1
|
Wang N, Zhu S, Chen S, Zou J, Zeng P, Tan S. Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms. Rev Neurosci 2025:revneuro-2024-0147. [PMID: 39829004 DOI: 10.1515/revneuro-2024-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Depression is a common mental disorder characterized by a high prevalence and significant adverse effects, making the searching for effective interventions an urgent priority. In recent years, physical activity (PA) has increasingly been recognized as a standard adjunctive treatment for mental disorders owing to its low cost, easy application, and high efficiency. Epidemiological data shows positive preventive and therapeutic effects of PA on mental illnesses such as depression. This article systematically describes the prophylactic and therapeutic effects of PA on depression and its biological basis. A comprehensive literature analysis reveals that PA significantly improves depressive symptoms by upregulating the expression of "exerkines" such as irisin, adiponectin, and BDNF to positively impacting neuropsychiatric conditions. In particular, lactate could also play a critical role in the ameliorating effects of PA on depression due to the findings about protein lactylation as a novel protein post-transcriptional modification. The literature also suggests that in terms of brain structure, PA may improve hippocampal volume, basal ganglia (neostriatum, caudate-crustal nucleus) and PFC density in patients with MDD. In summary, this study elucidates the multifaceted positive effects of PA on depression and its potential biological mechanisms with a particular emphasis on the roles of various exerkines. Future research may further investigate the effects of different types, intensities, and durations of PA on depression, as well as how to better integrate PA interventions into existing treatment strategies to achieve optimal outcomes in mental health interventions.
Collapse
Affiliation(s)
- Nan Wang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shanshan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shuyang Chen
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| |
Collapse
|
2
|
Gao S, Lu J, Gu Y, Zhang Y, Wang C, Gao F, Dai Z, Xu S, Zhang J, Yang Y, Lei H. Revealing the Mechanism of Hemerocallis citrina Baroni in Depression Treatment Through Integrated Network Pharmacology and Transcriptomic Analysis. Pharmaceuticals (Basel) 2024; 17:1704. [PMID: 39770546 PMCID: PMC11677347 DOI: 10.3390/ph17121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Hemerocallis citrina Baroni (HCB) is a traditional herb for the treatment of depression in China. However, the active constituents and the underlying mechanisms of its antidepressant effects remain unclear. The aim of this study was to identify the bioactive constituents of HCB and elucidate its underlying mechanism for the treatment of depression. Methods: The constituents of HCB were systematically analyzed using UHPLC-Q-Orbitrap HRMS. Its antidepressant effect was evaluated by chronic unpredictable mild stress (CUMS)-induced depression. The mechanism of HCB in treating depression was investigated through network pharmacology and molecular docking. Subsequently, its potential mechanism for the treatment of depression was carried out by RNA sequencing. Finally, the mechanism was further verified by Western blot. Results: A total of 62 chemical constituents were identified from HCB using UHPLC-Q-Orbitrap HRMS, including 17 flavonoids, 11 anthraquinones, 11 alkaloids, 10 caffeoylquinic acid derivatives, five phenolic acids, five triterpenoids, and three phenylethanosides, 13 of which were identified as potential active constituents targeting 49 depression-associated proteins. Furthermore, HCB was found to significantly reduce cognitive impairment, anxiety-like behavior, and anhedonia-like behavior. The expression levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and brain-derived neurotrophic factor (BDNF) were elevated in the hippocampal CA3 region. Results from network pharmacology and transcriptomics indicated that the PI3K/Akt/CREB signaling pathway is essential for the therapeutic effects of HCB on depression. Research in the field of molecular biology has conclusively demonstrated that HCB is associated with an increase in the expression levels of several important proteins. Specifically, there was a notable upregulation of phosphorylated PI3K (p-PI3K) relative to its unphosphorylated form PI3K, as well as an elevation in the ratio of phosphorylated Akt (p-Akt) to total Akt. Additionally, the study observed increased levels of phosphorylated CREB (p-CREB) compared to its unphosphorylated CREB. Conclusions: This study provides compelling evidence that HCB possesses the ability to mitigate the symptoms of depression through its influence on the PI3K/Akt/CREB signaling pathway. HCB could be developed as a promising therapeutic intervention for individuals struggling with depression, offering new avenues for treatment strategies that target this particular signaling mechanism.
Collapse
Affiliation(s)
- Shan Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Yixiao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Cheng Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Shujing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Jindong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Yuqin Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| |
Collapse
|
3
|
Wang Q, Xu Y, Zhu S, Jiang L, Yao L, Yu X, Zhang Y, Jia S, Hong M, Zheng J. Mesenchymal stem cells improve depressive disorder via inhibiting the inflammatory polarization of microglia. J Psychiatr Res 2024; 179:105-116. [PMID: 39270422 DOI: 10.1016/j.jpsychires.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Depressive disorder (DD) ranks among the most prevalent, burdensome, and costly psychiatric conditions globally. It manifests through a range of emotional, cognitive, somatic, and behavioral symptoms. Mesenchymal Stem Cells (MSCs) have garnered significant attention due to their therapeutic potential via immunomodulation in neurological disorders. Our research indicates that MSCs treatment demonstrates a notable effect on a Chronic Unpredictable Mild Stress (CUMS)-induced DD model in mice, surpassing even Fluoxetine in its antidepressant efficacy. MSCs mitigate DD by inhibiting central nervous system inflammation and facilitating the conversion of microglial cells into an Arg1high anti-inflammatory state. The MSCs-derived TGF-β1 is crucial for this Arg1high microglial cell transformation in DD treatment.
Collapse
Affiliation(s)
- Qianqian Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yifan Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sijie Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Longwei Jiang
- Department of Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China; Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Lu Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xuerui Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shaochang Jia
- Department of Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Min Hong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jie Zheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Wang X, Zhang F, Niu L, Yan J, Liu H, Wang D, Hui J, Dai H, Song J, Zhang Z. High-frequency repetitive transcranial magnetic stimulation improves depressive-like behaviors in CUMS-induced rats by modulating astrocyte GLT-1 to reduce glutamate toxicity. J Affect Disord 2024; 348:265-274. [PMID: 38159655 DOI: 10.1016/j.jad.2023.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/20/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Impaired glutamate recycling plays an important role in the pathophysiology of depression, and it has been demonstrated that glutamate transporter-1 (GLT-1) on astrocytes is involved in glutamate uptake. Studies have shown that repetitive transcranial magnetic stimulation (rTMS) is effective in treating depression, however, the exact mechanism of rTMS treatment remains unclear. Here, we used a chronic unpredictable mild stress (CUMS) protocol to induce depression-like behaviors in rats followed by rTMS treatment. Behavioral assessment was primarily through SPT, FST, OFT and body weight. Histological analysis focused on GFAP and GLT-1 expression, synaptic plasticity, apoptosis and PI3K/Akt/CREB pathway-related proteins. The results showed that rTMS treatment increased sucrose preference, improved locomotor activity, shortened immobility time as well as increased body weight. And rTMS intervention reversed the elevated glutamate concentration in the hippocampus of CUMS rats using an ELISA kit. Moreover, rTMS ameliorated the reduction in GFAP and GLT-1 expression, alleviated the decrease in BDNF, PSD95 and synapsin-1 expression, also reversed the expression levels of BAX and Bcl2 in the hippocampus of CUMS-induced rats. Moreover, rTMS also increased the protein phosphorylation level of PI3K/Akt/CREB pathway. These results suggest that rTMS treatment ameliorates depression-like behaviors in the rat model by reversing the reduction of GLT-1 on astrocytes and reducing glutamate accumulation in the synaptic cleft, which in turn ameliorates synaptic plasticity damage and neuronal apoptosis. The regulation of GLT-1 by rTMS may be through the PI3K/Akt/CREB pathway.
Collapse
Affiliation(s)
- Xiaonan Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Le Niu
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China; The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Junni Yan
- Nanjing Brain Hospital, Nanjing, 210029, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Di Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Juan Hui
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Haiyue Dai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China.
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China.
| |
Collapse
|
5
|
Zhao Y, Xu D, Wang J, Zhou D, Liu A, Sun Y, Yuan Y, Li J, Guo W. The pharmacological mechanism of chaihu-jia-longgu-muli-tang for treating depression: integrated meta-analysis and network pharmacology analysis. Front Pharmacol 2023; 14:1257617. [PMID: 37808199 PMCID: PMC10551636 DOI: 10.3389/fphar.2023.1257617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Aim: Chaihu-jia-Longgu-Muli-tang (CLM) is derived from "Shang Han Lun" and is traditionally prescribed for treating depression. However, there is still a lack of evidence for its antidepressant effects, and the underlying mechanism is also unclear. This study aimed to assess clinical evidence on the efficacy of CLM in patients with depression using a meta-analysis and to explore its underlying antidepressant molecular mechanisms via network pharmacology. Methods: Eight open databases were searched for randomized controlled trials (RCTs) comparing the effects of CLM alone or combined with serotonin-norepinephrine reuptake inhibitors (SNRIs) and selective serotonin reuptake inhibitors (SSRIs) in patients with depression, evaluating the total effective rate of the treatment group (CLM alone or combined with SSRIs/SNRIs) and the control group (SNRIs or SSRIs), and comparing changes in depression scale, anxiety scale, sleep scale, inflammation indicators and adverse effects. Subsequently, the active ingredients and target genes of CLM were screened through six databases. Then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein-protein interaction (PPI) network and topology analysis were performed. Finally, Molecular docking was applied to evaluate the binding affinity between components and predicted targets. Results: Twenty-four RCTs with a total of 2,382 patients were included. For the efficacy of antidepression and adverse effects, whether CLM alone or in combination with SSRIs/SNRIs, the treatment group has no inferior to that of the control group. Additionally, the intervention of CLM + SSRI significantly improved the symptoms of anxiety and insomnia, and reduced serum IL-6 and TNF-α levels. For network pharmacology, a total of 129 compounds and 416 intersection targets in CLM were retrieved. The interaction pathway between CLM and depression is mainly enriched in PI3K-Akt, JAK-STAT, and NF-κB signaling pathway, PIK3R1, MAPK3, and AKT1 may be the potential targets of Stigmasterol, β-stiosterol, coumestrol. Conclusion: Compared to SSRIs/SNRIs alone, CLM is more effective and safe in treating depression. It not only significantly alleviates depressive mood, but improves symptoms such as anxiety and insomnia, with fewer side effects, especially in combination with SSRI. Its antidepressant mechanism may be correlated with the regulation of the PI3K/Akt signaling pathway and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Yang Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Xu
- Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Taicang, China
- Taicang Hospital of Traditional Chinese Medicine, Taicang, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan Zhou
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Anlan Liu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Sun
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Yuan
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianxiang Li
- School of Chinese Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifeng Guo
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Luo Y, Yang X, Du Y, Dou Y, Cui W, Li J, Wei J, Ma X, Lin Y. DNA Tetrahedra-Based Delivery of MicroRNA-22 to Reduce Depressive Symptoms in Mice. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37321225 DOI: 10.1021/acsami.3c03054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Major depressive disorder (MDD) is a common illness with an increasing lifetime prevalence. Thus, an increasing number of studies have investigated the association between MDD and microRNAs (miRNAs), which are a novel approach for treating depression. However, the therapeutic potential of miRNA-based strategies has several limitations. To overcome these limitations, DNA tetrahedra (TDNs) have been used as piggyback materials. In this study, we successfully used TDNs as carriers of miRNA-22-3p (miR-22-3p) and synthesized a novel DNA nanocomplex (TDN-miR-22-3p), which was used in a lipopolysaccharide (LPS)-induced depression cell model. The results suggest that miR-22-3p may regulate inflammation by regulating phosphatase and tensin homologue (PTEN), an important regulatory molecule in the PI3K/AKT pathway, and downregulating the expression of NLRP3. We further validated the role of TDN-miR-22-3p in vivo using an LPS-induced animal model of depression. The results indicate that it ameliorated depression-like behavior and attenuated the expression of inflammation-related factors in mice. This study demonstrates the establishment of a straightforward and efficacious miRNA delivery system and the potential of TDNs as therapeutic vectors and tools for mechanistic studies. To the best of our knowledge, this is the first study to use TDNs in combination with miRNAs to treat depression.
Collapse
Affiliation(s)
- Yuling Luo
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Du
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yikai Dou
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Jiajie Li
- Department of Cosmetic and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinxue Wei
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
8
|
Therapeutic Implications of microRNAs in Depressive Disorders: A Review. Int J Mol Sci 2022; 23:ijms232113530. [PMID: 36362315 PMCID: PMC9658840 DOI: 10.3390/ijms232113530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs are hidden players in complex psychophysical phenomena such as depression and anxiety related disorders though the activation and deactivation of multiple proteins in signaling cascades. Depression is classified as a mood disorder and described as feelings of sadness, loss, or anger that interfere with a person’s everyday activities. In this review, we have focused on exploration of the significant role of miRNAs in depression by affecting associated target proteins (cellular and synaptic) and their signaling pathways which can be controlled by the attachment of miRNAs at transcriptional and translational levels. Moreover, miRNAs have potential role as biomarkers and may help to cure depression through involvement and interactions with multiple pharmacological and physiological therapies. Taken together, miRNAs might be considered as promising novel therapy targets themselves and may interfere with currently available antidepressant treatments.
Collapse
|
9
|
Jeoung SW, Park HS, Ryoo ZY, Cho DH, Lee HS, Ryu HY. SUMOylation and Major Depressive Disorder. Int J Mol Sci 2022; 23:8023. [PMID: 35887370 PMCID: PMC9316168 DOI: 10.3390/ijms23148023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Since the discovery of the small ubiquitin-like modifier (SUMO) protein in 1995, SUMOylation has been considered a crucial post-translational modification in diverse cellular functions. In neurons, SUMOylation has various roles ranging from managing synaptic transmitter release to maintaining mitochondrial integrity and determining neuronal health. It has been discovered that neuronal dysfunction is a key factor in the development of major depressive disorder (MDD). PubMed and Google Scholar databases were searched with keywords such as 'SUMO', 'neuronal plasticity', and 'depression' to obtain relevant scientific literature. Here, we provide an overview of recent studies demonstrating the role of SUMOylation in maintaining neuronal function in participants suffering from MDD.
Collapse
Affiliation(s)
- Seok-Won Jeoung
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 50834, Korea;
| | - Zae Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
10
|
Shi Y, Chen M, Zhao Z, Pan J, Huang S. Network Pharmacology and Molecular Docking Analyses of Mechanisms Underlying Effects of the Cyperi Rhizoma- Chuanxiong Rhizoma Herb Pair on Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5704578. [PMID: 34976096 PMCID: PMC8716227 DOI: 10.1155/2021/5704578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We aimed to investigate the mechanisms underlying the effects of the Cyperi Rhizoma-Chuanxiong Rhizoma herb pair (CCHP) against depression using a network pharmacology approach. METHODS A network pharmacology approach, including screening of active compounds, target prediction, construction of a protein-protein interaction (PPI) network, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA), were used to explore the mechanisms of CCHP against depression. RESULTS Twenty-six active compounds and 315 and 207 targets of CCHP and depression, respectively, were identified. The PPI network suggested that AKT1, IL-6, TP53, DRD2, MAPK1, NR3C1, TNF, etc., were core targets. GO enrichment analyses showed that positive regulation of transcription from RNA polymerase II promoter, plasma membrane, and protein binding were of great significance. Neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, dopaminergic synapse, and mTOR signaling pathway were important pathways. Molecular docking results revealed good binding affinities for the core compounds and core targets. MD simulations and MMPBSA validated that quercetin can stably bind to 6hhi. CONCLUSIONS The effects of CCHP against depression involve multiple components, targets, and pathways, and these findings will promote further research on and clinical application of CCHP.
Collapse
Affiliation(s)
- Yanan Shi
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingqi Chen
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zehua Zhao
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijing Huang
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
11
|
Gui S, Liu Y, Pu J, Song X, Chen X, Chen W, Zhong X, Wang H, Liu L, Xie P. Comparative analysis of hippocampal transcriptional features between major depressive disorder patients and animal models. J Affect Disord 2021; 293:19-28. [PMID: 34161882 DOI: 10.1016/j.jad.2021.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a psychiatric disorder caused by various etiologies. Chronic stress models are used to simulate the heterogeneous pathogenic processes of depression. However, few studies have compared transcriptional features between stress models and MDD patients. METHODS We generated hippocampal transcriptional profiles of the chronic social defeat model by RNA sequencing and downloaded raw data of the same brain region from public databases of the chronic unpredictable mild stress model, the learned helplessness model, and MDD patients. Differential expression and gene co-expression analyses were integrated to compare transcriptional features between stress models and MDD patients. RESULTS Each stress model shared 11.4% to 16.3% of differentially expressed genes with MDD patients. Functional analysis at the gene expression level identified altered ensheathment of neurons in both stress models and MDD patients. At the gene network level, each stress model shared 20.9% to 41.6% of co-expressed genes with MDD patients. Functional analysis based on these genes found that axon guidance signaling is the most significantly enriched pathway that was shared by all stress models and MDD patients. LIMITATIONS This study was limited by considering only a single brain region and a single sex of stress model animals. CONCLUSIONS Our results show that hippocampal transcriptional features of stress models partially overlap with those of MDD patients. The canonical pathways of MDD patients, including ensheathment of neurons, PTEN signaling, and axonal guidance signaling, were shared with all stress models. Our findings provide further clues to understand the molecular mechanisms of depression.
Collapse
Affiliation(s)
- Siwen Gui
- College of Biomedical Engineering, Chongqing Medical University, Chongqing 40016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing 40016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xuemian Song
- College of Biomedical Engineering, Chongqing Medical University, Chongqing 40016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing 40016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaogang Zhong
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Haiyang Wang
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Lanxiang Liu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
McCallum RT, Perreault ML. Glycogen Synthase Kinase-3: A Focal Point for Advancing Pathogenic Inflammation in Depression. Cells 2021; 10:cells10092270. [PMID: 34571919 PMCID: PMC8470361 DOI: 10.3390/cells10092270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence indicates that the host immune response has a monumental role in the etiology of major depressive disorder (MDD), motivating the development of the inflammatory hypothesis of depression. Central to the involvement of chronic inflammation in MDD is a wide range of signaling deficits induced by the excessive secretion of pro-inflammatory cytokines and imbalanced T cell differentiation. Such signaling deficits include the glutamatergic, cholinergic, insulin, and neurotrophin systems, which work in concert to initiate and advance the neuropathology. Fundamental to the communication between such systems is the protein kinase glycogen synthase kinase-3 (GSK-3), a multifaceted protein critically linked to the etiology of MDD and an emerging target to treat pathogenic inflammation. Here, a consolidated overview of the widespread multi-system involvement of GSK-3 in contributing to the neuropathology of MDD will be discussed, with the feed-forward mechanistic links between all major neuronal signaling pathways highlighted.
Collapse
Affiliation(s)
- Ryan T. McCallum
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Melissa L. Perreault
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 52013)
| |
Collapse
|
13
|
Zhang S, Lu Y, Chen W, Shi W, Zhao Q, Zhao J, Li L. Network Pharmacology and Experimental Evidence: PI3K/AKT Signaling Pathway is Involved in the Antidepressive Roles of Chaihu Shugan San. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3425-3441. [PMID: 34385814 PMCID: PMC8353879 DOI: 10.2147/dddt.s315060] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 01/09/2023]
Abstract
Objective Chaihu Shugan San (CSS) is a common antidepressant prescription in traditional Chinese medicines. However, its active ingredients and mechanisms are unknown. The aim of this study was to explore the potential active ingredients and pharmacological mechanisms of CSS for the treatment of major depressive disorder (MDD). Methods Active compounds in CSS were screened using the Traditional Chinese Medicine Systems Pharmacology database. Compound-related targets were retrieved using the SwissTargetPrediction database. MDD-related targets were determined using DisGeNET, Therapeutic Target Database and DrugBank databases. The common targets of active compounds in CSS and MDD were retained to construct a compound-MDD target network. Then, functional enrichment analysis and protein–protein interaction analysis were performed to identify hub targets and explore the underlying molecular mechanisms. Finally, hub-targeted genes and pathways were validated by Western blotting and immunofluorescence using chronic unpredictable mild stress (CUMS) mice with or without CSS treatment. The affinities between the active compounds in CSS and hub-targeted genes were evaluated by molecular docking. Results Network pharmacology analysis revealed 24 potential targets for treatment of MDD by CSS. Functional enrichment analysis showed that PI3K/AKT signaling pathway was likely to be evidently affected by CSS in the treatment of MDD. In vivo experiments showed that CSS could improve depressive-like behaviors and promote neurogenesis in CUMS mice. Furthermore, CSS could increase phosphorylated (p) PI3K/PI3K and pAKT/AKT levels and decrease the pGSK3β/GSK3β level in the hippocampus of CUMS mice. The active compounds mainly included quercetin and luteolin, which showed good docking scores targeting the PI3K protein. Conclusion This network pharmacological and experimental study highlights that the PI3K/AKT pathway is the potential mechanism by which CSS is involved in MDD treatment. Quercetin, luteolin, and kaempferol are probable active compounds in CSS, and these results might provide valuable guidance for further studies of MDD treatment.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Wei Shi
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Qian Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.,Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Li Li
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.,Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, People's Republic of China
| |
Collapse
|
14
|
Bu T, Qiao Z, Wang W, Yang X, Zhou J, Chen L, Yang J, Xu J, Ji Y, Wang Y, Zhang W, Yang Y, Qiu X, Yu Y. Diagnostic Biomarker Hsa_circ_0126218 and Functioning Prediction in Peripheral Blood Monocular Cells of Female Patients With Major Depressive Disorder. Front Cell Dev Biol 2021; 9:651803. [PMID: 34095115 PMCID: PMC8174117 DOI: 10.3389/fcell.2021.651803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Although major depressive diroder (MDD) has brought huge burden and challenges to society globally, effective and accurate diagnoses and treatments remain inadequate. The pathogenesis that for women are more likely to suffer from depression than men needs to be excavated as well. The function of circRNAs in pathological process of depression has not been widely investigated. This study aims to explore potential diagnostic biomarker circRNA of female patients with MDD and to investigate its role in pathogenesis. Methods First, an expression profile of circRNAs in the peripheral blood monocular cells of MDD patients and healthy peripherals were established based on high-throughput sequencing analysis. In addition, the top 10 differentially expressed circRNAs were quantified by quantitative real-time PCR to explore diagnostic biomarkers. To further investigate the function of biomarkers in the pathogenesis of MDD, bioinformatics analysis on downstream target genes of the biomarkers was carried out. Results There is a mass of dysregulated circRNAs in PBMCs between female MDD patients and healthy controls. Among the top 10 differentially expressed circRNAs, hsa_circ_0126218 is more feasible as a diagnostic biomarker. The expression level of hsa_circ_0126218 displayed upregulation in patients with MDD and the area under the operating characteristic curve of hsa_circ_0126218 was 0.801 (95% CI 0.7226–0.8791, p < 0.0001). To explain the competing endogenous RNA role of hsa_circ_0126218 in the pathogenesis of female MDD, a hsa_circ_0126218-miRNA-mRNA network was established. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses stated that some of the enriched pathways downstream of hsa_circ_0126218 are closely related to MDD. Moreover, we established a protein-protein network to further screen out the hub genes (PIK3CA, PTEN, MAPK1, CDC42, Lyn, YES1, EPHB2, SMAD2, STAT1, and ILK). The function of hsa_circ_0126218 was refined by constructing a verified circRNA-predicted miRNA-hub gene subnetwork. Conclusion hsa_circ_0126218 can be considered as a new female MDD biomarker, and the pathogenesis of female MDD by the downstream regulation of hsa_circ_0126218 has been predicted. These findings may help further improve the early detection, effective diagnosis, convenient monitoring of complications, precise treatment, and timely recurrence prevention of depression.
Collapse
Affiliation(s)
- Tianyi Bu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Zhengxue Qiao
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Wenbo Wang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Xiuxian Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Jiawei Zhou
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Lu Chen
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Jiarun Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Jia Xu
- Psychotherapy Department, The First Psychiatric Hospital of Harbin, Harbin, China
| | - Yanping Ji
- Department of Nursing, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yini Wang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Wenxin Zhang
- Medical Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Xiaohui Qiu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Yunmiao Yu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Zhou XM, Liu CY, Liu YY, Ma QY, Zhao X, Jiang YM, Li XJ, Chen JX. Xiaoyaosan Alleviates Hippocampal Glutamate-Induced Toxicity in the CUMS Rats via NR2B and PI3K/Akt Signaling Pathway. Front Pharmacol 2021; 12:586788. [PMID: 33912031 PMCID: PMC8075411 DOI: 10.3389/fphar.2021.586788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/04/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose: It is revealed that Xiaoyaosan could reduce glutamate level in the hippocampus of depressed rats, whose metabolism leads to the pathophysiology of depression. However, the underlying mechanism remains unclear. This study aims to explore the effect of Xiaoyaosan on glutamate metabolism, and how to regulate the excitatory injury caused by glutamate. Methods: Rats were induced by chronic unpredictable mild stress, then divided into control, vehicle (distilled water), Xiaoyaosan, fluoxetine, vehicle (DMSO), Xiaoyaosan + Ly294002 and Ly294002 groups. Ly294002 was microinjected into the lateral ventricular catheterization at 5 mM. Xiaoyaosan (2.224 g/kg) and fluoxetine (2.0 mg/kg) were orally administered for three weeks. The open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT) were used to assess depressive behavior. The glutamate and corticosterone (CORT) levels were detected by ELISA. Western blot, immunochemistry or immunofluorescence were used to detect the expressions of NR2B, MAP2, PI3K and P-AKT/Akt in the hippocampal CA1 region. The mRNA level of MAP2, NR2B and PI3K were detected by RT-qPCR. Results: Compared to the rats in control group, body weight and food intake of CUMS rats was decreased. CUMS rats also showed depression-like behavior as well as down regulate the NR2B and PI3K/Akt signaling pathway. Xiaoyaosan treatments could increase food intake and body weight as well as improved time spent in the central area, total distance traveled in the OFT. Xiaoyaosan could also decrease the immobility time as well as increase the sucrose preference in SPT. Moreover, xiaoyaosan decreased the level of glutamate in the hippocampal CA1 region and serum CORT in CUMS rats. Furthermore, xiaoyaosan improved the expression of MAP2 as well as increased the expression of NR2B, PI3K and the P-AKT/AKT ratio in the hippocampal CA1 region in the CUMS rats. Conclusion: Xiaoyaosan treatment can exert the antidepressant effect by rescuing hippocampal neurons loss induced by the glutamate-mediated excitotoxicity in CUMS rats. The underlying pathway maybe through NR2B and PI3K/Akt signaling pathways. These results may suggest the potential of Xiaoyaosan in preventing the development of depression.
Collapse
Affiliation(s)
- Xue-Ming Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Chen-Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xin Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - You-Ming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Juan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| |
Collapse
|
16
|
PTEN in prefrontal cortex is essential in regulating depression-like behaviors in mice. Transl Psychiatry 2021; 11:185. [PMID: 33771972 PMCID: PMC7998021 DOI: 10.1038/s41398-021-01312-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is an environmental risk factor for depression and causes neuronal atrophy in the prefrontal cortex (PFC) and other brain regions. It is still unclear about the molecular mechanism underlying the behavioral alterations and neuronal atrophy induced by chronic stress. We here report that phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a mediator for chronic stress-induced depression-like behaviors and neuronal atrophy in mice. One-month chronic restraint stress (CRS) up-regulated PTEN signaling pathway in the PFC of mice as indicated by increasing levels of PTEN, p-MEK, and p-ERK but decreasing levels of p-AKT. Over-expression of Pten in the PFC led to an increase of depression-like behaviors, whereas genetic inactivation or knockdown of Pten in the PFC prevented the CRS-induced depression-like behaviors. In addition, systemic administration of PTEN inhibitor was also able to prevent these behaviors. Cellular examination showed that Pten over-expression or the CRS treatment resulted in PFC neuron atrophy, and this atrophy was blocked by genetic inactivation of Pten or systemic administration of PTEN inhibitor. Furthermore, possible causal link between Pten and glucocorticoids was examined. In chronic dexamethasone (Dex, a glucocorticoid agonist) treatment-induced depression model, increased PTEN levels were observed, and depression-like behaviors and PFC neuron atrophy were attenuated by the administration of PTEN inhibitor. Our results indicate that PTEN serves as a key mediator in chronic stress-induced neuron atrophy as well as depression-like behaviors, providing molecular evidence supporting the synaptic plasticity theory of depression.
Collapse
|
17
|
Pten is a key intrinsic factor regulating raphe 5-HT neuronal plasticity and depressive behaviors in mice. Transl Psychiatry 2021; 11:186. [PMID: 33771970 PMCID: PMC7998026 DOI: 10.1038/s41398-021-01303-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Serotonin (5-HT)-based antidepressants, selective serotonin reuptake inhibitors (SSRIs) aim to enhance serotonergic activity by blocking its reuptake. We propose PTEN as a target for an alternative approach for regulating 5-HT neuron activity in the brain and depressive behaviors. We show that PTEN is elevated in central 5-HT neurons in the raphe nucleus by chronic stress in mice, and selective deletion of Pten in the 5-HT neurons induces its structural plasticity shown by increases of dendritic branching and density of PSD95-positive puncta in the dendrites. 5-HT levels are elevated and electrical stimulation of raphe neurons evokes more 5-HT release in the brain of condition knockout (cKO) mice with Pten-deficient 5-HT neurons. In addition, the 5-HT neurons remain normal electrophysiological properties but have increased excitatory synaptic inputs. Single-cell RNA sequencing revealed gene transcript alterations that may underlay morphological and functional changes in Pten-deficient 5-HT neurons. Finally, Pten cKO mice and wild-type mice treated with systemic application of PTEN inhibitor display reduced depression-like behaviors. Thus, PTEN is an intrinsic regulator of 5-HT neuron activity, representing a novel therapeutic strategy for producing antidepressant action.
Collapse
|
18
|
Geng R, Huang X. Identification of major depressive disorder disease-related genes and functional pathways based on system dynamic changes of network connectivity. BMC Med Genomics 2021; 14:55. [PMID: 33622334 PMCID: PMC7903654 DOI: 10.1186/s12920-021-00908-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading psychiatric disorder that involves complex abnormal biological functions and neural networks. This study aimed to compare the changes in the network connectivity of different brain tissues under different pathological conditions, analyzed the biological pathways and genes that are significantly related to disease progression, and further predicted the potential therapeutic drug targets. METHODS Expression of differentially expressed genes (DEGs) were analyzed with postmortem cingulate cortex (ACC) and prefrontal cortex (PFC) mRNA expression profile datasets downloaded from the Gene Expression Omnibus (GEO) database, including 76 MDD patients and 76 healthy subjects in ACC and 63 MDD patients and 63 healthy subjects in PFC. The co-expression network construction was based on system network analysis. The function of the genes was annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Human Protein Reference Database (HPRD, http://www.hprd.org/ ) was used for gene interaction relationship mapping. RESULTS We filtered 586 DEGs in ACC and 616 DEGs in PFC for further analysis. By constructing the co-expression network, we found that the gene connectivity was significantly reduced under disease conditions (P = 0.04 in PFC and P = 1.227e-09 in ACC). Crosstalk analysis showed that CD19, PTDSS2 and NDST2 were significantly differentially expressed in ACC and PFC of MDD patients. Among them, CD19 and PTDSS2 have been targeted by several drugs in the Drugbank database. KEGG pathway analysis demonstrated that the function of CD19 and PTDSS2 were enriched with the pathway of Glycerophospholipid metabolism and T cell receptor signaling pathway. CONCLUSION Co-expression network and tissue comparing analysis can identify signaling pathways and cross talk genes related to MDD, which may provide novel insight for understanding the molecular mechanisms of MDD.
Collapse
Affiliation(s)
- Ruijie Geng
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Psychological Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, China
| | - Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Psychological Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, China.
| |
Collapse
|
19
|
Sato K. Why is lithium effective in alleviating bipolar disorder? Med Hypotheses 2021; 147:110484. [PMID: 33444905 DOI: 10.1016/j.mehy.2021.110484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/09/2020] [Accepted: 01/02/2021] [Indexed: 11/28/2022]
Abstract
Bipolar disorder (BD) is a unique disorder where the same patient exhibits depression and mania, states with polar opposite mood symptoms. Lithium is an alkali metal that is widely used for the treatment of BD. However, it is largely unknown why lithium can stabilize mood. Lithium is known to inhibit glycogen synthase kinase-3β (GSK3 β). Interestingly, both in the glutamatergic system and GABAergic system, active GSK3 β decreases neuronal excitability, whereas inhibition of GSK3 β increases neuronal excitability, suggesting that activation of GSK3 β leads to depressive mood, and inhibition of GSK3 β leads to manic mood. The activity of GSK3β is regulated by many kinases and a phosphatase, and they are further controlled by several neurotransmitters and signaling molecules. Thus, these complicated control systems might make the swing of GSK3β activity, the swing of GSK3β activity makes the swing of neuronal excitability and finally resulting in the intrinsic swing of mood, usually observed in healthy human. BD is considered that the amplitude of the mood swing is enhanced by many factors. Lithium can dose-dependently decrease the amplitude of the swing of GSK3β activity. In addition, lithium also inhibits K+ channel activation, leading to the elongation of refractory period, resulting in the inhibition of neuronal excitability. Therefore, in depressive mood, lithium can increase neuronal activity via the inhibition of neuronal GSK3beta activity, and in manic mood, lithium can inhibit neuronal excitability via inhibiting K+ channel activation, therefore the amplitude of the mood swing is decreased, i.e. alleviating the depressive state and the manic state, resulting in the normalization of the mood swing.
Collapse
Affiliation(s)
- Kohji Sato
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
20
|
An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol 2020; 198:101906. [PMID: 32905807 DOI: 10.1016/j.pneurobio.2020.101906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.
Collapse
Affiliation(s)
- Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ghazi I Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; College of Applied Medical Sciences, Department of Public Health, King Faisal University, Al-Ahsa, Saudi Arabia; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Markus Rothermel
- European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Chemosensation - AG Neuromodulation, RWTH Aachen University, Aachen, Germany
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
21
|
Schverer M, O'Mahony SM, O’Riordan KJ, Donoso F, Roy BL, Stanton C, Dinan TG, Schellekens H, Cryan JF. Dietary phospholipids: Role in cognitive processes across the lifespan. Neurosci Biobehav Rev 2020; 111:183-193. [DOI: 10.1016/j.neubiorev.2020.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
|
22
|
Miyata S, Kumagaya R, Kakizaki T, Fujihara K, Wakamatsu K, Yanagawa Y. Loss of Glutamate Decarboxylase 67 in Somatostatin-Expressing Neurons Leads to Anxiety-Like Behavior and Alteration in the Akt/GSK3β Signaling Pathway. Front Behav Neurosci 2019; 13:131. [PMID: 31275123 PMCID: PMC6591520 DOI: 10.3389/fnbeh.2019.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder worldwide. Several lines of evidence suggest that the dysfunction of somatostatin (SOM) neurons is associated with the pathophysiology of MDD. Importantly, most SOM neurons are γ-aminobutyric acid (GABA) interneurons. However, whether the dysfunction of GABAergic neurotransmission from SOM neurons contributes to the pathophysiology of MDD remains elusive. To address this issue, we investigated the emotional behaviors and relevant molecular mechanism in mice lacking glutamate decarboxylase 67 (GAD67), an isoform of GABA-synthesizing enzyme, specifically in SOM neurons (SOM-GAD67 mice). The SOM-GAD67 mice exhibited anxiety-like behavior in the open-field test without an effect on locomotor activity. The SOM-GAD67 mice showed depression-like behavior in neither the forced swimming test nor the sucrose preference test. In addition, the ability to form contextual fear memory was normal in the SOM-GAD67 mice. Furthermore, the plasma corticosterone level was normal in the SOM-GAD67 mice both under baseline and stress conditions. The expression ratios of p-AktSer473/Akt and p-GSK3βSer9/GSK3β were decreased in the frontal cortex of SOM-GAD67 mice. Taken together, these data suggest that the loss of GAD67 from SOM neurons may lead to the development of anxiety-like but not depression-like states mediated by modification of Akt/GSK3β activities.
Collapse
Affiliation(s)
- Shigeo Miyata
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Ryota Kumagaya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kazuyuki Fujihara
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kaori Wakamatsu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
23
|
Gao W, Wang W, Peng Y, Deng Z. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metab Brain Dis 2019; 34:485-494. [PMID: 30762138 DOI: 10.1007/s11011-019-0389-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Kaempferol (KFL), the major constituent of various fruits and vegetables, could attenuate oxidaitve stress and inflammation. The aims of the present study were to explore the ameliorative abilities of KFL on the depressive-like behaviors in a chronic social defeat stress (CSDS) mouse model, and to determine the potential mechanisms on oxidative stress, neuroinflammation, and AKT/β-catenin signaling pathway. Three behavioral tests, sucrose preference test (SPT), social interaction test (SIT), and tail suspension test (TST), were used to evaluate the antidepressive effects of KFL in CSDS mice. Activity levels of antioxidant enzyme, superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione s-transferase (GST), and concentrations of malonaldehyde (MDA) and protein carbonylation in the prefrontal cortex were assessed by commercial kits, respectively. Elisa was used to detect the levels of interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α). Q-PCR was used to determine the mRNA level of CD-11b. Furthermore, activity level of AKT/β-catenin signaling in the prefrontal cortex of CSDS mice was investigated by western blot. In addition, LY294002, a PI3-K inhibitor, was used to investigate the role of AKT/β-catenin signaling in the antidepressant effects of KFL. Social defeat stress reduced the bodyweights, sucrose consumptions, social interaction times, and the tail suspension mobility times in mice. CSDS mice were also exhibited remarkablely increased levels in oxidative stress markers, inflammatory mediators, and decreased activity of AKT/β-catenin cascade in the prefrontal cortex, which were reversed by treatment with KFL. Interestingly, LY294002 appeared to partly inhibit the overall KFL-mediated protective effects in the CSDS mice. These results confirmed that KFL exerted antidepressive effects, which might be mediated, at least in part, by enhanced antioxidant abilities and anti-inflammation effects via up-regulation AKT/β-catenin cascade activity in the prefrontal cortex of CSDS mice. Thus, KFL might be a promising, effective, and safe food medicine for depression treatment.
Collapse
Affiliation(s)
- Wenqi Gao
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Wei Wang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Yan Peng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
| | - Zhifang Deng
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
24
|
Barfield ET, Gourley SL. Prefrontal cortical trkB, glucocorticoids, and their interactions in stress and developmental contexts. Neurosci Biobehav Rev 2018; 95:535-558. [PMID: 30477984 PMCID: PMC6392187 DOI: 10.1016/j.neubiorev.2018.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The tropomyosin/tyrosine receptor kinase B (trkB) and glucocorticoid receptor (GR) regulate neuron structure and function and the hormonal stress response. Meanwhile, disruption of trkB and GR activity (e.g., by chronic stress) can perturb neuronal morphology in cortico-limbic regions implicated in stressor-related illnesses like depression. Further, several of the short- and long-term neurobehavioral consequences of stress depend on the developmental timing and context of stressor exposure. We review how the levels and activities of trkB and GR in the prefrontal cortex (PFC) change during development, interact, are modulated by stress, and are implicated in depression. We review evidence that trkB- and GR-mediated signaling events impact the density and morphology of dendritic spines, the primary sites of excitatory synapses in the brain, highlighting effects in adolescents when possible. Finally, we review the role of neurotrophin and glucocorticoid systems in stress-related metaplasticity. We argue that better understanding the long-term effects of developmental stressors on PFC trkB, GR, and related factors may yield insights into risk for chronic, remitting depression and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Molecular and Systems Pharmacology Program, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
25
|
Ramos-Hryb AB, Cunha MP, Pazini FL, Lieberknecht V, Prediger RDS, Kaster MP, Rodrigues ALS. Ursolic acid affords antidepressant-like effects in mice through the activation of PKA, PKC, CAMK-II and MEK1/2. Pharmacol Rep 2017; 69:1240-1246. [PMID: 29128805 DOI: 10.1016/j.pharep.2017.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/25/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ursolic acid has been shown to display antidepressant-like effects in mice through the modulation of monoaminergic systems. In this study, we sought to investigate the involvement of signaling pathways on the antidepressant-like effects of ursolic acid. METHODS Mice were treated orally with ursolic acid (0.1mg/kg) and, 45min later they received the followings inhibitors by intracerebroventricular route: H-89 (PKA inhibitor, 1μg/mouse), KN-62 (CAMK-II inhibitor, 1μg/mouse), chelerythrine (PKC inhibitor, 1μg/mouse), U0126 (MEK1/2 inhibitor, 5μg/mouse), PD98059 (MEK1/2 inhibitor, 5μg/mouse), wortmannin (PI3K irreversible inhibitor, 0.1μg/mouse) or LY294002 (PI3K inhibitor, 10 nmol/mouse). Immobility time of mice was registered in the tail suspension test (TST). RESULTS The anti-immobility effect of ursolic acid in the TST was abolished by the treatment of mice with H-89, KN-62, chelerythrine, U0126 or PD98059, but not with wortmannin or LY294002. CONCLUSIONS These results suggest that activation of PKA, PKC, CAMK-II, MEK1/2 may underlie the antidepressant-like effects of ursolic acid.
Collapse
Affiliation(s)
- Ana B Ramos-Hryb
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vicente Lieberknecht
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Rui D S Prediger
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
26
|
Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol 2016; 26:1885-1899. [PMID: 27836390 DOI: 10.1016/j.euroneuro.2016.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022]
Abstract
Major depressive disorder is the most common psychiatric disorder with lifetime prevalence of up to 20% worldwide. It is responsible for more years lost to disability than any other disorder. Despite the fact that current available antidepressant drugs are safe and effective, they are far from ideal. In addition to the need to administer the drugs for weeks or months to obtain clinical benefit, side effects are still a serious problem. Agmatine is an endogenous polyamine synthesized by the enzyme arginine decarboxylase. It modulates several receptors and is considered as a neuromodulator in the brain. In this review, studies demonstrating the antidepressant effects of agmatine are presented and discussed, as well as, the mechanisms of action related to these effects. Also, the potential beneficial effects of agmatine for the treatment of other neurological disorders are presented. In particular, we provide evidence to encourage future clinical studies investigating agmatine as a novel antidepressant drug.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil.
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
27
|
Liu X, Li J, Zheng P, Zhao X, Zhou C, Hu C, Hou X, Wang H, Xie P, Xu G. Plasma lipidomics reveals potential lipid markers of major depressive disorder. Anal Bioanal Chem 2016; 408:6497-507. [PMID: 27457104 DOI: 10.1007/s00216-016-9768-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Major depressive disorder (MDD) is a grave debilitating mental disease with a high incidence and severely impairs quality of life. Therefore, its physiopathological basis study and diagnostic biomarker discovery are extremely valuable. In this study, a non-targeted lipidomics strategy using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to reveal differential lipids between MDD (n = 60) and healthy controls (HCs, n = 60). Validation of changed lipid species was performed in an independent batch including 75 MDD and 52 HC using the same lipidomic method. Pronouncedly changed lipid species in MDD were discovered, which mainly were lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), 1-O-alkyl-2-acyl-PE (PE O), 1-O-alkyl-2-acyl-PC (PC O), sphingomyelin (SM), diacylglycerol (DG), and triacylglycerol (TG). Among these lipid species, LPC, LPE, PC, PE, PI, TG, etc. remarkably increased in MDD and showed pronounced positive relationships with depression severity, while 1-O-alkyl-2-acyl-PE and SM with odd summed carbon number significantly decreased in MDD and demonstrated negative relationships with depression severity. A combinational lipid panel including LPE 20:4, PC 34:1, PI 40:4, SM 39:1, 2, and TG 44:2 was defined as potential diagnostic biomarker with a good sensitivity and specificity for distinguishing MDD from HCs. Our study brings insights into lipid metabolism disorder in MDD and provides a specific potential biomarker for MDD diagnose.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Chanjuan Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
| | - Chunxiu Hu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Xiaoli Hou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Haiyang Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China.
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China.
| |
Collapse
|
28
|
Losenkov IS, Vyalova NM, Simutkin GG, Bokhan NA, Ivanova SA. An association of AKT1 gene polymorphism with antidepressant treatment response. World J Biol Psychiatry 2016; 17:239-42. [PMID: 26515520 DOI: 10.3109/15622975.2015.1112921] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Nowadays it is considered that protein kinase Akt1 could be involved in pathogenesis of affective disorders. We have examined whether AKT1 gene polymorphisms are associated with antidepressant treatment response. METHODS The study included 106 Caucasian patients with depressive disorders from Siberia and 103 healthy control donors. The frequencies of single nucleotide polymorphisms rs1130214 and rs3730358 of AKT1 gene were examined. RESULTS A comparison of genotypic or allelic frequencies between the groups of healthy donors and depressive patients showed no statistically significant difference. No association between the polymorphisms under study and the scores according to Hamilton Depression Rating Scale 17 was found. However, an association between treatment response assessed by the Clinical Global Impression - Improvement scale and rs1130214 polymorphism was observed. CONCLUSIONS AKT1 gene polymorphism rs1130214 is associated with antidepressant treatment response in patients with depressive disorders.
Collapse
Affiliation(s)
| | | | | | - Nikolay A Bokhan
- a Mental Health Research Institute , Tomsk , Russian Federation ;,b Siberian State Medical University , Tomsk , Russian Federation
| | - Svetlana A Ivanova
- a Mental Health Research Institute , Tomsk , Russian Federation ;,c National Research Tomsk Polytechnic University , Tomsk , Russian Federation
| |
Collapse
|
29
|
Drago A, Crisafulli C, Sidoti A, Calabrò M, Serretti A. The microtubule-associated molecular pathways may be genetically disrupted in patients with Bipolar Disorder. Insights from the molecular cascades. J Affect Disord 2016; 190:429-438. [PMID: 26551401 DOI: 10.1016/j.jad.2015.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/24/2015] [Accepted: 10/10/2015] [Indexed: 01/15/2023]
Abstract
Bipolar Disorder is a severe disease characterized by pathological mood swings from major depressive episodes to manic ones and vice versa. The biological underpinnings of Bipolar Disorder have yet to be defined. As a consequence, pharmacological treatments are suboptimal. In the present paper we test the hypothesis that the molecular pathways involved with the direct targets of lithium, hold significantly more genetic variations associated with BD. A molecular pathway approach finds its rationale in the polygenic nature of the disease. The pathways were tested in a sample of ∼ 7,000 patients and controls. Data are available from the public NIMH database. The definition of the pathways was conducted according to the National Cancer Institute (http://pid.nci.nih.gov/). As a result, 3 out of the 18 tested pathways related to lithium action resisted the permutation analysis and were found to be associated with BD. These pathways were related to Reelin, Integrins and Aurora. A pool of genes selected from the ones linked with the above pathways was further investigated in order to identify the fine molecular mechanics shared by our significant pathways and also their link with lithium mechanism of action. The data obtained point out to a possible involvement of microtubule-related mechanics.
Collapse
Affiliation(s)
- Antonio Drago
- Department of Biomedical and Neuromotor Sciences - DIBINEM - University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, Italy.
| | - Antonina Sidoti
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Marco Calabrò
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences - DIBINEM - University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Niculescu AB, Levey DF, Phalen PL, Le-Niculescu H, Dainton HD, Jain N, Belanger E, James A, George S, Weber H, Graham DL, Schweitzer R, Ladd TB, Learman R, Niculescu EM, Vanipenta NP, Khan FN, Mullen J, Shankar G, Cook S, Humbert C, Ballew A, Yard M, Gelbart T, Shekhar A, Schork NJ, Kurian SM, Sandusky GE, Salomon DR. Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach. Mol Psychiatry 2015; 20:1266-85. [PMID: 26283638 PMCID: PMC4759104 DOI: 10.1038/mp.2015.112] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/26/2022]
Abstract
Worldwide, one person dies every 40 seconds by suicide, a potentially preventable tragedy. A limiting step in our ability to intervene is the lack of objective, reliable predictors. We have previously provided proof of principle for the use of blood gene expression biomarkers to predict future hospitalizations due to suicidality, in male bipolar disorder participants. We now generalize the discovery, prioritization, validation, and testing of such markers across major psychiatric disorders (bipolar disorder, major depressive disorder, schizoaffective disorder, and schizophrenia) in male participants, to understand commonalities and differences. We used a powerful within-participant discovery approach to identify genes that change in expression between no suicidal ideation and high suicidal ideation states (n=37 participants out of a cohort of 217 psychiatric participants followed longitudinally). We then used a convergent functional genomics (CFG) approach with existing prior evidence in the field to prioritize the candidate biomarkers identified in the discovery step. Next, we validated the top biomarkers from the prioritization step for relevance to suicidal behavior, in a demographically matched cohort of suicide completers from the coroner's office (n=26). The biomarkers for suicidal ideation only are enriched for genes involved in neuronal connectivity and schizophrenia, the biomarkers also validated for suicidal behavior are enriched for genes involved in neuronal activity and mood. The 76 biomarkers that survived Bonferroni correction after validation for suicidal behavior map to biological pathways involved in immune and inflammatory response, mTOR signaling and growth factor regulation. mTOR signaling is necessary for the effects of the rapid-acting antidepressant agent ketamine, providing a novel biological rationale for its possible use in treating acute suicidality. Similarly, MAOB, a target of antidepressant inhibitors, was one of the increased biomarkers for suicidality. We also identified other potential therapeutic targets or biomarkers for drugs known to mitigate suicidality, such as omega-3 fatty acids, lithium and clozapine. Overall, 14% of the top candidate biomarkers also had evidence for involvement in psychological stress response, and 19% for involvement in programmed cell death/cellular suicide (apoptosis). It may be that in the face of adversity (stress), death mechanisms are turned on at a cellular (apoptosis) and organismal level. Finally, we tested the top increased and decreased biomarkers from the discovery for suicidal ideation (CADM1, CLIP4, DTNA, KIF2C), prioritization with CFG for prior evidence (SAT1, SKA2, SLC4A4), and validation for behavior in suicide completers (IL6, MBP, JUN, KLHDC3) steps in a completely independent test cohort of psychiatric participants for prediction of suicidal ideation (n=108), and in a future follow-up cohort of psychiatric participants (n=157) for prediction of psychiatric hospitalizations due to suicidality. The best individual biomarker across psychiatric diagnoses for predicting suicidal ideation was SLC4A4, with a receiver operating characteristic (ROC) area under the curve (AUC) of 72%. For bipolar disorder in particular, SLC4A4 predicted suicidal ideation with an AUC of 93%, and future hospitalizations with an AUC of 70%. SLC4A4 is involved in brain extracellular space pH regulation. Brain pH has been implicated in the pathophysiology of acute panic attacks. We also describe two new clinical information apps, one for affective state (simplified affective state scale, SASS) and one for suicide risk factors (Convergent Functional Information for Suicide, CFI-S), and how well they predict suicidal ideation across psychiatric diagnoses (AUC of 85% for SASS, AUC of 89% for CFI-S). We hypothesized a priori, based on our previous work, that the integration of the top biomarkers and the clinical information into a universal predictive measure (UP-Suicide) would show broad-spectrum predictive ability across psychiatric diagnoses. Indeed, the UP-Suicide was able to predict suicidal ideation across psychiatric diagnoses with an AUC of 92%. For bipolar disorder, it predicted suicidal ideation with an AUC of 98%, and future hospitalizations with an AUC of 94%. Of note, both types of tests we developed (blood biomarkers and clinical information apps) do not require asking the individual assessed if they have thoughts of suicide, as individuals who are truly suicidal often do not share that information with clinicians. We propose that the widespread use of such risk prediction tests as part of routine or targeted healthcare assessments will lead to early disease interception followed by preventive lifestyle modifications and proactive treatment.
Collapse
Affiliation(s)
- A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - P L Phalen
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H D Dainton
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Belanger
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - A James
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - S George
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Weber
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - D L Graham
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Schweitzer
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - T B Ladd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Learman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E M Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N P Vanipenta
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - F N Khan
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Mullen
- Advanced Biomedical IT Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - G Shankar
- Advanced Biomedical IT Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Cook
- Marion County Coroner's Office, Indianapolis, IN, USA
| | - C Humbert
- Marion County Coroner's Office, Indianapolis, IN, USA
| | - A Ballew
- Marion County Coroner's Office, Indianapolis, IN, USA
| | - M Yard
- INBRAIN, Indiana University School of Medicine, Indianapolis, IN, USA
| | - T Gelbart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N J Schork
- J. Craig Venter Institute, La Jolla, CA, USA
| | - S M Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - G E Sandusky
- INBRAIN, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D R Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
31
|
Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1052-65. [DOI: 10.1016/j.bbalip.2014.12.014] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/06/2014] [Accepted: 12/16/2014] [Indexed: 11/13/2022]
|
32
|
Yang C, Sun N, Ren Y, Sun Y, Xu Y, Li A, Wu K, Zhang K. Association between AKT1 gene polymorphisms and depressive symptoms in the Chinese Han population with major depressive disorder. Neural Regen Res 2015; 7:235-9. [PMID: 25767506 PMCID: PMC4353122 DOI: 10.3969/j.issn.1673-5374.2012.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/24/2011] [Indexed: 11/23/2022] Open
Abstract
For this study, 461 Chinese Han patients with depressive disorder were recruited. The AKT1 genotype and allele distribution were determined by PCR amplification and direct sequencing. UNPHASED software was used to analyze associations between the 17-item Hamilton Depression Rating Scale, total score, four factors and the AKT1 rs2494746 and rs3001371 polymorphisms. The results indicate that there is a significant association between suicidal ideation and anxiety symptoms in depressed patients and the rs2494746 polymorphism. The other AKT1 polymorphism, rs3001371, was significantly associated with work and activities. Patients with the rs3001371-A allele had a significantly more severe illness compared to patients with the rs3001371-G allele. Thus, AKT1 polymorphisms appear to be associated with depression severity, anxiety symptoms, work and activities, and suicide attempts in patients with depressive disorder.
Collapse
Affiliation(s)
- Chunxia Yang
- First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ning Sun
- First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yan Ren
- First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yan Sun
- First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yong Xu
- First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Aiping Li
- Department of Psychiatry, Three Hospital of Shanxi Medical University, Taiyuan 030053, Shanxi Province, China
| | - Kewen Wu
- Rongjun Kangning Psychiatric Hospital of Shanxi Province, Taigu 030800, Shanxi Province, China
| | - Kerang Zhang
- First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
33
|
Wang M, Zhou W, Zhou X, Zhuang F, Chen Q, Li M, Ma T, Gu S. Antidepressant-like effects of alarin produced by activation of TrkB receptor signaling pathways in chronic stress mice. Behav Brain Res 2015; 280:128-40. [DOI: 10.1016/j.bbr.2014.11.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
|
34
|
Poirier GL, Imamura N, Zanoletti O, Sandi C. Social deficits induced by peripubertal stress in rats are reversed by resveratrol. J Psychiatr Res 2014; 57:157-64. [PMID: 24974003 DOI: 10.1016/j.jpsychires.2014.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/15/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022]
Abstract
Adolescence is increasingly recognized as a critical period for the development of the social system, through the maturation of social competences and of their underlying neural circuitries. The present study sought to test the utility of resveratrol, a dietary phenol recently reported to have mood lifting properties, in modulating social interaction that is deficient following early life adversity. The main aims were to 1) pharmacologically restore normative social investigation levels dampened by peripubertal stress in rats and 2) identify neural pathways engaged by this pharmacological approach. Following peripubertal (P28-42) stress consisting of unpredictable exposures to fearful experiences, at adulthood the subjects' propensity for social exploration was examined in the three-chamber apparatus, comparing time invested in social or non-social investigation. Administered intraperitoneally 30 min before testing, resveratrol (20 mg/kg) normalized the peripubertal stress-induced social investigation deficit seen in the vehicle group, selectively altering juvenile but not object exploration. Examination of prefrontal cortex subregion protein samples following acute resveratrol treatment in a separate cohort revealed that while monoamine oxidase A (MAOA) enzymatic activity remained unaltered, nuclear AKT activation was selectively increased in the infralimbic cortex, but not in the prelimbic or anterior cingulate cortex. In contrast, androgen receptor nuclear localization was increased in the prelimbic cortex, but not in the infralimbic or anterior cingulate cortex. This demonstration that social contact deficits are reversed by resveratrol administration emphasizes a prosocial role for this dietary phenol, and evokes the possibility of developing new treatments for social dysfunctions.
Collapse
Affiliation(s)
- Guillaume L Poirier
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Natsuko Imamura
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Naudé PJW, Mommersteeg PMC, Zijlstra WP, Gouweleeuw L, Kupper N, Eisel ULM, Kop WJ, Schoemaker RG. Neutrophil Gelatinase-Associated Lipocalin and depression in patients with chronic heart failure. Brain Behav Immun 2014; 38:59-65. [PMID: 24407045 DOI: 10.1016/j.bbi.2013.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/21/2022] Open
Abstract
Depression adversely affects prognosis in heart failure (HF) patients. Inflammation is indicated as potential biological pathway in this co-morbidity. Since increased levels of the cytokine Neutrophil Gelatinase-Associated Lipocalin (NGAL) are predictive for HF prognosis, and recently indicated in patients with major depression, this study examined the association of serum NGAL levels with symptoms of depression in patients with HF. Serum NGAL levels were measured in 104 patients with HF (left ventricular ejection fraction, LVEF⩽40). Depression, evaluated using the Beck Depression Inventory (BDI; total score, somatic and cognitive component), and the Hamilton Depression Rating scale (HAMD), at baseline and 12months follow-up, was associated with NGAL levels using mixed model analysis. Analyses were adjusted for demographics measures, disease severity indicators, inflammation, comorbidity and medication. Increased serum NGAL levels were significantly associated with depression measured by HAMD (baseline: r=0.25, p<.05) and BDI (baseline: r=0.22, p<.05; 12months: r=0.37, p<.01). This association remained significant after adjustment for covariates; age, sex, time, LVEF, and creatinine (HAMD, t=2.01, p=.047; BDI, t=2.28, p=.024). NGAL was significantly associated with somatic- (p=0.004), but not cognitive depressive symptoms (p=0.32). NGAL levels were associated with the experienced HF-related functional limitations (6min walk test), rather than the severity of cardiac dysfunction (LVEF). This study indicates that depression in patients with chronic HF is associated with elevated NGAL levels, independent of clinical severity of the underlying disease.
Collapse
Affiliation(s)
- Petrus J W Naudé
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Paula M C Mommersteeg
- CoRPS, Centre of Research on Psychology in Somatic diseases, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Wobbe P Zijlstra
- CoRPS, Centre of Research on Psychology in Somatic diseases, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Nina Kupper
- CoRPS, Centre of Research on Psychology in Somatic diseases, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Willem J Kop
- CoRPS, Centre of Research on Psychology in Somatic diseases, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Marijnissen RM, Naudé PJW, Comijs HC, Schoevers RA, Oude Voshaar RC. Waist circumference and neutrophil gelatinase-associated lipocalin in late-life depression. Brain Behav Immun 2014; 37:231-9. [PMID: 24407044 DOI: 10.1016/j.bbi.2013.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/14/2013] [Accepted: 12/27/2013] [Indexed: 01/14/2023] Open
Abstract
Both visceral obesity and depression are associated with impaired health and excess mortality, possibly through overlapping pathophysiological mechanisms like adipose tissue derived inflammatory markers. These results, however, are primarily based on population-based surveys, often restricted to a young population and depression severity scales instead of patients with established diagnosis of depressive disorder. We examined the relation between waist circumference and late-life depression using the baseline data of The Netherlands Study of Depression in Older people (NESDO). Psychopathology has been assessed with Composite International Diagnostic Interview version 2.1. Adjusted for age, sex, education, lifestyle (smoking, alcohol, physical activity), drug use, cognition and chronic diseases as well as adjusted for body mass index (BMI), analysis of covariance showed that depressed older patients (n=376) had a significantly lower waist circumference (WC) compared to their non-depressed comparisons (n=130): estimated marginal mean (SE)=93.9 (0.5) versus 97.8 (0.8) cm (F=15.9; df=1467; p<.001). Multiple linear regression analyses within the depressed group showed that both, depression severity (Inventory of Depressive Symptoms) as well as duration-related depression characteristics (age of onset, duration of illness, life-time comorbid dysthymia), were associated with the WC. Only the severity of depressive symptoms remained significant after further adjusted for the BMI. Interestingly, a recently discovered adipokine, Neutrophil Gelatinase-Associated Lipocalin (NGAL), was associated with late-life depression, but only in the subgroup of patients with a pathologically increased WC. Population-based findings on the positive association between obesity and depressive symptoms can thus not be generalised to a clinical sample of depressed older patients. The impact of the WC on course and treatment outcome of late-life depression should be examined in clinical samples, taken into account the relative impact of the WC in proportion to the general level of obesity as indexed by the BMI and the role of adipokines.
Collapse
Affiliation(s)
- Radboud M Marijnissen
- Department of Old Age Psychiatry, ProPersona, Wolfheze/Arnhem, The Netherlands; University Center of Psychiatry & Interdisciplinary Center for Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hannie C Comijs
- Department of Psychiatry/GGZinGeest & Institute for Extramural Medical Research (EMGO), VU University Medical Center, Amsterdam, The Netherlands
| | - Robert A Schoevers
- University Center of Psychiatry & Interdisciplinary Center for Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Richard C Oude Voshaar
- University Center of Psychiatry & Interdisciplinary Center for Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Naudé PJW, Eisel ULM, Comijs HC, Groenewold NA, De Deyn PP, Bosker FJ, Luiten PGM, den Boer JA, Oude Voshaar RC. Neutrophil gelatinase-associated lipocalin: a novel inflammatory marker associated with late-life depression. J Psychosom Res 2013; 75:444-50. [PMID: 24182633 DOI: 10.1016/j.jpsychores.2013.08.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Systemic low graded inflammation has been identified as a possible biological pathway in late-life depression. Identification of inflammatory markers and their association with characteristics of depression is essential with the aim to improve diagnosis and therapeutic approaches. This study examines the determinants of plasma Neutrophil Gelatinase-Associated Lipocalin (NGAL), which is selectively triggered by TNFα receptor 1 signaling within the central nervous system, and its association with late-life depressive disorder. METHODS Baseline data were obtained from a well-characterized prospective cohort study of 350 depressed and 129 non-depressed older persons (≥60years). Past 6month diagnosis of major depressive disorder (MDD) according to DSM-IV-TR criteria was assessed with the Composite International Diagnostic Interview (CIDI 2.0). Potential determinants of plasma NGAL included sociodemographic characteristics, lifestyle and psychiatric and physical comorbidity. RESULTS Plasma NGAL concentrations were significantly associated with age, male gender, smoking and waist circumference. Adjusted for these determinants, depressed patients had significantly higher NGAL plasma levels compared to non-depressed comparison group. Depressed patients who did not meet full criteria for MDD in the month before sampling (partially remitted) had lower plasma NGAL levels compared with those who did. Subjects with a recurrent depression had higher plasma NGAL levels compared to those with a first episode. NGAL levels were neither related with specific symptom profiles of depression nor with antidepressant drug use. CONCLUSION Adjusted for confounders, NGAL plasma levels are increased in depressed older persons, without any effect of antidepressant medication and age of onset.
Collapse
Affiliation(s)
- P J W Naudé
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dy GK, Adjei AA. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J Clin 2013; 63:249-79. [PMID: 23716430 DOI: 10.3322/caac.21184] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/11/2022] Open
Abstract
Answer questions and earn CME/CNE Advances in genomics and molecular biology have identified aberrant proteins in cancer cells that are attractive targets for cancer therapy. Because these proteins are overexpressed or dysregulated in cancer cells compared with normal cells, it was assumed that their inhibitors will be narrowly targeted and relatively nontoxic. However, this hope has not been achieved. Current targeted agents exhibit the same frequency and severity of toxicities as traditional cytotoxic agents, with the main difference being the nature of the toxic effects. Thus, the classical chemotherapy toxicities of alopecia, myelosuppression, mucositis, nausea, and vomiting have been generally replaced by vascular, dermatologic, endocrine, coagulation, immunologic, ocular, and pulmonary toxicities. These toxicities need to be recognized, prevented, and optimally managed.
Collapse
Affiliation(s)
- Grace K Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | |
Collapse
|
39
|
Marsden WN. Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:168-84. [PMID: 23268191 DOI: 10.1016/j.pnpbp.2012.12.012] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 12/31/2022]
Abstract
Synaptic plasticity confers environmental adaptability through modification of the connectivity between neurons and neuronal circuits. This is achieved through changes to synapse-associated signaling systems and supported by complementary changes to cellular morphology and metabolism within the tripartite synapse. Mounting evidence suggests region-specific changes to synaptic form and function occur as a result of chronic stress and in depression. Within subregions of the prefrontal cortex (PFC) and hippocampus structural and synapse-related findings seem consistent with a deficit in long-term potentiation (LTP) and facilitation of long-term depression (LTD), particularly at excitatory pyramidal synapses. Other brain regions are less well-studied; however the amygdala may feature a somewhat opposite synaptic pathology including reduced inhibitory tone. Changes to synaptic plasticity in stress and depression may correlate those to several signal transduction pathways (e.g. NOS-NO, cAMP-PKA, Ras-ERK, PI3K-Akt, GSK-3, mTOR and CREB) and upstream receptors (e.g. NMDAR, TrkB and p75NTR). Deficits in synaptic plasticity may further correlate disrupted brain redox and bioenergetics. Finally, at a functional level region-specific changes to synaptic plasticity in depression may relate to maladapted neurocircuitry and parallel reduced cognitive control over negative emotion.
Collapse
Affiliation(s)
- W N Marsden
- Highclere Court, Woking, Surrey, GU21 2QP, UK.
| |
Collapse
|
40
|
|
41
|
Costanza A, D'Orta I, Perroud N, Burkhardt S, Malafosse A, Mangin P, La Harpe R. Neurobiology of suicide: do biomarkers exist? Int J Legal Med 2013; 128:73-82. [PMID: 23430141 DOI: 10.1007/s00414-013-0835-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/05/2013] [Indexed: 12/14/2022]
Abstract
Clinical risk factors have a low predictive value on suicide. This may explain the increasing interest in potential neurobiological correlates and specific heritable markers of suicide vulnerability. This review aims to present the current neurobiological findings that have been shown to be implicated in suicide completers and to discuss how postmortem studies may be useful in characterizing these individuals. Data on the role of the main neurobiological systems in suicidality, such as the neurotransmitter families, hypothalamic-pituitary-adrenal axis, neurotrophic factors, and polyamines, are exposed at the different biochemical, genetic, and epigenetic levels. Some neuroanatomic and neuropathological aspects as well as their in vivo morphological and functional neuroimaging correlates are also described. Except for the serotoninergic system, particularly with respect to the polymorphism of the gene coding for the serotonin transporter (5-HTTLPR) and brain-derived neurotrophic factor, data did not converge to produce a univocal consensus. The possible limitations of currently published studies are discussed, as well as the scope for long-term prospective studies.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Mental Health and Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013; 65:105-42. [PMID: 23300133 PMCID: PMC3565922 DOI: 10.1124/pr.111.005512] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
43
|
Hendriks WJAJ, Elson A, Harroch S, Pulido R, Stoker A, den Hertog J. Protein tyrosine phosphatases in health and disease. FEBS J 2012; 280:708-30. [DOI: 10.1111/febs.12000] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/17/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ari Elson
- Department of Molecular Genetics; The Weizmann Institute of Science; Rehovot; Israel
| | - Sheila Harroch
- Department of Neuroscience; Institut Pasteur; Paris; France
| | - Rafael Pulido
- Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Andrew Stoker
- Neural Development Unit; Institute of Child Health; University College London; UK
| | | |
Collapse
|
44
|
Bartzokis G. Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology 2012; 62:2137-53. [PMID: 22306524 PMCID: PMC3586811 DOI: 10.1016/j.neuropharm.2012.01.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/20/2022]
Abstract
Current psychiatric diagnostic schema segregate symptom clusters into discrete entities, however, large proportions of patients suffer from comorbid conditions that fit neither diagnostic nor therapeutic schema. Similarly, psychotropic treatments ranging from lithium and antipsychotics to serotonin reuptake inhibitors (SSRIs) and acetylcholinesterase inhibitors have been shown to be efficacious in a wide spectrum of psychiatric disorders ranging from autism, schizophrenia (SZ), depression, and bipolar disorder (BD) to Alzheimer's disease (AD). This apparent lack of specificity suggests that psychiatric symptoms as well as treatments may share aspects of pathophysiology and mechanisms of action that defy current symptom-based diagnostic and neuron-based therapeutic schema. A myelin-centered model of human brain function can help integrate these incongruities and provide novel insights into disease etiologies and treatment mechanisms. Available data are integrated herein to suggest that widely used psychotropic treatments ranging from antipsychotics and antidepressants to lithium and electroconvulsive therapy share complex signaling pathways such as Akt and glycogen synthase kinase-3 (GSK3) that affect myelination, its plasticity, and repair. These signaling pathways respond to neurotransmitters, neurotrophins, hormones, and nutrition, underlie intricate neuroglial communications, and may substantially contribute to the mechanisms of action and wide spectra of efficacy of current therapeutics by promoting myelination. Imaging and genetic technologies make it possible to safely and non-invasively test these hypotheses directly in humans and can help guide clinical trial efforts designed to correct myelination abnormalities. Such efforts may provide insights into novel avenues for treatment and prevention of some of the most prevalent and devastating human diseases.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Jope RS. Glycogen synthase kinase-3 in the etiology and treatment of mood disorders. Front Mol Neurosci 2011; 4:16. [PMID: 21886606 PMCID: PMC3152743 DOI: 10.3389/fnmol.2011.00016] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 07/26/2011] [Indexed: 12/15/2022] Open
Abstract
The mood disorders major depressive disorder and bipolar disorder are prevalent, are inadequately treated, and little is known about their etiologies. A better understanding of the causes of mood disorders would benefit from improved animal models of mood disorders, which now rely on behavioral measurements. This review considers the limitations in relating measures of rodent behaviors to mood disorders, and the evidence from behavioral assessments indicating that glycogen synthase kinase-3 (GSK3) dysregulation promotes mood disorders and is a potential target for treating mood disorders. The classical mood stabilizer lithium was identified by studying animal behaviors and later was discovered to be an inhibitor of GSK3. Several mood-relevant behavioral effects of lithium in rodents have been identified, and most have now been shown to be due to its inhibition of GSK3. An extensive variety of pharmacological and molecular approaches for manipulating GSK3 are discussed, the results of which strongly support the proposal that inhibition of GSK3 reduces both depression-like and manic-like behaviors. Studies in human postmortem brain and peripheral cells also have identified correlations between alterations in GSK3 and mood disorders. Evidence is reviewed that depression may be associated with impaired inhibitory control of GSK3, and mania by hyper-stimulation of GSK3. Taken together, these studies provide substantial support for the hypothesis that inhibition of GSK3 activity is therapeutic for mood disorders. Future research should identify the causes of dysregulated GSK3 in mood disorders and the actions of GSK3 that contribute to these diseases.
Collapse
Affiliation(s)
- Richard Scott Jope
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|