased fecal abundance of Bifidobacteria that was inversely correlated with the severity of systemic inflammatory responses. These results may shed light on the heterogeneity of clinical outcomes and drive the development of more efficacious therapeutic interventions for AP, and potentially for other inflammatory disorders.
Collapse
Affiliation(s)
- Han Li
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Jinyan Xie
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Xiuliu Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
| | - Bin Cai
- Department of Quality Management, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Central Laboratory of Medicine, Shaoxing People’s Hospital, Shaoxing, China
| | - Jingtianyi Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Mengjia Yue
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yixin Tang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Gan Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Shuxian Chen
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Jialin Guo
- Institute of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Xuchen Qi
- Central Laboratory of Medicine, Shaoxing People’s Hospital, Shaoxing, China
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Donghai Wang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijun Zheng
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
| | - Shu Jeffrey Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Central Laboratory of Medicine, Shaoxing People’s Hospital, Shaoxing, China
| | - Feng Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Nagy A, Juhász MF, Görbe A, Váradi A, Izbéki F, Vincze Á, Sarlós P, Czimmer J, Szepes Z, Takács T, Papp M, Fehér E, Hamvas J, Kárász K, Török I, Stimac D, Poropat G, Ince AT, Erőss B, Márta K, Pécsi D, Illés D, Váncsa S, Földi M, Faluhelyi N, Farkas O, Nagy T, Kanizsai P, Márton Z, Szentesi A, Hegyi P, Párniczky A. Glucose levels show independent and dose-dependent association with worsening acute pancreatitis outcomes: Post-hoc analysis of a prospective, international cohort of 2250 acute pancreatitis cases. Pancreatology 2021; 21:1237-1246. [PMID: 34332908 DOI: 10.1016/j.pan.2021.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Metabolic risk factors, such as obesity, hypertension, and hyperlipidemia are independent risk factors for the development of various complications in acute pancreatitis (AP). Hypertriglyceridemia dose-dependently elicits pancreatotoxicity and worsens the outcomes of AP. The role of hyperglycemia, as a toxic metabolic factor in the clinical course of AP, has not been examined yet. METHODS We analyzed a prospective, international cohort of 2250 AP patients, examining associations between (1) glycosylated hemoglobin (HbA1c), (2) on-admission glucose, (3) peak in-hospital glucose and clinically important outcomes (mortality, severity, complications, length of hospitalization (LOH), maximal C-reactive protein (CRP)). We conducted a binary logistic regression accounting for age, gender, etiology, diabetes, and our examined variables. Receiver Operating Characteristic Curve (ROC) was applied to detect the diagnostic accuracy of the three variables. RESULTS Both on-admission and peak serum glucose are independently associated with AP severity and mortality, accounting for age, gender, known diabetes and AP etiology. They show a dose-dependent association with severity (p < 0.001 in both), mortality (p < 0.001), LOH (p < 0.001), maximal CRP (p < 0.001), systemic (p < 0.001) and local complications (p < 0.001). Patients with peak glucose >7 mmol/l had a 15 times higher odds for severe AP and a five times higher odds for mortality. We found a trend of increasing HbA1c with increasing LOH (p < 0.001), severity and local complications. CONCLUSIONS On-admission and peak in-hospital glucose are independently and dose-dependently associated with increasing AP severity and mortality. In-hospital laboratory control of glucose and adequate treatment of hyperglycemia are crucial in the management of AP.
Collapse
Affiliation(s)
- Anikó Nagy
- Heim Pál National Pediatric Institute, Budapest, Hungary; Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Márk Félix Juhász
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Anikó Görbe
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Alex Váradi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Ferenc Izbéki
- Szent György University Teaching Hospital of Fejér County, Székesfehérvár, Hungary
| | - Áron Vincze
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Patrícia Sarlós
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - József Czimmer
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Szepes
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Mária Papp
- Department of Internal Medicine, Division of Gastroenterology, University of Debrecen, Debrecen, Hungary
| | - Eszter Fehér
- Department of Internal Medicine, Division of Gastroenterology, University of Debrecen, Debrecen, Hungary
| | | | | | - Imola Török
- County Emergency Clinical Hospital - Gastroenterology and University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Romania
| | - Davor Stimac
- Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Ali Tüzün Ince
- Hospital of Bezmialem Vakif University, School of Medicine, Istanbul, Turkey
| | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Katalin Márta
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Dániel Pécsi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Dóra Illés
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Mária Földi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary; Centre for Translational Medicine, Department of Medicine, University of Szeged, Szeged, Hungary
| | - Nándor Faluhelyi
- Department of Medical Imaging, Clinical Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Orsolya Farkas
- Department of Medical Imaging, Clinical Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Kanizsai
- Department of Emergency Medicine, Clinical Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Márton
- First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andrea Szentesi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary; Centre for Translational Medicine, Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Andrea Párniczky
- Heim Pál National Pediatric Institute, Budapest, Hungary; Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
16
|
Zhang Q, Zhao C, Zhang L, Sun K, Yu L, Wang X, Ren L, Zhang N, Chen C, Liu J, Wang H, Tian H. Escin Sodium Improves the Prognosis of Acute Pancreatitis via Promoting Cell Apoptosis by Suppression of the ERK/STAT3 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9921839. [PMID: 34422214 PMCID: PMC8378969 DOI: 10.1155/2021/9921839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Acute pancreatitis (AP), an inflammatory disorder of the pancreas, can cause systemic inflammatory responses. Escin Sodium (ES), a natural mixture of triterpene saponins extracted from the dry ripe fruit of Fructus Aesculi or horse chestnut crude, has been demonstrated to have antiedematous, anti-inflammatory, and antiexudative effects. We here aim to investigate the effects of ES pretreatment on AP in vivo and in vitro and explore its potential molecular mechanism. In the present study, we demonstrated that ES pretreatment could apparently decrease amylase and lipase, downregulate inflammatory cytokines, and attenuate pancreatic damage. Additionally, the increased expression of apoptotic-related proteins and the results of flow cytometry demonstrated the effects of ES on promoting apoptosis in acinar cells. Moreover, ES could enhance mitochondrial membrane potential (MMP, ΔΨm) and reactive oxygen species (ROS) level and reduce intracellular calcium concentration, which are closely related to mitochondrial-mediated death. The effect of ES pretreatment on acinar cell apoptosis was furtherly confirmed by the regulatory pathway of the ERK/STAT3 axis. These results suggest that ES attenuates the severity of AP by enhancing cell apoptosis via suppressing the ERK/STAT3 signaling pathway. These findings provide evidence for ES which is treated as a novel and potent therapeutic for the treatment of AP.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, China
| | - Chen Zhao
- Weihai Hospital Affiliated to Shandong University of Traditional Chinese Medicine, No. 29, Qingdao North Road, Huancui District, Weihai City Shandong Province, China
| | - Lei Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan City, Shandong Province, China
| | - Kai Sun
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan City, Shandong Province, China
| | - Linlin Yu
- Shandong Hospital of Traditional Chinese Medicine Affiliated to Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan City, Shandong Province, China
| | - Xianming Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan City, Shandong Province, China
| | - Lei Ren
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan City, Shandong Province, China
| | - Nan Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan City, Shandong Province, China
| | - Chengyu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan City, Shandong Province, China
| | - Ju Liu
- Laboratory of Microvascular Medicine and Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, No. 16766, Jingshi Road, Jinan City, Shandong Province, China
| | - Haimei Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan City, Shandong Province, China
| | - Hu Tian
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan City, Shandong Province, China
| |
Collapse
|
17
|
Sundar V, Dutta A, Ramasamy S, Manickam V, Tamizhselvi R. Sting pathway - A futuristic therapeutic target for acute pancreatitis? Gene 2021; 778:145469. [PMID: 33539941 DOI: 10.1016/j.gene.2021.145469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022]
Abstract
Acute Pancreatitis (AP) refers to the inflammatory state of the pancreatic mass caused by an abnormal release of digestive enzymes characterized by pancreatic acinar cell injury. It is mainly caused by gallstones, which primarily block sphincter of Oddi opening into the duodenum, heavyalcohol use, systemic diseases, etc. Stimulator of interferon genes known as STING uniquely senses the apoptotic and necrotic DNA fragments. Through the expression of TMEM173 (transmembrane protein 173) or STING protein in macrophages, downstream signaling pathways are activated in AP and are responsible for promoting inflammation. STING elicits a cascade of downstream signaling events such as activation of TBK1, IRF-3 phosphorylation, and IFN-β production along with other cytokines, which result in the excessive manufacture of the type-I IFNs and different kinds of proinflammatory cytokines that take part in the immune defense system of the host. Research findings suggest that STING regulates an array of innate immunity pathways, and the absence of proper treatment measures for AP provides the opportunity of evaluating STING as a striking therapeutic target for AP associated inflammation. Although the understanding of STING hyperactivation and its association with inflammation is relative of recent interest among researchers, extensive studies are going on to identify inhibitors that can directly target STING and inhibits the downstream signaling in AP. Therefore, this review aims to collectively compile the available pieces of evidence, which could help to better understand the role of STING signaling in AP and its promising role as a therapeutic target.
Collapse
Affiliation(s)
- Vaishnavi Sundar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Anupam Dutta
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Shalini Ramasamy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Venkatraman Manickam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ramasamy Tamizhselvi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
18
|
Zheng Z, Ding YX, Qu YX, Cao F, Li F. A narrative review of acute pancreatitis and its diagnosis, pathogenetic mechanism, and management. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:69. [PMID: 33553362 PMCID: PMC7859757 DOI: 10.21037/atm-20-4802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory disease that can progress to severe acute pancreatitis (SAP), which increases the risk of death. AP is characterized by inappropriate activation of trypsinogen, infiltration of inflammatory cells, and destruction of secretory cells. Other contributing factors may include calcium (Ca2+) overload, mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. In addition, exosomes are also associated with pathophysiological processes of many human diseases and may play a biological role in AP. However, the pathogenic mechanism has not been fully elucidated and needs to be further explored to inform treatment. Recently, the treatment guidelines have changed; minimally invasive therapy is advocated more as the core multidisciplinary participation and "step-up" approach. The surgical procedures have gradually changed from open surgery to minimally invasive surgery that primarily includes percutaneous catheter drainage (PCD), endoscopy, small incision surgery, and video-assisted surgery. The current guidelines for the management of AP have been updated and revised in many aspects. The type of fluid to be used, the timing, volume, and speed of administration for fluid resuscitation has been controversial. In addition, the timing and role of nutritional support and prophylactic antibiotic therapy, as well as the timing of the surgical or endoscopic intervention, and the management of complications still have many uncertainties that could negatively impact the prognosis and patients' quality of life. Consequently, to inform clinicians about optimal treatment, we aimed to review recent advances in the understanding of the pathogenesis of AP and its diagnosis and management.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yi-Xuan Ding
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yuan-Xu Qu
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Shan W, Hu Y, Ding J, Yang X, Lou J, Du Q, Liao Q, Luo L, Xu J, Xie R. Advances in Ca 2+ modulation of gastrointestinal anion secretion and its dysregulation in digestive disorders (Review). Exp Ther Med 2020; 20:8. [PMID: 32934673 PMCID: PMC7471861 DOI: 10.3892/etm.2020.9136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/22/2020] [Indexed: 11/29/2022] Open
Abstract
Intracellular calcium (Ca2+) is a critical cell signaling component in gastrointestinal (GI) physiology. Cytosolic calcium ([Ca2+]cyt), as a secondary messenger, controls GI epithelial fluid and ion transport, mucus and neuropeptide secretion, as well as synaptic transmission and motility. The key roles of Ca2+ signaling in other types of secretory cell (including those in the airways and salivary glands) are well known. However, its action in GI epithelial secretion and the underlying molecular mechanisms have remained to be fully elucidated. The present review focused on the role of [Ca2+]cyt in GI epithelial anion secretion. Ca2+ signaling regulates the activities of ion channels and transporters involved in GI epithelial ion and fluid transport, including Cl- channels, Ca2+-activated K+ channels, cystic fibrosis (CF) transmembrane conductance regulator and anion/HCO3- exchangers. Previous studies by the current researchers have focused on this field over several years, providing solid evidence that Ca2+ signaling has an important role in the regulation of GI epithelial anion secretion and uncovering underlying molecular mechanisms. The present review is largely based on previous studies by the current researchers and provides an overview of the currently known molecular mechanisms of GI epithelial anion secretion with an emphasis on Ca2+-mediated ion secretion and its dysregulation in GI disorders. In addition, previous studies by the current researchers demonstrated that different regulatory mechanisms are in place for GI epithelial HCO3- and Cl- secretion. An increased understanding of the roles of Ca2+ signaling and its targets in GI anion secretion may lead to the development of novel strategies to inhibit GI diseases, including the enhancement of fluid secretion in CF and protection of the GI mucosa in ulcer diseases.
Collapse
Affiliation(s)
- Weixi Shan
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yanxia Hu
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jianhong Ding
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xiaoxu Yang
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jun Lou
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Lihong Luo
- Department of Oncology and Geriatrics, Traditional Chinese Medicine Hospital of Chishui City, Guizhou 564700, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
20
|
Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca 2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020; 21:ijms21114005. [PMID: 32503336 PMCID: PMC7312053 DOI: 10.3390/ijms21114005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular Ca2+ signalling is a major signal transductional pathway in non-excitable cells, responsible for the regulation of a variety of physiological functions. In the secretory epithelial cells of the exocrine pancreas, such as acinar and ductal cells, intracellular Ca2+ elevation regulates digestive enzyme secretion in acini or fluid and ion secretion in ductal cells. Although Ca2+ is a uniquely versatile orchestrator of epithelial physiology, unregulated global elevation of the intracellular Ca2+ concentration is an early trigger for the development of acute pancreatitis (AP). Regardless of the aetiology, different forms of AP all exhibit sustained intracellular Ca2+ elevation as a common hallmark. The release of endoplasmic reticulum (ER) Ca2+ stores by toxins (such as bile acids or fatty acid ethyl esters (FAEEs)) or increased intrapancreatic pressure activates the influx of extracellular Ca2+ via the Orai1 Ca2+ channel, a process known as store-operated Ca2+ entry (SOCE). Intracellular Ca2+ overload can lead to premature activation of trypsinogen in pancreatic acinar cells and impaired fluid and HCO3- secretion in ductal cells. Increased and unbalanced reactive oxygen species (ROS) production caused by sustained Ca2+ elevation further contributes to cell dysfunction, leading to mitochondrial damage and cell death. Translational studies of AP identified several potential target molecules that can be modified to prevent intracellular Ca2+ overload. One of the most promising drugs, a selective inhibitor of the Orai1 channel that has been shown to inhibit extracellular Ca2+ influx and protect cells from injury, is currently being tested in clinical trials. In this review, we will summarise the recent advances in the field, with a special focus on the translational aspects of the basic findings.
Collapse
Affiliation(s)
- Petra Pallagi
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Tamara Madácsy
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Árpád Varga
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
- Correspondence: or ; Tel.: +36-(62)-342-877 or +36-70-41-66500
| |
Collapse
|
21
|
Swain SM, Romac JMJ, Shahid RA, Pandol SJ, Liedtke W, Vigna SR, Liddle RA. TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J Clin Invest 2020; 130:2527-2541. [PMID: 31999644 PMCID: PMC7190979 DOI: 10.1172/jci134111] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Elevated pressure in the pancreatic gland is the central cause of pancreatitis following abdominal trauma, surgery, endoscopic retrograde cholangiopancreatography, and gallstones. In the pancreas, excessive intracellular calcium causes mitochondrial dysfunction, premature zymogen activation, and necrosis, ultimately leading to pancreatitis. Although stimulation of the mechanically activated, calcium-permeable ion channel Piezo1 in the pancreatic acinar cell is the initial step in pressure-induced pancreatitis, activation of Piezo1 produces only transient elevation in intracellular calcium that is insufficient to cause pancreatitis. Therefore, how pressure produces a prolonged calcium elevation necessary to induce pancreatitis is unknown. We demonstrate that Piezo1 activation in pancreatic acinar cells caused a prolonged elevation in intracellular calcium levels, mitochondrial depolarization, intracellular trypsin activation, and cell death. Notably, these effects were dependent on the degree and duration of force applied to the cell. Low or transient force was insufficient to activate these pathological changes, whereas higher and prolonged application of force triggered sustained elevation in intracellular calcium, leading to enzyme activation and cell death. All of these pathological events were rescued in acinar cells treated with a Piezo1 antagonist and in acinar cells from mice with genetic deletion of Piezo1. We discovered that Piezo1 stimulation triggered transient receptor potential vanilloid subfamily 4 (TRPV4) channel opening, which was responsible for the sustained elevation in intracellular calcium that caused intracellular organelle dysfunction. Moreover, TRPV4 gene-KO mice were protected from Piezo1 agonist- and pressure-induced pancreatitis. These studies unveil a calcium signaling pathway in which a Piezo1-induced TRPV4 channel opening causes pancreatitis.
Collapse
Affiliation(s)
- Sandip M. Swain
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Rafiq A. Shahid
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | | | - Steven R. Vigna
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rodger A. Liddle
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Veterans Affairs Health Care System, Durham, North Carolina, USA
| |
Collapse
|
22
|
Abstract
The incidence of acute pancreatitis continues to increase worldwide, and it is one of the most common gastrointestinal causes for hospital admission in the USA. In the past decade, substantial advancements have been made in our understanding of the pathophysiological mechanisms of acute pancreatitis. Studies have elucidated mechanisms of calcium-mediated acinar cell injury and death and the importance of store-operated calcium entry channels and mitochondrial permeability transition pores. The cytoprotective role of the unfolded protein response and autophagy in preventing sustained endoplasmic reticulum stress, apoptosis and necrosis has also been characterized, as has the central role of unsaturated fatty acids in causing pancreatic organ failure. Characterization of these pathways has led to the identification of potential molecular targets for future therapeutic trials. At the patient level, two classification systems have been developed to classify the severity of acute pancreatitis into prognostically meaningful groups, and several landmark clinical trials have informed management strategies in areas of nutritional support and interventions for infected pancreatic necrosis that have resulted in important changes to acute pancreatitis management paradigms. In this Review, we provide a summary of recent advances in acute pancreatitis with a special emphasis on pathophysiological mechanisms and clinical management of the disorder.
Collapse
|
23
|
Zhou X, Xie L, Bergmann F, Endris V, Strobel O, Büchler MW, Kroemer G, Hackert T, Fortunato F. The bile acid receptor FXR attenuates acinar cell autophagy in chronic pancreatitis. Cell Death Discov 2017; 3:17027. [PMID: 28660075 PMCID: PMC5475417 DOI: 10.1038/cddiscovery.2017.27] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/11/2017] [Indexed: 12/27/2022] Open
Abstract
The functional relationship between bile acid (BA) and autophagy has not been evaluated in the context of pancreatitis. Here we investigated whether BA and their nuclear farnesoid X receptor (FXR) modulate autophagy and the development of pancreatitis. FXR expression, autophagy, apoptosis and necroptosis were determined in human chronic pancreatitis (CP) tissue in vivo and in pancreatic cells lines in vitro by means of real-time PCR, immunoblots and immunofluorescence. Pancreatic cell lines exposed to the most abundant BAs glycochenodeoxycholate (GCDC) and taurocholic acid (TCA) increased the expression of nuclear FXR and diminished that of the essential autophagy-related protein ATG7. BA was also elevated in pancreatic tissues from CP patients, correlating with elevated FXR and curtailed ATG7 expression with locally reduced autophagic activity. This was accompanied by an increased manifestation of CP hallmarks including apoptosis, necroptosis, inflammation and fibrosis. The present results suggest a cascade of events in which local accumulation of BA signals via FXR to suppress autophagy in pancreatic acinar cells, thereby unleashing acinar cell apoptosis and necroptosis. Thus, BA may cause CP by suppressing autophagy and exacerbating acinar cell apoptosis and necroptosis.
Collapse
Affiliation(s)
- Xiaodong Zhou
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Heidelberg, Germany.,Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.,Affiliated People's Hospital of Jiangsu University Zhenjiang, Jiangsu, China
| | - Li Xie
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Heidelberg, Germany.,Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.,Affiliated People's Hospital of Jiangsu University Zhenjiang, Jiangsu, China
| | - Frank Bergmann
- Institute of Pathology, University Clinic Heidelberg, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, University Clinic Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Heidelberg, Germany
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus; Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Heidelberg, Germany
| | - Franco Fortunato
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Heidelberg, Germany.,Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Márta K, Farkas N, Szabó I, Illés A, Vincze Á, Pár G, Sarlós P, Bajor J, Szűcs Á, Czimmer J, Mosztbacher D, Párniczky A, Szemes K, Pécsi D, Hegyi P. Meta-Analysis of Early Nutrition: The Benefits of Enteral Feeding Compared to a Nil Per Os Diet Not Only in Severe, but Also in Mild and Moderate Acute Pancreatitis. Int J Mol Sci 2016; 17:1691. [PMID: 27775609 PMCID: PMC5085723 DOI: 10.3390/ijms17101691] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/10/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022] Open
Abstract
The recently published guidelines for acute pancreatitis (AP) suggest that enteral nutrition (EN) should be the primary therapy in patients suffering from severe acute pancreatitis (SAP); however, none of the guidelines have recommendations on mild and moderate AP (MAP). A meta-analysis was performed using the preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P). The following PICO (problem, intervention, comparison, outcome) was applied: P: nutrition in AP; I: enteral nutrition (EN); C: nil per os diet (NPO); and O: outcome. There were 717 articles found in Embase, 831 in PubMed, and 10 in the Cochrane database. Altogether, seven SAP and six MAP articles were suitable for analyses. In SAP, forest plots were used to illustrate three primary endpoints (mortality, multiorgan failure, and intervention). In MAP, 14 additional secondary endpoints were analyzed (such as CRP (C-reactive protein), WCC (white cell count), complications, etc.). After pooling the data, the Mann-Whitney U test was used to detect significant differences. Funnel plots were created for testing heterogeneity. All of the primary endpoints investigated showed that EN is beneficial vs. NPO in SAP. In MAP, all of the six articles found merit in EN. Analyses of the primary endpoints did not show significant differences between the groups; however, analyzing the 17 endpoints together showed a significant difference in favor of EN vs. NPO. EN is beneficial compared to a nil per os diet not only in severe, but also in mild and moderate AP.
Collapse
Affiliation(s)
- Katalin Márta
- Institute for Translational Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Nelli Farkas
- Institute for Translational Medicine, University of Pécs, Pécs H-7624, Hungary.
- Institute of Bioanalysis, University of Pécs, Pécs H-7624, Hungary.
| | - Imre Szabó
- Department of Gastroenterology, First Department of Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Anita Illés
- Department of Gastroenterology, First Department of Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Áron Vincze
- Department of Gastroenterology, First Department of Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Gabriella Pár
- Department of Gastroenterology, First Department of Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Patrícia Sarlós
- Institute for Translational Medicine, University of Pécs, Pécs H-7624, Hungary.
- Department of Gastroenterology, First Department of Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Judit Bajor
- Institute for Translational Medicine, University of Pécs, Pécs H-7624, Hungary.
- Department of Gastroenterology, First Department of Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Ákos Szűcs
- Institute for Translational Medicine, University of Pécs, Pécs H-7624, Hungary.
- First Department of Surgery, Semmelweis University, Budapest H-1085, Hungary.
| | - József Czimmer
- Department of Gastroenterology, First Department of Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Dóra Mosztbacher
- Institute for Translational Medicine, University of Pécs, Pécs H-7624, Hungary.
- First Department of Pediatrics, Semmelweis University, Budapest H-1083, Hungary.
| | - Andrea Párniczky
- Institute for Translational Medicine, University of Pécs, Pécs H-7624, Hungary.
- Heim Pál Children's Hospital, Budapest H-1089, Hungary.
| | - Kata Szemes
- Institute for Translational Medicine, University of Pécs, Pécs H-7624, Hungary.
- Department of Gastroenterology, First Department of Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Dániel Pécsi
- Institute for Translational Medicine, University of Pécs, Pécs H-7624, Hungary.
| | - Péter Hegyi
- Institute for Translational Medicine, University of Pécs, Pécs H-7624, Hungary.
- Translational Gastroenterology Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged H-6720, Hungary.
- First Department of Medicine, University of Szeged, Szeged H-6720, Hungary.
| |
Collapse
|
25
|
Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150425. [PMID: 27377719 PMCID: PMC4938025 DOI: 10.1098/rstb.2015.0425] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 12/23/2022] Open
Abstract
Acute pancreatitis (AP) is a leading cause of hospitalization among non-malignant gastrointestinal disorders. The mortality of severe AP can reach 30-50%, which is most probably owing to the lack of specific treatment. Therefore, AP is a major healthcare problem, which urges researchers to identify novel drug targets. Studies from the last decades highlighted that the toxic cellular Ca(2+) overload and mitochondrial damage are key pathogenic steps in the disease development affecting both acinar and ductal cell functions. Moreover, recent observations showed that modifying the cellular Ca(2+) signalling might be beneficial in AP. The inhibition of Ca(2+) release from the endoplasmic reticulum or the activity of plasma membrane Ca(2+) influx channels decreased the severity of AP in experimental models. Similarly, inhibition of mitochondrial permeability transition pore (MPTP) opening also seems to improve the outcome of AP in in vivo animal models. At the moment MPTP blockers are under detailed clinical investigation to test whether interventions in MPTP openings and/or Ca(2+) homeostasis of the cells can be specific targets in prevention or treatment of cell damage in AP.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary MTA-SZTE Momentum Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary MTA-SZTE Momentum Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
26
|
DENG YUANYUAN, SHAMOON MUHAMMAD, HE YUE, BHATIA MADHAV, SUN JIA. Cathelicidin-related antimicrobial peptide modulates the severity of acute pancreatitis in mice. Mol Med Rep 2016; 13:3881-3885. [PMID: 27035328 PMCID: PMC4838156 DOI: 10.3892/mmr.2016.5008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/04/2016] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to investigate the immunomodulatory effects of mouse cathelicidin-related antimicrobial peptide (CRAMP) on experimental acute pancreatitis (AP). AP is a common clinical condition characterized by acute abdominal inflammation. Innate immune cells and mediators are intrinsically linked to the pathogenesis of AP. Cathelicidins are innate immunity-derived antimicrobial peptides that exert immunomodulatory effects on various host cells. However, how cathelicidins are involved and modulate the severity and inflammatory responses of AP remains unclear. In the present study, the mouse CRAMP gene‑deficient cnlp‑/‑ mice and their wild‑type C57BL/6J littermates were induced with AP by multiple hourly injections of supramaximal doses of caerulein. Serum amylase levels, pancreatic myeloperoxidase activity and histological examination were performed in order to determine the disease severity and the levels of inflammatory cytokines. Disease severity and inflammatory markers were subsequently evaluated in the control mice, cnlp‑/‑ C57BL/6J mice with AP, and wild‑type C57BL/6J mice with AP. The results demonstrated that cnlp‑/‑ mice exhibited a more severe phenotype and inflammatory response following AP induction compared with the wild‑type mice, as evidenced by increased serum amylase levels, pancreatic myeloperoxidase release, and early inflammatory mediator tumor necrosis factor‑α production. Histological examination confirmed that CRAMP deficiency worsened the pancreatic inflammatory condition. These results indicate that CRAMP may be considered a novel modulatory mediator in mouse experimental AP.
Collapse
Affiliation(s)
- YUAN-YUAN DENG
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - MUHAMMAD SHAMOON
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - YUE HE
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - MADHAV BHATIA
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - JIA SUN
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
27
|
Abstract
Acute pancreatitis (AP) is an inflammatory disorder of the exocrine pancreas frequently associated with metabolic causes, contributing factors, or consequences, including hypertriglyceridemia, obesity, and disorders of intermediary metabolism, respectively. To date, there is no specific therapy for this disease. Future optimal therapy should correct both inflammatory and metabolic components of the disease. Peroxisome proliferator-activated receptors (PPARs) are lipid-sensing nuclear receptors that control inflammatory and metabolic pathways via ligand-dependent and ligand-independent mechanisms. There are 3 known subtypes, PPAR-α, PPAR-β/δ, and PPAR-γ, which are differentially expressed in various tissues. The PPARs interact closely with other transcription factors such as nuclear factor κB and signal tranducers and activators of transcription that have pivotal roles in the pathobiology of AP. In this comprehensive review, we summarize the role of PPARs in AP, highlighting important in vitro and in vivo experimental findings. Finally, we propose future research directions as well as potential translational use of PPAR agonists in the treatment of AP.
Collapse
|
28
|
Maléth J, Hegyi P, Rakonczay Z, Venglovecz V. Breakdown of bioenergetics evoked by mitochondrial damage in acute pancreatitis: Mechanisms and consequences. Pancreatology 2015; 15:S18-S22. [PMID: 26162756 DOI: 10.1016/j.pan.2015.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis is a severe inflammatory disease with unacceptably high mortality and without specific therapy. Clinical studies revealed that energy supplementation of patients via enteral feeding decreases systemic infections, multi-organ failure and mortality. These clinical observations have been supported by in vitro and in vivo experimental studies which showed that the most common pancreatitis inducing factors, such as bile acids, ethanol and non-oxidative ethanol metabolites induce intracellular ATP depletion and mitochondrial damage both in pancreatic acinar and ductal cells. Notably, the in vitro supplementation of ATP prevented the cellular damage and restored cell functions in both cell types. These observations suggest that either prevention of mitochondrial damage or restoration of intracellular ATP level might provide therapeutical benefits.
Collapse
Affiliation(s)
- József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Lendulet Translational Gastroenterology Research Group, Szeged, Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.
| |
Collapse
|
29
|
Maléth J, Hegyi P. Calcium signaling in pancreatic ductal epithelial cells: an old friend and a nasty enemy. Cell Calcium 2014; 55:337-345. [PMID: 24602604 DOI: 10.1016/j.ceca.2014.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
Abstract
Ductal epithelial cells of the exocrine pancreas secrete HCO3(-) rich, alkaline pancreatic juice, which maintains the intraluminal pH and washes the digestive enzymes out from the ductal system. Importantly, damage of this secretory process can lead to pancreatic diseases such as acute and chronic pancreatitis. Intracellular Ca(2+) signaling plays a central role in the physiological regulation of HCO3(-) secretion, however uncontrolled Ca(2+) release can lead to intracellular Ca(2+) overload and toxicity, including mitochondrial damage and impaired ATP production. Recent findings suggest that the most common pathogenic factors leading to acute pancreatitis, such as bile acids, or ethanol and ethanol metabolites can evoke different types of intracellular Ca(2+) signals, which can stimulate or inhibit ductal HCO3(-) secretion. Therefore, understanding the intracellular Ca(2+) pathways and the mechanisms which can switch a good signal to a bad signal in pancreatic ductal epithelial cells are crucially important. This review summarizes the variety of Ca(2+) signals both in physiological and pathophysiological aspects and highlight molecular targets which may strengthen our old friend or release our nasty enemy.
Collapse
Affiliation(s)
- József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary; Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
30
|
Jin T, Huang W, Jiang K, Xiong JJ, Xue P, Javed MA, Yang XN, Xia Q. Urinary trypsinogen-2 for diagnosing acute pancreatitis: a meta-analysis. Hepatobiliary Pancreat Dis Int 2013; 12:355-62. [PMID: 23924492 DOI: 10.1016/s1499-3872(13)60056-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Currently, serum amylase and lipase are the most popular laboratory markers for early diagnosis of acute pancreatitis with reasonable sensitivity and specificity. Urinary trypsinogen-2 (UT-2) has been increasingly used but its clinical value for the diagnosis of acute pancreatitis and post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis has not yet been systematically assessed. DATA SOURCES A comprehensive search was carried out using PubMed (MEDLINE), Embase, and Web of Science for clinical trials, which studied the usefulness of UT-2 as a diagnostic marker for acute pancreatitis. Sensitivity, specificity and the diagnostic odds ratios (DORs) with 95% confidence interval (CI) were calculated for each study and were compared with serum amylase and lipase. Summary receiver-operating curves were conducted and the area under the curve (AUC) was evaluated. RESULTS A total of 18 studies were included. The pooled sensitivity and specificity of UT-2 for the diagnosis of acute pancreatitis were 80% and 92%, respectively (AUC=0.96, DOR=65.63, 95% CI: 31.65-139.09). The diagnostic value of UT-2 was comparable to serum amylase but was weaker than serum lipase. The pooled sensitivity and specificity for the diagnosis of post-ERCP pancreatitis were 86% and 94%, respectively (AUC=0.92, DOR=77.68, 95% CI: 24.99-241.48). CONCLUSIONS UT-2 as a rapid test could be potentially used for the diagnosis of post-ERCP pancreatitis and to an extent, acute pancreatitis. Further studies are warranted to confirm these results.
Collapse
Affiliation(s)
- Tao Jin
- Sichuan Provincial Pancreatitis Center, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bhardwaj P, Yadav RK. Chronic pancreatitis: role of oxidative stress and antioxidants. Free Radic Res 2013; 47:941-9. [DOI: 10.3109/10715762.2013.804624] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Maléth J, Rakonczay Z, Venglovecz V, Dolman NJ, Hegyi P. Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiol (Oxf) 2013; 207:226-235. [PMID: 23167280 DOI: 10.1111/apha.12037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis is an inflammatory disease with no specific treatment. One of the main reasons behind the lack of specific therapy is that the pathogenesis of acute pancreatitis is poorly understood. During the development of acute pancreatitis, the disease-inducing factors can damage both cell types of the exocrine pancreas, namely the acinar and ductal cells. Because damage of either of the cell types can contribute to the inflammation, it is crucial to find common intracellular mechanisms that can be targeted by pharmacological therapies. Despite the many differences, recent studies revealed that the most common factors that induce pancreatitis cause mitochondrial damage with the consequent breakdown of bioenergetics, that is, ATP depletion in both cell types. In this review, we summarize our knowledge of mitochondrial function and damage within both pancreatic acinar and ductal cells. We also suggest that colloidal ATP delivery systems for pancreatic energy supply may be able to protect acinar and ductal cells from cellular damage in the early phase of the disease. An effective energy delivery system combined with the prevention of further mitochondrial damage may, for the first time, open up the possibility of pharmacological therapy for acute pancreatitis, leading to reduced disease severity and mortality.
Collapse
Affiliation(s)
- J Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
33
|
Abstract
Acute pancreatitis is an inflammatory disease of the exocrine pancreas that carries considerable morbidity and mortality; its pathophysiology remains poorly understood. Recent findings from experimental models and genetically altered mice summarized in this review reveal that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis and that one cause of autophagy impairment is defective function of lysosomes. We propose that the lysosomal/autophagic dysfunction is a key initiating event in pancreatitis and a converging point of multiple deranged pathways. There is strong evidence supporting this hypothesis. Investigation of autophagy in pancreatitis has just started, and many questions about the "upstream" mechanisms mediating the lysosomal/autophagic dysfunction and the "downstream" links to pancreatitis pathologies need to be explored. Answers to these questions should provide insight into novel molecular targets and therapeutic strategies for treatment of pancreatitis.
Collapse
Affiliation(s)
- Anna S. Gukovskaya
- Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California
| | - Ilya Gukovsky
- Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
34
|
Huai J, Shao Y, Sun X, Jin Y, Wu J, Huang Z. Melatonin ameliorates acute necrotizing pancreatitis by the regulation of cytosolic Ca2+ homeostasis. Pancreatology 2012; 12:257-63. [PMID: 22687382 DOI: 10.1016/j.pan.2012.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study aims to investigate the relationship between the protective effects of melatonin in pancreas and the expression of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+)/Ca(2+) exchanger (NCX) in rats with acute necrotizing pancreatitis (ANP), to verify whether melatonin ameliorates ANP by alleviating calcium overload. METHODS Ninety-six male Sprague-Dawley rats were randomly divided into four groups (sham operation group, ANP group, melatonin treatment group, melatonin contrast group). ANP was induced by the retrograde injection of 4% taurocholate (1 ml/kg body weight) into the biliopancreatic duct. Melatonin (50 mg/kg body weight) was administered 30 min before the induction of ANP in the melatonin treatment group. Rats in each group were euthanized at 1, 4, and 8 h after ANP induction. Pancreatic tissues were removed to measure SERCA and NCX levels and cytosolic calcium ion (Ca(2+)) concentration ([Ca(2+)](i)). RESULTS At each time point, SERCA and NCX levels in the melatonin treatment group were significantly higher than that in the ANP group, and lower than that in the sham group and the melatonin contrast group. These levels did not differ between the 4- and 8-h time points in the ANP group. [Ca(2+)](i) in pancreatic acinar cells was higher in the melatonin treatment group than in the sham group and the melatonin contrast group, but lower than in the ANP group, at each time point. CONCLUSION Melatonin can reduce pancreatic damage via the up-regulation of SERCA and NCX expression, which can alleviate calcium overload in pancreatic acinar cells.
Collapse
Affiliation(s)
- Jiaping Huai
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000 Zhejiang, China
| | | | | | | | | | | |
Collapse
|
35
|
Gukovsky I, Pandol SJ, Gukovskaya AS. Organellar dysfunction in the pathogenesis of pancreatitis. Antioxid Redox Signal 2011; 15:2699-710. [PMID: 21834686 PMCID: PMC3183656 DOI: 10.1089/ars.2011.4068] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Acute pancreatitis is an inflammatory disease of exocrine pancreas that carries considerable morbidity and mortality; its pathophysiology remains poorly understood. During the past decade, new insights have been gained into signaling pathways and molecules that mediate the inflammatory response of pancreatitis and death of acinar cells (the main exocrine pancreas cell type). By contrast, much less is known about the acinar cell organellar damage in pancreatitis and how it contributes to the disease pathogenesis. RECENT ADVANCES This review summarizes recent findings from our group, obtained on experimental in vivo and ex vivo models, which reveal disordering of key cellular organelles, namely, mitochondria, autophagosomes, and lysosomes, in pancreatitis. Our results indicate a critical role for mitochondrial permeabilization in determining the balance between apoptosis and necrosis in pancreatitis, and thus the disease severity. We further investigate how the mitochondrial dysfunction (and hence acinar cell death) is regulated by Ca(2+), reactive oxygen species, and Bcl-xL, in relation to specific properties of pancreatic mitochondria. Our results also reveal that autophagy, the principal cellular degradative, lysosome-driven pathway, is impaired in pancreatitis due to inefficient lysosomal function, and that impaired autophagy mediates two key pathological responses of pancreatitis-accumulation of vacuoles in acinar cells and the abnormal, intra-acinar activation of digestive enzymes such as trypsinogen. CRITICAL ISSUES AND FUTURE DIRECTIONS The findings discussed in this review indicate critical roles for mitochondrial and autophagic/lysosomal dysfunctions in the pathogenesis of pancreatitis and delineate directions for detailed investigations into the molecular events that underlie acinar cell organellar damage.
Collapse
Affiliation(s)
- Ilya Gukovsky
- VA Greater Los Angeles Healthcare System, University of California, Los Angeles, California 90073, USA.
| | | | | |
Collapse
|
36
|
Gukovskaya AS, Gukovsky I. Which way to die: the regulation of acinar cell death in pancreatitis by mitochondria, calcium, and reactive oxygen species. Gastroenterology 2011; 140:1876-80. [PMID: 21524653 PMCID: PMC4574286 DOI: 10.1053/j.gastro.2011.04.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Samuel I, Yuan Z, Meyerholz DK, Twait E, Williard DE, Kempuraj D. A novel model of severe gallstone pancreatitis: murine pancreatic duct ligation results in systemic inflammation and substantial mortality. Pancreatology 2010; 10:536-44. [PMID: 20975317 PMCID: PMC2992635 DOI: 10.1159/000320776] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Suitable experimental models of gallstone pancreatitis with systemic inflammation and mortality are limited. We developed a novel murine model of duct-ligation-induced acute pancreatitis associated with multiorgan dysfunction and severe mortality. METHODS Laparotomy was done on C57/BL6 mice followed by pancreatic duct (PD) ligation, bile duct (BD) ligation without PD ligation, or sham operation. RESULTS Only mice with PD ligation developed acute pancreatitis and had 100% mortality. Pulmonary compliance was significantly reduced after PD ligation but not BD ligation. Bronchoalveolar lavage fluid neutrophil count and interleukin-1β concentration, and the plasma creatinine level, were significantly elevated with PD ligation but not BD ligation. Pancreatic nuclear factor κB (p65) and activator protein 1 (c-Jun) were activated within 1 h of PD ligation. CONCLUSION PD-ligation-induced acute pancreatitis in mice is associated with systemic inflammation, acute lung injury, multiorgan dysfunction and death. The development of this novel model is an exciting and notable advance in the field.
Collapse
Affiliation(s)
- Isaac Samuel
- Surgical Services, Iowa City Veterans Affairs Medical Center, University of Iowa, Iowa City, Iowa, USA,Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA,*Assoc. Prof. Isaac Samuel, MD, FRCS, FACS, Department of Surgery, VAMC and UI CCOM, 200 Hawkins Drive, 4625 JCP (Surgery), Iowa City, IA 52242 (USA), Tel. +1 319 356 7359, Fax +1 319 356 8378, E-Mail
| | - Zuobiao Yuan
- Surgical Services, Iowa City Veterans Affairs Medical Center, University of Iowa, Iowa City, Iowa, USA,Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Erik Twait
- Surgical Services, Iowa City Veterans Affairs Medical Center, University of Iowa, Iowa City, Iowa, USA,Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Deborah E. Williard
- Surgical Services, Iowa City Veterans Affairs Medical Center, University of Iowa, Iowa City, Iowa, USA,Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Duraisamy Kempuraj
- Surgical Services, Iowa City Veterans Affairs Medical Center, University of Iowa, Iowa City, Iowa, USA,Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
38
|
Williamson JML, Williamson RCN. Alcohol and the pancreas. Br J Hosp Med (Lond) 2010; 71:556-61. [PMID: 21085071 DOI: 10.12968/hmed.2010.71.10.78938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- J M L Williamson
- Department of Surgery, The Great Western Hospital, Swindon, Wiltshire SN3 6BB
| | | |
Collapse
|
39
|
Abstract
Acute pancreatitis (AP) is an important cause of morbidity and mortality worldwide and the annual incidence appears to be increasing. It presents as a mild self-limiting illness in 80% of patients. However, one-fifth of these develop a severe complicated life-threatening disease requiring intensive and prolonged therapeutic intervention. Alcohol and gallstone disease remain the commonest causes of AP but metabolic abnormalities, obesity and genetic susceptibility are thought be increasingly important aetiological factors. The prompt diagnosis of AP and stratification of disease severity is essential in directing rapid delivery of appropriate therapeutic measures. In this review, the range of diagnostic and prognostic assays, severity scoring systems and radiological investigations used in current clinical practice are described, highlighting their strengths and weaknesses. Increased understanding of the complex pathophysiology of AP has generated an array of new potential diagnostic assays and these are discussed. The multidisciplinary approach to management of severe pancreatitis is outlined, including areas of controversy and novel treatments.
Collapse
Affiliation(s)
- Simon J F Harper
- Department of Pancreaticobiliar Surgery, Luton & Dunstable NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK.
| | | |
Collapse
|
40
|
Twait E, Williard DE, Samuel I. Dominant negative p38 mitogen-activated protein kinase expression inhibits NF-kappaB activation in AR42J cells. Pancreatology 2010; 10:119-28. [PMID: 20453549 PMCID: PMC2899148 DOI: 10.1159/000290656] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 02/13/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND The role of the p38 mitogen-activated protein (MAP) kinase in acute pancreatitis pathogenesis is controversial. We hypothesize that p38 plays a role in regulating NF-kappaB activation in exocrine pancreatic cells. METHODS AR42J cells incorporating an NF-kappaB-responsive luciferase reporter, with and without adenoviral transduction of DNp38, were stimulated with cholecystokinin (CCK) or tumor necrosis factor-alpha (TNF-alpha) prior to measuring NF-kappaB activation. RESULTS CCK- or TNF-alpha-stimulated NF-kappaB-dependent gene transcription (luciferase assay) was substantially subdued by DNp38 expression. These findings were confirmed by electrophoretic mobility shift assay. Nuclear translocation of the p65 NF-kappaB subunit following agonist stimulation was evident (supershift). Characterization studies showed excellent adenoviral infection efficiency and cell viability in our AR42J cell model. Agonist-stimulated dose- and time-dependent p38 activation, with inhibition by DNp38 expression, was also confirmed. CONCLUSION The p38 MAP kinase regulates NF-kappaB pathway activation in exocrine pancreatic cells, and thus potentially plays a role in the mechanism of acute pancreatitis pathogenesis..
Collapse
Affiliation(s)
| | | | - Isaac Samuel
- *Isaac Samuel, MD, FRCS, FACS, Department of Surgery, VAMC & UI CCOM, 200 Hawkins Drive, 4625 JCP (Surgery), Iowa City, IA 52242 (USA), Tel. +1 319 356 7359, Fax +1 319 356 8378, E-Mail
| |
Collapse
|
41
|
Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency. ATHEROSCLEROSIS SUPP 2010; 11:55-60. [PMID: 20427244 DOI: 10.1016/j.atherosclerosissup.2010.03.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 12/13/2022]
Abstract
Alipogene tiparvovec (AAV1-LPL(S447X)) gene therapy is developed to prevent complications and decrease the clinical morbidity of lipoprotein lipase deficiency (LPLD). LPLD is an autosomal recessive disease associated with severe hypertriglyceridemia (hyperTG), severe chylomicronaemia, and low HDL. Acute pancreatitis, the most frequent serious clinical LPLD complication, is a complex and heterogeneous inflammatory condition having many causes including hyperTG and chylomicronaemia. In many patients, low fat diet and currently available lipid lowering drugs are ineffective to prevent hyperTG or pancreatitis in LPLD. The clinical development program of alipogene tiparvovec includes observational studies as well as phase I/II and II/III clinical trials. Pooled data are collected on safety and efficacy issues, including the incidence of pancreatitis.
Collapse
|
42
|
Chen N, Zou J, Wang S, Ye Y, Huang Y, Gadda G, Yang JJ. Designing protease sensors for real-time imaging of trypsin activation in pancreatic cancer cells. Biochemistry 2009; 48:3519-26. [PMID: 19271729 PMCID: PMC2739378 DOI: 10.1021/bi802289v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acute pancreatitis is a serious and potentially fatal disease caused by intracellular trypsinogen activation. Although protease detection has been greatly facilitated by the development of protease probes capable of monitoring protease activation and inhibition, real-time quantitative measurement of protease activity in living cells remains a challenge, and the identification of the cellular compartment for trypsinogen activation is inconclusive. Here we report a novel strategy for developing trypsin sensors by grafting an enzymatic cleavage site into a sensitive location for optical change of chromophore in a single enhanced green fluorescent protein (EGFP). Our designed trypsin sensor exhibits rapid kinetic responses for protease activation and inhibition with a large ratiometric optical signal change. In addition, it has strong specificity, as enzymatic cleavage is not observed with other proteases such as thrombin, cathepsin B, tryptase, and tissue plasminogen activator. Moreover, the developed trypsin sensor allows us for the first time to observe, in real time, trypsinogen activation by caerulein in the pancreatic cancer cell line, MIA PaCa-2 without zymogen granules. These developed protease sensors will facilitate improved understanding of mechanisms and locations of protease activation and further provide screening of protease inhibitors with therapeutic effects.
Collapse
Affiliation(s)
- Ning Chen
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | - Jin Zou
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | - Siming Wang
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | - Yiming Ye
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Yun Huang
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | - Giovanni Gadda
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J. Yang
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
43
|
Shamamian P, Kingman P, Mallen-St. Clair J, Bar-Sagi D. Pathophysiology of Acute Pancreatitis. IMAGING OF THE PANCREAS 2009. [DOI: 10.1007/978-3-540-68251-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Sorg H, Lorch B, Jaster R, Fitzner B, Ibrahim S, Holzhueter SA, Nizze H, Vollmar B. Early rise in inflammation and microcirculatory disorder determine the development of autoimmune pancreatitis in the MRL/Mp-mouse. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1274-80. [PMID: 18974312 DOI: 10.1152/ajpgi.90341.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Autoimmune pancreatitis (AIP) is a rare cause of chronic pancreatitis and mimics pancreatic cancer. Although there is strong interest in research, etiology and pathophysiology of AIP are still unknown. Therefore, we analyzed a total of 92 MRL/Mp-mice of either sex, which are prone to develop AIP, in four different age groups (8-12, 16-20, 24-28, and 32-40 wk). Using intravital fluorescence microscopy, histology, laboratory analysis, and Western blot, onset, severity, and pathophysiological mechanisms of AIP were evaluated. Female animals showed in vivo an age-dependent increase of intrapancreatic leukocyte accumulation, as well as a loss in functional capillary perfusion. In contrast, intrapancreatic inflammation in male mice was less pronounced and not age dependent. Furthermore, pancreatic tissue specimen of female animals exhibited major organ destruction with significantly higher values of mean pathological scores (1.5 +/- 0.3 vs. < or =0.2; P < 0.05), as well as significantly increased CD4-, CD8-, CD11b-, and CD138-positive cells compared with male animals of the same age. Interestingly, there was a significant positive correlation between intravascular leukocyte adherence and the histopathological score of the pancreas, indicating a determining role of the innate immune system for the late onset of AIP. The present study shows that the onset of AIP is characterized by an inflammatory response and microcirculatory failure, most probably constituting initiators and propagators of this autoimmune disease.
Collapse
Affiliation(s)
- Heiko Sorg
- Institute for Experimental Surgery, Division of Gastroenterology, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Baggaley EM, Elliott AC, Bruce JIE. Oxidant-induced inhibition of the plasma membrane Ca2+-ATPase in pancreatic acinar cells: role of the mitochondria. Am J Physiol Cell Physiol 2008; 295:C1247-60. [PMID: 18787078 DOI: 10.1152/ajpcell.00083.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Impairment of the normal spatiotemporal pattern of intracellular Ca(2+) ([Ca(2+)](i)) signaling, and in particular, the transition to an irreversible "Ca(2+) overload" response, has been implicated in various pathophysiological states. In some diseases, including pancreatitis, oxidative stress has been suggested to mediate this Ca(2+) overload and the associated cell injury. We have previously demonstrated that oxidative stress with hydrogen peroxide (H(2)O(2)) evokes a Ca(2+) overload response and inhibition of plasma membrane Ca(2+)-ATPase (PMCA) in rat pancreatic acinar cells (Bruce JI and Elliott AC. Am J Physiol Cell Physiol 293: C938-C950, 2007). The aim of the present study was to further examine this oxidant-impaired inhibition of the PMCA, focusing on the role of the mitochondria. Using a [Ca(2+)](i) clearance assay in which mitochondrial Ca(2+) uptake was blocked with Ru-360, H(2)O(2) (50 microM-1 mM) markedly inhibited the PMCA activity. This H(2)O(2)-induced inhibition of the PMCA correlated with mitochondrial depolarization (assessed using tetramethylrhodamine methylester fluorescence) but could occur without significant ATP depletion (assessed using Magnesium Green fluorescence). The H(2)O(2)-induced PMCA inhibition was sensitive to the mitochondrial permeability transition pore (mPTP) inhibitors, cyclosporin-A and bongkrekic acid. These data suggest that oxidant-induced opening of the mPTP and mitochondrial depolarization may lead to an inhibition of the PMCA that is independent of mitochondrial Ca(2+) handling and ATP depletion, and we speculate that this may involve the release of a mitochondrial factor. Such a phenomenon may be responsible for the Ca(2+) overload response, and for the transition between apoptotic and necrotic cell death thought to be important in many disease states.
Collapse
Affiliation(s)
- Erin M Baggaley
- Faculty of Life Sciences, 2nd Floor Core Technology Facility, 46 Grafton St., Univ. of Manchester, Manchester M13 9NT, UK
| | | | | |
Collapse
|
46
|
Samuel I, Tephly L, Williard DE, Carter AB. Enteral exclusion increases MAP kinase activation and cytokine production in a model of gallstone pancreatitis. Pancreatology 2008; 8:6-14. [PMID: 18235211 PMCID: PMC2829292 DOI: 10.1159/000114850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/06/2007] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have previously demonstrated that enteral exclusion augments pancreatic p38 mitogen-activated protein (MAP) kinase activation and tumor necrosis factor-alpha (TNF-alpha) production after bile-pancreatic duct ligation in rats. METHODS In the present study, we evaluated c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activation, and cytokine production, in pancreata of duct-ligated rats with and without duodenal bile-pancreatic juice replacement from a donor rat. We hypothesized that enteral exclusion of bile-pancreatic juice activates stress kinases and induces cytokine production in ligation-induced acute pancreatitis. RESULTS Increased JNK and ERK activation after ligation are inhibited by bile-pancreatic juice replacement. Increases in pancreatic production of IL-1beta and IL-12 after ligation are significantly subdued by replacement. In additional in vitro studies, we show that cholecystokinin- or TNF-alpha-stimulated nuclear transcription factor kappa-B activation in AR42J cells is inhibited by dominant negative ERK2. CONCLUSIONS Our novel findings using our Donor Rat Model indicate that bile-pancreatic juice exclusion induces MAP kinase activation and exacerbates cell stress and inflammation in this experimental model of gallstone pancreatitis. and IAP.
Collapse
Affiliation(s)
- Isaac Samuel
- Department of Surgery, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA.
| | | | | | | |
Collapse
|