1
|
Mi Y, Guo Y, Luo X, Bai Y, Chen H, Wang M, Wang Y, Guo J. Natural products and derivatives as Japanese encephalitis virus antivirals. Pathog Dis 2024; 82:ftae022. [PMID: 39317665 PMCID: PMC11556344 DOI: 10.1093/femspd/ftae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024] Open
Abstract
Japanese encephalitis virus (JEV) causes acute Japanese encephalitis (JE) in humans and reproductive disorders in pigs. There are ~68 000 cases of JE worldwide each year, with ~13 600-20 400 deaths. JE infections have a fatality rate of one-third, and half of the survivors experience permanent neurological sequelae. The disease is prevalent throughout the Asia-Pacific region and has the potential to spread globally. JEV poses a serious threat to human life and health, and vaccination is currently the only strategy for long-term sustainable protection against JEV infection. However, licensed JEV vaccines are not effective against all strains of JEV. To date, there are no drugs approved for clinical use, and the development of anti-JEV drugs is urgently needed. Natural products are characterized by a wide range of sources, unique structures, and low prices, and this paper provides an overview of the research and development of anti-JEV bioactive natural products.
Collapse
Affiliation(s)
- Yunqi Mi
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Yan Guo
- School of Modern Post, Xi’an University of Posts and Telecommunications, Xi’an 710061, China
| | - Xuliang Luo
- College of Animal Science and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Bai
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Haonan Chen
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Meihua Wang
- Faculty of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wang
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Jiao Guo
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| |
Collapse
|
2
|
Saxena SK, Kumar S, Maurya VK, Nayak D, Kaushik S, Manchanda RK, Gadugu S. Antiviral and anti-inflammatory activity of novel belladonna formulation against Japanese encephalitis virus via inhibition of p65 nuclear translocation and TNF-α mediated NF-kB signaling. Biotechnol Genet Eng Rev 2023; 39:937-959. [PMID: 36718919 DOI: 10.1080/02648725.2023.2166258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/31/2022] [Indexed: 02/01/2023]
Abstract
Japanese encephalitis (JE) is a mosquito-borne flavivirus infection, a major cause of viral encephalitis in South-East Asia with a CFR of ~30% and no specific treatment. Therefore, a novel belladonna formulation (BCT) was prepared and its antiviral and anti-inflammatory activity was elucidated during Japanese encephalitis virus (JEV) infection. Anti-JEV role of BCT was investigated aiming to prevent the infection in the peripheral immune cells. Antiviral activity of BCT was evaluated by plaque reduction assay, cell survival and apoptosis assay. BCT-mediated reduction in JEV-envelope expression was measured by indirect immunofluorescence, RT-PCR and Western blot assays. NF-κB expression and p65 nuclear translocation assays were determined to explore the mechanism of the action of BCT. TNF-α level was measured to evaluate the anti-inflammatory role of BCT during JEV infection. Consequently, molecular docking was performed with the TRAF2-TRADD complex. Our data suggested that BCT treatment reduces the JEV-plaque formation, JEV-induced cytopathic effects and increases cell survival. The antiviral effect of BCT was confirmed by reduction in the JEV-envelope protein expression. Moreover, BCT treatment and prevents the NF-κB activation via preventing the nuclear translocation of p65 and reduces the TNF-α levels. Our molecular docking analysis suggested that belladonna alkaloids interfere with the TRAF2-TRADD complex that results in inhibition of TNF-induced NF-κB signaling. For the first time, our data suggested that BCT reduces JEV expression and interferes with TNF-induced NF-κB signaling, thereby increasing cell survival via preventing the p65 nuclear translocation and may be used for the treatment and prevention of JE.Abbreviation: CFR: Case fatality rate; CAM: Complementary and alternative medicines; COX-2: Cyclooxygenase-2; IκB: Inhibitor kappa B; JE: Japanese encephalitis; JEV: Japanese encephalitis virus; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; ORF: Open reading frame; TNFR: Tumor necrosis factor receptor; TNF-α: Tumor necrosis factor-α; TRADD: TNFR1-associated death domain protein; TRAF2: TNF Receptor Associated Factor 2.
Collapse
Affiliation(s)
- Shailendra K Saxena
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | - Swatantra Kumar
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | - Vimal K Maurya
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | | | | | | | - Srinivasulu Gadugu
- Department of Medicine, JSPS Government Medical College, Hyderabad, India
| |
Collapse
|
3
|
Corbu VM, Gheorghe-Barbu I, Dumbravă AȘ, Vrâncianu CO, Șesan TE. Current Insights in Fungal Importance-A Comprehensive Review. Microorganisms 2023; 11:1384. [PMID: 37374886 DOI: 10.3390/microorganisms11061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Besides plants and animals, the Fungi kingdom describes several species characterized by various forms and applications. They can be found in all habitats and play an essential role in the excellent functioning of the ecosystem, for example, as decomposers of plant material for the cycling of carbon and nutrients or as symbionts of plants. Furthermore, fungi have been used in many sectors for centuries, from producing food, beverages, and medications. Recently, they have gained significant recognition for protecting the environment, agriculture, and several industrial applications. The current article intends to review the beneficial roles of fungi used for a vast range of applications, such as the production of several enzymes and pigments, applications regarding food and pharmaceutical industries, the environment, and research domains, as well as the negative impacts of fungi (secondary metabolites production, etiological agents of diseases in plants, animals, and humans, as well as deteriogenic agents).
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Genetics Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Corneliu Ovidiu Vrâncianu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Tatiana Eugenia Șesan
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Academy of Agricultural Sciences and Forestry, 61 Bd. Mărăşti, District 1, 011464 Bucharest, Romania
| |
Collapse
|
4
|
Srivastava KS, Jeswani V, Pal N, Bohra B, Vishwakarma V, Bapat AA, Patnaik YP, Khanna N, Shukla R. Japanese Encephalitis Virus: An Update on the Potential Antivirals and Vaccines. Vaccines (Basel) 2023; 11:vaccines11040742. [PMID: 37112654 PMCID: PMC10146181 DOI: 10.3390/vaccines11040742] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Japanese encephalitis virus (JEV) is the causal agent behind Japanese encephalitis (JE), a potentially severe brain infection that spreads through mosquito bites. JE is predominant over the Asia-Pacific Region and has the potential to spread globally with a higher rate of morbidity and mortality. Efforts have been made to identify and select various target molecules essential in JEV’s progression, but until now, no licensed anti-JEV drug has been available. From a prophylactic point of view, a few licensed JE vaccines are available, but various factors, viz., the high cost and different side effects imposed by them, has narrowed their global use. With an average occurrence of >67,000 cases of JE annually, there is an urgent need to find a suitable antiviral drug to treat patients at the acute phase, as presently only supportive care is available to mitigate infection. This systematic review highlights the current status of efforts put in to develop antivirals against JE and the available vaccines, along with their effectiveness. It also summarizes epidemiology, structure, pathogenesis, and potential drug targets that can be explored to develop a new range of anti-JEV drugs to combat JEV infection globally.
Collapse
|
5
|
de Mariz E Miranda LS. The synergy between nucleotide biosynthesis inhibitors and antiviral nucleosides: New opportunities against viral infections? Arch Pharm (Weinheim) 2023; 356:e2200217. [PMID: 36122181 DOI: 10.1002/ardp.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
5'-Phosphorylated nucleoside derivatives are molecules that can be found in all living organisms and viruses. Over the last century, the development of structural analogs that could disrupt the transcription and translation of genetic information culminated in the development of clinically relevant anticancer and antiviral drugs. However, clinically effective broad-spectrum antiviral compounds or treatments are lacking. This viewpoint proposes that molecules that inhibit nucleotide biosynthesis may sensitize virus-infected cells toward direct-acting antiviral nucleosides. Such potentially synergistic combinations might allow the repurposing of drugs, leading to the development of new combination therapies.
Collapse
Affiliation(s)
- Leandro S de Mariz E Miranda
- Department of Organic Chemistry, Chemistry Institute, Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Molecular Mechanism and Role of Japanese Encephalitis Virus Infection in Central Nervous System-Mediated Diseases. Viruses 2022; 14:v14122686. [PMID: 36560690 PMCID: PMC9781168 DOI: 10.3390/v14122686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The Japanese encephalitis virus (JEV) is the most common cause of neurodegenerative disease in Southeast Asia and the Western Pacific region; approximately 1.15 billion people are at risk, and thousands suffer from permanent neurological disorders across Asian countries, with 10-15 thousand people dying each year. JEV crosses the blood-brain barrier (BBB) and forms a complex with receptors on the surface of neurons. GRP78, Src, TLR7, caveolin-1, and dopamine receptor D2 are involved in JEV binding and entry into the neurons, and these receptors also play a role in carcinogenic activity in cells. JEV binds to GRP78, a member of the HSP70 overexpressed on malignant cells to enter neurons, indicating a higher chance of JEV infection in cancer patients. However, JEV enters human brain microvascular endothelial cells via an endocytic pathway mediated by caveolae and the ezrin protein and also targets dopamine-rich areas for infection of the midbrain via altering dopamine levels. In addition, JEV complexed with CLEC5A receptor of macrophage cells is involved in the breakdown of the BBB and central nervous system (CNS) inflammation. CLEC5A-mediated infection is also responsible for the influx of cytokines into the CNS. In this review, we discuss the neuronal and macrophage surface receptors involved in neuronal death.
Collapse
|
7
|
Antiviral drug research for Japanese encephalitis: an updated review. Pharmacol Rep 2022; 74:273-296. [PMID: 35182390 PMCID: PMC8964565 DOI: 10.1007/s43440-022-00355-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Japanese encephalitis (JE) caused by the Japanese encephalitis virus (JEV) is one of Asia's most common viral encephalitis. JEV is a flavivirus, common in rural and sub-urban regions of Asian countries. Although only 1% of JEV-infected individuals develop JE, there is a 20-30% chance of death among these individuals and possible neurological sequelae post-infection. No licensed anti-JE drugs are currently available, despite extensive efforts to develop them. Literature search was performed using databases such as PubMed Central, Google Scholar, Wiley Online Library, etc. using keywords such as Japanese encephalitis virus, antiviral drugs, antiviral drug screening, antiviral drug targets, etc. From around 230 papers/abstracts and research reviews retrieved and reviewed for this study, approximately 180 most relevant and important ones have been cited. Different approaches in drug testing and various antiviral drug targets explored so far have been thoroughly searched from the literature and compiled, besides addressing the future perspectives of the antiviral drug development strategies. Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent advancements in understanding the biology of infection and new drug targets have been promising improvements. Despite hindrances such as the unavailability of a proper drug delivery system or a treatment regimen irrespective of the stage of infection, several promising anti-JE candidate molecules are in different phases of clinical trials. Nonetheless, efficient therapy against JEV is expected to be achieved with drug combinations and a highly targeted drug delivery system soon.
Collapse
|
8
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Xu J, Xue Y, Zhou R, Shi PY, Li H, Zhou J. Drug repurposing approach to combating coronavirus: Potential drugs and drug targets. Med Res Rev 2021; 41:1375-1426. [PMID: 33277927 PMCID: PMC8044022 DOI: 10.1002/med.21763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023]
Abstract
In the past two decades, three highly pathogenic human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, and, recently, SARS-CoV-2, have caused pandemics of severe acute respiratory diseases with alarming morbidity and mortality. Due to the lack of specific anti-CoV therapies, the ongoing pandemic of coronavirus disease 2019 (COVID-19) poses a great challenge to clinical management and highlights an urgent need for effective interventions. Drug repurposing is a rapid and feasible strategy to identify effective drugs for combating this deadly infection. In this review, we summarize the therapeutic CoV targets, focus on the existing small molecule drugs that have the potential to be repurposed for existing and emerging CoV infections of the future, and discuss the clinical progress of developing small molecule drugs for COVID-19.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020; 15:2391-2419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
11
|
Forns X, Navasa M. Liver transplant immunosuppression during the COVID-19 pandemic. GASTROENTEROLOGÍA Y HEPATOLOGÍA (ENGLISH EDITION) 2020. [PMCID: PMC7605728 DOI: 10.1016/j.gastre.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS CoV-2 infection has produced a pandemic with serious consequences for our health care system. Although liver transplant patients represent only a minority of the population, the hepatologists who follow these patients have tried to coordinate efforts to produce a protocol the management of immunosuppression during SARS Cov-2 infection. Although there are no solid studies to support general recommendations, experiences with other viral infections (hepatitis C, cytomegalovirus) suggest that management of immunosuppression without mycophenolate mofetil or m-Tor inhibitors (drugs that are also associated with leukopenia and lymphopenia) may be beneficial. It is also important to pay attention to possible drug interactions, especially in the case of tacrolimus, with some of the treatments with antiviral effect given in the context of COVID 19 (lopinavir/ritonavir, azithromycin). Finally, the immunosuppressive effect of immunomodulating drugs (tocilizumab and similar) administered to patients with severe lung disease should be taken into account. The mechanisms of action of the different immunosuppressive drugs are reviewed in this article, as well as their potential effect on Cov-2 SARS infection, and suggests guidelines for the management of immunosuppression.
Collapse
|
12
|
Sanchez-Velazquez R, de Lorenzo G, Tandavanitj R, Setthapramote C, Bredenbeek PJ, Bozzacco L, MacDonald MR, Clark JJ, Rice CM, Patel AH, Kohl A, Varjak M. Generation of a reporter yellow fever virus for high throughput antiviral assays. Antiviral Res 2020; 183:104939. [PMID: 32980446 PMCID: PMC7649875 DOI: 10.1016/j.antiviral.2020.104939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/30/2023]
Abstract
Yellow fever virus (YFV), a member of the Flaviviridae family, is an arthropod-borne virus that can cause severe disease in humans with a lethality rate of up to 60%. Since 2017, increases in YFV activity in areas of South America and Africa have been described. Although a vaccine is available, named strain 17D (Theiler and Smith, 1937), it is contraindicated for use in the elderly, expectant mothers, immunocompromised people, among others. To this day there is no antiviral treatment against YFV to reduce the severity of viral infection. Here, we used a circular polymerase extension reaction (CPER)-based reverse genetics approach to generate a full-length reporter virus (YFVhb) by introducing a small HiBit tag in the NS1 protein. The reporter virus replicates at a similar rate to the parental YFV in HuH-7 cells. Using YFVhb, we designed a high throughput antiviral screening luciferase-based assay to identify inhibitors that target any step of the viral replication cycle. We validated our assay by using a range of inhibitors including drugs, immune sera and neutralizing single chain variable fragments (scFv). In light of the recent upsurge in YFV and a potential spread of the virus, this assay is a further tool in the development of antiviral therapy against YFV. Bacteria-free approach to rescue yellow fever virus. Novel tagged yellow fever virus that permits quantifiable assays. Usage of the novel tagged virus for screening of antivirals and immune sera. Novel antiviral compounds against YFV were identified.
Collapse
Affiliation(s)
| | | | | | | | - Peter J Bredenbeek
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jordan J Clark
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Arvind H Patel
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Alain Kohl
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Margus Varjak
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
13
|
Jones NP. Immunosuppression in the Management of Presumed Non-infective Uveitis; Are We Sure What We are Treating? Notes on the Antimicrobial Properties of the Systemic Immunosuppressants. Ocul Immunol Inflamm 2020; 28:994-1003. [PMID: 31418624 DOI: 10.1080/09273948.2019.1643030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To describe the antimicrobial effects of immunosuppressants used for presumed autoimmune uveitis, and to discuss the potential importance of these effects in the context of increasing knowledge of the human microbiomes and their influence on inflammation. METHODS Literature review. REVIEW OF EVIDENCE All immunosuppressants have intrinsic antimicrobial effects; these vary considerably between drugs, and include antibacterial, antiviral and antifungal action. Immunosuppression is known to affect the composition of the gut microbiome, and alterations in microbiome composition are known to affect inflammations including uveitis. CONCLUSIONS Oral immunosuppressants are assumed to act on presumed autoimmune uveitis by downregulation of, or other interference with, an aberrant immune response. However, their antimicrobial properties are usually forgotten, and in the context of increasing knowledge of the involvement of microbes in the initiation of, and also potentially the perpetuation of, tissue inflammation, these effects may prove to be a fundamental part of their action.
Collapse
Affiliation(s)
- Nicholas P Jones
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust , Manchester, UK.,Medical Academic Health Science Centre, University of Manchester , Manchester, UK
| |
Collapse
|
14
|
Generation and characterization of Japanese encephalitis virus expressing GFP reporter gene for high throughput drug screening. Antiviral Res 2020; 182:104884. [PMID: 32750466 PMCID: PMC7395821 DOI: 10.1016/j.antiviral.2020.104884] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Japanese encephalitis virus (JEV), a major cause of Japanese encephalitisis, is an arbovirus that belongs to the genus Flavivirus of the family Flaviviridae. Currently, there is no effective drugs available for the treatment of JEV infection. Therefore, it is important to establish efficient antiviral screening system for the development of antiviral drugs. In this study, we constructed a full-length infectious clone of eGFP-JEV reporter virus by inserting the eGFP gene into the capsid-coding region of the viral genome. The reporter virus RNA transfected-BHK-21 cells generated robust eGFP fluorescence signals that were correlated well with viral replication. The reporter virus displayed growth kinetics similar to wild type (WT) virus although replicated a little slower. Using a known JEV inhibitor, NITD008, we demonstrated that the reporter virus could be used to identify inhibitors against JEV. Furthermore, an eGFP-JEV-based high throughput screening (HTS) assay was established in a 96-well format and used for screening of 1443 FDA-approved drugs. Sixteen hit drugs were identified to be active against JEV. Among them, five compounds which are lonafarnib, cetylpyridinium chlorid, cetrimonium bromide, nitroxoline and hexachlorophene, are newly discovered inhibitors of JEV, providing potential new therapies for treatment of JEV infection.
Collapse
|
15
|
Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF, Bursi R, Perricone R, Gerli R. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun 2020; 111:102468. [PMID: 32317220 PMCID: PMC7164894 DOI: 10.1016/j.jaut.2020.102468] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed the world at a pandemic risk. Coronavirus-19 disease (COVID-19) is an infectious disease caused by SARS-CoV-2, which causes pneumonia, requires intensive care unit hospitalization in about 10% of cases and can lead to a fatal outcome. Several efforts are currently made to find a treatment for COVID-19 patients. So far, several anti-viral and immunosuppressive or immunomodulating drugs have demonstrated some efficacy on COVID-19 both in vitro and in animal models as well as in cases series. In COVID-19 patients a pro-inflammatory status with high levels of interleukin (IL)-1B, IL-1 receptor (R)A and tumor necrosis factor (TNF)-α has been demonstrated. Moreover, high levels of IL-6 and TNF-α have been observed in patients requiring intensive-care-unit hospitalization. This provided rationale for the use of anti-rheumatic drugs as potential treatments for this severe viral infection. Other agents, such as hydroxychloroquine and chloroquine might have a direct anti-viral effect. The anti-viral aspect of immunosuppressants towards a variety of viruses has been known since long time and it is herein discussed in the view of searching for a potential treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Angelo F Bonifacio
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
16
|
Forns X, Navasa M. Liver transplant immunosuppression during the covid-19 pandemic. GASTROENTEROLOGIA Y HEPATOLOGIA 2020; 43:457-463. [PMID: 32646657 PMCID: PMC7290227 DOI: 10.1016/j.gastrohep.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
La infección por el virus SARS-CoV-2 ha producido una pandemia con graves consecuencias sobre nuestro sistema sanitario. Aunque el colectivo de pacientes trasplantados hepáticos representa solo una minoría de la población, los hepatólogos que seguimos a estos pacientes hemos intentado coordinar esfuerzos para protocolizar el manejo de la inmunosupresión durante la infección por SARS-CoV-2. Aunque no hay estudios sólidos que avalen recomendaciones generales, las experiencias con otras infecciones víricas (hepatitis C, citomegalovirus) sugieren que el manejo de la inmunosupresión sin micofenolato mofetilo ni inhibidores m-Tor (fármacos que además se asocian a leucopenia y linfopenia) puede resultar beneficiosa. Es importante además prestar atención a las posibles interacciones farmacológicas, especialmente en el caso de tacrolimus, con algunos de los tratamientos con efecto antiviral que se administran en el contexto de la covid-19 (lopinavir/ritonavir, azitromicina). Finalmente, deberá tenerse en cuenta el efecto inmunosupresor de fármacos inmunomoduladores (tocilizumab y similares) que se administran en pacientes con enfermedad pulmonar severa. En el artículo se revisan los mecanismos de actuación de los diferentes fármacos inmunosupresores, su potencial efecto sobre la infección por SARS-CoV-2 y se sugieren unas pautas en el manejo de la inmunosupresión.
Collapse
Affiliation(s)
- Xavier Forns
- Unidad de Hepatitis Víricas y Unidad de Trasplante Hepático, Servicio de Hepatología, Hospital Clínic. Universitat de Barcelona, IDIBAPS, CIBERehd, Barcelona, España
| | - Miquel Navasa
- Unidad de Hepatitis Víricas y Unidad de Trasplante Hepático, Servicio de Hepatología, Hospital Clínic. Universitat de Barcelona, IDIBAPS, CIBERehd, Barcelona, España.
| |
Collapse
|
17
|
Uematsu J, Sakai-Sugino K, Kihira-Nakanishi S, Yamamoto H, Hirai K, Kawano M, Nishio M, Tsurudome M, O'Brien M, Komada H. Inhibitions of human parainfluenza virus type 2 replication by ribavirin and mycophenolate mofetil are restored by guanosine and S-(4-nitrobenzyl)-6-thioinosine. Drug Discov Ther 2020; 13:314-321. [PMID: 31956229 DOI: 10.5582/ddt.2019.01084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The antiviral activities of a nucleoside analog antiviral drug (ribavirin) and a non-nucleoside drug (mycophenolate mofetil) against human parainfluenza virus type 2 (hPIV-2) were investigated, and the restoration of the inhibition by guanosine and S-(4-nitrobenzyl)-6-thioinosine (NBTI: equilibrative nucleoside transporter 1 inhibitor) were also investigated. Ribavirin (RBV) and mycophenolate mofetil (MMF) inhibited cell fusion induced by hPIV-2. Both RBV and MMF considerably reduced the number of viruses released from the cells. Virus genome synthesis was inhibited by RBV and MMF as determined by polymerase chain reaction (PCR) and real time PCR. mRNA syntheses were also reduced. An indirect immunofluorescence study showed that RBV and MMF largely inhibited viral protein syntheses. Using a recombinant green fluorescence protein (GFP)-expressing hPIV-2 without matrix protein (rhPIV-2ΔMGFP), it was found that virus entry into the cells and multinucleated giant cell formation were almost completely blocked by RBV and MMF. RBV and MMF did not disrupt actin microfilaments or microtubules. Both guanosine and NBTI completely or partially reversed the inhibition by RBV and MMF in the viral replication, syntheses of genome RNA, mRNA and protein, and multinucleated giant cell formation. NBTI caused a little damage in actin microfilaments, but had no effect on microtubules. Both RBV and MMF inhibited the replication of hPIV-2, mainly by inhibiting viral genome RNA, mRNA and protein syntheses. The inhibition was almost completely recovered by guanosine. These results indicate that the major mechanism of the inhibition is the depletion of intracellular GTP pools.
Collapse
Affiliation(s)
- Jun Uematsu
- Microbiology and Immunology Section, Department of Clinical Nutrition, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Kae Sakai-Sugino
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Sahoko Kihira-Nakanishi
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Hidetaka Yamamoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Kazuyuki Hirai
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Mitsuo Kawano
- Department of Microbiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Miwako Nishio
- Department of Microbiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masato Tsurudome
- Department of Microbiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Myles O'Brien
- Graduate School of Mie Prefectural College of Nursing, Tsu, Mie, Japan
| | - Hiroshi Komada
- Microbiology and Immunology Section, Department of Clinical Nutrition, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
18
|
Tang C, Li Q, Deng X, Wu W, Liao L, Liang K, Huo R, Li C, Han J, Tang W, Jiang N. Discovery of lixisenatide analogues as long-acting hypoglycemic agents using novel peptide half-life extension technology based on mycophenolic acid. RSC Adv 2020; 10:12089-12104. [PMID: 35496622 PMCID: PMC9050719 DOI: 10.1039/d0ra01002b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Noncovalent binding of peptides to human serum albumin protects against renal clearance and enzymatic degradation. Herein, we investigated the effect of mycophenolic acid (MPA) albumin binders for improving the stability of peptides. For proof-of-principle, the short acting glucagon-like peptide-1 (GLP-1) receptor agonist lixisenatide was selected and functionalized with different MPA albumin binders. In vitro, all lixisenatide analogues showed well preserved GLP-1 receptor activation potency. High performance affinity chromatography (HPAC) and ultrafiltration analyses indicated that DiMPA was able to confer high albumin affinity to lixisenatide and revealed that affinity is increased for DiMPA modified lixisenatide analogues containing OEG spacers. In db/db mice, the selected peptide 2c showed comparable efficacies to lixisenatide with respect to glucose-lowering and insulinotropic activities. Furthermore, the duration of action of glucose homeostasis of 2c was comparable to semaglutide in db/db mice. Importantly, DiMPA albumin binder did not bring significant toxicity of lixisenatide, as reflected by the comparable toxicity indexes in 2c and semaglutide groups after 2 weeks dosing in normal Kunming mice. Short-term study (21 days) conducted on db/db mice showed the better therapeutic efficacies of 2c than semaglutide on pancreas islets protection. Importantly, in chronic studies (84 days) on db/db mice, 2c exhibited a sustained improvement in glycaemic control, to a greater extent than that of semaglutide. Thus, we propose DiMPA modification as a novel and general method for development of long-acting GLP-1 receptor agonists for type 2 diabetes treatments, and 2c as a promising antidiabetic candidate. DiMPA albumin binders were effectively applied to lixisenatide to make 2c as a long-acting antidiabetic agent.![]()
Collapse
Affiliation(s)
- Chunli Tang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China .,Editorial Department, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Qing Li
- Pharmaceutical College, Guangxi Medical University Nanning 530021 China
| | - Xiaoyan Deng
- Pharmaceutical College, Guangxi Medical University Nanning 530021 China
| | - Weiwei Wu
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Liufeng Liao
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Kai Liang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Rongrui Huo
- Editorial Department, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University Xuzhou China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 PR China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Neng Jiang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| |
Collapse
|
19
|
Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomäki V. Antiviral Agents From Fungi: Diversity, Mechanisms and Potential Applications. Front Microbiol 2018; 9:2325. [PMID: 30333807 PMCID: PMC6176074 DOI: 10.3389/fmicb.2018.02325] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 01/14/2023] Open
Abstract
Viral infections are amongst the most common diseases affecting people worldwide. New viruses emerge all the time and presently we have limited number of vaccines and only few antivirals to combat viral diseases. Fungi represent a vast source of bioactive molecules, which could potentially be used as antivirals in the future. Here, we have summarized the current knowledge of fungi as producers of antiviral compounds and discuss their potential applications. In particular, we have investigated how the antiviral action has been assessed and what is known about the molecular mechanisms and actual targets. Furthermore, we highlight the importance of accurate fungal species identification on antiviral and other natural products studies.
Collapse
Affiliation(s)
| | - Dhanik Reshamwala
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pyry Veteli
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Henri Vanhanen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Varpu Marjomäki
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
20
|
Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomäki V. Antiviral Agents From Fungi: Diversity, Mechanisms and Potential Applications. Front Microbiol 2018. [PMID: 30333807 DOI: 10.3389/fmicb.2018.02325/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Viral infections are amongst the most common diseases affecting people worldwide. New viruses emerge all the time and presently we have limited number of vaccines and only few antivirals to combat viral diseases. Fungi represent a vast source of bioactive molecules, which could potentially be used as antivirals in the future. Here, we have summarized the current knowledge of fungi as producers of antiviral compounds and discuss their potential applications. In particular, we have investigated how the antiviral action has been assessed and what is known about the molecular mechanisms and actual targets. Furthermore, we highlight the importance of accurate fungal species identification on antiviral and other natural products studies.
Collapse
Affiliation(s)
| | - Dhanik Reshamwala
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pyry Veteli
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Henri Vanhanen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Varpu Marjomäki
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
21
|
Karthikeyan A, Shanmuganathan S, Pavulraj S, Prabakar G, Pavithra S, Porteen K, Elaiyaraja G, Malik YS. JAPANESE ENCEPHALITIS, RECENT PERSPECTIVES ON VIRUS GENOME, TRANSMISSION, EPIDEMIOLOGY, DIAGNOSIS AND PROPHYLACTIC INTERVENTIONS. ACTA ACUST UNITED AC 2017. [DOI: 10.18006/2017.5(6).730.748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov 2017; 16:565-586. [PMID: 28473729 PMCID: PMC5925760 DOI: 10.1038/nrd.2017.33] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infections with flaviviruses, such as dengue, West Nile virus and the recently re-emerging Zika virus, are an increasing and probably lasting global risk. This Review summarizes and comments on the opportunities for broad-spectrum agents that are active against multiple flaviviruses. Broad-spectrum activity is particularly desirable to prepare for the next flaviviral epidemic, which could emerge from as-yet unknown or neglected viruses. Potential molecular targets for broad-spectrum antiflaviviral compounds include viral proteins, such as the viral protease or polymerase, and host targets that are exploited by these viruses during entry and replication, including α-glucosidase and proteins involved in nucleoside biosynthesis. Numerous compounds with broad-spectrum antiviral activity have already been identified by target-specific or phenotypic assays. For other compounds, broad-spectrum activity can be anticipated because of their mode of action and molecular targets.
Collapse
Affiliation(s)
- Veaceslav Boldescu
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry of the Academy of Sciences of Moldova, Academiei 3, 2028 Chisinau, Moldova
| | - Mira A. M. Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Nikos Vasilakis
- Dept. of Pathology and Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases and Institute for Human Infections and Immunity, 2.138D Keiller Bldg, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555–0609, USA
| | - Christian D. Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
|
24
|
Fang S, Su J, Liang B, Li X, Li Y, Jiang J, Huang J, Zhou B, Ning C, Li J, Ho W, Li Y, Chen H, Liang H, Ye L. Suppression of autophagy by mycophenolic acid contributes to inhibition of HCV replication in human hepatoma cells. Sci Rep 2017; 7:44039. [PMID: 28276509 PMCID: PMC5343675 DOI: 10.1038/srep44039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/02/2017] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that mycophenolic acid (MPA) has an anti-HCV activity. However, the mechanism of MPA-mediated inhibition of HCV replication remains to be determined. This study investigated whether MPA has an effect on autophagy, a cellular machinery required for HCV replication, thereby, inhibits HCV replication in Huh7 cells. MPA treatment of Huh7 cells could suppress autophagy, evidenced by decreased LC3B-II level and conversion of LC3B-I to LC3B-II, decreased autophagosome formation, and increased p62 level compared to MPA-untreated cells. Tunicamycin treatment or HCV infection could induce cellular autophagy, however, MPA also exhibited its inhibitory effect on tunicamycin- or HCV infection-induced autophagy. The expression of three autophagy-related genes, Atg3, Atg5, and Atg7 were identified to be inhibited by MPA treatment. Over-expression of these genes could partly recover HCV replication inhibited by MPA; however, silencing their expression by siRNAs could enhance the inhibitory effect of MPA on HCV. Collectively, these results reveal that suppression of autophagy by MPA plays a role in its anti-HCV activity. Down-regulating the expression of three autophagy-related genes by MPA involves in its antiviral mechanism.
Collapse
Affiliation(s)
- Shoucai Fang
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Division of HIV/AIDS Control and Prevention, Guangxi Center for Disease Control and Prevention, Nanning 530021, Guangxi, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xu Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yu Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Bo Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jieliang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Yiping Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Chen
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment &Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning 530021, Guangxi, China
| |
Collapse
|
25
|
Production of valuable compounds by molds and yeasts. J Antibiot (Tokyo) 2016; 70:347-360. [PMID: 27731337 PMCID: PMC7094691 DOI: 10.1038/ja.2016.121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 11/30/2022]
Abstract
We are pleased to dedicate this paper to Dr Julian E Davies. Julian is a giant among microbial biochemists. He began his professional career as an organic chemistry PhD student at Nottingham University, moved on to a postdoctoral fellowship at Columbia University, then became a lecturer at the University of Manchester, followed by a fellowship in microbial biochemistry at Harvard Medical School. In 1965, he studied genetics at the Pasteur Institute, and 2 years later joined the University of Wisconsin in the Department of Biochemistry. He later became part of Biogen as Research Director and then President. After Biogen, Julian became Chair of the Department of Microbiology at the University of British Columbia in Vancouver, Canada, where he has contributed in a major way to the reputation of this department for many years. He also served as an Adjunct Professor at the University of Geneva. Among Julian’s areas of study and accomplishment are fungal toxins including α-sarcin, chemical synthesis of triterpenes, mode of action of streptomycin and other aminoglycoside antibiotics, biochemical mechanisms of antibiotic resistance in clinical isolates of bacteria harboring resistance plasmids, their origins and evolution, secondary metabolism of microorganisms, structure and function of bacterial ribosomes, antibiotic resistance mutations in yeast ribosomes, cloning of resistance genes from an antibiotic-producing microbe, gene cloning for industrial purposes, engineering of herbicide resistance in useful crops, bleomycin-resistance gene in clinical isolates of Staphylococcus aureus and many other topics. He has been an excellent teacher, lecturing in both English and French around the world, and has organized international courses. Julian has also served on the NIH study sections, as Editor for several international journals, and was one of the founders of the journal Plasmid. We expect the impact of Julian’s accomplishments to continue into the future.
Collapse
|
26
|
To KKW, Mok KY, Chan ASF, Cheung NN, Wang P, Lui YM, Chan JFW, Chen H, Chan KH, Kao RYT, Yuen KY. Mycophenolic acid, an immunomodulator, has potent and broad-spectrum in vitro antiviral activity against pandemic, seasonal and avian influenza viruses affecting humans. J Gen Virol 2016; 97:1807-1817. [PMID: 27259985 DOI: 10.1099/jgv.0.000512] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunomodulators have been shown to improve the outcome of severe pneumonia. We have previously shown that mycophenolic acid (MPA), an immunomodulator, has antiviral activity against influenza A/WSN/1933(H1N1) using a high-throughput chemical screening assay. This study further investigated the antiviral activity and mechanism of action of MPA against contemporary clinical isolates of influenza A and B viruses. The 50 % cellular cytotoxicity (CC50) of MPA in Madin Darby canine kidney cell line was over 50 µM. MPA prevented influenza virus-induced cell death in the cell-protection assay, with significantly lower IC50 for influenza B virus B/411 than that of influenza A(H1N1)pdm09 virus H1/415 (0.208 vs 1.510 µM, P=0.0001). For H1/415, MPA interfered with the early stage of viral replication before protein synthesis. For B/411, MPA may also act at a later stage since MPA was active against B/411 even when added 12 h post-infection. Virus-yield reduction assay showed that the replication of B/411 was completely inhibited by MPA at concentrations ≥0.78 µM, while there was a dose-dependent reduction of viral titer for H1/415. The antiviral effect of MPA was completely reverted by guanosine supplementation. Plaque reduction assay showed that MPA had antiviral activity against eight different clinical isolates of A(H1N1), A(H3N2), A(H7N9) and influenza B viruses (IC50 <1 µM). In summary, MPA has broad-spectrum antiviral activity against human and avian-origin influenza viruses, in addition to its immunomodulatory activity. Together with a high chemotherapeutic index, the use of MPA as an antiviral agent should be further investigated in vivo.
Collapse
Affiliation(s)
- Kelvin K W To
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Ka-Yi Mok
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Andy S F Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Nam N Cheung
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Pui Wang
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Yin-Ming Lui
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Jasper F W Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Honglin Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Richard Y T Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Kwok-Yung Yuen
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| |
Collapse
|
27
|
Loddo R, Novelli F, Sparatore A, Tasso B, Tonelli M, Boido V, Sparatore F, Collu G, Delogu I, Giliberti G, La Colla P. Antiviral activity of benzotriazole derivatives. 5-[4-(Benzotriazol-2-yl)phenoxy]-2,2-dimethylpentanoic acids potently and selectively inhibit Coxsackie Virus B5. Bioorg Med Chem 2015; 23:7024-34. [PMID: 26443549 DOI: 10.1016/j.bmc.2015.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 12/21/2022]
Abstract
A library of 64 benzotriazole derivatives (17 of which were [4-(benzotriazol-2-yl)phenoxy]alkanoic acids) were screened for antiviral activity against a panel of twelve DNA and RNA viruses. Twenty-six compounds (12 of which were [4-(benzotriazol-2-yl)phenoxy]alkanoic acids) displayed activity against one or more viruses. CVB-5, RSV, BVDV, Sb-1 and YFV were, in decreasing order, the more frequently and effectively affected viruses; DENV-2, WNV, HIV-1 and Reo-1 were only occasionally and modestly affected, while the remaining viruses were not affected by any of the tested compounds. Worth of note were compounds 33 and 35; the former for the activity against Sb-1 (EC50=7 μM) and the latter for the large spectrum of activity including six viruses with a mean EC50=12 μM. Even more interesting were the alkanoic acids 45-48 and 50-57 for their activity against RSV and/or CVB-5. In particular, compound 56 displayed a potent and selective activity against CVB-5 with EC50=0.15 μM and SI=100, thus representing a valuable hit compound for the development of antiviral agents for the treatment of human pathologies related to this virus.
Collapse
Affiliation(s)
- Roberta Loddo
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy.
| | - Federica Novelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Anna Sparatore
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Bruno Tasso
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
| | - Vito Boido
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Fabio Sparatore
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Gabriella Collu
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Ilenia Delogu
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Gabriele Giliberti
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Paolo La Colla
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| |
Collapse
|
28
|
Ishikawa T, Konishi E. Potential chemotherapeutic targets for Japanese encephalitis: current status of antiviral drug development and future challenges. Expert Opin Ther Targets 2015; 19:1379-95. [PMID: 26156208 DOI: 10.1517/14728222.2015.1065817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Japanese encephalitis (JE) remains a public health threat in Asia. Although several vaccines have been licensed, ∼ 67,900 cases of the disease are estimated to occur annually, probably because the vaccine coverage is low. Therefore, effective antiviral drugs are required to control JE. However, no licensed anti-JE drugs are available, despite extensive efforts to develop them. AREAS COVERED We provide a general overview of JE and JE virus, including its transmission cycle, distribution, structure, replication machinery, immune evasion mechanisms and vaccines. The current situation in antiviral drug development is then reviewed and future perspectives are discussed. EXPERT OPINION Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent progress in our understanding of the viral replication machinery and immune evasion strategies has identified new targets for anti-JE drug development. To date, most candidate drugs have only been evaluated in single-drug formulations, and efficient drug delivery to the CNS has virtually not been considered. However, an effective anti-JE treatment is expected to be achieved with multiple-drug formulations and a targeted drug delivery system in the near future.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- a 1 Dokkyo Medical University, School of Medicine, Department of Microbiology , 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Eiji Konishi
- b 2 Mahidol University, BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine , 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.,c 3 Osaka University, Research Institute for Microbial Diseases, BIKEN Endowed Department of Dengue Vaccine Development , 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan +66 2 354 5981 ;
| |
Collapse
|
29
|
Cheng KW, Cheng SC, Chen WY, Lin MH, Chuang SJ, Cheng IH, Sun CY, Chou CY. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Res 2014; 115:9-16. [PMID: 25542975 PMCID: PMC7113672 DOI: 10.1016/j.antiviral.2014.12.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 01/08/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a new highly pathogenic human coronaviruses that emerged in Jeddah and Saudi Arabia and has quickly spread to other countries in Middle East, Europe and North Africa since 2012. Up to 17 December 2014, it has infected at least 938 people with a fatality rate of about 36% globally. This has resulted in an urgent need to identify antiviral drugs that are active against MERS-CoV. The papain-like protease (PL(pro)) of MERS-CoV represents an important antiviral target as it is not only essential for viral maturation, but also antagonizes interferon stimulation of the host via its deubiquitination activity. Here, we report the discovery that two SARS-CoV PL(pro) inhibitors, 6-mercaptopurine (6MP) and 6-thioguanine (6TG), as well as the immunosuppressive drug mycophenolic acid, are able to inhibit MERS-CoV PL(pro). Their inhibition mechanisms and mutually binding synergistic effect were also investigated. Our results identify for the first time three inhibitors targeting MERS-CoV PL(pro) and these can now be used as lead compounds for further antiviral drug development.
Collapse
Affiliation(s)
- Kai-Wen Cheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Shu-Chun Cheng
- Department of Nephrology, Chang-Gung Memorial Hospital, Keelung 204, Taiwan
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Min-Han Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Shang-Ju Chuang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - I-Hsin Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang-Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Chi-Yuan Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
30
|
Kalisch A, Wilhelm M, Erbguth F, Birkmann J. Progressive multifocal leukoencephalopathy in patients with a hematological malignancy: review of therapeutic options. Chemotherapy 2014; 60:47-53. [PMID: 25376181 DOI: 10.1159/000368072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022]
Abstract
In the context of 2 patients with hematological malignancy who developed progressive multifocal leukoencephalopathy (PML), we review the current therapeutic options for this serious complication. Both patients had lymphoma and had been pretreated with the antibody rituximab. Diagnosis of PML was obtained upon the detection of the JC virus. The outcome was fatal in both cases. So far, no standard therapeutic approach for JC virus infection has been established in HIV-negative patients with hematological malignancies and the outcome is usually fatal. Serotonin receptor antagonists might have a beneficial effect by blocking the virus from entering the cells. Although hopes for the efficacy of mefloquine were disappointed by the results of 1 study, several case reports describe improvements in neurological impairment when this drug is administered. Taking the desperate situation of this patient group into consideration, the combination of mirtazapine and mefloquine might be worthy of an attempt.
Collapse
Affiliation(s)
- Alexander Kalisch
- Department/Institute of Oncology, Paracelsus Medical University, Nuremberg, Germany
| | | | | | | |
Collapse
|
31
|
Abstract
Fungi are amazing producers of natural products, including secondary metabolites. These compounds are crucial to the health and well-being of people throughout the world. They also provide agriculture and livestock with many essential products. Production of secondary metabolites is improved by mutagenesis and recombinant DNA technologies allowing commercial production of these valuable compounds. This chapter centers on these fungal beneficial products, the discovery of which goes back 85 years to the time that penicillin was discovered by Alexander Fleming.
Collapse
|
32
|
Chan JFW, Chan KH, Kao RYT, To KKW, Zheng BJ, Li CPY, Li PTW, Dai J, Mok FKY, Chen H, Hayden FG, Yuen KY. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect 2013; 67:606-16. [PMID: 24096239 PMCID: PMC7112612 DOI: 10.1016/j.jinf.2013.09.029] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged to cause fatal infections in patients in the Middle East and traveler-associated secondary cases in Europe and Africa. Person-to-person transmission is evident in outbreaks involving household and hospital contacts. Effective antivirals are urgently needed. METHODS We used small compound-based forward chemical genetics to screen a chemical library of 1280 known drugs against influenza A virus in Biosafety Level-2 laboratory. We then assessed the anti-MERS-CoV activities of the identified compounds and of interferons, nelfinavir, and lopinavir because of their reported anti-coronavirus activities in terms of cytopathic effect inhibition, viral yield reduction, and plaque reduction assays in Biosafety Level-3 laboratory. RESULTS Ten compounds were identified as primary hits in high-throughput screening. Only mycophenolic acid exhibited low EC50 and high selectivity index. Additionally, ribavirin and interferons also exhibited in-vitro anti-MERS-CoV activity. The serum concentrations achievable at therapeutic doses of mycophenolic acid and interferon-β1b were 60-300 and 3-4 times higher than the concentrations at which in-vitro anti-MERS-CoV activities were demonstrated, whereas that of ribavirin was ∼2 times lower. Combination of mycophenolic acid and interferon-β1b lowered the EC50 of each drug by 1-3 times. CONCLUSIONS Interferon-β1b with mycophenolic acid should be considered in treatment trials of MERS.
Collapse
Affiliation(s)
- Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sebastian L, Desai A, Yogeeswari P, Sriram D, Madhusudana SN, Ravi V. Combination of N-methylisatin-β-thiosemicarbazone derivative (SCH16) with ribavirin and mycophenolic acid potentiates the antiviral activity of SCH16 against Japanese encephalitis virus in vitro. Lett Appl Microbiol 2012; 55:234-9. [PMID: 22738253 DOI: 10.1111/j.1472-765x.2012.03282.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate the drug to drug interaction of N-methylisatin-β-thiosemicarbazone (MIBT) derivative (SCH16) with ribavirin, mycophenolic acid and pentoxifylline against Japanese encephalitis virus in vitro. Our earlier studies have reported significant antiviral activity of these compounds against Japanese encephalitis virus in vitro and in vivo. METHODS AND RESULTS An in vitro drug to drug combination analysis was carried out to investigate whether or not the direct antiviral effect shown by the individual MIBT derivative could be effectively increased when lower concentrations of two compounds in combination were used. The results of this study showed that the combination of MIBT derivative (SCH16) with ribavirin or mycophenolic acid significantly enhanced the antiviral activity of SCH16 against JEV in vitro. In contrast, the combination of SCH16 and pentoxifylline resulted in antagonism. CONCLUSION The antiviral activity showed by SCH16 was enhanced in the presence of ribavirin and mycophenolic acid. SIGNIFICANCE AND IMPACT OF THE STUDY Studying the synergistic/additive interaction of the compounds in combination would help in lowering the effective concentration so as to overcome the concern of toxicity.
Collapse
Affiliation(s)
- L Sebastian
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | |
Collapse
|
34
|
Mycophenolate mofetil inhibits hepatitis C virus replication in human hepatic cells. Virus Res 2012; 168:33-40. [PMID: 22728816 DOI: 10.1016/j.virusres.2012.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection is the most common indication for liver transplantation and the major cause of graft failure. A widely used immunosuppressant, cyclosporine A (CsA), for people who receive organ transplantation, has been recognized to have the ability to inhibit HCV replication both in vivo and in vitro. In this study, we investigated the effects of several other immunosuppressants, including mycophenolate mofetil (MMF), rapamycin and FK506, on HCV replication in human hepatic cells. MMF treatment of hepatic cells before or during HCV infection significantly suppressed full cycle viral replication, as evidenced by decreased expression of HCV RNA, protein and production of infectious virus. In contrast, rapamycin and FK506 had little effect on HCV replication. Investigation of the mechanism(s) disclosed that the inhibition of HCV replication by MMF was mainly due to its depletion of guanosine, a purine nucleoside crucial for synthesis of guanosine triphosphate, which is required for HCV RNA replication. The supplement of exogenous guanosine could reverse most of anti-HCV effect of mycophenolate mofetil. These data indicate that MMF, through the depletion of guanosine, inhibits full cycle HCV JFH-1 replication in human hepatic cells. It is of interest to further determine whether MMF is indeed beneficial for HCV-infected transplant recipients in future clinical studies.
Collapse
|
35
|
Abstract
Japanese encephalitis (JE) is a significant human health concern in Asia, Indonesia and parts of Australia with more than 3 billion people potentially at risk of infection with Japanese encephalitis virus (JEV), the causative agent of JE. Given the risk to human health and the theoretical potential for JEV use as a bioweapon, the development of safe and effective vaccines to prevent JEV infection is vital for preserving human health. The development of vaccines for JE began in the 1940s with formalin-inactivated mouse brain-derived vaccines. These vaccines have been shown to induce a protective immune response and to be very effective. Mouse brain-derived vaccines were still in use until May 2011 when the last lots of the BIKEN(®) JE-VAX(®) expired. Development of modern JE vaccines utilizes cell culture-derived viruses and improvements in manufacturing processes as well as removal of potential allergens or toxins have significantly improved vaccine safety. China has developed a live-attenuated vaccine that has proven to induce protective immunity following a single inoculation. In addition, a chimeric vaccine virus incorporating the prM and E structural proteins derived from the live-attenuated JE vaccine into the live-attenuated yellow fever 17D vaccine virus backbone is currently in clinical trials. In this article, we provide a summary of JE vaccine development and on-going clinical trials. We also discuss the potential risk of JEV as a bioweapon with a focus on virus sustainability if used as a weapon.
Collapse
|
36
|
Tremblay-Létourneau M, Despins S, Bougie I, Bisaillon M. Virtual high-throughput screening identifies mycophenolic acid as a novel RNA capping inhibitor. PLoS One 2011; 6:e24806. [PMID: 21935470 PMCID: PMC3174198 DOI: 10.1371/journal.pone.0024806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/18/2011] [Indexed: 12/25/2022] Open
Abstract
The RNA guanylyltransferase (GTase) is involved in the synthesis of the m7Gppp-RNA cap structure found at the 5′ end of eukaryotic mRNAs. GTases are members of the covalent nucleotidyl transferase superfamily, which also includes DNA and RNA ligases. GTases catalyze a two-step reaction in which they initially utilize GTP as a substrate to form a covalent enzyme-GMP intermediate. The GMP moiety is then transferred to the diphosphate end of the RNA transcript in the second step of the reaction to form the Gppp-RNA structure. In the current study, we used a combination of virtual database screening, homology modeling, and biochemical assays to search for novel GTase inhibitors. Using this approach, we demonstrate that mycophenolic acid (MPA) can inhibit the GTase reaction by preventing the catalytic transfer of the GMP moiety onto an acceptor RNA. As such, MPA represents a novel type of inhibitor against RNA guanylyltransferases that inhibits the second step of the catalytic reaction. Moreover, we show that the addition of MPA to S. cerevisiae cells leads to a reduction of capped mRNAs. Finally, biochemical assays also demonstrate that MPA can inhibit DNA ligases through inhibition of the second step of the reaction. The biological implications of these findings for the MPA-mediated inhibition of members of the covalent nucleotidyl superfamily are discussed.
Collapse
Affiliation(s)
- Maude Tremblay-Létourneau
- RNA Group, Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Simon Despins
- RNA Group, Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Isabelle Bougie
- RNA Group, Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Bisaillon
- RNA Group, Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|