1
|
Xu S, Yang Z, Li L, Cui Y, Chen Z. MiR-497-5p Ameliorates Deep Venous Thrombosis by Facilitating Endothelial Progenitor Cell Migration and Angiogenesis by Regulating LITAF. Biochem Genet 2024:10.1007/s10528-024-10927-x. [PMID: 39432130 DOI: 10.1007/s10528-024-10927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024]
Abstract
Deep vein thrombosis (DVT) is a clinical manifestation of venous thromboembolism and a major global burden of cardiovascular disease. In recent years, the crucial role of microRNAs (miRNAs) in cardiovascular disease has been confirmed. Here, we aimed to investigate the specific effect of miR-497-5p on DVT. The endothelial progenitor cells (EPCs) were obtained from the bone marrow of newborn rats and transfected with miR-497-5p mimics or/and pcDNA3.1/lipopolysaccharide-induced TNF factor (LITAF). The proliferation and migration abilities of EPCs were detected using CCK-8 assay and transwell assay, respectively. Angiogenesis was evaluated using tube formation assay. The interaction of miR-497-5p and LITAF was confirmed by luciferase reporter experiment. DVT rat model in vivo was established by inferior vena cava (IVC) ligation in Sprague-Dawley rats. Histological analysis of IVC tissue was conducted by hematoxylin-eosin staining. We found that enhancing miR-497-5p expression facilitated the abilities of proliferation and migration of EPCs. Additionally, overexpression of miR-497-5p increased the capacity of EPCs to form capillary tubes on Matrigel. LITAF was found to be targeted by miR-497-5p and negatively regulated by miR-497-5p. Overexpression of LITAF counteracted the miR-497-5p overexpression's effect on the proliferation, migration, and angiogenesis abilities of EPCs. Moreover, the injection of agomir-miR-497-5p alleviated thrombus formation, reduced thrombus weight, and reduced the serum level of D-dimer in DVT rat model by reducing LITAF expression. This study suggests that miR-497-5p alleviates DVT by facilitating EPCs proliferation, migration, and angiogenesis by targeting LITAF.
Collapse
Affiliation(s)
- Shuguo Xu
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Zhihong Yang
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Longbiao Li
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Yuansheng Cui
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China.
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No.26 Shengli Street, Jiang'an District, Wuhan, 430014, China.
| |
Collapse
|
2
|
Ceran F, Basat SO, Ersin İ, Filinte D, Pilancı Ö, Bozkurt M. Evaluation of the effects of ischemia-reperfusion injury in rat isogenic and allogeneic muscle and skin transplant models. ULUS TRAVMA ACIL CER 2024; 30:626-634. [PMID: 39222497 PMCID: PMC11622727 DOI: 10.14744/tjtes.2024.77415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a phenomenon that affects transplant survival. The aim of our study was to examine the effects of IRI in isogenic and allogeneic muscle and skin transplantation models exposed to prolonged warm ischemia. METHODS Forty-eight Lewis rats and 16 Brown-Norway rats were used to create four groups: Isogenic Inguinal Flap Transplantation (IST), Isogenic Gastrocnemius Muscle Flap Transplantation (IMT), Allogeneic Inguinal Flap Transplantation (AST), and Allogeneic Gastrocnemius Muscle Flap Transplantation (AMT). Malonyldialdehyde (MDA) and superoxide dismutase (SOD) levels were measured on postoperative days 1, 7, 21, 35, 63, 100, and 120 in all groups. Donor-specific chimerism (DSC) in peripheral blood was evaluated in the allogeneic groups on postoperative days 7, 21, 35, 63, 100, and 120. The microRNA-21 and microRNA-205 levels were evaluated on postoperative days 1, 7, and 120 in all groups. At the end of the study, a histopathological examination was performed. RESULTS A statistically significant difference was found between the groups in terms of MDA and SOD levels. DSC was detected in the AMT group. A significant increase in microRNA-205 was observed, especially in the AMT group. There was no significant difference in the number of functional muscle units between the muscle transplantation groups. CONCLUSION The presence of DSC in the AMT group and the lack of a significant difference in the number of functional muscle units in the IMT and AMT groups are noteworthy findings.
Collapse
Affiliation(s)
- Fatih Ceran
- Department of Plastic, Reconstructive and Aesthetic Surgery, Biruni University Medical Faculty, İstanbul-Türkiye
| | - Salih Onur Basat
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ministry of Health Bagcilar Training & Research Hospital, İstanbul-Türkiye
| | - İdris Ersin
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ministry of Health Bagcilar Training & Research Hospital, İstanbul-Türkiye
| | - Deniz Filinte
- Department of Pathology Marmara University Medical Faculty, İstanbul-Türkiye
| | - Özgür Pilancı
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ministry of Health Bagcilar Training & Research Hospital, İstanbul-Türkiye
| | - Mehmet Bozkurt
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ministry of Health Bagcilar Training & Research Hospital, İstanbul-Türkiye
| |
Collapse
|
3
|
Bang JH, Kim EH, Kim HJ, Chung JW, Seo WK, Kim GM, Lee DH, Kim H, Bang OY. Machine Learning-Based Etiologic Subtyping of Ischemic Stroke Using Circulating Exosomal microRNAs. Int J Mol Sci 2024; 25:6761. [PMID: 38928481 PMCID: PMC11203849 DOI: 10.3390/ijms25126761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Ischemic stroke is a major cause of mortality worldwide. Proper etiological subtyping of ischemic stroke is crucial for tailoring treatment strategies. This study explored the utility of circulating microRNAs encapsulated in extracellular vesicles (EV-miRNAs) to distinguish the following ischemic stroke subtypes: large artery atherosclerosis (LAA), cardioembolic stroke (CES), and small artery occlusion (SAO). Using next-generation sequencing (NGS) and machine-learning techniques, we identified differentially expressed miRNAs (DEMs) associated with each subtype. Through patient selection and diagnostic evaluation, a cohort of 70 patients with acute ischemic stroke was classified: 24 in the LAA group, 24 in the SAO group, and 22 in the CES group. Our findings revealed distinct EV-miRNA profiles among the groups, suggesting their potential as diagnostic markers. Machine-learning models, particularly logistic regression models, exhibited a high diagnostic accuracy of 92% for subtype discrimination. The collective influence of multiple miRNAs was more crucial than that of individual miRNAs. Additionally, bioinformatics analyses have elucidated the functional implications of DEMs in stroke pathophysiology, offering insights into the underlying mechanisms. Despite limitations like sample size constraints and retrospective design, our study underscores the promise of EV-miRNAs coupled with machine learning for ischemic stroke subtype classification. Further investigations are warranted to validate the clinical utility of the identified EV-miRNA biomarkers in stroke patients.
Collapse
Affiliation(s)
- Ji Hoon Bang
- Global School of Media, College of IT, Soongsil University, Seoul 06978, Republic of Korea;
| | - Eun Hee Kim
- S&E Bio, Inc., Seoul 05855, Republic of Korea
| | - Hyung Jun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jong-Won Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Woo-Keun Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Gyeong-Moon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Dong-Ho Lee
- Calth, Inc., Seongnam-si 13449, Republic of Korea
| | - Heewon Kim
- Global School of Media, College of IT, Soongsil University, Seoul 06978, Republic of Korea;
| | - Oh Young Bang
- S&E Bio, Inc., Seoul 05855, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
| |
Collapse
|
4
|
Wang N, Li J, Hu Z, Ngowi EE, Yan B, Qiao A. Exosomes: New Insights into the Pathogenesis of Metabolic Syndrome. BIOLOGY 2023; 12:1480. [PMID: 38132306 PMCID: PMC10740970 DOI: 10.3390/biology12121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Exosomes are a subtype of extracellular vesicles (EVs) with a diameter of 30~150 nm (averaging ~100 nm) that are primarily produced through the endosomal pathway, and carry various components such as lipids, proteins, RNA, and other small molecular substances. Exosomes can mediate intercellular communication through the bioactive substances they carry, thus participating in different physiological activities. Metabolic syndrome (MS) is a disease caused by disturbances in the body's metabolism, mainly including insulin resistance (IR), diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), hyperlipidemia, and atherosclerosis (AS). Recent studies have shown that exosomes are closely related to the occurrence and development of MS. Exosomes can act as messengers to mediate signaling transductions between metabolic cells in the organism and play a bidirectional regulatory role in the MS process. This paper mainly reviews the components, biogenesis, biological functions and potential applications of exosomes, and exosomes involved in the pathogenesis of MS as well as their clinical significance in MS diagnosis.
Collapse
Affiliation(s)
- Ning Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
| | - Jing Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
| | - Zixuan Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
| | - Ebenezeri Erasto Ngowi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Department of Biological Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Baolong Yan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China;
| | - Aijun Qiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
5
|
Gamal-Eldeen AM, Fahmy CA, Raafat BM, Althobaiti F, Bassyouni IH, Talaat RM. Association of Circulating Levels of Hypoxia-Inducible Factor-1α and miR-210 with Photosensitivity in Systemic Lupus Erythematosus Patients. Curr Mol Med 2023; 23:185-192. [PMID: 35034594 DOI: 10.2174/1566524022666220114145220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND miR-210, a key hypoxamiR, regulates hypoxia and inflammation-linked hypoxia. Systemic lupus erythematosus (SLE), a chronic autoimmune disease, is responsible for many pathological disorders, including photosensitivity. OBJECTIVE This study aimed to find the correlation between circulating miR-210/HIF-1α levels and photosensitivity in SLE patients and other SLE-associated pathological complications in a single-center case-control study. METHODS The study population comprised 104 SLE Egyptian patients with photosensitivity, 32 SLE patients without photosensitivity, and 32 healthy subjects. SLE activity was assessed for all patients using the SLE Disease Activity Index (SLEDAI). Clinical complications/manifestations and hematological/serological analyses were recorded. HIF-α concentration was investigated by ELISA, and miR-210 expression was analyzed by qRT-PCR. RESULTS The results revealed that circulating miR-210 was significantly increased in the SLE/photosensitivity group versus the SLE and control groups. The additional occurrence of malar rash, oral ulcers, renal disorders, or hypertension resulted in a higher expression of miR-210. SLEDAI activity status showed no effect on miR-210. Erythrocyte sedimentation rate, white blood cells, hemoglobin, platelets, patient age, and disease duration were positively correlated with circulatory miR-210. HIF-α concentration was significantly induced in the SLE/photosensitivity group versus the SLE and control groups. In SLE/photosensitivity, the presence of renal disorders and hypertension resulted in the highest HIF-α concentrations. A strong positive correlation was recorded between HIF-α concentration and circulatory miR-210 in SLE/photosensitivity patients (r = 0.886). CONCLUSION The dysregulation of circulating miR-210/HIF-1α levels in SLE/ photosensitivity patients is controlled by the presence of additional pathological complications, and results suggest that the hypoxia pathway might interact positively with the pathogenesis and disease progression of SLE.
Collapse
Affiliation(s)
- Amira M Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Center, Prince Sultan Medical Complex, Al- Hawiyah, Taif University, Taif, Saudi Arabia
| | - Cinderella A Fahmy
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622, Egypt
- Biochemistry Department, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622, Egypt
| | - Bassem M Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fayez Althobaiti
- High Altitude Research Center, Prince Sultan Medical Complex, Al- Hawiyah, Taif University, Taif, Saudi Arabia
- Biotechnology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Iman H Bassyouni
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, El-Kasr El-Aini Hospital, Cairo 12613, Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Sadat City University, Egypt
| |
Collapse
|
6
|
Mitra P, Goyal T, Sharma P, Sai Kiran G, Rana S, Sharma S. Plasma microRNA expression and immunoregulatory cytokines in an Indian population occupationally exposed to cadmium. J Biochem Mol Toxicol 2023; 37:e23221. [PMID: 36094808 DOI: 10.1002/jbt.23221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Following its accumulation in the body, cadmium (Cd) exposure is associated with devastating effects on multiple organ system of the human body. The immune system is one of the sensitive targets for Cd-induced toxicity. Recently, studies have demonstrated a significant role of Cd in inducing epigenetic alterations. With this background, the present study was planned to study the changes in candidate microRNA (miRNA) expression associated with immune regulation in occupationally Cd-exposed workers. One hundred individuals involved in welding and metal handicraft manufacturing, while 80 apparently healthy subjects without any prior history of occupational exposure were recruited for the study. Blood Cd level was determined by atomic absorption spectrometry. Serum cytokine levels were measured using an enzyme-linked immunosorbent assay and serum miRNA expression of candidate miRNAs (miR-146a, miR-210, and miR-222) were determined by real-time polymerase chain reaction. The median Cd level (2.40 μg/L) in the occupationally exposed workers was significantly higher than the nonexposed subjects (0.90 μg/L). Among the cytokines, interleukin-4 (IL-4), and tumor necrosis factor-alpha (TNF-α) were significantly higher while IL-2 and IL-10 were significantly lower in the exposed. The expression level of miR-146a and miR-222 were significantly different between the groups with the former showing downregulation and later showing upregulation. Correlation analysis revealed a positive and negative association of miR-222 and miR-146a with blood cadmium level, IL-17 as well as TNF-α, respectively. Furthermore, the in-silico analysis revealed a significant role of the studied miRNAs in various cellular and genetic pathways. The findings of the present study demonstrate significant involvement of Cd-induced alteration in miRNAs in varied immune regulatory changes in exposed individuals.
Collapse
Affiliation(s)
- Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.,Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.,Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Gangam Sai Kiran
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Shweta Rana
- Environmental Studies, Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
7
|
Pandita D, Pandita A. Omics Technology for the Promotion of Nutraceuticals and Functional Foods. Front Physiol 2022; 13:817247. [PMID: 35634143 PMCID: PMC9136416 DOI: 10.3389/fphys.2022.817247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
The influence of nutrition and environment on human health has been known for ages. Phytonutrients (7,000 flavonoids and phenolic compounds; 600 carotenoids) and pro-health nutrients—nutraceuticals positively add to human health and may prevent disorders such as cancer, diabetes, obesity, cardiovascular diseases, and dementia. Plant-derived bioactive metabolites have acquired an imperative function in human diet and nutrition. Natural phytochemicals affect genome expression (nutrigenomics and transcriptomics) and signaling pathways and act as epigenetic modulators of the epigenome (nutri epigenomics). Transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics are some of the main platforms of complete omics analyses, finding use in functional food and nutraceuticals. Now the recent advancement in the integrated omics approach, which is an amalgamation of multiple omics platforms, is practiced comprehensively to comprehend food functionality in food science.
Collapse
Affiliation(s)
- Deepu Pandita
- Government Department of School Education, Jammu, India
- *Correspondence: Deepu Pandita,
| | | |
Collapse
|
8
|
Exosomes in cardiovascular diseases: a blessing or a sin for the mankind. Mol Cell Biochem 2022; 477:833-847. [PMID: 35064412 DOI: 10.1007/s11010-021-04328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases (CVDs) comprises disorders of blood vessels and heart. Multiple cells in the heart suggests that hetero-cellular communication, which is an important aspect in heart functioning and there is a need to elucidate the way in which this inter-cellular communication occurs. Now a days, exosomal research has gained much attention. Exosomes, nano-shuttles, are EVs with diameters ranging from 40 to 160 nm (average 100 nm), secreted by body cells. These vesicles act as cell-to-cell communicators and are carriers of important biomolecules such as RNAs, miRNAs, Proteins and lipids. Exosomes can change the gene expression of the recipient cells, thereby, changes the cellular characteristics. Exosomes have known to play an essential role in protection as well as progression of various cardiovascular diseases. In the present review, role of exosomes in various CVDs have been discussed.
Collapse
|
9
|
γ-Tocotrienol Protects against Mitochondrial Dysfunction, Energy Deficits, Morphological Damage, and Decreases in Renal Functions after Renal Ischemia. Int J Mol Sci 2021; 22:ijms222312674. [PMID: 34884479 PMCID: PMC8657889 DOI: 10.3390/ijms222312674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemia-induced mitochondrial dysfunction and ATP depletion in the kidney result in disruption of primary functions and acute injury of the kidney. This study tested whether γ-tocotrienol (GTT), a member of the vitamin E family, protects mitochondrial function, reduces ATP deficits, and improves renal functions and survival after ischemia/reperfusion injury. Vehicle or GTT (200 mg/kg) were administered to mice 12 h before bilateral kidney ischemia, and endpoints were assessed at different timepoints of reperfusion. GTT treatment reduced decreases in state 3 respiration and accelerated recovery of this function after ischemia. GTT prevented decreases in activities of complexes I and III of the respiratory chain, and blocked ischemia-induced decreases in F0F1-ATPase activity and ATP content in renal cortical tissue. GTT improved renal morphology at 72 h after ischemia, reduced numbers of necrotic proximal tubular and inflammatory cells, and enhanced tubular regeneration. GTT treatment ameliorated increases in plasma creatinine levels and accelerated recovery of creatinine levels after ischemia. Lastly, 89% of mice receiving GTT and 70% of those receiving vehicle survived ischemia. Conclusions: Our data show novel observations that GTT administration improves mitochondrial respiration, prevents ATP deficits, promotes tubular regeneration, ameliorates decreases in renal functions, and increases survival after acute kidney injury in mice.
Collapse
|
10
|
Lam B, Nwadozi E, Haas TL, Birot O, Roudier E. High Glucose Treatment Limits Drosha Protein Expression and Alters AngiomiR Maturation in Microvascular Primary Endothelial Cells via an Mdm2-dependent Mechanism. Cells 2021; 10:742. [PMID: 33801773 PMCID: PMC8065922 DOI: 10.3390/cells10040742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes promotes an angiostatic phenotype in the microvascular endothelium of skeletal muscle and skin. Angiogenesis-related microRNAs (angiomiRs) regulate angiogenesis through the translational repression of pro- and anti-angiogenic genes. The maturation of micro-RNA (miRs), including angiomiRs, requires the action of DROSHA and DICER proteins. While hyperglycemia modifies the expression of angiomiRs, it is unknown whether high glucose conditions alter the maturation process of angiomiRs in dermal and skeletal muscle microvascular endothelial cells (MECs). Compared to 5 mM of glucose, high glucose condition (30 mM, 6-24 h) decreased DROSHA protein expression, without changing DROSHA mRNA, DICER mRNA, or DICER protein in primary dermal MECs. Despite DROSHA decreasing, high glucose enhanced the maturation and expression of one angiomiR, miR-15a, and downregulated an miR-15a target: Vascular Endothelial Growth Factor-A (VEGF-A). The high glucose condition increased Murine Double Minute-2 (MDM2) expression and MDM2-binding to DROSHA. Inhibition of MDM2 prevented the effects evoked by high glucose on DROSHA protein and miR-15a maturation in dermal MECs. In db/db mice, blood glucose was negatively correlated with the expression of skeletal muscle DROSHA protein, and high glucose decreased DROSHA protein in skeletal muscle MECs. Altogether, our results suggest that high glucose reduces DROSHA protein and enhances the maturation of the angiostatic miR-15a through a mechanism that requires MDM2 activity.
Collapse
|
11
|
Qiu TY, Huang J, Wang LP, Zhu BS. Inhibition of miR-200b Promotes Angiogenesis in Endothelial Cells by Activating The Notch Pathway. CELL JOURNAL 2021; 23:51-60. [PMID: 33650820 PMCID: PMC7944128 DOI: 10.22074/cellj.2021.7080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022]
Abstract
Objective Patients with diabetes mellitus frequently have chronic wounds or diabetic ulcers as a result of impaired
wound healing, which may lead to limb amputation. Human umbilical vein endothelial cell (HUVEC) dysfunction also
delays wound healing. Here, we investigated the mechanism of miR-200b in HUVECs under high glucose conditions
and the potential of miR-200b as a therapeutic target.
Materials and Methods In this experimental study, HUVECs were cultured with 5 or 30 mM glucose for 48 hours.
Cell proliferation was evaluated by CCK-8 assays. Cell mobility was tested by wound healing and Transwell assays.
Angiogenesis was analyzed in vitro Matrigel tube formation assays. Luciferase reporter assays were used to test the
binding of miR-200b with Notch1.
Results miR-200b expression was induced by high glucose treatment of HUVECs (P<0.01), and it significantly
repressed cell proliferation, migration, and tube formation (P<0.05). Notch1 was directly targeted and repressed by
miR-200b at both the mRNA and protein levels. Inhibition of miR-200b restored Notch1 expression (P<0.05) and
reactivated the Notch pathway. The effects of miR-200b inhibition in HUVECs could be reversed by treatment with a
Notch pathway inhibitor (P<0.05), indicating that the miR-200b/Notch axis modulates the proliferation, migration, and
tube formation ability of HUVECs.
Conclusion Inhibition of miR-200b activated the angiogenic ability of endothelial cells and promoted wound healing
through reactivation of the Notch pathway in vitro. miR-200b could be a promising therapeutic target for treating HUVEC
dysfunction.
Collapse
Affiliation(s)
- Tie-Ying Qiu
- Clinical Nursing Teaching and Research Section of the Second Xiangya Hospital, Changsha 410011, P.R. China
| | - Jin Huang
- Clinical Nursing Teaching and Research Section of the Second Xiangya Hospital, Changsha 410011, P.R. China
| | - Li-Ping Wang
- Clinical Nursing Teaching and Research Section of the Second Xiangya Hospital, Changsha 410011, P.R. China
| | - Bi-Song Zhu
- Organ Transplant Center, Xiangya Hospital, Central South University, Changsha 410008, P.R. China. Emails:
| |
Collapse
|
12
|
Hirschfeld M, Rücker G, Weiß D, Berner K, Ritter A, Jäger M, Erbes T. Urinary Exosomal MicroRNAs as Potential Non-invasive Biomarkers in Breast Cancer Detection. Mol Diagn Ther 2021; 24:215-232. [PMID: 32112368 DOI: 10.1007/s40291-020-00453-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most frequent malignant disease in women worldwide and is therefore challenging for the healthcare system. Early BC detection remains a leading factor that improves overall outcome and disease management. Aside from established screening procedures, there is a constant demand for additional BC detection methods. Routine BC screening via non-invasive liquid biopsy biomarkers is one auspicious approach to either complete or even replace the current state-of-the-art diagnostics. The study explores the diagnostic potential of urinary exosomal microRNAs with specific BC biomarker characteristics to initiate the potential prospective application of non-invasive BC screening as routine practice. METHODS Based on a case-control study (69 BC vs. 40 healthy controls), expression level quantification and subsequent biostatistical computation of 13 urine-derived microRNAs were performed to evaluate their diagnostic relevance in BC. RESULTS Multilateral statistical assessment determined and repeatedly confirmed a specific panel of four urinary microRNA types (miR-424, miR-423, miR-660, and let7-i) as a highly specific combinatory biomarker tool discriminating BC patients from healthy controls, with 98.6% sensitivity and 100% specificity. DISCUSSION Urine-based BC diagnosis may be achieved through the analysis of distinct microRNA panels with proven biomarker abilities. Subject to further validation, the implementation of urinary BC detection in routine screening offers a promising non-invasive alternative in women's healthcare.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Hosen MR, Goody PR, Zietzer A, Nickenig G, Jansen F. MicroRNAs As Master Regulators of Atherosclerosis: From Pathogenesis to Novel Therapeutic Options. Antioxid Redox Signal 2020; 33:621-644. [PMID: 32408755 DOI: 10.1089/ars.2020.8107] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Cardiovascular disease (CVD) remains the major cause of morbidity and mortality worldwide. Accumulating evidence indicates that atherosclerosis and its sequelae, coronary artery disease, contribute to the majority of cardiovascular deaths. Atherosclerosis is a chronic inflammatory disease of the arteries in which atherosclerotic plaques form within the vessel wall. Epidemiological studies have identified various risk factors for atherosclerosis, such as diabetes, hyperlipidemia, smoking, genetic predisposition, and sedentary lifestyle. Recent Advances: Through the advancement of genetic manipulation techniques and their use in cardiovascular biology, it was shown that small RNAs, especially microRNAs (miRNAs), are dynamic regulators of disease pathogenesis. They are considered to be central during the regulation of gene expression through numerous mechanisms and provide a means to develop biomarkers and therapeutic tools for the diagnosis and therapy of atherosclerosis. Circulating miRNAs encapsulated within membrane-surrounded vesicles, which originate from diverse subcellular compartments, are now emerging as novel regulators of intercellular communication. The miRNAs, in both freely circulating and vesicle-bound forms, represent a valuable tool for diagnosing and monitoring CVD, recently termed as "liquid biopsy." Critical Issues: However, despite the recent advancements in miRNA-based diagnostics and therapeutics, understanding how miRNAs can regulate atherosclerosis is still crucial to achieving an effective intervention and reducing the disease burden. Future Directions: We provide a landscape of the current developmental progression of RNA therapeutics as a holistic approach for treating CVD in different animal models and clinical trials. Future interrogations are warranted for the development of miRNA-based therapeutics to overcome challenges for the treatment of the disease.
Collapse
Affiliation(s)
- Mohammed Rabiul Hosen
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Philip Roger Goody
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Andreas Zietzer
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| |
Collapse
|
14
|
Bernstein DL, Rom S. Let-7g* and miR-98 Reduce Stroke-Induced Production of Proinflammatory Cytokines in Mouse Brain. Front Cell Dev Biol 2020; 8:632. [PMID: 32766248 PMCID: PMC7379105 DOI: 10.3389/fcell.2020.00632] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is a debilitating illness facing healthcare today, affecting over 800,000 people and causing over 140,000 deaths each year in the United States. Despite being the third-leading cause of death, very few treatments currently exist for stroke. Often, during an ischemic attack, the blood-brain barrier (BBB) is significantly damaged, which can lead to altered interactions with the immune system, and greatly worsen the damage from a stroke. The impaired, BBB promotes the infiltration of peripheral inflammatory cells into the brain, secreting deleterious mediators (cytokines/chemokines) and resulting in permanent barrier injury. let-7 microRNAs (miRs) are critical for regulating immune responses within the BBB, particularly after ischemic stroke. We have previously shown how transient stroke decreases expression of multiple let-7 miRs, and that restoration of expression confers significant neuroprotection, reduction in brain infiltration by neutrophils, monocytes and T cells. However, the specific mechanisms of action of let-7 miRs remain unexplored, though emerging evidence implicates a range of impacts on cytokines. In the current study, we evaluate the impacts of miR-98 and let-7g* on targeting of cytokine mRNAs, cytokine release following ischemic stroke, and cell-specific changes to the neurovascular space. We determined that miR-98 specifically targets IP-10, while let-7g* specifically aims IL-8, and attenuates their levels. Both produce strong impacts on CCL2 and CCL5. Further, let-7g* strongly improves neurovascular perfusion following ischemic stroke. Together, the results of the study indicate that let-7 miRs are critical for mediating endothelial-immune reactions and improving recovery following ischemic stroke.
Collapse
Affiliation(s)
- David L Bernstein
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Lorenzo-Almorós A, Hang T, Peiró C, Soriano-Guillén L, Egido J, Tuñón J, Lorenzo Ó. Predictive and diagnostic biomarkers for gestational diabetes and its associated metabolic and cardiovascular diseases. Cardiovasc Diabetol 2019; 18:140. [PMID: 31666083 PMCID: PMC6820966 DOI: 10.1186/s12933-019-0935-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as the presence of high blood glucose levels with the onset, or detected for the first time during pregnancy, as a result of increased insulin resistance. GDM may be induced by dysregulation of pancreatic β-cell function and/or by alteration of secreted gestational hormones and peptides related with glucose homeostasis. It may affect one out of five pregnancies, leading to perinatal morbidity and adverse neonatal outcomes, and high risk of chronic metabolic and cardiovascular injuries in both mother and offspring. Currently, GDM diagnosis is based on evaluation of glucose homeostasis at late stages of pregnancy, but increased age and body-weight, and familiar or previous occurrence of GDM, may conditionate this criteria. In addition, an earlier and more specific detection of GDM with associated metabolic and cardiovascular risk could improve GDM development and outcomes. In this sense, 1st-2nd trimester-released biomarkers found in maternal plasma including adipose tissue-derived factors such as adiponectin, visfatin, omentin-1, fatty acid-binding protein-4 and retinol binding-protein-4 have shown correlations with GDM development. Moreover, placenta-related factors such as sex hormone-binding globulin, afamin, fetuin-A, fibroblast growth factors-21/23, ficolin-3 and follistatin, or specific micro-RNAs may participate in GDM progression and be useful for its recognition. Finally, urine-excreted metabolites such as those related with serotonin system, non-polar amino-acids and ketone bodies, may complete a predictive or early-diagnostic panel of biomarkers for GDM.
Collapse
Affiliation(s)
- A Lorenzo-Almorós
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - T Hang
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - C Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - L Soriano-Guillén
- Department of Paediatrics, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - J Egido
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av. Reyes Católicos 2, 28040, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - J Tuñón
- Department of Cardiology, Fundación Jiménez Díaz, Madrid, Spain
| | - Ó Lorenzo
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av. Reyes Católicos 2, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| |
Collapse
|
16
|
Wang Y, Xie Y, Zhang A, Wang M, Fang Z, Zhang J. Exosomes: An emerging factor in atherosclerosis. Biomed Pharmacother 2019; 115:108951. [PMID: 31078042 DOI: 10.1016/j.biopha.2019.108951] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is the main reason for morbidity and death caused by cardiovascular disease which leads to approximately 20% of total death around the world. Exosomes secreted by the cells is a kind of extracellular vesicles with lipid bilayer structure, containing a variety of cell specific lipid, nucleic acid and protein, involved in intercellular communication, plays an important role in different physiological and pathological process. In recent years, with the deepening of research, the role of exosomes in cardiovascular diseases has received extensive attention. This review summarizes the roles of exosomes and exosome-derived from microRNAs, proteins and DNA as biomarkers in the development of atherosclerosis, and explores the mechanism of exosome-mediated intercellular crosstalk in atherosclerosis, providing potential roles for diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Yingyu Xie
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Ao Zhang
- 726 broadway, Epidemiology, College of global public health, New York University, New York, 10003, United States
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Zihan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
| |
Collapse
|
17
|
Capomaccio S, Cappelli K, Bazzucchi C, Coletti M, Gialletti R, Moriconi F, Passamonti F, Pepe M, Petrini S, Mecocci S, Silvestrelli M, Pascucci L. Equine Adipose-Derived Mesenchymal Stromal Cells Release Extracellular Vesicles Enclosing Different Subsets of Small RNAs. Stem Cells Int 2019; 2019:4957806. [PMID: 31011332 PMCID: PMC6442443 DOI: 10.1155/2019/4957806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/13/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Equine adipose-derived mesenchymal stromal cells (e-AdMSC) exhibit attractive proregenerative properties strongly related to the delivery of extracellular vesicles (EVs) that enclose different kinds of molecules including RNAs. In this study, we investigated small RNA content of EVs produced by e-AdMSC with the aim of speculating on their possible biological role. METHODS EVs were obtained by ultracentrifugation of the conditioned medium of e-AdMSC of 4 subjects. Transmission electron microscopy and scanning electron microscopy were performed to assess their size and nanostructure. RNA was isolated, enriched for small RNAs (<200 nt), and sequenced by Illumina technology. After bioinformatic analysis with state-of-the-art pipelines for short sequences, mapped reads were used to describe EV RNA cargo, reporting classes, and abundances. Enrichment analyses were performed to infer involved pathways and functional categories. RESULTS Electron microscopy showed the presence of vesicles ranging in size from 30 to 300 nm and expressing typical markers. RNA analysis revealed that ribosomal RNA was the most abundant fraction, followed by small nucleolar RNAs (snoRNAs, 13.67%). Miscellaneous RNA (misc_RNA) reached 4.57% of the total where Y RNA, RNaseP, and vault RNA represented the main categories. miRNAs were sequenced at a lower level (3.51%) as well as protein-coding genes (1.33%). Pathway analyses on the protein-coding fraction revealed a significant enrichment for the "ribosome" pathway followed by "oxidative phosphorylation." Gene Ontology analysis showed enrichment for terms like "extracellular exosome," "organelle envelope," "RNA binding," and "small molecule metabolic process." The miRNA target pathway analysis revealed the presence of "signaling pathways regulating pluripotency of stem cells" coherent with the source of the samples. CONCLUSION We herein demonstrated that e-AdMSC release EVs enclosing different subsets of small RNAs that potentially regulate a number of biological processes. These findings shed light on the role of EVs in the context of MSC biology.
Collapse
Affiliation(s)
- Stefano Capomaccio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Katia Cappelli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Cinzia Bazzucchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Mauro Coletti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Rodolfo Gialletti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Franco Moriconi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Fabrizio Passamonti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Marco Pepe
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Stefano Petrini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Italy
| | - Samanta Mecocci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Maurizio Silvestrelli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Luisa Pascucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| |
Collapse
|
18
|
Skalis G, Katsi V, Miliou A, Georgiopoulos G, Papazachou O, Vamvakou G, Nihoyannopoulos P, Tousoulis D, Makris T. MicroRNAs in Preeclampsia. Microrna 2019; 8:28-35. [PMID: 30101723 DOI: 10.2174/2211536607666180813123303] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/22/2018] [Accepted: 07/27/2018] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) continues to represent a worldwide problem and challenge for both clinicians and laboratory-based doctors. Despite many efforts, the knowledge acquired regarding its pathogenesis and pathophysiology does not allow us to treat it efficiently. It is not possible to arrest its progressive nature, and the available therapies are limited to symptomatic treatment. Furthermore, both the diagnosis and prognosis are frequently uncertain, whilst the ability to predict its occurrence is very limited. MicroRNAs are small non-coding RNAs discovered two decades ago, and present great interest given their ability to regulate almost every aspect of the cell function. A lot of evidence regarding the role of miRNAs in pre-eclampsia has been accumulated in the last 10 years. Differentially expressed miRNAs are characteristic of both mild and severe PE. In many cases they target signaling pathway-related genes that result in altered processes which are directly involved in PE. Immune system, angiogenesis and trophoblast proliferation and invasion, all fundamental aspects of placentation, are controlled in various degrees by miRNAs which are up- or downregulated. Finally, miRNAs represent a potential therapeutic target and a diagnostic tool.
Collapse
Affiliation(s)
- Georgios Skalis
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Vasiliki Katsi
- Cardiology Department, Hippokration Hospital, National Health System, Athens, Greece
| | - Antigoni Miliou
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | - Georgia Vamvakou
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Petros Nihoyannopoulos
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Thomas Makris
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| |
Collapse
|
19
|
Liang Z, Gao KP, Wang YX, Liu ZC, Tian L, Yang XZ, Ding JY, Wu WT, Yang WH, Li YL, Zhang ZB, Zhai RH. RNA sequencing identified specific circulating miRNA biomarkers for early detection of diabetes retinopathy. Am J Physiol Endocrinol Metab 2018; 315:E374-E385. [PMID: 29812988 DOI: 10.1152/ajpendo.00021.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in patients with diabetes. However, biomarkers for early detection of DR are still lacking. MicroRNAs (miRNAs) regulate multiple biological functions and are often deregulated in DR. We aimed to investigate whether circulating miRNAs can be used as biomarkers of early-stage DR. We used RNA-seq and qRT-PCR to identify differential serum miRNAs in patients with type 2 diabetes mellitus with DR (T2DM-DR), T2DM without DR (T2DM-no-DR), and healthy controls. We validated differential circulating miRNAs in two phases using qRT-PCR assays. RNA-seq analysis identified 7 differential circulating miRNAs between T2DM-DR and T2DM-no-DR and 47 differential miRNAs between T2DM-DR and healthy subjects. Two-stage analysis verified that a profile of five serum miRNAs (hsa-let-7a-5p, hsa-miR-novel-chr5_15976, hsa-miR-28-3p, has-miR-151a-5p, has-miR-148a-3p) was significantly associated with T2DM-DR. Receiver-operator-characteristic analyses showed that a panel of three miRNAs (hsa-let-7a-5p, hsa-miR-novel-chr5_15976, and hsa-miR-28-3p) presented 0.92 sensitivity and 0.94 specificity for distinguishing T2DM-DR from T2DM-no-DR, and 0.93 sensitivity and 0.86 specificity for differentiating early-stage T2DM-DR (NPDR) from late-stage DR (PDR). Lentivirus-mediated overexpression of hsa-let-7a-5p in human retinal microvascular endothelial cells (HRMECs) significantly promoted proliferation rates of HRMECs. In conclusion, the three-miRNA signature from serum may serve as a noninvasive diagnostic biomarker for DR. Furthermore, we showed that DR-associated miRNAs may be involved in the pathogenesis of DR, at least in part, through modifying proliferation of HRMECs.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Diagnostics, Shenzhen University Health Science Center , Shenzhen , China
- Department of Geriatric Medicine, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital , Shenzhen , China
| | - Kai P Gao
- Department of Diagnostics, Shenzhen University Health Science Center , Shenzhen , China
- Department of Preventive Medicine, Shenzhen University Health Science Center , Shenzhen , China
| | - Yi X Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital , Shenzhen , China
| | - Zi C Liu
- Department of Preventive Medicine, Shenzhen University Health Science Center , Shenzhen , China
| | - Li Tian
- Department of Preventive Medicine, Shenzhen University Health Science Center , Shenzhen , China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Health Science Center , Shenzhen , China
| | - Xin Z Yang
- Department of Geriatric Medicine, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital , Shenzhen , China
| | - Jing Y Ding
- Department of Geriatric Medicine, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital , Shenzhen , China
| | - Wei T Wu
- Department of Geriatric Medicine, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital , Shenzhen , China
| | - Wen H Yang
- Department of Preventive Medicine, Shenzhen University Health Science Center , Shenzhen , China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Health Science Center , Shenzhen , China
| | - Yi L Li
- Department of Preventive Medicine, Shenzhen University Health Science Center , Shenzhen , China
| | - Ze B Zhang
- Department of Preventive Medicine, Shenzhen University Health Science Center , Shenzhen , China
| | - Ri H Zhai
- Department of Preventive Medicine, Shenzhen University Health Science Center , Shenzhen , China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Health Science Center , Shenzhen , China
| |
Collapse
|
20
|
Deshpande RP, Panigrahi M, Y B V K C, Babu PP. Profiling of microRNAs modulating cytomegalovirus infection in astrocytoma patients. Neurol Sci 2018; 39:1895-1902. [PMID: 30090984 DOI: 10.1007/s10072-018-3518-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023]
Abstract
Astrocytoma is recognized as the most common neoplasm of the brain with aggressive progression. The therapeutic regime for glioblastoma, the most aggressive astrocytoma, often consists of aggressive chemo and radiotherapy. The present holistic approaches, however, have failed to influence the quality life of patients. Therefore, it is necessary to understand the underlying mechanisms of its progression for updated therapeutic evaluation. Human cytomegalovirus (HCMV) is reported to be associated with glioblastoma progression. The hypothesis still remains controversial due to the lack of concrete evidences. Here, we report the profile of miRNAs encoded by human host and the cytomegalovirus (CMV) involved in modulation of CMV infection in surgically resected human astrocytoma tissue samples of various malignancy grades (n = 24). Total RNA from the control brain and tumor tissues was extracted by TriZol reagent. The expression levels of the mature form of miRNA were detected by real-time PCR. Primarily, we found the upregulation of miR-210-3p, miR-155-5p, miR-UL-112-3p, miR-183-5p, and miR-223-5p in high-grade astrocytic tumors as compared with low-grade tumor tissues. miR-214-3p is significantly expressed in control brain tissues and its expression decreased with astrocytoma grade progression. This miRNA was reported to be associated with antiviral proprieties. Among CMV-encoded miRNA, miR-UL-112-3p was significantly upregulated in glioblastoma tissue samples and may be involved in providing immune escape to the virus as well as involved in modulating the immune microenvironment of glioblastoma. Taken together, we conclude the possible involvement of miRNAs in modulating the CMV dependent astrocytoma progression.
Collapse
Affiliation(s)
- Ravindra Pramod Deshpande
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India
| | - Manas Panigrahi
- Krishna Institute of Medical Sciences, Secunderabad, Telangana State, India
| | | | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
21
|
Li X, Wei Y, Wang Z. microRNA-21 and hypertension. Hypertens Res 2018; 41:649-661. [PMID: 29973661 DOI: 10.1038/s41440-018-0071-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
Hypertension, a multifactorial disease, is a major risk factor for the development of stroke, coronary artery disease, heart failure, and chronic renal failure. However, its underlying cellular and molecular mechanisms remain largely elusive. Numerous studies have shown that microRNAs (miRNAs) are involved in a variety of cellular processes, including cellular proliferation, apoptosis, differentiation, and the development of diseases. microRNA-21 (miR-21), a conserved single-stranded non-coding RNA that is composed of approximately 22 nucleotides, is one of the most intensively studied miRNAs in recent years, and it can regulate gene expression at the post-transcriptional level. miR-21 is expressed in many kinds of tumors and in the cardiovascular system, and it plays an important role in the occurrence and development of cardiovascular diseases. In recent years, more and more evidence indicates that miR-21 plays an important role in hypertension. This article reviews the source, function, and altered levels of miR-21 in hypertension and the role of miR-21 in the pathogenesis of hypertension and target organ damage (TOD). The potential role of miR-21 as a new target for predicting and treating hypertension is also explored.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, China.
| | - Zuoguang Wang
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, 100029, Beijing, China.
| |
Collapse
|
22
|
Soliman AM, Das S, Abd Ghafar N, Teoh SL. Role of MicroRNA in Proliferation Phase of Wound Healing. Front Genet 2018; 9:38. [PMID: 29491883 PMCID: PMC5817091 DOI: 10.3389/fgene.2018.00038] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 12/15/2022] Open
Abstract
Wound healing is a complex biological process that is generally composed of four phases: hemostasis, inflammation, proliferation, and remodeling. The proliferation phase is crucial for effective healing compared to other phases. Many critical events occur during this phase, i.e., migration of fibroblasts, re-epithelialization, angiogenesis and wound contraction. Chronic wounds are common and are considered a major public health problem. Therefore, there is the increasing need to discover new therapeutic strategies. MicroRNA (miRNA) research in the field of wound healing is in its early phase, but the knowledge of the recent discoveries is essential for developing effective therapies for the treatment of chronic wounds. In this review, we focused on recently discovered miRNAs which are involved in the proliferation phase of wound healing in the past few years and their role in wound healing.
Collapse
Affiliation(s)
| | | | | | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Retooling Laser Speckle Contrast Analysis Algorithm to Enhance Non-Invasive High Resolution Laser Speckle Functional Imaging of Cutaneous Microcirculation. Sci Rep 2017; 7:41048. [PMID: 28106129 PMCID: PMC5247692 DOI: 10.1038/srep41048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system.
Collapse
|
24
|
Jaswani P, Prakash S, Dhar A, Sharma RK, Prasad N, Agrawal S. MicroRNAs Involvement in Renal Pathophysiology: A Bird's Eye View. Indian J Nephrol 2017; 27:337-341. [PMID: 28904427 PMCID: PMC5590408 DOI: 10.4103/ijn.ijn_264_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are known to suppress gene expression by binding to messenger RNAs and in turn regulate different pathophysiological processes. Transforming growth factor-β, mitogen-activated protein kinase signaling, and Wnt signaling-like major pathways associated with miRNAs are involved with kidney diseases. The discovery of miRNAs has provided new insights into kidney pathologies and may provide effective therapeutic strategies. Research has demonstrated the role of miRNAs in a variety of kidney diseases including diabetic nephropathy, lupus nephritis, hypertension, nephritic syndrome, acute kidney injury, renal cell carcinoma, and renal fibrosis. miRNAs are implicated as playing a role in these diseases due to their role in apoptosis, cell proliferation, differentiation, and development. As miRNAs have been detected in a stable condition in different biological fluids, they have the potential to be tools to study the pathogenesis of human diseases with a great potential to be used in disease diagnosis and prognosis. The purpose of this review is to examine the role of miRNA in kidney disease.
Collapse
Affiliation(s)
- P Jaswani
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S Prakash
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - A Dhar
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - R K Sharma
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - N Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S Agrawal
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Soci UPR, Melo SFS, Gomes JLP, Silveira AC, Nóbrega C, de Oliveira EM. Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:281-322. [PMID: 29098627 DOI: 10.1007/978-981-10-4304-8_16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exercise training elicits acute and adaptive long term changes in human physiology that mediate the improvement of performance and health state. The responses are integrative and orchestrated by several mechanisms, as gene expression. Gene expression is essential to construct the adaptation of the biological system to exercise training, since there are molecular processes mediating oxidative and non-oxidative metabolism, angiogenesis, cardiac and skeletal myofiber hypertrophy, and other processes that leads to a greater physiological status. Epigenetic is the field that studies about gene expression changes heritable by meiosis and mitosis, by changes in chromatin and DNA conformation, but not in DNA sequence, that studies the regulation on gene expression that is independent of genotype. The field approaches mechanisms of DNA and chromatin conformational changes that inhibit or increase gene expression and determine tissue specific pattern. The three major studied epigenetic mechanisms are DNA methylation, Histone modification, and regulation of noncoding RNA-associated genes. This review elucidates these mechanisms, focusing on the relationship between them and their relationship with exercise training, physical performance and the enhancement of health status. On this chapter, we clarified the relationship of epigenetic modulations and their intimal relationship with acute and chronic effect of exercise training, concentrating our effort on skeletal muscle, heart and vascular responses, that are the most responsive systems against to exercise training and play crucial role on physical performance and improvement of health state.
Collapse
Affiliation(s)
| | | | | | | | - Clara Nóbrega
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
26
|
Analysis of circulating human and viral microRNAs in patients with congenital cytomegalovirus infection. J Perinatol 2016; 36:1101-1105. [PMID: 27684416 DOI: 10.1038/jp.2016.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cytomegalovirus (CMV) is the most common cause of congenital infection and can cause neurodevelopmental disabilities, although a majority of patients are asymptomatic. Biomarkers associated with disease severity would be desirable to distinguish asymptomatic from mildly symptomatic patients who may benefit from antiviral treatment. MicroRNAs (miRNAs) are noncoding RNAs that may have the potential to serve as biomarkers. STUDY DESIGN Thirteen infants with congenital CMV infection were enrolled, and plasma levels of 11 human- and 3 CMV-encoded miRNAs were quantitated by real-time PCR. Plasma levels of miRNAs and their associations with clinical features were evaluated. RESULTS The levels of miR-183-5p and miR-210-3p were significantly higher in patients with congenital CMV infection than in control infants, whereas no significant associations between levels of miRNAs and clinical features of congenital CMV infection were observed. CONCLUSION Plasma miRNAs could be associated with the pathogenesis of congenital CMV infection and could be used as disease biomarkers.
Collapse
|
27
|
Olbromski M, Grzegrzolka J, Jankowska-Konsur A, Witkiewicz W, Podhorska-Okolow M, Dziegiel P. MicroRNAs modulate the expression of the SOX18 transcript in lung squamous cell carcinoma. Oncol Rep 2016; 36:2884-2892. [DOI: 10.3892/or.2016.5102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/11/2016] [Indexed: 11/06/2022] Open
|
28
|
Lee YM, Lee YR, Kim CS, Jo K, Sohn E, Kim JS, Kim J. Cnidium officinale extract and butylidenephthalide inhibits retinal neovascularization in vitro and in vivo. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:231. [PMID: 27435599 PMCID: PMC4949763 DOI: 10.1186/s12906-016-1216-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Retinal neovascularization, which is the pathological growth of new blood vessels, is associated with retinopathy of prematurity, neovascular age-related macular degeneration, diabetic retinopathy and retinal vein occlusion. In this study, we evaluated the effect of an extract of Cnidium officinale Makino (COE) and its bioactive compound, butylidenephthalide (BP), on the migration and tube formation of human umbilical vein endothelial cells (HUVECs), and on retinal pathogenic neovascularization in the oxygen-induced retinopathy (OIR) mouse model. METHOD The HUVECs were incubated with COE and BP (0.1-10 μg/ml). The mice were exposed to 75 % oxygen for 5 days starting on the 7(th) postnatal day (P7-P12). Then, the mice were returned to room air and intraperitoneally injected with COE (100 mg/kg) and BP (5 mg/kg) once per day for 5 days (P12-P16). On P17, we measured retinal neovascularization and analyzed the angiogenesis-related proteins expression using protein arrays. RESULTS COE and BP inhibit the HUVECs migration and the tube formation in a dose-dependent manner. In addition, COE significantly decreased retinal neovascularization in the OIR mice. COE reduced the expression levels of AREG, ANG, DLL4, Endostatin, IGFBP-2 and VEGF. Additionally, BP also inhibited the retinal neovascularization and down-regulated the expression of AREG, ANG, DLL4 and VEGF. CONCLUSION These results suggest that COE and BP exerts antiangiogenic effects on retinal neovascularization by inhibiting the expression of AREG, ANG, DLL4 and VEGF, indicating that antiangiogenic activities of COE may be in part due to its bioactive compound, BP.
Collapse
|
29
|
Personalized Radiation Therapy (PRT) for Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:175-202. [DOI: 10.1007/978-3-319-24932-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Rom S, Dykstra H, Zuluaga-Ramirez V, Reichenbach NL, Persidsky Y. miR-98 and let-7g* protect the blood-brain barrier under neuroinflammatory conditions. J Cereb Blood Flow Metab 2015; 35:1957-65. [PMID: 26126865 PMCID: PMC4671116 DOI: 10.1038/jcbfm.2015.154] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 06/02/2015] [Indexed: 01/14/2023]
Abstract
Pathologic conditions in the central nervous system, regardless of the underlying injury mechanism, show a certain level of blood-brain barrier (BBB) impairment. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation due to stroke, atherosclerosis, trauma, or brain infections. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators. The relationship between neuroinflammation and miRNA expression in brain endothelium remains unexplored. Previously, we showed the BBB-protective and anti-inflammatory effects of glycogen synthase kinase (GSK) 3β inhibition in brain endothelium in in vitro and in vivo models of neuroinflammation. Using microarray screening, we identified miRNAs induced in primary human brain microvascular endothelial cells after exposure to the pro-inflammatory cytokine, tumor necrosis factor-α, with/out GSK3β inhibition. Among the highly modified miRNAs, let-7 and miR-98 were predicted to target the inflammatory molecules, CCL2 and CCL5. Overexpression of let-7 and miR-98 in vitro and in vivo resulted in reduced leukocyte adhesion to and migration across endothelium, diminished expression of pro-inflammatory cytokines, and increased BBB tightness, attenuating barrier 'leakiness' in neuroinflammation conditions. For the first time, we showed that miRNAs could be used as a therapeutic tool to prevent the BBB dysfunction in neuroinflammation.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Holly Dykstra
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Zhang M, Sun D, Li S, Pan X, Zhang X, Zhu D, Li C, Zhang R, Gao E, Wang H. Lin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulin-PI3K-mTOR pathway. J Cell Mol Med 2015; 19:1174-82. [PMID: 25688987 PMCID: PMC4459833 DOI: 10.1111/jcmm.12369] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/12/2014] [Indexed: 01/18/2023] Open
Abstract
The insulin-PI3K-mTOR pathway exhibits a variety of cardiovascular activities including protection against I/R injury. Lin28a enhanced glucose uptake and insulin-sensitivity via insulin-PI3K-mTOR signalling pathway. However, the role of lin28a on experimental cardiac I/R injury in diabetic mice are not well understood. Diabetic mice underwent 30 min. of ischaemia followed by 3 hrs of reperfusion. Animals were randomized to be treated with lentivirus carrying lin28a siRNA (siLin28a) or lin28a cDNA (Lin28a) 72 hrs before coronary artery ligation. Myocardial infarct size (IS), cardiac function, cardiomyocyte apoptosis and mitochondria morphology in diabetic mice who underwent cardiac I/R injury were compared between groups. The target proteins of lin28a were examined by western blot analysis. Lin28a overexpression significantly reduced myocardial IS, improved LV ejection fraction (LVEF), decreased myocardial apoptotic index and alleviated mitochondria cristae destruction in diabetic mice underwent cardiac I/R injury. Lin28a knockdown exacerbated cardiac I/R injury as demonstrated by increased IS, decreased LVEF, increased apoptotic index and aggravated mitochondria cristae destruction. Interestingly, pre-treatment with rapamycin abolished the beneficial effects of lin28a overexpression. Lin28a overexpression increased, while Lin28a knockdown decreased the expression of IGF1R, p-Akt, p-mTOR and p-p70s6k after cardiac I/R injury in diabetic mice. Rapamycin pre-treatment abolished the effects of increased p-mTOR and p-p70s6k expression exerted by lin28a overexpression. This study indicates that lin28a overexpression reduces IS, improves cardiac function, decreases cardiomyocyte apoptosis index and alleviates cardiomyocyte mitochondria impairment after cardiac I/R injury in diabetic mice. The mechanism responsible for the effects of lin28a is associated with the insulin-PI3K-mTOR dependent pathway.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Shuang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Xietian Pan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Xiaotian Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Di Zhu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Rongqing Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of MedicinePhiladelphia, PA, USA
| | - Haichang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| |
Collapse
|
32
|
van Balkom BWM, Eisele AS, Pegtel DM, Bervoets S, Verhaar MC. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles 2015; 4:26760. [PMID: 26027894 PMCID: PMC4450249 DOI: 10.3402/jev.v4.26760] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/25/2015] [Accepted: 05/03/2015] [Indexed: 01/08/2023] Open
Abstract
Exosomes are small vesicles that mediate cell-cell communication. They contain proteins, lipids and RNA, and evidence is accumulating that these molecules are specifically sorted for release via exosomes. We recently showed that endothelial-cell-produced exosomes promote angiogenesis in vivo in a small RNA-dependent manner. Recent deep sequencing studies in exosomes from lymphocytic origin revealed a broad spectrum of small RNAs. However, selective depletion or incorporation of small RNA species into endothelial exosomes has not been studied extensively. With next generation sequencing, we identified all known non-coding RNA classes, including microRNAs (miRNAs), small nucleolar RNAs, yRNAs, vault RNAs, 5p and 3p fragments of miRNAs and miRNA-like fragments. In addition, we mapped many fragments of messenger RNAs (mRNAs) and mitochondrial RNAs (mtRNAs). The distribution of small RNAs in exosomes revealed a considerable overlap with the distribution in the producing cells. However, we identified a remarkable enrichment of yRNA fragments and mRNA degradation products in exosomes consistent with yRNAs having a role in degradation of structured and misfolded RNAs in close proximity to endosomes. We propose that endothelial endosomes selectively sequester cytoplasmic RNA-degrading machineries taking part in gene regulation. The release of these regulatory RNAs via exosomes may have implications for endothelial cell-cell communication.
Collapse
Affiliation(s)
- Bas W M van Balkom
- Department of Nephrology and Hypertension, UMC Utrecht, Utrecht, the Netherlands;
| | - Almut S Eisele
- Department of Nephrology and Hypertension, UMC Utrecht, Utrecht, the Netherlands
| | - D Michiel Pegtel
- Exosomes Research Group, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Marianne C Verhaar
- Department of Nephrology and Hypertension, UMC Utrecht, Utrecht, the Netherlands
| |
Collapse
|
33
|
Sinha M, Ghatak S, Roy S, Sen CK. microRNA-200b as a Switch for Inducible Adult Angiogenesis. Antioxid Redox Signal 2015; 22:1257-72. [PMID: 25761972 PMCID: PMC4410303 DOI: 10.1089/ars.2014.6065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/26/2015] [Accepted: 03/07/2015] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular system. It is required for physiological processes such as developmental biology and wound healing. Angiogenesis also plays a crucial role in pathological conditions such as tumor progression. The underlying importance of angiogenesis necessitates a highly regulated process. RECENT ADVANCES Recent works have demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called microRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. CRITICAL ISSUES In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Downregulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. FUTURE DIRECTIONS New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physiological conditions. Antioxid. Redox Signal. 22, 1257-1272.
Collapse
Affiliation(s)
- Mithun Sinha
- Center for Regenerative Medicine and Cell Based Therapies, Davis Heart and Lung Research Institute, Ohio State University , Columbus, Ohio
| | | | | | | |
Collapse
|
34
|
Murakami K. Non-coding RNAs and hypertension-unveiling unexpected mechanisms of hypertension by the dark matter of the genome. Curr Hypertens Rev 2015; 11:80-90. [PMID: 25828869 PMCID: PMC5384352 DOI: 10.2174/1573402111666150401105317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
Abstract
Hypertension is a major risk factor of cardiovascular diseases and a most important health problem in developed countries. Investigations on pathophysiology of hypertension have been based on gene products from coding region that occupies only about 1% of total genome region. On the other hand, non-coding region that occupies almost 99% of human genome has been regarded as "junk" for a long time and went unnoticed until these days. But recently, it turned out that noncoding region is extensively transcribed to non-coding RNAs and has various functions. This review highlights recent updates on the significance of non-coding RNAs such as micro RNAs and long non-coding RNAs (lncRNAs) on the pathogenesis of hypertension, also providing an introduction to basic biology of noncoding RNAs. For example, microRNAs are associated with hypertension via neuro-fumoral factor, sympathetic nerve activity, ion transporters in kidneys, endothelial function, vascular smooth muscle phenotype transformation, or communication between cells. Although reports of lncRNAs on pathogenesis of hypertension are scarce at the moment, new lncRNAs in relation to hypertension are being discovered at a rapid pace owing to novel techniques such as microarray or next-generation sequencing. In the clinical settings, clinical use of non-coding RNAs in identifying cardiovascular risks or developing novel tools for treating hypertension such as molecular decoy or mimicks is promising, although improvement in chemical modification or drug delivery system is necessary.
Collapse
Affiliation(s)
- Kazuo Murakami
- Department of Health Care and Preventive Medicine, Matsuyama Red Cross Hospital, 1 Bunkyo-cho, Matsuyama, Ehime, 790-8524, Japan.
| |
Collapse
|
35
|
Madhyastha R, Madhyastha H, Pengjam Y, Nakajima Y, Omura S, Maruyama M. NFkappaB activation is essential for miR-21 induction by TGFβ1 in high glucose conditions. Biochem Biophys Res Commun 2014; 451:615-21. [PMID: 25130469 DOI: 10.1016/j.bbrc.2014.08.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
Abstract
Transforming growth factor beta1 (TGFβ1) is a pleiotropic growth factor with a very broad spectrum of effects on wound healing. Chronic non-healing wounds such as diabetic foot ulcers express reduced levels of TGFβ1. On the other hand, our previous studies have shown that the microRNA miR-21 is differentially regulated in diabetic wounds and that it promotes migration of fibroblast cells. Although interplay between TGFβ1 and miR-21 are studied in relation to cancer, their interaction in the context of chronic wounds has not yet been investigated. In this study, we examined if TGFβ1 could stimulate miR-21 in fibroblasts that are subjected to high glucose environment. MiR-21 was, in fact, induced by TGFβ1 in high glucose conditions. The induction by TGFβ1 was dependent on NFκB activation and subsequent ROS generation. TGFβ1 was instrumental in degrading the NFκB inhibitor IκBα and facilitating the nuclear translocation of NFκB p65 subunit. EMSA studies showed enhanced DNA binding activity of NFκB in the presence of TGFβ1. ChIP assay revealed binding of p65 to miR-21 promoter. NFκB activation was also required for the nuclear translocation of Smad 4 protein and subsequent direct interaction of Smad proteins with primary miR-21 as revealed by RNA-IP studies. Our results show that manipulation of TGFβ1-NFκB-miR-21 pathway could serve as an innovative approach towards therapeutics to heal diabetic ulcers.
Collapse
Affiliation(s)
- Radha Madhyastha
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - HarishKumar Madhyastha
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yutthana Pengjam
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Nakajima
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sayuri Omura
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masugi Maruyama
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
36
|
MiRiad Roles for MicroRNAs in Cardiac Development and Regeneration. Cells 2014; 3:724-50. [PMID: 25055156 PMCID: PMC4197632 DOI: 10.3390/cells3030724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Cardiac development is an exquisitely regulated process that is sensitive to perturbations in transcriptional activity and gene dosage. Accordingly, congenital heart abnormalities are prevalent worldwide, and are estimated to occur in approximately 1% of live births. Recently, small non-coding RNAs, known as microRNAs, have emerged as critical components of the cardiogenic regulatory network, and have been shown to play numerous roles in the growth, differentiation, and morphogenesis of the developing heart. Moreover, the importance of miRNA function in cardiac development has facilitated the identification of prospective therapeutic targets for patients with congenital and acquired cardiac diseases. Here, we discuss findings attesting to the critical role of miRNAs in cardiogenesis and cardiac regeneration, and present evidence regarding the therapeutic potential of miRNAs for cardiovascular diseases.
Collapse
|
37
|
Mikaelian I, Cameron M, Dalmas DA, Enerson BE, Gonzalez RJ, Guionaud S, Hoffmann PK, King NMP, Lawton MP, Scicchitano MS, Smith HW, Thomas RA, Weaver JL, Zabka TS. Nonclinical Safety Biomarkers of Drug-induced Vascular Injury. Toxicol Pathol 2014; 42:635-57. [DOI: 10.1177/0192623314525686] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Better biomarkers are needed to identify, characterize, and/or monitor drug-induced vascular injury (DIVI) in nonclinical species and patients. The Predictive Safety Testing Consortium (PSTC), a precompetitive collaboration of pharmaceutical companies and the U.S. Food and Drug Administration (FDA), formed the Vascular Injury Working Group (VIWG) to develop and qualify translatable biomarkers of DIVI. The VIWG focused its research on acute DIVI because early detection for clinical and nonclinical safety monitoring is desirable. The VIWG developed a strategy based on the premise that biomarkers of DIVI in rat would be translatable to humans due to the morphologic similarity of vascular injury between species regardless of mechanism. The histomorphologic lexicon for DIVI in rat defines degenerative and adaptive findings of the vascular endothelium and smooth muscles, and characterizes inflammatory components. We describe the mechanisms of these changes and their associations with candidate biomarkers for which advanced analytical method validation was completed. Further development is recommended for circulating microRNAs, endothelial microparticles, and imaging techniques. Recommendations for sample collection and processing, analytical methods, and confirmation of target localization using immunohistochemistry and in situ hybridization are described. The methods described are anticipated to aid in the identification and qualification of translational biomarkers for DIVI.
Collapse
Affiliation(s)
- Igor Mikaelian
- Hoffmann-La Roche Inc, Nutley, New Jersey, USA
- Abbvie, Worcester, Massachusetts, USA
| | | | | | | | - Raymond J. Gonzalez
- Merck Research Laboratories, Merck and Co, Inc, West Point, Pennsylvania, USA
| | - Silvia Guionaud
- Shire, Hampshire International Business Park, Basingstoke, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ginns EI, Mak SKK, Ko N, Karlgren J, Akbarian S, Chou VP, Guo Y, Lim A, Samuelsson S, LaMarca ML, Vazquez-DeRose J, Manning-Boğ AB. Neuroinflammation and α-synuclein accumulation in response to glucocerebrosidase deficiency are accompanied by synaptic dysfunction. Mol Genet Metab 2014; 111:152-62. [PMID: 24388731 DOI: 10.1016/j.ymgme.2013.12.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
Abstract
Clinical, epidemiological and experimental studies confirm a connection between the common degenerative movement disorder Parkinson's disease (PD) that affects over 1 million individuals, and Gaucher disease, the most prevalent lysosomal storage disorder. Recently, human imaging studies have implicated impaired striatal dopaminergic neurotransmission in early PD pathogenesis in the context of Gaucher disease mutations, but the underlying mechanisms have yet to be characterized. In this report we describe and characterize two novel long-lived transgenic mouse models of Gba deficiency, along with a subchronic conduritol-ß-epoxide (CBE) exposure paradigm. All three murine models revealed striking glial activation within nigrostriatal pathways, accompanied by abnormal α-synuclein accumulation. Importantly, the CBE-induced, pharmacological Gaucher mouse model replicated this change in dopamine neurotransmission, revealing a markedly reduced evoked striatal dopamine release (approximately 2-fold) that indicates synaptic dysfunction. Other changes in synaptic plasticity markers, including microRNA profile and a 24.9% reduction in post-synaptic density size, were concomitant with diminished evoked dopamine release following CBE exposure. These studies afford new insights into the mechanisms underlying the Parkinson's-Gaucher disease connection, and into the physiological impact of related abnormal α-synuclein accumulation and neuroinflammation on nigrostriatal dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Edward I Ginns
- Lysosomal Disorders Treatment and Research Program, Clinical Labs, University of Massachusetts Medical School, Worcester, MA 01545, USA; Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01545, USA; Clinical Neuroscience Branch, IRP, NIMH, Bethesda, MD 20892, USA
| | - Sally K-K Mak
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Novie Ko
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Juliane Karlgren
- Lysosomal Disorders Treatment and Research Program, Clinical Labs, University of Massachusetts Medical School, Worcester, MA 01545, USA
| | - Schahram Akbarian
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01545, USA
| | - Vivian P Chou
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Yin Guo
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01545, USA
| | - Arlene Lim
- Lysosomal Disorders Treatment and Research Program, Clinical Labs, University of Massachusetts Medical School, Worcester, MA 01545, USA; Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01545, USA
| | - Steven Samuelsson
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Mary L LaMarca
- Clinical Neuroscience Branch, IRP, NIMH, Bethesda, MD 20892, USA
| | | | - Amy B Manning-Boğ
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
39
|
Izzotti A, Pulliero A. The effects of environmental chemical carcinogens on the microRNA machinery. Int J Hyg Environ Health 2014; 217:601-27. [PMID: 24560354 DOI: 10.1016/j.ijheh.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens.
Collapse
Affiliation(s)
- A Izzotti
- Department of Health Sciences, University of Genoa, Italy; Mutagenesis Unit, IRCCS University Hospital San Martino - IST National Research Cancer Institute, Genoa, Italy.
| | - A Pulliero
- Department of Health Sciences, University of Genoa, Italy
| |
Collapse
|
40
|
Chettimada S, Ata H, Rawat DK, Gulati S, Kahn AG, Edwards JG, Gupte SA. Contractile protein expression is upregulated by reactive oxygen species in aorta of Goto-Kakizaki rat. Am J Physiol Heart Circ Physiol 2014; 306:H214-24. [PMID: 24213617 PMCID: PMC3920128 DOI: 10.1152/ajpheart.00310.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/28/2013] [Indexed: 01/28/2023]
Abstract
Although it is known that blood vessels undergo remodeling in type 2 diabetes (T2D), the signaling pathways that underlie the structural and functional changes seen in diabetic arteries remain unclear. Our objective was to determine whether the remodeling in type 2 diabetic Goto-Kakizaki (GK) rats is evoked by elevated reactive oxygen species (ROS). Our results show that aortas from GK rats produced greater force (P < 0.05) in response to stimulation with KCl and U46619 than aortas from Wistar rats. Associated with these changes, aortic expression of contractile proteins (measured as an index of remodeling) and the microRNA (miR-145), which act to upregulate transcription of contractile protein genes, was twofold higher (P < 0.05) in GK than Wistar (age-matched control) rats, and there was a corresponding increase in ROS and decrease in nitric oxide signaling. Oral administration of the antioxidant Tempol (1 mmol/l) to Wistar and GK rats reduced (P < 0.05) myocardin and calponin expression. Tempol (1 mmol/l) decreased expression of miR-145 in Wistar and GK rat aorta. To elucidate the mechanism through which ROS increases miR-145, we measured their levels in freshly isolated aorta and cultured aortic smooth muscle cells incubated for 12 h in the presence of H2O2 (300 μmol/l). H2O2 increased expression of miR-145, and there were corresponding nuclear increases in myocardin, a miR-145 target protein. Intriguingly, H2O2-induced expression of miR-145 was decreased by U0126 (10 μmol/l), a MEK1/2 inhibitor, and myocardin was decreased by anti-miR-145 (50 nmol/l) and U0126 (10 μmol/l). Our novel findings demonstrate that ROS evokes vascular wall remodeling and dysfunction by enhancing expression of contractile proteins in T2D.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Aorta/metabolism
- Aorta/pathology
- Butadienes/pharmacology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Cyclic N-Oxides/pharmacology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myosins/genetics
- Myosins/metabolism
- Nitric Oxide/metabolism
- Nitriles/pharmacology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Potassium Chloride/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Spin Labels
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Up-Regulation
- Vasoconstrictor Agents/pharmacology
- Calponins
Collapse
Affiliation(s)
- Sukrutha Chettimada
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | | | | | | | | | | | | |
Collapse
|
41
|
Das A, Ganesh K, Khanna S, Sen CK, Roy S. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 192:1120-9. [PMID: 24391209 DOI: 10.4049/jimmunol.1300613] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
At an injury site, efficient clearance of apoptotic cells by wound macrophages or efferocytosis is a prerequisite for the timely resolution of inflammation. Emerging evidence indicates that microRNA-21 (miR-21) may regulate the inflammatory response. In this work, we sought to elucidate the significance of miR-21 in the regulation of efferocytosis-mediated suppression of innate immune response, a key process implicated in resolving inflammation following injury. An increased expression of inducible miR-21 was noted in postefferocytotic peripheral blood monocyte-derived macrophages. Such induction of miR-21 was associated with silencing of its target genes PTEN and PDCD4. Successful efferocytosis of apoptotic cells by monocyte-derived macrophages resulted in the suppression of LPS-induced NF-κB activation and TNF-α expression. Interestingly, bolstering of miR-21 levels alone, using miR mimic, resulted in significant suppression of LPS-induced TNF-α expression and NF-κB activation. We report that efferocytosis-induced miR-21, by silencing PTEN and GSK3β, tempers the LPS-induced inflammatory response. Macrophage efferocytosis is known to trigger the release of anti-inflammatory cytokine IL-10. This study demonstrates that following successful efferocytosis, miR-21 induction in macrophages silences PDCD4, favoring c-Jun-AP-1 activity, which in turn results in elevated production of anti-inflammatory IL-10. In summary, this work provides direct evidence implicating miRNA in the process of turning on an anti-inflammatory phenotype in the postefferocytotic macrophage. Elevated macrophage miR-21 promotes efferocytosis and silences target genes PTEN and PDCD4, which in turn accounts for a net anti-inflammatory phenotype. Findings of this study highlight the significance of miRs in the resolution of wound inflammation.
Collapse
Affiliation(s)
- Amitava Das
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | | | | | | | | |
Collapse
|
42
|
Cheng X, Ku CH, Siow RCM. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis. Free Radic Biol Med 2013; 64:4-11. [PMID: 23880293 DOI: 10.1016/j.freeradbiomed.2013.07.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 01/27/2023]
Abstract
MicroRNAs are now thought to play a central role in the regulation of many diverse aspects of cell biology; however, it remains to be fully elucidated how microRNAs can orchestrate cellular redox homeostasis, which plays a central role in a multitude of physiological and pathophysiological processes. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a "master regulator" of cell survival through the coordinated induction of phase II and antioxidant defense enzymes to counteract oxidative stress and modulate redox signaling events. MicroRNAs are able to "fine-tune" the regulation of processes including those directly interacting with the Nrf2 pathway and the generation of reactive oxygen species (ROS). This review highlights that cellular redox homeostasis can be regulated by microRNAs through their modulation of Nrf2-driven antioxidant gene expression as well as key enzymes that generate ROS, which in turn can alter the biogenesis and processing of microRNAs. Therefore redox sensitive microRNAs or "redoximiRs" add an important regulatory mechanism for redox signaling beyond the well-characterized actions of Nrf2. The potential exists for microRNA-based therapies where diminished antioxidant defenses and dysregulated redox signaling can lead to cardiovascular diseases, cancers, neurodegeneration, and accelerated aging.
Collapse
Affiliation(s)
- Xinghua Cheng
- Cardiovascular Division, British Heart Foundation Centre for Research Excellence, School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
43
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules ∼22 nucleotides in length that can post-transcriptionally repress gene expression. MiRNAs bind to their target messenger RNAs (mRNAs), leading to mRNA degradation or suppression of translation. miRNAs have recently been shown to play pivotal roles in skin development and are linked to various skin pathologies, cancer, and wound healing. Chronic wounds represent a major health burden and drain on resources and developing more effective treatments is therefore a necessity. Increase in the understanding of the regulation of chronic wound biology is therefore required to develop newer therapies. This review focuses on the role of miRNAs in cutaneous biology, the various methods of miRNA modulation, and the therapeutic opportunities in treatment of skin diseases and wound healing.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | | |
Collapse
|
44
|
Abstract
Even in the new millennium, arterial hypertension remains a serious condition, with considerable morbidity and mortality worldwide. Crucial in managing the disease is not only lowering arterial blood pressure but also preventing or treating the typical end-organ damage caused by long-lasting and inadequately treated hypertension. In the past decade, it has been shown that microRNAs (miRs) are involved in several hypertension-related pathologies, such as cardiac hypertrophy and fibrosis, hypertensive heart failure, renal fibrosis, kidney failure, and, to a lesser extent, eye disease and hemorrhagic stroke. Whereas others extensively reviewed the role of miRs in atherosclerosis and vascular disease, this review focuses on their role in target organ damage during arterial hypertension. We emphasize the involvement of miRs in pathological end-organ remodeling processes and try to demonstrate some common miR signatures in distinct end organs. Hence, we aimed to provide proof of arterial hypertension being a systemic disease, similar to diabetes mellitus or metabolic syndrome. Furthermore, miRs that act on one particular process in different end organs are interesting therapeutic targets. Some future perspectives in miR research are highlighted with respect to novel therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Ward A. Heggermont
- From the Center for Molecular and Vascular Research, University of Leuven, Leuven, Belgium (W.A.H.); Cardiovascular Research Institute, University of Maastricht, Maastricht, the Netherlands (S.H.)
| | - Stephane Heymans
- From the Center for Molecular and Vascular Research, University of Leuven, Leuven, Belgium (W.A.H.); Cardiovascular Research Institute, University of Maastricht, Maastricht, the Netherlands (S.H.)
| |
Collapse
|
45
|
Martin J, Bryar P, Mets M, Weinstein J, Jones A, Martin A, Vanin EF, Scholtens D, Costa FF, Soares MB, Laurie NA. Differentially expressed miRNAs in retinoblastoma. Gene 2012; 512:294-9. [PMID: 23103829 DOI: 10.1016/j.gene.2012.09.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/16/2012] [Accepted: 09/27/2012] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA transcripts that have the ability to regulate the expression of target genes, and have been shown to influence the development of various tumors. The purpose of our study is to identify aberrantly expressed miRNAs in retinoblastoma for the discovery of potential therapeutic targets for this disease, and to gain a greater understanding of the mechanisms driving retinoblastoma progression. We report 41 differentially expressed miRNAs (p<0.05) in 12 retinoblastomas as compared to three normal human retinae. Of these miRNAs, many are newly identified as being differentially expressed in retinoblastoma. Further, we report the validations of five of the most downregulated miRNAs in primary human retinoblastomas (p<0.05), human retinoblastoma cell lines, and mouse retinoblastoma cell lines. This serves as the largest and most comprehensive retinoblastoma miRNA analysis to date with corresponding clinical and pathological characteristics. This is an essential step in the discovery of miRNAs associated with retinoblastoma progression, and in the identification of potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua Martin
- Cancer Biology and Epigenomics Program, Children's Hospital of Chicago Research Center, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Banerjee A, Luettich K. MicroRNAs as potential biomarkers of smoking-related diseases. Biomark Med 2012; 6:671-84. [DOI: 10.2217/bmm.12.50] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) comprise a family of small, endogenous, noncoding functional RNA molecules that have emerged as key post-transcriptional regulators of gene expression. They inhibit the translation of proteins from mRNA or promote its degradation. Aberrant miRNA expression has been linked to various human diseases and measurement can differentiate between normal and diseased tissue. Expression is tissue-specific and any changes in miRNA expression within a tissue type can be correlated with disease status. Altered miRNA expression has been reported in the smoking-related diseases cancer, chronic obstructive pulmonary disease and cardiovascular disease. Additionally, miRNAs are thought to have vital roles in inflammatory cell differentiation and regulation. miRNAs might, therefore, be useful biomarkers for early detection of disease-related molecular and genetic changes. In this review, we summarize the available scientific evidence for the potential of miRNAs as biomarkers of smoking-related diseases. Studies should be carried out to identify the miRNAs most relevant to specific diseases.
Collapse
Affiliation(s)
- Anisha Banerjee
- British American Tobacco, Group Research & Development, Southampton, Hampshire SO15 8TL, UK
| | - Karsta Luettich
- British American Tobacco, Group Research & Development, Southampton, Hampshire SO15 8TL, UK
| |
Collapse
|
47
|
Thomas RA, Scicchitano MS, Mirabile RC, Chau NT, Frazier KS, Thomas HC. MicroRNA changes in rat mesentery and serum associated with drug-induced vascular injury. Toxicol Appl Pharmacol 2012; 262:310-20. [DOI: 10.1016/j.taap.2012.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 12/16/2022]
|
48
|
Abstract
Chronic wounds represent a rising health and economic burden to our society. Emerging studies indicate that miRNAs play a key role in regulating several hubs that orchestrate the wound inflammation and angiogenesis processes. Of interest to wound inflammation are the regulatory loops where inflammatory mediators elicited following injury are regulated by miRNAs, as well as regulate miRNA expression. Adequate angiogenesis is a key determinant of success in ischemic wound repair. Hypoxia and cellular redox state are among the key factors that drive wound angiogenesis. We provided first evidence demonstrating that miRNAs regulate cellular redox environment via a NADPH oxidase-dependent mechanism in human microvascular endothelial cells (HMECs). We further demonstrated that hypoxia-sensitive miR-200b is involved in induction of angiogenesis by directly targeting Ets-1 in HMECs. These studies point toward a potential role of miRNA in wound angiogenesis. miRNA-based therapeutics represent one of the major commercial hot spots in today's biotechnology market space. Understanding the significance of miRs in wound inflammation and angiogenesis may help design therapeutic strategies for management of chronic nonhealing wounds.
Collapse
Affiliation(s)
- Sashwati Roy
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
49
|
Abstract
MicroRNAs are small non-coding RNAs implicated mainly in post-transcriptional gene silencing by interacting with the untranslated region of the transcript. miR-210 represents major hypoxia-inducible miRs, also known as hypoxamirs, which is ubiquitously expressed in a wide range of cells, serving versatile functions. This review article summarizes the current progress on biogenesis of miR-210 and its physiological roles including arrest of cell proliferation, repression of mitochondrial respiration, arrest of DNA repair, vascular biology, and angiogenesis. Given the fact that miR-210 is aberrantly expressed in a number of diseases such as tumor progression, myocardial infarction and cutaneous ischemic wounds, miR-210 could serve as an excellent candidate for prognostic purposes and therapeutic intervention. With the advancement of computational prediction, high-throughput target validation methodology, sequencing, proteomic analysis, and microarray, it is anticipated that more down-stream targets of miR-210 and its associated biological consequences under hypoxia will be unveiled establishing miR-210 as a major hub in the biology of hypoxia-response.
Collapse
Affiliation(s)
- Yuk C Chan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Age-related macular degeneration (AMD), a progressive condition that is untreatable in up to 90% of patients, is a leading cause of blindness in the elderly worldwide. The two forms of AMD, wet and dry, are classified based on the presence or absence of blood vessels that have disruptively invaded the retina, respectively. A detailed understanding of the molecular mechanisms underlying wet AMD has led to several robust FDA-approved therapies. In contrast, there are no approved treatments for dry AMD. In this review, we provide insight into the critical effector pathways mediating each form of the disease. A recurring theme that spans most aspects of AMD pathogenesis is defective immune modulation in the classically immune-privileged ocular haven. Interestingly, the latest advances in AMD research also highlight common molecular disease pathways with other neurodegenerative disorders. Finally, the therapeutic potential of intervening at known mechanistic steps of AMD pathogenesis is discussed.
Collapse
Affiliation(s)
- Jayakrishna Ambati
- Department of Ophthalmology & Visual Sciences, University of Kentucky, Lexington, KY 40506, USA.
| | | |
Collapse
|