1
|
Chocarro-Wrona C, Pleguezuelos-Beltrán P, López de Andrés J, Antich C, de Vicente J, Jiménez G, Arias-Santiago S, Gálvez-Martín P, López-Ruiz E, Marchal JA. A bioactive three-layered skin substitute based on ECM components effectively promotes skin wound healing and regeneration. Mater Today Bio 2025; 31:101592. [PMID: 40092225 PMCID: PMC11910132 DOI: 10.1016/j.mtbio.2025.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
To overcome the limitations of conventional skin tissue engineering (TE), 3D biofabrication approaches are being developed. However, tissue mimicry should be further improved in skin models. Here, we developed and characterized biomimetic hydrogels to obtain a biofabricated three-layered (BT) skin substitute based on the main components found in the epidermal, dermal, and hypodermal skin layers. Hydrogels for dermal and hypodermal skin layers were based on a mix of agarose and type I collagen, supplemented with skin-related extracellular matrix (ECM) components (dermatan sulfate, hyaluronic acid, and elastin) and loaded with human dermal fibroblasts (hDFs) or human mesenchymal stem/stromal cells (hMSCs), respectively. The epidermal hydrogel was formulated using type I collagen supplemented with keratin and sphingolipids, and seeded with human epidermal keratinocytes (hEKs). Physicochemical results revealed adequate viscosity, gelling times, and pH for each hydrogel solution. The BT Skin also showed good swelling and degradation kinetics, and mechanical properties in a similar range of human skin. The hydrogels and BT Skin demonstrated stable cell viability and metabolic activity, as well as intercellular communication through the release of growth factors. Moreover, the BT Skin demonstrated controlled inflammation in vivo, and produced results comparable to autografting in a mouse skin wound model. This bioactive and biomimetic three-layered BT Skin has a composition that attempts to mimic the natural ECM of the skin, formulated with the characteristic cells and biomolecules present in each skin layer, and offers promising properties for its clinical application in the treatment of patients with skin injuries.
Collapse
Affiliation(s)
- Carlos Chocarro-Wrona
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
| | - Paula Pleguezuelos-Beltrán
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
- National Center for Advancing Translational Sciences, National Institute of Health, 28050, Rockville, MD, USA
| | - Juan de Vicente
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- F2N2Lab, Magnetic Soft Matter Group, Department of Applied Physics, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
| | - Salvador Arias-Santiago
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Dermatology Department, Hospital Universitario Virgen de las Nieves, 18012, Granada, Spain
- Dermatology Department, Faculty of Medicine, University of Granada, 18016, Granada, Spain
| | | | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
- Department of Health Sciences, University of Jaén, 23071, Jaén, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
| |
Collapse
|
2
|
Sierra-Sánchez Á, Sanabria-de la Torre R, Ubago-Rodríguez A, Quiñones-Vico MI, Montero-Vílchez T, Sánchez-Díaz M, Arias-Santiago S. Blood Plasma, Fibrinogen or Fibrin Biomaterial for the Manufacturing of Skin Tissue-Engineered Products and Other Dermatological Treatments: A Systematic Review. J Funct Biomater 2025; 16:79. [PMID: 40137358 PMCID: PMC11942893 DOI: 10.3390/jfb16030079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
The use of blood plasma, fibrinogen or fibrin, a natural biomaterial, has been widely studied for the development of different skin tissue-engineered products and other dermatological treatments. This systematic review reports the preclinical and clinical studies which use it alone or combined with other biomaterials and/or cells for the treatment of several dermatological conditions. Following the PRISMA 2020 Guidelines, 147 preclinical studies have revealed that the use of this biomaterial as a wound dressing or as a monolayer (one cell type) skin substitute are the preferred strategies, mainly for the treatment of excisional or surgical wounds. Moreover, blood plasma is mainly used alone although its combination with other biomaterials such as agarose, polyethylene glycol or collagen has also been reported to increase its wound healing potential. However, most of the 17 clinical reviewed evaluated its use for the treatment of severely burned patients as a wound dressing or bilayer (two cell types) skin substitute. Although the number of preclinical studies evaluating the use of blood plasma as a dermatological treatment has increased during the last fifteen years, this has not been correlated with a wide variety of clinical studies. Its safety and wound healing potential have been proved; however, the lack of a standard model and the presence of several approaches have meant that its translation to a clinical environment is still limited. A higher number of clinical studies should be carried out in the coming years to set a standard wound healing strategy for each dermatological disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NA 27101, USA
| | - Raquel Sanabria-de la Torre
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology IIi and Immunology, University of Granada, 18071 Granada, Spain
| | - Ana Ubago-Rodríguez
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - María I. Quiñones-Vico
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, University of Granada, 18016 Granada, Spain
| | - Trinidad Montero-Vílchez
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - Manuel Sánchez-Díaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - Salvador Arias-Santiago
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Department of Dermatology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
3
|
Campos F, Carriel V, Bermejo-Casares F, Chato-Astrain J, Alaminos M. Histological and Histochemical Methods for the Evaluation of Tissue Engineered Skin Substitutes. Methods Mol Biol 2025; 2922:249-265. [PMID: 40208541 DOI: 10.1007/978-1-0716-4510-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A thorough evaluation and characterization of advanced therapy medicinal products (ATMPs), including tissue-engineered skin substitutes (TESS), is an essential requirement of the European and National Medicines Agencies. Although clear regulatory criteria have been established for different parameters such as stability, sterility or viability, the histological characterization of bioengineered tissues remains inadequately defined. Histological analyses are crucial for assessing both the in vitro features and in vivo behavior of TESS. This chapter describes the essential histological methods used for assessing TESS, including hematoxylin and eosin staining, and several methods focused on the analysis of specific components of the skin cells and extracellular matrix, such as Picrosirius Red for collagen fibers, Fontana Masson Picrosirius for melanin and collagen, Verhoeff for elastic fibers, Alcian Blue for proteoglycans, and Periodic acid-Schiff for glycoproteins. Relevant immunohistochemical methods for the identification of some specific markers are also included in this chapter. These methods provide a comprehensive practical approach to assessing both in vitro and in vivo histological features and evolution of TESS.
Collapse
Affiliation(s)
- Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigacion Biosanitaria ibs.GRANADA, Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigacion Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.
- Instituto de Investigacion Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigacion Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
4
|
Ávila-Fernández P, Etayo-Escanilla M, Sánchez-Porras D, Fernández-Valadés R, Campos F, Garzón I, Carriel V, Alaminos M, García-García ÓD, Chato-Astrain J. Spatiotemporal characterization of extracellular matrix maturation in human artificial stromal-epithelial tissue substitutes. BMC Biol 2024; 22:263. [PMID: 39558321 PMCID: PMC11575135 DOI: 10.1186/s12915-024-02065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Tissue engineering techniques offer new strategies to understand complex processes in a controlled and reproducible system. In this study, we generated bilayered human tissue substitutes consisting of a cellular connective tissue with a suprajacent epithelium (full-thickness stromal-epithelial substitutes or SESS) and human tissue substitutes with an epithelial layer generated on top of an acellular biomaterial (epithelial substitutes or ESS). Both types of artificial tissues were studied at sequential time periods to analyze the maturation process of the extracellular matrix. RESULTS Regarding epithelial layer, ESS cells showed active proliferation, positive expression of cytokeratin 5, and low expression of differentiation markers, whereas SESS epithelium showed higher differentiation levels, with a progressive positive expression of cytokeratin 10 and claudin. Stromal cells in SESS tended to accumulate and actively synthetize extracellular matrix components such as collagens and proteoglycans in the stromal area in direct contact with the epithelium (zone 1), whereas these components were very scarce in ESS. Regarding the basement membrane, ESS showed a partially differentiated structure containing fibronectin-1 and perlecan. However, SESS showed higher basement membrane differentiation, with positive expression of fibronectin 1, perlecan, nidogen 1, chondroitin-6-sulfate proteoglycans, agrin, and collagens types IV and VII, although this structure was negative for lumican. Finally, both ESS and SESS proved to be useful tools for studying metabolic pathway regulation, revealing differential activation and upregulation of the transforming growth factor-β pathway in ESS and SESS. CONCLUSIONS These results confirm the relevance of epithelial-stromal interaction for extracellular matrix development and differentiation, especially regarding basement membrane components, and suggest the usefulness of bilayered artificial tissue substitutes to reproduce ex vivo the extracellular matrix maturation and development process of human tissues.
Collapse
Affiliation(s)
- Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
| | - Miguel Etayo-Escanilla
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ricardo Fernández-Valadés
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Division of Pediatric Surgery, University Hospital Virgen de Las Nieves, Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
5
|
Sierra-Sánchez Á, Cabañas-Penagos J, Igual-Roger S, Martínez-Heredia L, Espinosa-Ibáñez O, Sanabria-de la Torre R, Quiñones-Vico MI, Ubago-Rodríguez A, Lizana-Moreno A, Fernández-González A, Guerrero-Calvo J, Fernández-Porcel N, Ramírez-Muñoz A, Arias-Santiago S. Biological properties and characterization of several variations of a clinical human plasma-based skin substitute model and its manufacturing process. Regen Biomater 2024; 11:rbae115. [PMID: 39469583 PMCID: PMC11513639 DOI: 10.1093/rb/rbae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Human plasma is a natural biomaterial that due to their protein composition is widely used for the development of clinical products, especially in the field of dermatology. In this context, this biomaterial has been used as a scaffold alone or combined with others for the development of cellular human plasma-based skin substitutes (HPSSs). Herein, the biological properties (cell viability, cell metabolic activity, protein secretion profile and histology) of several variations of a clinical HPSS model, regarding the biomaterial composition (alone or combined with six secondary biomaterials - serine, fibronectin, collagen, two types of laminins and hyaluronic acid), the cellular structure (trilayer, bilayer, monolayer and control without cells) and their skin tissue of origin (abdominal or foreskin cells) and the manufacturing process [effect of partial dehydration process in cell viability and comparison between submerged (SUB) and air/liquid interface (ALI) methodologies] have been evaluated and compared. Results reveal that the use of human plasma as a main biomaterial determines the in vitro properties, rather than the secondary biomaterials added. Moreover, the characteristics are similar regardless of the skin cells used (from abdomen or foreskin). However, the manufacture of more complex cellular substitutes (trilayer and bilayer) has been demonstrated to be better in terms of cell viability, metabolic activity and wound healing protein secretion (bFGF, EGF, VEGF-A, CCL5) than monolayer HPSSs, especially when ALI culture methodology is applied. Moreover, the application of the dehydration, although required to achieve an appropriate clinical structure, reduce cell viability in all cases. These data indicate that this HPSS model is robust and reliable and that the several subtypes here analysed could be promising clinical approaches depending on the target dermatological disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
| | - Jorge Cabañas-Penagos
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Sandra Igual-Roger
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Luis Martínez-Heredia
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Olga Espinosa-Ibáñez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Raquel Sanabria-de la Torre
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, 18071, Spain
| | - María I Quiñones-Vico
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| | - Ana Ubago-Rodríguez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Antonio Lizana-Moreno
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Ana Fernández-González
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Jorge Guerrero-Calvo
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Natividad Fernández-Porcel
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Arena Ramírez-Muñoz
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Salvador Arias-Santiago
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| |
Collapse
|
6
|
Casado C, Cepeda-Franco C, Pereira Arenas S, Suarez MD, Gómez-Bravo MÁ, Alaminos M, Chato-Astrain J, Fernández-Muñoz B, Campos-Cuerva R. Cryopreserved nanostructured fibrin-agarose hydrogels are efficient and safe hemostatic agents. Sci Rep 2024; 14:19411. [PMID: 39169092 PMCID: PMC11339259 DOI: 10.1038/s41598-024-70456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Uncontrolled bleeding during surgery is associated with high mortality and prolonged hospital stay, necessitating the use of hemostatic agents. Fibrin sealant patches offer an efficient solution to achieve hemostasis and improve patient outcomes in liver resection surgery. We have previously demonstrated the efficacy of a nanostructured fibrin-agarose hydrogel (NFAH). However, for the widespread distribution and commercialization of the product, it is necessary to develop an optimal preservation method that allows for prolonged stability and facilitates storage and distribution. We investigated cryopreservation as a potential method for preserving NFAH using trehalose. Structural changes in cryopreserved NFAH (Cryo-NFAH) were investigated and comparative in vitro and in vivo efficacy and safety studies were performed with freshly prepared NFAH. We also examined the long-term safety of Cryo-NFAH versus TachoSil in a rat partial hepatectomy model, including time to hemostasis, intra-abdominal adhesion, hepatic hematoma, inflammatory factors, histopathological variables, temperature and body weight, hemocompatibility and cytotoxicity. Structural analyses demonstrated that Cryo-NFAH retained most of its macro- and microscopic properties after cryopreservation. Likewise, hemostatic efficacy assays showed no significant differences with fresh NFAH. Safety evaluations indicated that Cryo-NFAH had a similar overall profile to TachoSil up to 40 days post-surgery in rats. In addition, Cryo-NFAH demonstrated superior hemostatic efficacy compared with TachoSil while also demonstrating lower levels of erythrolysis and cytotoxicity than both TachoSil and other commercially available hemostatic agents. These results indicate that Cryo-NFAH is highly effective hemostatic patch with a favorable safety and tolerability profile, supporting its potential for clinical use.
Collapse
Affiliation(s)
- Carlos Casado
- Unidad de Producción y Reprogramación Celular, Red Andaluza de Diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud (FPS), Av. Américo Vespucio 15, 41092, Seville, Spain
| | - Carmen Cepeda-Franco
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Transplantation and Hepatobiliary Surgery Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Sheila Pereira Arenas
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Transplantation and Hepatobiliary Surgery Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Maria Dolores Suarez
- Servicio de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Miguel Ángel Gómez-Bravo
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Transplantation and Hepatobiliary Surgery Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Facultad de Medicina Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Facultad de Medicina Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza de Diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud (FPS), Av. Américo Vespucio 15, 41092, Seville, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular, Red Andaluza de Diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud (FPS), Av. Américo Vespucio 15, 41092, Seville, Spain.
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Transfusiones, Tejidos y Células de Sevilla, Seville, Spain.
| |
Collapse
|
7
|
Chocarro-Wrona C, López de Andrés J, Rioboó-Legaspi P, Pleguezuelos-Beltrán P, Antich C, De Vicente J, Gálvez-Martín P, López-Ruiz E, Marchal JA. Design and evaluation of a bilayered dermal/hypodermal 3D model using a biomimetic hydrogel formulation. Biomed Pharmacother 2024; 177:117051. [PMID: 38959608 DOI: 10.1016/j.biopha.2024.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Due to the limitations of the current skin wound treatments, it is highly valuable to have a wound healing formulation that mimics the extracellular matrix (ECM) and mechanical properties of natural skin tissue. Here, a novel biomimetic hydrogel formulation has been developed based on a mixture of Agarose-Collagen Type I (AC) combined with skin ECM-related components: Dermatan sulfate (DS), Hyaluronic acid (HA), and Elastin (EL) for its application in skin tissue engineering (TE). Different formulations were designed by combining AC hydrogels with DS, HA, and EL. Cell viability, hemocompatibility, physicochemical, mechanical, and wound healing properties were investigated. Finally, a bilayered hydrogel loaded with fibroblasts and mesenchymal stromal cells was developed using the Ag-Col I-DS-HA-EL (ACDHE) formulation. The ACDHE hydrogel displayed the best in vitro results and acceptable physicochemical properties. Also, it behaved mechanically close to human native skin and exhibited good cytocompatibility. Environmental scanning electron microscopy (ESEM) analysis revealed a porous microstructure that allows the maintenance of cell growth and ECM-like structure production. These findings demonstrate the potential of the ACDHE hydrogel formulation for applications such as an injectable hydrogel or a bioink to create cell-laden structures for skin TE.
Collapse
Affiliation(s)
- Carlos Chocarro-Wrona
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain
| | - Pablo Rioboó-Legaspi
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain
| | - Paula Pleguezuelos-Beltrán
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain; National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 28050, United States
| | - Juan De Vicente
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; F2N2Lab, Magnetic Soft Matter Group, Department of Applied Physics, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | | | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain; Department of Health Sciences, University of Jaén, Jaén 23071, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada 18012, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, Granada 18016, Spain.
| |
Collapse
|
8
|
Phuphanitcharoenkun S, Louis F, Sowa Y, Matsusaki M, Palaga T. Improving stability of human three dimensional skin equivalents using plasma surface treatment. Biotechnol Bioeng 2024; 121:1950-1960. [PMID: 38470332 DOI: 10.1002/bit.28690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
In developing three-dimensional (3D) human skin equivalents (HSEs), preventing dermis and epidermis layer distortion due to the contraction of hydrogels by fibroblasts is a challenging issue. Previously, a fabrication method of HSEs was tested using a modified solid scaffold or a hydrogel matrix in combination with the natural polymer coated onto the tissue culture surface, but the obtained HSEs exhibited skin layer contraction and loss of the skin integrity and barrier functions. In this study, we investigated the method of HSE fabrication that enhances the stability of the skin model by using surface plasma treatment. The results showed that plasma treatment of the tissue culture surface prevented dermal layer shrinkage of HSEs, in contrast to the HSE fabrication using fibronectin coating. The HSEs from plasma-treated surface showed significantly higher transepithelial electrical resistance compared to the fibronectin-coated model. They also expressed markers of epidermal differentiation (keratin 10, keratin 14 and loricrin), epidermal tight junctions (claudin 1 and zonula occludens-1), and extracellular matrix proteins (collagen IV), and exhibited morphological characteristics of the primary human skins. Taken together, the use of plasma surface treatment significantly improves the stability of 3D HSEs with well-defined dermis and epidermis layers and enhanced skin integrity and the barrier functions.
Collapse
Affiliation(s)
- Suphanun Phuphanitcharoenkun
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, Thailand
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Tanapat Palaga
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Ávila-Fernández P, Etayo-Escanilla M, Sánchez-Porras D, Blanco-Elices C, Campos F, Carriel V, García-García ÓD, Chato-Astrain J. A Novel In Vitro Pathological Model for Studying Neural Invasion in Non-Melanoma Skin Cancer. Gels 2024; 10:252. [PMID: 38667671 PMCID: PMC11049316 DOI: 10.3390/gels10040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Neural Invasion (NI) is a key pathological feature of cancer in the colonization of distant tissues, and its underlying biological mechanisms are still scarcely known. The complex interactions between nerve and tumor cells, along with the stroma, make it difficult to reproduce this pathology in effective study models, which in turn has limited the understanding of NI pathogenesis. In this study, we have designed a three-dimensional model of NI squamous cell carcinoma combining human epidermoid carcinoma cells (hECCs) with a complete peripheral nerve segment encapsulated in a fibrine-agarose hydrogel. We recreated two vital processes of NI: a pre-invasive NI model in which hECCs were seeded on the top of the nerve-enriched stroma, and an invasive NI model in which cancer cells were immersed with the nerve in the hydrogel. Histological, histochemical and immunohistochemical analyses were performed to validate the model. Results showed that the integration of fibrin-agarose advanced hydrogel with a complete nerve structure and hECCs successfully generated an environment in which tumor cells and nerve components coexisted. Moreover, this model correctly preserved components of the neural extracellular matrix as well as allowing the proliferation and migration of cells embedded in hydrogel. All these results suggest the suitability of the model for the study of the mechanisms underlaying NI.
Collapse
Affiliation(s)
- Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, 18071 Granada, Spain
| | - Miguel Etayo-Escanilla
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
10
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
11
|
Wistner SC, Rashad L, Slaughter G. Advances in tissue engineering and biofabrication for in vitro skin modeling. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2023; 35:e00306. [PMID: 38645432 PMCID: PMC11031264 DOI: 10.1016/j.bprint.2023.e00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The global prevalence of skin disease and injury is continually increasing, yet conventional cell-based models used to study these conditions do not accurately reflect the complexity of human skin. The lack of inadequate in vitro modeling has resulted in reliance on animal-based models to test pharmaceuticals, biomedical devices, and industrial and environmental toxins to address clinical needs. These in vivo models are monetarily and morally expensive and are poor predictors of human tissue responses and clinical trial outcomes. The onset of three-dimensional (3D) culture techniques, such as cell-embedded and decellularized approaches, has offered accessible in vitro alternatives, using innovative scaffolds to improve cell-based models' structural and histological authenticity. However, these models lack adequate organizational control and complexity, resulting in variations between structures and the exclusion of physiologically relevant vascular and immunological features. Recently, biofabrication strategies, which combine biology, engineering, and manufacturing capabilities, have emerged as instrumental tools to recreate the heterogeneity of human skin precisely. Bioprinting uses computer-aided design (CAD) to yield robust and reproducible skin prototypes with unprecedented control over tissue design and assembly. As the interdisciplinary nature of biofabrication grows, we look to the promise of next-generation biofabrication technologies, such as organ-on-a-chip (OOAC) and 4D modeling, to simulate human tissue behaviors more reliably for research, pharmaceutical, and regenerative medicine purposes. This review aims to discuss the barriers to developing clinically relevant skin models, describe the evolution of skin-inspired in vitro structures, analyze the current approaches to biofabricating 3D human skin mimetics, and define the opportunities and challenges in biofabricating skin tissue for preclinical and clinical uses.
Collapse
Affiliation(s)
- Sarah C. Wistner
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Layla Rashad
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Gymama Slaughter
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| |
Collapse
|
12
|
Martin‐Piedra MA, Carmona G, Campos F, Carriel V, Fernández‐González A, Campos A, Cuende N, Garzón I, Gacto P, Alaminos M. Histological assessment of nanostructured fibrin-agarose skin substitutes grafted in burnt patients. A time-course study. Bioeng Transl Med 2023; 8:e10572. [PMID: 38023713 PMCID: PMC10658487 DOI: 10.1002/btm2.10572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 12/01/2023] Open
Abstract
A previously developed fibrin-agarose skin model-UGRSKIN-showed promising clinical results in severely burnt patients. To determine the histological parameters associated to the biocompatibility and therapeutic effects of this model, we carried out a comprehensive structural and ultrastructural study of UGRSKIN grafted in severely burnt patients after 3 months of follow-up. The grafted epidermis was analogue to native human skin from day 30th onward, revealing well-structured strata with well-differentiated keratinocytes expressing CK5, CK8, CK10, claudin, plakoglobin, filaggrin, and involucrin in a similar way to controls, suggesting that the epidermis was able to mature and differentiate very early. Melanocytes and Langerhans cells were found from day 30th onward, together with a basement membrane, abundant hemidesmosomes and lack of rete ridges. At the dermal layer, we found an interface between the grafted skin and the host tissue at day 30th, which tended to disappear with time. The grafted superficial dermis showed a progressive increase in properly-oriented collagen fibers, elastic fibers and proteoglycans, including decorin, similarly to control dermis at day 60-90th of in vivo follow-up. Blood vessels determined by CD31 and SMA expression were more abundant in grafted skin than controls, whereas lymphatic vessels were more abundant at day 90th. These results contribute to shed light on the histological parameters associated to biocompatibility and therapeutic effect of the UGRSKIN model grafted in patients and demonstrate that the bioengineered skin grafted in patients is able to mature and differentiate very early at the epithelial level and after 60-90 days at the dermal level.
Collapse
Affiliation(s)
- Miguel Angel Martin‐Piedra
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Gloria Carmona
- Andalusian Network for the Design and Translation of Advanced Therapies (former Andalusian Initiative for Advanced Therapies) ‐ Fundación Andaluza Progreso y Salud, Junta de Andalucía, Seville, Spain; Andalusian Transplant Coordination, Servicio Andaluz de SaludSevilleSpain
- Doctoral program in BiomedicineUniversity of GranadaGranadaSpain
| | - Fernando Campos
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Víctor Carriel
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Ana Fernández‐González
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
- Andalusian Network for the Design and Translation of Advanced Therapies (former Andalusian Initiative for Advanced Therapies) ‐ Fundación Andaluza Progreso y Salud, Junta de Andalucía, Seville, Spain; Andalusian Transplant Coordination, Servicio Andaluz de SaludSevilleSpain
- Unidad de Producción Celular e Ingeniería TisularHospital Universitario Virgen de las NievesGranadaSpain
| | - Antonio Campos
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Natividad Cuende
- Andalusian Network for the Design and Translation of Advanced Therapies (former Andalusian Initiative for Advanced Therapies) ‐ Fundación Andaluza Progreso y Salud, Junta de Andalucía, Seville, Spain; Andalusian Transplant Coordination, Servicio Andaluz de SaludSevilleSpain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | | | - Miguel Alaminos
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| |
Collapse
|
13
|
Sierra-Sánchez Á, Magne B, Savard E, Martel C, Ferland K, Barbier MA, Demers A, Larouche D, Arias-Santiago S, Germain L. In vitro comparison of human plasma-based and self-assembled tissue-engineered skin substitutes: two different manufacturing processes for the treatment of deep and difficult to heal injuries. BURNS & TRAUMA 2023; 11:tkad043. [PMID: 37908563 PMCID: PMC10615253 DOI: 10.1093/burnst/tkad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 11/02/2023]
Abstract
Background The aim of this in vitro study was to compare side-by-side two models of human bilayered tissue-engineered skin substitutes (hbTESSs) designed for the treatment of severely burned patients. These are the scaffold-free self-assembled skin substitute (SASS) and the human plasma-based skin substitute (HPSS). Methods Fibroblasts and keratinocytes from three humans were extracted from skin biopsies (N = 3) and cells from the same donor were used to produce both hbTESS models. For SASS manufacture, keratinocytes were seeded over three self-assembled dermal sheets comprising fibroblasts and the extracellular matrix they produced (n = 12), while for HPSS production, keratinocytes were cultured over hydrogels composed of fibroblasts embedded in either plasma as unique biomaterial (Fibrin), plasma combined with hyaluronic acid (Fibrin-HA) or plasma combined with collagen (Fibrin-Col) (n/biomaterial = 9). The production time was 46-55 days for SASSs and 32-39 days for HPSSs. Substitutes were characterized by histology, mechanical testing, PrestoBlue™-assay, immunofluorescence (Ki67, Keratin (K) 10, K15, K19, Loricrin, type IV collagen) and Western blot (type I and IV collagens). Results The SASSs were more resistant to tensile forces (p-value < 0.01) but less elastic (p-value < 0.001) compared to HPSSs. A higher number of proliferative Ki67+ cells were found in SASSs although their metabolic activity was lower. After epidermal differentiation, no significant difference was observed in the expression of K10, K15, K19 and Loricrin. Overall, the production of type I and type IV collagens and the adhesive strength of the dermal-epidermal junction was higher in SASSs. Conclusions This study demonstrates, for the first time, that both hbTESS models present similar in vitro biological characteristics. However, mechanical properties differ and future in vivo experiments will aim to compare their wound healing potential.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- Unidad de Producción Celular e Ingeniería Tisular (UPCIT), Virgen de las Nieves University Hospital, ibs. GRANADA, Andalusian Network for the design and translation of Advanced Therapies, Av. de las Fuerzas Armadas, Nº2, 4ª Planta Ed. de Gobierno, 18014, Granada, Spain
| | - Brice Magne
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Etienne Savard
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Christian Martel
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Karel Ferland
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Martin A Barbier
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Anabelle Demers
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Danielle Larouche
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| | - Salvador Arias-Santiago
- Unidad de Producción Celular e Ingeniería Tisular (UPCIT), Virgen de las Nieves University Hospital, ibs. GRANADA, Andalusian Network for the design and translation of Advanced Therapies, Av. de las Fuerzas Armadas, Nº2, 4ª Planta Ed. de Gobierno, 18014, Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Av. Madrid, Nº11–15, 18012, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Av. de la Investigación, Nº11, 18016, Granada, Spain
| | - Lucie Germain
- LOEX Tissue Engineering Laboratory and Department of Surgery, Faculty of Medicine, Université Laval, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
- CHU de Québec – Université Laval Research Center, Division of Regenerative Medicine, 1401 18e rue, Québec (Québec) G1J 1Z4, Canada
| |
Collapse
|
14
|
Arribas-Arribas B, Fernández-Muñoz B, Campos-Cuerva R, Montiel-Aguilera MÁ, Bermejo-González M, Lomas-Romero I, Martín-López M, Alcázar-Caballero RM, Del Mar Macías-Sánchez M, Campos F, Alaminos M, Gómez-Cía T, Gacto P, Carmona G, Santos-González M. Nanostructured fibrin-agarose hydrogels loaded with allogeneic fibroblasts as bio-dressings for acute treatment of massive burns. Biomed Pharmacother 2023; 168:115769. [PMID: 39491860 DOI: 10.1016/j.biopha.2023.115769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024] Open
Abstract
The prompt management of patients with massive burns is essential to maximize survival by preventing infection, hemorrhage, fluid and heat loss, and to optimally prepare the wound bed for the application of autografts or cultured tissue-engineered artificial autologous skin. Acute treatments are typically based on temporary bio-dressings, commonly cadaveric skin allografts, but supply challenges, high costs and increasingly stringent regulatory requirements preclude their widespread use. Nanostructured fibrin-agarose hydrogels (NFAH) have been proven to be safe and effective biomaterials in preclinical and clinical studies, and show good hemostatic and biomechanical properties. Here we generated and tested NFAH with embedded allogeneic dermal fibroblasts (NFAH-F) under Good Manufacturing Practice (GMP) conditions. Fibroblasts were first expanded and characterized to create a GMP bank and the NFAH-F was manufactured on demand. Three patients with major burns were treated with this product as a temporary bio-dressing under compassionate use. Our results suggest that NFAH-F product was a safe product and no adverse reactions were observed. In all cases, the patients survived until definitive treatment. Therefore, the application of NFAH-F might be a temporary bio-dressing for patients with massive burns when cadaveric skin allografts are not available.
Collapse
Affiliation(s)
- Blanca Arribas-Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Centro de Transfusión, Tejidos y Células (CTTC) de Sevilla, Seville, Spain; Programa doctorado Tecnología y Ciencias del Medicamento, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - Miguel Ángel Montiel-Aguilera
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Centro de Transfusión, Tejidos y Células (CTTC) de Sevilla, Seville, Spain
| | - María Bermejo-González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Centro de Transfusión, Tejidos y Células (CTTC) de Sevilla, Seville, Spain
| | - Isabel Lomas-Romero
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain
| | - María Martín-López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Instituto de Investigaciones Biomédicas de Sevilla (IBIS), Seville, Spain
| | - Rosario Mata Alcázar-Caballero
- Red Andaluza de diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud-FPS, Seville, Spain
| | - María Del Mar Macías-Sánchez
- Red Andaluza de diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud-FPS, Seville, Spain
| | - Fernando Campos
- Tissue Engineering Group. Facultad de Medicina, Universidad de Granada, Granada, Spain and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group. Facultad de Medicina, Universidad de Granada, Granada, Spain and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Tomás Gómez-Cía
- Unidad de Gestión Clínica de Cirugía Plástica y Grandes Quemados, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Purificación Gacto
- Unidad de Gestión Clínica de Cirugía Plástica y Grandes Quemados, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Gloria Carmona
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; PhD program in Biomedicine, University of Granada, Spain
| | - Mónica Santos-González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de diseño y traslación de Terapias Avanzadas (RAdytTA), Fundación Pública Andaluza Progreso y Salud, Seville, Spain; Centro de Transfusión, Tejidos y Células (CTTC) de Sevilla, Seville, Spain.
| |
Collapse
|
15
|
Kim Y, An JS, Lee D, Ryu SY, Hwang YC, Kim DH, Kim TW. Biocompatible memristive device based on an agarose@gold nanoparticle-nanocomposite layer obtained from nature for neuromorphic computing. Sci Rep 2023; 13:6491. [PMID: 37081006 PMCID: PMC10119280 DOI: 10.1038/s41598-023-32860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Natural, organic, materials-based artificial synaptic devices have been in the spotlight for wearable/flexible devices due to their lightweight, biocompatibility, and scalability. In this study, an electronic memristive device based on agarose extracted from plants in the Rhodophyceae class was fabricated, and its memory characteristics and analog data processing capabilities were evaluated. The Al/agarose@gold nanoparticle (AuNP) film/indium-tin-oxide (ITO)-structured memristive device exhibited reliable resistive switching characteristics with excellent retention with a large Ron/Roff ratio of 104. Also, analog conductance changes in our device were achieved with power consumption at the pJ level. This notable behavior could be maintained under mechanical deformations from a flat to a 4-mm bent state. In the recognition simulation based on the device's performance, an 91% accuracy and clear digit classification were achieved.
Collapse
Affiliation(s)
- Youngjin Kim
- Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jun Seop An
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Donghee Lee
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seong Yeon Ryu
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoon-Chul Hwang
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dae Hun Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Whan Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
16
|
Martín-López M, Rosell-Valle C, Arribas-Arribas B, Fernández-Muñoz B, Jiménez R, Nogueras S, García-Delgado AB, Campos F, Santos-González M. Bioengineered tissue and cell therapy products are efficiently cryopreserved with pathogen-inactivated human platelet lysate-based solutions. Stem Cell Res Ther 2023; 14:69. [PMID: 37024935 PMCID: PMC10079488 DOI: 10.1186/s13287-023-03300-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND There remains much interest in improving cryopreservation techniques for advanced therapy medicinal products (ATMPs). Recently, human platelet lysate (hPL) has emerged as a promising candidate to replace fetal bovine serum (FBS) as a xeno-free culture supplement for the expansion of human cell therapy products. Whether hPL can also substitute for FBS in cryopreservation procedures remains poorly studied. Here, we evaluated several cryoprotective formulations based on a proprietary hPL for the cryopreservation of bioengineered tissues and cell therapy products. METHODS We tested different xenogeneic-free, pathogen-inactivated hPL (ihPL)- and non-inactivated-based formulations for cryopreserving bioengineered tissue (cellularized nanostructured fibrin agarose hydrogels (NFAHs)) and common cell therapy products including bone marrow-derived mesenchymal stromal cells (BM-MSCs), human dermal fibroblasts (FBs) and neural stem cells (NSCs). To assess the tissue and cellular properties post-thaw of NFAHs, we analyzed their cell viability, identity and structural and biomechanical properties. Also, we evaluated cell viability, recovery and identity post-thaw in cryopreserved cells. Further properties like immunomodulation, apoptosis and cell proliferation were assessed in certain cell types. Additionally, we examined the stability of the formulated solutions. The formulations are under a bidding process with MD Bioproducts (Zurich, Switzerland) and are proprietary. RESULTS Amongst the tissue-specific solutions, Ti5 (low-DMSO and ihPL-based) preserved the viability and the phenotype of embedded cells in NFAHs and preserved the matrix integrity and biomechanical properties similar to those of the standard cryopreservation solution (70% DMEM + 20% FBS + 10% DMSO). All solutions were stable at - 20 °C for at least 3 months. Regarding cell-specific solutions, CeA maintained the viability of all cell types > 80%, preserved the immunomodulatory properties of BM-MSCs and promoted good recovery post-thaw. Besides, both tested solutions were stable at - 20 °C for 18 months. Finally, we established that there is a 3-h window in which thawed NFAHs and FBs maintain optimum viability immersed in the formulated solutions and at least 2 h for BM-MSCs. CONCLUSIONS Our results show that pathogen-inactivated solutions Ti5 allocated for bioengineered tissues and CeA allocated for cells are efficient and safe candidates to cryopreserve ATMPs and offer a xenogeneic-free and low-DMSO alternative to commercially available cryoprotective solutions.
Collapse
Affiliation(s)
- María Martín-López
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain
- Programa de Doctorado en Biología Molecular, Biomedicina e Investigación Clínica, Universidad de Sevilla, Seville, Spain
| | - Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain
| | - Blanca Arribas-Arribas
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain
- Programa de Doctorado en Farmacia, Universidad de Sevilla, Seville, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain
| | - Rosario Jiménez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, 14004, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004, Córdoba, Spain
| | - Sonia Nogueras
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, 14004, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004, Córdoba, Spain
| | - Ana Belén García-Delgado
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| | - Mónica Santos-González
- Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain.
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), 41013, Seville, Spain.
| |
Collapse
|
17
|
Dobroserdova AB, Novak EV, Kantorovich SS. Switching-field and first-order-reversal-curve distribution measurements in magnetic elastomers by molecular dynamics simulations: Accounting for polydispersity. Phys Rev E 2023; 107:044606. [PMID: 37198770 DOI: 10.1103/physreve.107.044606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/07/2023] [Indexed: 05/19/2023]
Abstract
In this work we employ molecular dynamics simulations to investigate the first-order-reversal-curve distribution and switching-field distribution of magnetic elastomers. We model magnetic elastomers in a bead-spring approximation with permanently magnetized spherical particles of two different sizes. We find that a different fractional composition of particles affects the magnetic properties of elastomers obtained as a result. We prove that the hysteresis of the elastomer can be attributed to the broad energy landscape with multiple shallow minima and caused by dipolar interactions.
Collapse
Affiliation(s)
- Alla B Dobroserdova
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620000 Ekaterinburg, Russia
| | - Ekaterina V Novak
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620000 Ekaterinburg, Russia
| | - Sofia S Kantorovich
- Computational and Soft Matter Physics, Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
18
|
Ortiz-Arrabal O, Irastorza-Lorenzo A, Campos F, Martín-Piedra MÁ, Carriel V, Garzón I, Ávila-Fernández P, de Frutos MJ, Esteban E, Fernández J, Janer A, Campos A, Chato-Astrain J, Alaminos M. Fibrin and Marine-Derived Agaroses for the Generation of Human Bioartificial Tissues: An Ex Vivo and In Vivo Study. Mar Drugs 2023; 21:md21030187. [PMID: 36976236 PMCID: PMC10058299 DOI: 10.3390/md21030187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Development of an ideal biomaterial for clinical use is one of the main objectives of current research in tissue engineering. Marine-origin polysaccharides, in particular agaroses, have been widely explored as scaffolds for tissue engineering. We previously developed a biomaterial based on a combination of agarose with fibrin, that was successfully translated to clinical practice. However, in search of novel biomaterials with improved physical and biological properties, we have now generated new fibrin-agarose (FA) biomaterials using 5 different types of agaroses at 4 different concentrations. First, we evaluated the cytotoxic effects and the biomechanical properties of these biomaterials. Then, each bioartificial tissue was grafted in vivo and histological, histochemical and immunohistochemical analyses were performed after 30 days. Ex vivo evaluation showed high biocompatibility and differences in their biomechanical properties. In vivo, FA tissues were biocompatible at the systemic and local levels, and histological analyses showed that biointegration was associated to a pro-regenerative process with M2-type CD206-positive macrophages. These results confirm the biocompatibility of FA biomaterials and support their clinical use for the generation of human tissues by tissue engineering, with the possibility of selecting specific agarose types and concentrations for applications requiring precise biomechanical properties and in vivo reabsorption times.
Collapse
Grants
- FIS PI20/0317 FIS PI20/0318 FIS PI21/0980 ICI19/00024 ICI21/00010 Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+I) of the Spanish Ministry of Science and Innovation (Instituto de Salud Carlos III),
- PE-0395-2019 PI-0442-2019 Consejería de Salud y Familias, Junta de Andalucía, Spain
- IDI-20180052 Hispanagar SA, Burgos, Spain, through CDTI, Ministry of Science and Innovation, Spain, Pro-grama Operativo Plurirregional de Crecimiento Inteligente (CRIN)
- B-CTS-504-UGR20 B-CTS-450-UGR20 marco del Programa Operativo FEDER Andalucía 2014-2020, University of Granada and Conseje-ría de Transformación Económica, Industria, Conocimiento y Universidades
Collapse
Affiliation(s)
- Olimpia Ortiz-Arrabal
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
- Doctoral Program in Biochemistry and Molecular Biology, University of Granada, E18016 Granada, Spain
| | - Ainhoa Irastorza-Lorenzo
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Miguel Ángel Martín-Piedra
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | | | | | | | | | - Antonio Campos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| |
Collapse
|
19
|
Bastidas JG, Maurmann N, Oliveira L, Alcantara B, Pinheiro CV, Leipnitz G, Meyer F, Oliveira M, Rigon P, Pranke P. Bilayer scaffold from PLGA/fibrin electrospun membrane and fibrin hydrogel layer supports wound healing in vivo. Biomed Mater 2023; 18. [PMID: 36599168 DOI: 10.1088/1748-605x/acb02f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Hybrid scaffolds from natural and synthetic polymers have been widely used due to the complementary nature of their physical and biological properties. The aim of the present study, therefore, has been to analyzein vivoa bilayer scaffold of poly(lactide-co-glycolide)/fibrin electrospun membrane and fibrin hydrogel layer on a rat skin model. Fibroblasts were cultivated in the fibrin hydrogel layer and keratinocytes on the electrospun membrane to generate a skin substitute. The scaffolds without and with cells were tested in a full-thickness wound model in Wistar Kyoto rats. The histological results demonstrated that the scaffolds induced granulation tissue growth, collagen deposition and epithelial tissue remodeling. The wound-healing markers showed no difference in scaffolds when compared with the positive control. Activities of antioxidant enzymes were decreased concerning the positive and negative control. The findings suggest that the scaffolds contributed to the granulation tissue formation and the early collagen deposition, maintaining an anti-inflammatory microenvironment.
Collapse
Affiliation(s)
- Juliana Girón Bastidas
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil
| | - Natasha Maurmann
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil
| | - Luiza Oliveira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Alcantara
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Vieira Pinheiro
- Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil.,Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil.,Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil.,Post Graduation Program in Biological Sciences: Biochemistry, Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Fabíola Meyer
- Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Maikel Oliveira
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil
| | - Paula Rigon
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil.,Stem Cell Research Institute (Instituto de Pesquisa com Células-tronco), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Sánchez-Porras D, Durand-Herrera D, Carmona R, Blanco-Elices C, Garzón I, Pozzobon M, San Martín S, Alaminos M, García-García ÓD, Chato-Astrain J, Carriel V. Expression of Basement Membrane Molecules by Wharton Jelly Stem Cells (WJSC) in Full-Term Human Umbilical Cords, Cell Cultures and Microtissues. Cells 2023; 12:cells12040629. [PMID: 36831296 PMCID: PMC9954414 DOI: 10.3390/cells12040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Wharton's jelly stem cells (WJSC) from the human umbilical cord (UC) are one of the most promising mesenchymal stem cells (MSC) in tissue engineering (TE) and advanced therapies. The cell niche is a key element for both, MSC and fully differentiated tissues, to preserve their unique features. The basement membrane (BM) is an essential structure during embryonic development and in adult tissues. Epithelial BMs are well-known, but similar structures are present in other histological structures, such as in peripheral nerve fibers, myocytes or chondrocytes. Previous studies suggest the expression of some BM molecules within the Wharton's Jelly (WJ) of UC, but the distribution pattern and full expression profile of these molecules have not been yet elucidated. In this sense, the aim of this histological study was to evaluate the expression of main BM molecules within the WJ, cultured WJSC and during WJSC microtissue (WJSC-MT) formation process. Results confirmed the presence of a pericellular matrix composed by the main BM molecules-collagens (IV, VII), HSPG2, agrin, laminin and nidogen-around the WJSC within UC. Additionally, ex vivo studies demonstrated the synthesis of these BM molecules, except agrin, especially during WJSC-MT formation process. The WJSC capability to synthesize main BM molecules could offer new alternatives for the generation of biomimetic-engineered substitutes where these molecules are particularly needed.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Doctoral Program in Biomedicine, Doctoral School, Universidad de Granada, 18016 Granada, Spain
| | - Daniel Durand-Herrera
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Facultad de Odontología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58010, Mexico
| | - Ramón Carmona
- Department of Cell Biology, Faculty of Sciences, Universidad de Granada, 18071 Granada, Spain
| | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Michela Pozzobon
- Department of Women and Children’s Health, University of Padova, 35129 Padova, Italy
- Corso Stati Uniti 4, Institute of Pediatric Research Città della Speranza, 35127 Padova, Italy
| | - Sebastián San Martín
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2520000, Chile
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (Ó.D.G.-G.); (J.C.-A.)
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (Ó.D.G.-G.); (J.C.-A.)
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
21
|
Kabir A, Sarkar A, Barui A. Acute and Chronic Wound Management: Assessment, Therapy and Monitoring Strategies. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
22
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
23
|
Rosell-Valle C, Martín-López M, Campos F, Chato-Astrain J, Campos-Cuerva R, Alaminos M, Santos González M. Inactivation of human plasma alters the structure and biomechanical properties of engineered tissues. Front Bioeng Biotechnol 2022; 10:908250. [PMID: 36082161 PMCID: PMC9445835 DOI: 10.3389/fbioe.2022.908250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fibrin is widely used for tissue engineering applications. The use of blood derivatives, however, carries a high risk of transmission of infectious agents, necessitating the application of pathogen reduction technology (PRT). The impact of this process on the structural and biomechanical properties of the final products is unknown. We used normal plasma (PLc) and plasma inactivated by riboflavin and ultraviolet light exposure (PLi) to manufacture nanostructured cellularized fibrin-agarose hydrogels (NFAHs), and then compared their structural and biomechanical properties. We also measured functional protein C, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and coagulation factors [fibrinogen, Factor (F) V, FVIII, FX, FXI, FXIII] in plasma samples before and after inactivation. The use of PLi to manufacture cellularized NFAHs increased the interfibrillar spacing and modified their biomechanical properties as compared with cellularized NFAH manufactured with PLc. PLi was also associated with a significant reduction in functional protein C, FV, FX, and FXI, and an increase in the international normalized ratio (derived from the PT), APTT, and TT. Our findings demonstrate that the use of PRT for fibrin-agarose bioartificial tissue manufacturing does not adequately preserve the structural and biomechanical properties of the product. Further investigations into PRT-induced changes are warranted to determine the applications of NFAH manufactured with inactivated plasma as a medicinal product.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Martín-López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Escuela Internacional de Doctorado Universidad de Sevilla, Seville, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
- *Correspondence: Mónica Santos González,
| |
Collapse
|
24
|
Optical Behavior of Human Skin Substitutes: Absorbance in the 200-400 nm UV Range. Biomedicines 2022; 10:biomedicines10071640. [PMID: 35884945 PMCID: PMC9313464 DOI: 10.3390/biomedicines10071640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
The most recent generation of bioengineered human skin allows for the efficient treatment of patients with severe skin defects. Despite UV sunlight can seriously affect human skin, the optical behavior in the UV range of skin models is still unexplored. In the present study, absorbance and transmittance of the UGRSKIN bioartificial skin substitute generated with human skin cells combined with fibrin-agarose biomaterials were evaluated for: UV-C (200−280 nm), -B (280−315 nm), and -A (315−400 nm) spectral range after 7, 14, 21 and 28 days of ex vivo development. The epidermis of the bioartificial skin substitute was able to mature and differentiate in a time-dependent manner, expressing relevant molecules able to absorb most of the incoming UV radiation. Absorbance spectral behavior of the skin substitutes showed similar patterns to control native skin (VAF > 99.4%), with values 0.85−0.90 times lower than control values at 7 and 14- days and 1.05−1.10 times the control values at 21- and 28-days. UV absorbance increased, and UV transmission decreased with culture time, and comparable results to the control were found at 21 and 28 days. These findings support the use of samples corresponding to 21 or 28 days of development for clinical purposes due to their higher histological similarities with native skin, but also because of their absorbance of UV radiation.
Collapse
|
25
|
Cases-Perera O, Blanco-Elices C, Chato-Astrain J, Miranda-Fernández C, Campos F, Crespo PV, Sánchez-Montesinos I, Alaminos M, Martín-Piedra MA, Garzón I. Development of secretome-based strategies to improve cell culture protocols in tissue engineering. Sci Rep 2022; 12:10003. [PMID: 35705659 PMCID: PMC9200715 DOI: 10.1038/s41598-022-14115-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Advances in skin tissue engineering have promoted the development of artificial skin substitutes to treat large burns and other major skin loss conditions. However, one of the main drawbacks to bioengineered skin is the need to obtain a large amount of viable epithelial cells in short periods of time, making the skin biofabrication process challenging and slow. Enhancing skin epithelial cell cultures by using mesenchymal stem cells secretome can favor the scalability of manufacturing processes for bioengineered skin. The effects of three different types of secretome derived from human mesenchymal stem cells, e.g. hADSC-s (adipose cells), hDPSC-s (dental pulp) and hWJSC-s (umbilical cord), were evaluated on cultured skin epithelial cells during 24, 48, 72 and 120 h to determine the potential of this product to enhance cell proliferation and improve biofabrication strategies for tissue engineering. Then, secretomes were applied in vivo in preliminary analyses carried out on Wistar rats. Results showed that the use of secretomes derived from mesenchymal stem cells enhanced currently available cell culture protocols. Secretome was associated with increased viability, proliferation and migration of human skin epithelial cells, with hDPSC-s and hWJSC-s yielding greater inductive effects than hADSC-s. Animals treated with hWJSC-s and especially, hDPSC-s tended to show enhanced wound healing in vivo with no detectable side effects. Mesenchymal stem cells derived secretomes could be considered as a promising approach to cell-free therapy able to improve skin wound healing and regeneration.
Collapse
Affiliation(s)
- O Cases-Perera
- Department of Plastic Surgery, University Hospital Virgen de las Nieves, Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
| | - C Blanco-Elices
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - J Chato-Astrain
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - C Miranda-Fernández
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
| | - F Campos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - P V Crespo
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - I Sánchez-Montesinos
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| | - M Alaminos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain.
| | - M A Martín-Piedra
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain.
| | - I Garzón
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| |
Collapse
|
26
|
Ortiz-Arrabal O, Chato-Astrain J, Crespo PV, Garzón I, Mesa-García MD, Alaminos M, Gómez-Llorente C. Biological Effects of Maslinic Acid on Human Epithelial Cells Used in Tissue Engineering. Front Bioeng Biotechnol 2022; 10:876734. [PMID: 35662841 PMCID: PMC9159156 DOI: 10.3389/fbioe.2022.876734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
In the present work, we evaluated the potential of maslinic acid (MA) to improve currently available keratinocyte culture methods for use in skin tissue engineering. Results showed that MA can increase cell proliferation and WST-1 activity of human keratinocytes after 24, 48, and 72 h, especially at the concentration of 5 μg/ml, without affecting cell viability. This effect was associated to a significant increase of KI-67 protein expression and upregulation of several genes associated to cell proliferation (PCNA) and differentiation (cytokeratins, intercellular junctions and basement membrane related genes). When human keratinocytes were isolated from skin biopsies, we found that MA at the concentration of 5 μg/ml significantly increased the efficiency of the explant and the cell dissociation methods. These results revealed the positive effects of MA to optimize human keratinocyte culture protocols for use in skin tissue engineering.
Collapse
Affiliation(s)
- Olimpia Ortiz-Arrabal
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Doctoral Program in Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Pascual Vicente Crespo
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - María Dolores Mesa-García
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus Universitario de Cartuja, Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Granada, Spain
- *Correspondence: María Dolores Mesa-García, ; Miguel Alaminos,
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- *Correspondence: María Dolores Mesa-García, ; Miguel Alaminos,
| | - Carolina Gómez-Llorente
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus Universitario de Cartuja, Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Granada, Spain
| |
Collapse
|
27
|
Polymerizable Skin Hydrogel for Full Thickness Wound Healing. Int J Mol Sci 2022; 23:ijms23094837. [PMID: 35563225 PMCID: PMC9100232 DOI: 10.3390/ijms23094837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
The skin is the largest organ in the human body, comprising the main barrier against the environment. When the skin loses its integrity, it is critical to replace it to prevent water loss and the proliferation of opportunistic infections. For more than 40 years, tissue-engineered skin grafts have been based on the in vitro culture of keratinocytes over different scaffolds, requiring between 3 to 4 weeks of tissue culture before being used clinically. In this study, we describe the development of a polymerizable skin hydrogel consisting of keratinocytes and fibroblast entrapped within a fibrin scaffold. We histologically characterized the construct and evaluated its use on an in vivo wound healing model of skin damage. Our results indicate that the proposed methodology can be used to effectively regenerate skin wounds, avoiding the secondary in vitro culture steps and thus, shortening the time needed until transplantation in comparison with other bilayer skin models. This is achievable due to the instant polymerization of the keratinocytes and fibroblast combination that allows a direct application on the wound. We suggest that the polymerizable skin hydrogel is an inexpensive, easy and rapid treatment that could be transferred into clinical practice in order to improve the treatment of skin wounds.
Collapse
|
28
|
Simard M, Tremblay A, Morin S, Martin C, Julien P, Fradette J, Flamand N, Pouliot R. α-Linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater 2022; 140:261-274. [PMID: 34808417 DOI: 10.1016/j.actbio.2021.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an important role in the establishment and the maintenance of the skin barrier function. However, the impact of their derived lipid mediators remains unclear. Skin substitutes were engineered according to the self-assembly method with a culture medium supplemented with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA). The supplementation with ALA and LA decreased testosterone absorption through a tissue-engineered reconstructed skin model, thus indicating an improved skin barrier function following supplementation. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes. Indeed, the dual supplementation increased the levels of eicosapentaenoic acid (EPA) (15-fold), docosapentaenoic acid (DPA) (3-fold), and LA (1.5-fold) in the epidermal phospholipids while it increased the levels of ALA (>20-fold), DPA (3-fold) and LA (1.5-fold) in the epidermal triglycerides. The bioactive lipid mediator profile of the skin substitutes, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols, was next analyzed using liquid chromatography-tandem mass spectrometry. The lipid supplementation further modulated bioactive lipid mediator levels of the reconstructed skin substitutes, leading to a lipid mediator profile more representative of the one found in normal human skin. These findings show that an optimized supply of PUFAs via culture media is essential for the establishment of improved barrier function in vitro. STATEMENT OF SIGNIFICANCE: Supplementation of the culture medium with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA) improved the skin barrier function of a tissue-engineered skin model. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes and further modulated bioactive lipid mediator levels, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols. These findings highlight the important role of ALA and LA in skin homeostasis and show that an optimized supply of polyunsaturated fatty acids via culture media is essential for the establishment of improved barrier function in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1J 1A4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Département de chirurgie, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada.
| |
Collapse
|
29
|
Dobroserdova A, Schümann M, Borin D, Novak E, Odenbach S, Kantorovich S. Magneto-elastic coupling as a key to microstructural response of magnetic elastomers with flake-like particles. SOFT MATTER 2022; 18:496-506. [PMID: 34940776 DOI: 10.1039/d1sm01349a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using the combination of experiment and molecular dynamics simulations, we investigate structural transformations in magnetic elastomers with NdFeB flake-like particles, caused by applied moderate magnetic fields. We explain why and how those transformations depend on whether or not the samples are initially cured by a short-time exposure to a strong field. We find that in a cured sample, a moderate magnetic field leads mainly to in-place flake rotations that are fully reversed once the applied field is switched off. In contrast, in an initially non-cured sample the flakes perform both translation and rotations under the influence of a moderate applied field that lead to the formation of chain-like structures that remain such even if the field is switched off.
Collapse
Affiliation(s)
- Alla Dobroserdova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia.
| | - Malte Schümann
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Institute of Mechatronic Engineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Dmitry Borin
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Institute of Mechatronic Engineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ekaterina Novak
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia.
| | - Stefan Odenbach
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Institute of Mechatronic Engineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sofia Kantorovich
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia.
- Faculty of Physics, University of Vienna, 1090, Kolingasse 14-16, Vienna, Austria
- Research Platform MMM Mathematics-Magnetism-Material, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
| |
Collapse
|
30
|
Rosell-Valle C, Martín-López M, Campos F, Chato-Astrain J, Campos-Cuerva R, Alaminos M, Santos González M. Inactivation of human plasma alters the structure and biomechanical properties of engineered tissues. Front Bioeng Biotechnol 2022. [PMID: 36082161 DOI: 10.3389/fbioe.2022.908250/full] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Fibrin is widely used for tissue engineering applications. The use of blood derivatives, however, carries a high risk of transmission of infectious agents, necessitating the application of pathogen reduction technology (PRT). The impact of this process on the structural and biomechanical properties of the final products is unknown. We used normal plasma (PLc) and plasma inactivated by riboflavin and ultraviolet light exposure (PLi) to manufacture nanostructured cellularized fibrin-agarose hydrogels (NFAHs), and then compared their structural and biomechanical properties. We also measured functional protein C, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and coagulation factors [fibrinogen, Factor (F) V, FVIII, FX, FXI, FXIII] in plasma samples before and after inactivation. The use of PLi to manufacture cellularized NFAHs increased the interfibrillar spacing and modified their biomechanical properties as compared with cellularized NFAH manufactured with PLc. PLi was also associated with a significant reduction in functional protein C, FV, FX, and FXI, and an increase in the international normalized ratio (derived from the PT), APTT, and TT. Our findings demonstrate that the use of PRT for fibrin-agarose bioartificial tissue manufacturing does not adequately preserve the structural and biomechanical properties of the product. Further investigations into PRT-induced changes are warranted to determine the applications of NFAH manufactured with inactivated plasma as a medicinal product.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Martín-López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Escuela Internacional de Doctorado Universidad de Sevilla, Seville, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| |
Collapse
|
31
|
Tremblay A, Simard M, Morin S, Pouliot R. Docosahexaenoic Acid Modulates Paracellular Absorption of Testosterone and Claudin-1 Expression in a Tissue-Engineered Skin Model. Int J Mol Sci 2021; 22:13091. [PMID: 34884896 PMCID: PMC8658185 DOI: 10.3390/ijms222313091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Healthy skin moLEdels produced by tissue-engineering often present a suboptimal skin barrier function as compared with normal human skin. Moreover, skin substitutes reconstructed according to the self-assembly method were found to be deficient in polyunsaturated fatty acids (PUFAs). Therefore, in this study, we investigated the effects of a supplementation of the culture media with docosahexaenoic acid (DHA) on the barrier function of skin substitutes. To this end, 10 μM DHA-supplemented skin substitutes were produced (n = 3), analyzed, and compared with controls (substitutes without supplementation). A Franz cell diffusion system, followed by ultra-performance liquid chromatography, was used to perform a skin permeability to testosterone assay. We then used gas chromatography to quantify the PUFAs found in the epidermal phospholipid fraction of the skin substitutes, which showed successful DHA incorporation. The permeability to testosterone was decreased following DHA supplementation and the lipid profile was improved. Differences in the expression of the tight junction (TJ) proteins claudin-1, claudin-4, occludin, and TJ protein-1 were observed, principally a significant increase in claudin-1 expression, which was furthermore confirmed by Western blot analyses. In conclusion, these results confirm that the DHA supplementation of cell culture media modulates different aspects of skin barrier function in vitro and reflects the importance of n-3 PUFAs regarding the lipid metabolism in keratinocytes.
Collapse
Affiliation(s)
- Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada; (A.T.); (M.S.); (S.M.)
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada
- Faculté de Pharmacie de l’Université Laval, Québec, QC G1V 0A6, Canada
| | - Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada; (A.T.); (M.S.); (S.M.)
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada
- Faculté de Pharmacie de l’Université Laval, Québec, QC G1V 0A6, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada; (A.T.); (M.S.); (S.M.)
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada
- Faculté de Pharmacie de l’Université Laval, Québec, QC G1V 0A6, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada; (A.T.); (M.S.); (S.M.)
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada
- Faculté de Pharmacie de l’Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
32
|
Martin-Piedra MA, Gironés-Camarasa B, España-López A, Fernández-Valadés Gámez R, Blanco-Elices C, Garzón I, Alaminos M, Fernández-Valadés R. Usefulness of a Nanostructured Fibrin-Agarose Bone Substitute in a Model of Severely Critical Mandible Bone Defect. Polymers (Basel) 2021; 13:3939. [PMID: 34833238 PMCID: PMC8618832 DOI: 10.3390/polym13223939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Critical defects of the mandibular bone are very difficult to manage with currently available materials and technology. In the present work, we generated acellular and cellular substitutes for human bone by tissue engineering using nanostructured fibrin-agarose biomaterials, with and without adipose-tissue-derived mesenchymal stem cells differentiated to the osteogenic lineage using inductive media. Then, these substitutes were evaluated in an immunodeficient animal model of severely critical mandibular bone damage in order to assess the potential of the bioartificial tissues to enable bone regeneration. The results showed that the use of a cellular bone substitute was associated with a morpho-functional improvement of maxillofacial structures as compared to negative controls. Analysis of the defect site showed that none of the study groups fully succeeded in generating dense bone tissue at the regeneration area. However, the use of a cellular substitute was able to improve the density of the regenerated tissue (as determined via CT radiodensity) and form isolated islands of bone and cartilage. Histologically, the regenerated bone islands were comparable to control bone for alizarin red and versican staining, and superior to control bone for toluidine blue and osteocalcin in animals grafted with the cellular substitute. Although these results are preliminary, cellular fibrin-agarose bone substitutes show preliminary signs of usefulness in this animal model of severely critical mandibular bone defect.
Collapse
Affiliation(s)
- Miguel-Angel Martin-Piedra
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain; (M.-A.M.-P.); (C.B.-E.); (I.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18012 Granada, Spain
| | - Belén Gironés-Camarasa
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, E18014 Granada, Spain;
- Doctoral Program in Biomedicine, University of Granada, E18071 Granada, Spain
| | - Antonio España-López
- Craniofacial Malformations and Cleft Lip and Palate Management Unit, University Hospital Virgen de las Nieves, E18014 Granada, Spain;
| | | | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain; (M.-A.M.-P.); (C.B.-E.); (I.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18012 Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain; (M.-A.M.-P.); (C.B.-E.); (I.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18012 Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain; (M.-A.M.-P.); (C.B.-E.); (I.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18012 Granada, Spain
| | - Ricardo Fernández-Valadés
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18012 Granada, Spain
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, E18014 Granada, Spain;
- Craniofacial Malformations and Cleft Lip and Palate Management Unit, University Hospital Virgen de las Nieves, E18014 Granada, Spain;
| |
Collapse
|
33
|
Improvement of Cell Culture Methods for the Successful Generation of Human Keratinocyte Primary Cell Cultures Using EGF-Loaded Nanostructured Lipid Carriers. Biomedicines 2021; 9:biomedicines9111634. [PMID: 34829863 PMCID: PMC8615600 DOI: 10.3390/biomedicines9111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
Human skin keratinocyte primary cultures can be established from skin biopsies with culture media containing epithelial growth factor (EGF). Although current methods are efficient, optimization is required to accelerate the procedure and obtain these cultures in less time. In the present study, we evaluated the effect of novel formulations based on EGF-loaded nanostructured lipid carriers (NLC). First, biosafety of NLC containing recombinant human EGF (NLC-rhEGF) was verified in immortalized skin keratinocytes and cornea epithelial cells, and in two epithelial cancer cell lines, by quantifying free DNA released to the culture medium. Then we established primary cell cultures of human skin keratinocytes with basal culture media (BM) and BM supplemented with NLC-rhEGF, liquid EGF (L-rhEGF), or NLC alone (NLC-blank). The results showed that cells isolated by enzymatic digestion and cultured with or without a feeder layer had a similar growth rate regardless of the medium used. However, the explant technique showed higher efficiency when NLC-rhEGF culture medium was used, compared to BM, L-rhEGF, or NLC-blank. Gene expression analysis showed that NLC-rhEGF was able to increase EGFR gene expression, along with that of other genes related to cytokeratins, cell–cell junctions, and keratinocyte maturation and differentiation. In summary, these results support the use of NLC-rhEGF to improve the efficiency of explant-based methods in the efficient generation of human keratinocyte primary cell cultures for tissue engineering use.
Collapse
|
34
|
Linares-Gonzalez L, Rodenas-Herranz T, Campos F, Ruiz-Villaverde R, Carriel V. Basic Quality Controls Used in Skin Tissue Engineering. Life (Basel) 2021; 11:1033. [PMID: 34685402 PMCID: PMC8541591 DOI: 10.3390/life11101033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of skin defects is often a challenging effort due to the currently limited reconstructive options. In this sense, tissue engineering has emerged as a possible alternative to replace or repair diseased or damaged tissues from the patient's own cells. A substantial number of tissue-engineered skin substitutes (TESSs) have been conceived and evaluated in vitro and in vivo showing promising results in the preclinical stage. However, only a few constructs have been used in the clinic. The lack of standardization in evaluation methods employed may in part be responsible for this discrepancy. This review covers the most well-known and up-to-date methods for evaluating the optimization of new TESSs and orientative guidelines for the evaluation of TESSs are proposed.
Collapse
Affiliation(s)
- Laura Linares-Gonzalez
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Teresa Rodenas-Herranz
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Fernando Campos
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Ricardo Ruiz-Villaverde
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Víctor Carriel
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
35
|
Risueño I, Valencia L, Jorcano JL, Velasco D. Skin-on-a-chip models: General overview and future perspectives. APL Bioeng 2021; 5:030901. [PMID: 34258497 PMCID: PMC8270645 DOI: 10.1063/5.0046376] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023] Open
Abstract
Over the last few years, several advances have been made toward the development and production of in vitro human skin models for the analysis and testing of cosmetic and pharmaceutical products. However, these skin models are cultured under static conditions that make them unable to accurately represent normal human physiology. Recent interest has focused on the generation of in vitro 3D vascularized skin models with dynamic perfusion and microfluidic devices known as skin-on-a-chip. These platforms have been widely described in the literature as good candidates for tissue modeling, as they enable a more physiological transport of nutrients and permit a high-throughput and less expensive evaluation of drug candidates in terms of toxicity, efficacy, and delivery. In this Perspective, recent advances in these novel platforms for the generation of human skin models under dynamic conditions for in vitro testing are reported. Advances in vascularized human skin equivalents (HSEs), transferred skin-on-a-chip (introduction of a skin biopsy or a HSE in the chip), and in situ skin-on-a-chip (generation of the skin model directly in the chip) are critically reviewed, and currently used methods for the introduction of skin cells in the microfluidic chips are discussed. An outlook on current applications and future directions in this field of research are also presented.
Collapse
Affiliation(s)
- I Risueño
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | - L Valencia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | - J L Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | | |
Collapse
|
36
|
Elastin-Plasma Hybrid Hydrogels for Skin Tissue Engineering. Polymers (Basel) 2021; 13:polym13132114. [PMID: 34203144 PMCID: PMC8271496 DOI: 10.3390/polym13132114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Dermo-epidermal equivalents based on plasma-derived fibrin hydrogels have been extensively studied for skin engineering. However, they showed rapid degradation and contraction over time and low mechanical properties which limit their reproducibility and lifespan. In order to achieve better mechanical properties, elasticity and biological properties, we incorporated a elastin-like recombinamer (ELR) network, based on two types of ELR, one modified with azide (SKS-N3) and other with cyclooctyne (SKS-Cyclo) chemical groups at molar ratio 1:1 at three different SKS (serine-lysine-serine sequence) concentrations (1, 3, and 5 wt.%), into plasma-derived fibrin hydrogels. Our results showed a decrease in gelation time and contraction, both in the absence and presence of the encapsulated human primary fibroblasts (hFBs), higher mechanical properties and increase in elasticity when SKSs content is equal or higher than 3%. However, hFBs proliferation showed an improvement when the lowest SKS content (1 wt.%) was used but started decreasing when increasing SKS concentration at day 14 with respect to the plasma control. Proliferation of human primary keratinocytes (hKCs) seeded on top of the hybrid-plasma hydrogels containing 1 and 3% of SKS showed no differences to plasma control and an increase in hKCs proliferation was observed for hybrid-plasma hydrogels containing 5 wt.% of SKS. These promising results showed the need to achieve a balance between the reduced contraction, the better mechanical properties and biological properties and indicate the potential of using this type of hydrogel as a testing platform for pharmaceutical products and cosmetics, and future work will elucidate their potential.
Collapse
|
37
|
Montero A, Quílez C, Valencia L, Girón P, Jorcano JL, Velasco D. Effect of Fibrin Concentration on the In Vitro Production of Dermo-Epidermal Equivalents. Int J Mol Sci 2021; 22:ijms22136746. [PMID: 34201667 PMCID: PMC8269027 DOI: 10.3390/ijms22136746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023] Open
Abstract
Human plasma-derived bilayered skin substitutes were successfully used by our group to produce human-based in vitro skin models for toxicity, cosmetic, and pharmaceutical testing. However, mechanical weakness, which causes the plasma-derived fibrin matrices to contract significantly, led us to attempt to improve their stability. In this work, we studied whether an increase in fibrin concentration from 1.2 to 2.4 mg/mL (which is the useful fibrinogen concentration range that can be obtained from plasma) improves the matrix and, hence, the performance of the in vitro skin cultures. The results show that this increase in fibrin concentration indeed affected the mechanical properties by doubling the elastic moduli and the maximum load. A structural analysis indicated a decreased porosity for the 2.4 mg/mL hydrogels, which can help explain this mechanical behavior. The contraction was clearly reduced for the 2.4 mg/mL matrices, which also allowed for the growth and proliferation of primary fibroblasts and keratinocytes, although at a somewhat reduced rate compared to the 1.2 mg/mL gels. Finally, both concentrations of fibrin gave rise to organotypic skin cultures with a fully differentiated epidermis, although their lifespans were longer (25–35%) in cultures with more concentrated matrices, which improves their usefulness. These systems will allow the generation of much better in vitro skin models for the testing of drugs, cosmetics and chemicals, or even to “personalized” skin for the diagnosis or determination of the most effective treatment possible.
Collapse
Affiliation(s)
- Andrés Montero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Cristina Quílez
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Leticia Valencia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Paula Girón
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: (J.L.J.); (D.V.)
| | - Diego Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: (J.L.J.); (D.V.)
| |
Collapse
|
38
|
Evaluation of Marine Agarose Biomaterials for Tissue Engineering Applications. Int J Mol Sci 2021; 22:ijms22041923. [PMID: 33672027 PMCID: PMC7919481 DOI: 10.3390/ijms22041923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022] Open
Abstract
Five agarose types (D1LE, D2LE, LM, MS8 and D5) were evaluated in tissue engineering and compared for the first time using an array of analysis methods. Acellular and cellular constructs were generated from 0.3–3%, and their biomechanical properties, in vivo biocompatibility (as determined by LIVE/DEAD, WST-1 and DNA release, with n = 6 per sample) and in vivo biocompatibility (by hematological and biochemical analyses and histology, with n = 4 animals per agarose type) were analyzed. Results revealed that the biomechanical properties of each hydrogel were related to the agarose concentration (p < 0.001). Regarding the agarose type, the highest (p < 0.001) Young modulus, stress at fracture and break load were D1LE, D2LE and D5, whereas the strain at fracture was higher in D5 and MS8 at 3% (p < 0.05). All agaroses showed high biocompatibility on human skin cells, especially in indirect contact, with a correlation with agarose concentration (p = 0.0074 for LIVE/DEAD and p = 0.0014 for WST-1) and type, although cell function tended to decrease in direct contact with highly concentrated agaroses. All agaroses were safe in vivo, with no systemic effects as determined by hematological and biochemical analysis and histology of major organs. Locally, implants were partially encapsulated and a pro-regenerative response with abundant M2-type macrophages was found. In summary, we may state that all these agarose types can be safely used in tissue engineering and that the biomechanical properties and biocompatibility were strongly associated to the agarose concentration in the hydrogel and partially associated to the agarose type. These results open the door to the generation of specific agarose-based hydrogels for definite clinical applications such as the human skin, cornea or oral mucosa.
Collapse
|
39
|
Campos F, Bonhome-Espinosa AB, Carmona R, Durán JDG, Kuzhir P, Alaminos M, López-López MT, Rodriguez IA, Carriel V. In vivo time-course biocompatibility assessment of biomagnetic nanoparticles-based biomaterials for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111476. [PMID: 33255055 DOI: 10.1016/j.msec.2020.111476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023]
Abstract
Novel artificial tissues with potential usefulness in local-based therapies have been generated by tissue engineering using magnetic-responsive nanoparticles (MNPs). In this study, we performed a comprehensive in vivo characterization of bioengineered magnetic fibrin-agarose tissue-like biomaterials. First, in vitro analyses were performed and the cytocompatibility of MNPs was demonstrated. Then, bioartificial tissues were generated and subcutaneously implanted in Wistar rats and their biodistribution, biocompatibility and functionality were analysed at the morphological, histological, haematological and biochemical levels as compared to injected MNPs. Magnetic Resonance Image (MRI), histology and magnetometry confirmed the presence of MNPs restricted to the grafting area after 12 weeks. Histologically, we found a local initial inflammatory response that decreased with time. Structural, ultrastructural, haematological and biochemical analyses of vital organs showed absence of damage or failure. This study demonstrated that the novel magnetic tissue-like biomaterials with improved biomechanical properties fulfil the biosafety and biocompatibility requirements for future clinical use and support the use of these biomaterials as an alternative delivery route for magnetic nanoparticles.
Collapse
Affiliation(s)
- Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ana B Bonhome-Espinosa
- Department of Applied Physics, University of Granada, Avenida de la Fuente Nueva, 18071 Granada, Spain
| | - Ramón Carmona
- Department of Cell Biology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, Granada, Spain
| | - Juan D G Durán
- Department of Applied Physics, University of Granada, Avenida de la Fuente Nueva, 18071 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Pavel Kuzhir
- Université Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice, Parc Valrose, 06108 Nice, France
| | - Miguel Alaminos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Modesto T López-López
- Department of Applied Physics, University of Granada, Avenida de la Fuente Nueva, 18071 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Ismael A Rodriguez
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain; Department of Histology, Faculty of Dentistry, Nacional University of Cordoba, Cordoba, Argentina.
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
40
|
Chato-Astrain J, Chato-Astrain I, Sánchez-Porras D, García-García ÓD, Bermejo-Casares F, Vairo C, Villar-Vidal M, Gainza G, Villullas S, Oruezabal RI, Ponce-Polo Á, Garzón I, Carriel V, Campos F, Alaminos M. Generation of a novel human dermal substitute functionalized with antibiotic-loaded nanostructured lipid carriers (NLCs) with antimicrobial properties for tissue engineering. J Nanobiotechnology 2020; 18:174. [PMID: 33228673 PMCID: PMC7686763 DOI: 10.1186/s12951-020-00732-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Treatment of patients affected by severe burns is challenging, especially due to the high risk of Pseudomonas infection. In the present work, we have generated a novel model of bioartificial human dermis substitute by tissue engineering to treat infected wounds using fibrin-agarose biomaterials functionalized with nanostructured lipid carriers (NLCs) loaded with two anti-Pseudomonas antibiotics: sodium colistimethate (SCM) and amikacin (AMK). RESULTS Results show that the novel tissue-like substitutes have strong antibacterial effect on Pseudomonas cultures, directly proportional to the NLC concentration. Free DNA quantification, WST-1 and Caspase 7 immunohistochemical assays in the functionalized dermis substitute demonstrated that neither cell viability nor cell proliferation were affected by functionalization in most study groups. Furthermore, immunohistochemistry for PCNA and KI67 and histochemistry for collagen and proteoglycans revealed that cells proliferated and were metabolically active in the functionalized tissue with no differences with controls. When functionalized tissues were biomechanically characterized, we found that NLCs were able to improve some of the major biomechanical properties of these artificial tissues, although this strongly depended on the type and concentration of NLCs. CONCLUSIONS These results suggest that functionalization of fibrin-agarose human dermal substitutes with antibiotic-loaded NLCs is able to improve the antibacterial and biomechanical properties of these substitutes with no detectable side effects. This opens the door to future clinical use of functionalized tissues.
Collapse
Affiliation(s)
- Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Isabel Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Óscar-Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Fabiola Bermejo-Casares
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
| | - Claudia Vairo
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510, Miñano, Spain
| | | | - Garazi Gainza
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510, Miñano, Spain
| | - Silvia Villullas
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510, Miñano, Spain
| | | | - Ángela Ponce-Polo
- Red Andaluza de Diseño Y Traslación de Terapias Avanzadas, Sevilla, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain.
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| |
Collapse
|
41
|
Oualla-Bachiri W, Fernández-González A, Quiñones-Vico MI, Arias-Santiago S. From Grafts to Human Bioengineered Vascularized Skin Substitutes. Int J Mol Sci 2020; 21:E8197. [PMID: 33147759 PMCID: PMC7662999 DOI: 10.3390/ijms21218197] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
The skin plays an important role in the maintenance of the human's body physiological homeostasis. It acts as a coverage that protects against infective microorganism or biomechanical impacts. Skin is also implied in thermal regulation and fluid balance. However, skin can suffer several damages that impede normal wound-healing responses and lead to chronic wounds. Since the use of autografts, allografts, and xenografts present source limitations and intense rejection associated problems, bioengineered artificial skin substitutes (BASS) have emerged as a promising solution to address these problems. Despite this, currently available skin substitutes have many drawbacks, and an ideal skin substitute has not been developed yet. The advances that have been produced on tissue engineering techniques have enabled improving and developing new arising skin substitutes. The aim of this review is to outline these advances, including commercially available skin substitutes, to finally focus on future tissue engineering perspectives leading to the creation of autologous prevascularized skin equivalents with a hypodermal-like layer to achieve an exemplary skin substitute that fulfills all the biological characteristics of native skin and contributes to wound healing.
Collapse
Affiliation(s)
- Wasima Oualla-Bachiri
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (W.O.-B.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs. GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (W.O.-B.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs. GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (W.O.-B.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs. GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (W.O.-B.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs. GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Dermatology Department, School of Medicine, Granada University, 18016 Granada, Spain
| |
Collapse
|
42
|
Sanabria-de la Torre R, Fernández-González A, Quiñones-Vico MI, Montero-Vilchez T, Arias-Santiago S. Bioengineered Skin Intended as In Vitro Model for Pharmacosmetics, Skin Disease Study and Environmental Skin Impact Analysis. Biomedicines 2020; 8:E464. [PMID: 33142704 PMCID: PMC7694072 DOI: 10.3390/biomedicines8110464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
This review aims to be an update of Bioengineered Artificial Skin Substitutes (BASS) applications. At the first moment, they were created as an attempt to replace native skin grafts transplantation. Nowadays, these in vitro models have been increasing and widening their application areas, becoming important tools for research. This study is focus on the ability to design in vitro BASS which have been demonstrated to be appropriate to develop new products in the cosmetic and pharmacology industry. Allowing to go deeper into the skin disease research, and to analyze the effects provoked by environmental stressful agents. The importance of BASS to replace animal experimentation is also highlighted. Furthermore, the BASS validation parameters approved by the OECD (Organisation for Economic Co-operation and Development) are also analyzed. This report presents an overview of the skin models applicable to skin research along with their design methods. Finally, the potential and limitations of the currently available BASS to supply the demands for disease modeling and pharmaceutical screening are discussed.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Dermatology Department, School of Medicine, Granada University, 18016 Granada, Spain
| |
Collapse
|
43
|
Mao Z, Bi X, Ye F, Shu X, Sun L, Guan J, Ritchie RO, Wu S. Controlled Cryogelation and Catalytic Cross-Linking Yields Highly Elastic and Robust Silk Fibroin Scaffolds. ACS Biomater Sci Eng 2020; 6:4512-4522. [PMID: 33455190 DOI: 10.1021/acsbiomaterials.0c00752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Silk biomaterials with tunable mechanical properties and biological properties are of special importance for tissue engineering. Here, we fabricated silk fibroin (SF, from Bombyx mori silk) scaffolds from cryogelation under controlled temperature and catalytic cross-linking conditions. Structurally, the cryogelled scaffolds demonstrated a greater β-sheet content but significantly smaller β-sheet domains compared to that without chemical cross-linking and catalyst. Mechanically, the cryogelled scaffolds were softer and highly elastic under tension and compression. The 120% tensile elongation and >85% recoverable compressive strain were among the best properties reported for SF scaffolds. Cyclic compression tests proved the robustness of such scaffolds to resist fatigue. The mechanical properties, as well as the degradation rate of the scaffolds, can be fine-tuned by varying the concentrations of the catalyst and the cross-linker. For biological responses, in vitro rat bone mesenchymal stem cell (rBMSC) culture studies demonstrated that cryogelled SF scaffolds supported better cell attachment and proliferation than the routine freeze-thawed scaffolds. The in vivo subcutaneous implantation results showed excellent histocompatibility and tissue ingrowth for the cryogelled SF scaffolds. This straightforward approach of enhanced elasticity of SF scaffolds and fine-tunability in mechanical performances, suggests a promising strategy to develop novel SF biomaterials for soft tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhinan Mao
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Fan Ye
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Xiong Shu
- Beijing Research Institute of Traumatology & Orthopaedics, Beijing 100035, China
| | - Lei Sun
- Beijing Research Institute of Traumatology & Orthopaedics, Beijing 100035, China
| | - Juan Guan
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Robert O Ritchie
- Department of Materials Science & Engineering, University of California, Berkeley, California 94720, United States
| | - Sujun Wu
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
44
|
Campos F, Bonhome-Espinosa AB, Chato-Astrain J, Sánchez-Porras D, García-García ÓD, Carmona R, López-López MT, Alaminos M, Carriel V, Rodriguez IA. Evaluation of Fibrin-Agarose Tissue-Like Hydrogels Biocompatibility for Tissue Engineering Applications. Front Bioeng Biotechnol 2020; 8:596. [PMID: 32612984 PMCID: PMC7308535 DOI: 10.3389/fbioe.2020.00596] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Generation of biocompatible and biomimetic tissue-like biomaterials is crucial to ensure the success of engineered substitutes in tissue repair. Natural biomaterials able to mimic the structure and composition of native extracellular matrices typically show better results than synthetic biomaterials. The aim of this study was to perform an in vivo time-course biocompatibility analysis of fibrin-agarose tissue-like hydrogels at the histological, imagenological, hematological, and biochemical levels. Tissue-like hydrogels were produced by a controlled biofabrication process allowing the generation of biomechanically and structurally stable hydrogels. The hydrogels were implanted subcutaneously in 25 male Wistar rats and evaluated after 1, 5, 9, and 12 weeks of in vivo follow-up. At each period of time, animals were analyzed using magnetic resonance imaging (MRI), hematological analyses, and histology of the local area in which the biomaterials were implanted, along with major vital organs (liver, kidney, spleen, and regional lymph nodes). MRI results showed no local or distal alterations during the whole study period. Hematology and biochemistry showed some fluctuation in blood cells values and in some biochemical markers over the time. However, these parameters were progressively normalized in the framework of the homeostasis process. Histological, histochemical, and ultrastructural analyses showed that implantation of fibrin-agarose scaffolds was followed by a progressive process of cell invasion, synthesis of components of the extracellular matrix (mainly, collagen) and neovascularization. Implanted biomaterials were successfully biodegraded and biointegrated at 12 weeks without any associated histopathological alteration in the implanted zone or distal vital organs. In summary, our in vivo study suggests that fibrin-agarose tissue-like hydrogels could have potential clinical usefulness in engineering applications in terms of biosafety and biocompatibility.
Collapse
Affiliation(s)
- Fernando Campos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ana Belen Bonhome-Espinosa
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Applied Physics, Faculty of Science, University of Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Sánchez-Porras
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain
| | - Óscar Darío García-García
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ramón Carmona
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Modesto T López-López
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Applied Physics, Faculty of Science, University of Granada, Granada, Spain
| | - Miguel Alaminos
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Víctor Carriel
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ismael A Rodriguez
- Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain.,Department of Histology, Faculty of Dentistry, National University of Cordoba, Cordoba, Argentina
| |
Collapse
|
45
|
Ionescu AM, Chato-Astrain J, Cardona JDLC, Campos F, Pérez MM, Alaminos M, Garzón I. Evaluation of the optical and biomechanical properties of bioengineered human skin generated with fibrin-agarose biomaterials. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-16. [PMID: 32383372 PMCID: PMC7203517 DOI: 10.1117/1.jbo.25.5.055002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/24/2020] [Indexed: 05/21/2023]
Abstract
SIGNIFICANCE Recent generation of bioengineered human skin allowed the efficient treatment of patients with severe skin defects. However, the optical and biomechanical properties of these models are not known. AIM Three models of bioengineered human skin based on fibrin-agarose biomaterials (acellular, dermal skin substitutes, and complete dermoepidermal skin substitutes) were generated and analyzed. APPROACH Optical and biomechanical properties of these artificial human skin substitutes were investigated using the inverse adding-doubling method and tensile tests, respectively. RESULTS The analysis of the optical properties revealed that the model that most resembled the optical behavior of the native human skin in terms of absorption and scattering properties was the dermoepidermal human skin substitutes after 7 to 14 days in culture. The time-course evaluation of the biomechanical parameters showed that the dermoepidermal substitutes displayed significant higher values than acellular and dermal skin substitutes for all parameters analyzed and did not differ from the control skin for traction deformation, stress, and strain at fracture break. CONCLUSIONS We demonstrate the crucial role of the cells from a physical point of view, confirming that a bioengineered dermoepidermal human skin substitute based on fibrin-agarose biomaterials is able to fulfill the minimal requirements for skin transplants for future clinical use at early stages of in vitro development.
Collapse
Affiliation(s)
- Ana Maria Ionescu
- University of Granada, Laboratory of Biomaterials Optics, Department of Optics, Faculty of Sciences, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Jesus Chato-Astrain
- University of Granada, Department of Histology, Faculty of Medicine, Tissue Engineering Group, Granada, Spain
| | - Juan de la Cruz Cardona
- University of Granada, Laboratory of Biomaterials Optics, Department of Optics, Faculty of Sciences, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Fernando Campos
- University of Granada, Department of Histology, Faculty of Medicine, Tissue Engineering Group, Granada, Spain
| | - Maria M. Pérez
- University of Granada, Laboratory of Biomaterials Optics, Department of Optics, Faculty of Sciences, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- University of Granada, Department of Histology, Faculty of Medicine, Tissue Engineering Group, Granada, Spain
| | - Ingrid Garzón
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- University of Granada, Department of Histology, Faculty of Medicine, Tissue Engineering Group, Granada, Spain
| |
Collapse
|
46
|
Santisteban-Espejo A, Campos F, Chato-Astrain J, Durand-Herrera D, García-García O, Campos A, Martin-Piedra MA, Moral-Munoz JA. Identification of Cognitive and Social Framework of Tissue Engineering by Science Mapping Analysis. Tissue Eng Part C Methods 2019; 25:37-48. [PMID: 30526420 DOI: 10.1089/ten.tec.2018.0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
IMPACT STATEMENT This study evaluates the cognitive structure and social behavior of tissue engineering (TE) based on a science mapping analysis. Understanding the terms and topics that play a key role in the development of TE can help administrative authorities to better plan funding. Moreover, a better knowledge of collaborative networks in TE and the identification of potential new opportunities for collaboration may enhance synergies in scientific activities to implement future approaches to therapy.
Collapse
Affiliation(s)
| | - Fernando Campos
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,3 Research Institute ibs.GRANADA, Granada, Spain
| | - Jesus Chato-Astrain
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain
| | - Daniel Durand-Herrera
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain
| | - Oscar García-García
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain
| | - Antonio Campos
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,3 Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Angel Martin-Piedra
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,3 Research Institute ibs.GRANADA, Granada, Spain
| | - Jose Antonio Moral-Munoz
- 4 Department of Nursing and Physiotherapy, University of Cadiz, Cadiz, Spain.,5 Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), University of Cadiz, Cadiz, Spain
| |
Collapse
|
47
|
Battisti M, Vecchione R, Casale C, Pennacchio FA, Lettera V, Jamaledin R, Profeta M, Di Natale C, Imparato G, Urciuolo F, Netti PA. Non-invasive Production of Multi-Compartmental Biodegradable Polymer Microneedles for Controlled Intradermal Drug Release of Labile Molecules. Front Bioeng Biotechnol 2019; 7:296. [PMID: 31781550 PMCID: PMC6856554 DOI: 10.3389/fbioe.2019.00296] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Transdermal drug delivery represents an appealing alternative to conventional drug administration systems. In fact, due to their high patient compliance, the development of dissolvable and biodegradable polymer microneedles has recently attracted great attention. Although stamp-based procedures guarantee high tip resolution and reproducibility, they have long processing times, low levels of system engineering, are a source of possible contaminants, and thermo-sensitive drugs cannot be used in conjunction with them. In this work, a novel stamp-based microneedle fabrication method is proposed. It provides a rapid room-temperature production of multi-compartmental biodegradable polymeric microneedles for controlled intradermal drug release. Solvent casting was carried out for only a few minutes and produced a short dissolvable tip made of polyvinylpyrrolidone (PVP). The rest of the stamp was then filled with degradable poly(lactide-co-glycolide) (PLGA) microparticles (μPs) quickly compacted with a vapor-assisted plasticization. The outcome was an array of microneedles with tunable release. The ability of the resulting microneedles to indent was assessed using pig cadaver skin. Controlled intradermal delivery was demonstrated by loading both the tip and the body of the microneedles with model therapeutics; POXA1b laccase from Pleurotus ostreatus is a commercial enzyme used for the whitening of skin spots. The action and indentation of the enzyme-loaded microneedle action were assessed in an in vitro skin model and this highlighted their ability to control the kinetic release of the encapsulated compound.
Collapse
Affiliation(s)
- Mario Battisti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Fabrizio A. Pennacchio
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Martina Profeta
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
48
|
Rico-Sánchez L, Garzón I, González-Andrades M, Ruíz-García A, Punzano M, Lizana-Moreno A, Muñoz-Ávila JI, Sánchez-Quevedo MDC, Martínez-Atienza J, Lopez-Navas L, Sanchez-Pernaute R, Oruezabal RI, Medialdea S, Gonzalez-Gallardo MDC, Carmona G, Sanbonmatsu-Gámez S, Perez M, Jimenez P, Cuende N, Campos A, Alaminos M. Successful development and clinical translation of a novel anterior lamellar artificial cornea. J Tissue Eng Regen Med 2019; 13:2142-2154. [PMID: 31373143 PMCID: PMC6973105 DOI: 10.1002/term.2951] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/08/2019] [Accepted: 07/27/2019] [Indexed: 01/03/2023]
Abstract
Blindness due to corneal diseases is a common pathology affecting up to 23 million individuals worldwide. The tissue‐engineered anterior human cornea, which is currently being tested in a Phase I/II clinical trial to treat severe corneal trophic ulcers with preliminary good feasibility and safety results. This bioartificial cornea is based on a nanostructured fibrin–agarose biomaterial containing human allogeneic stromal keratocytes and cornea epithelial cells, mimicking the human native anterior cornea in terms of optical, mechanical, and biological behavior. This product is manufactured as a clinical‐grade tissue engineering product, fulfilling European requirements and regulations. The clinical translation process included several phases: an initial in vitro and in vivo preclinical research plan, including preclinical advice from the Spanish Medicines Agency followed by additional preclinical development, the adaptation of the biofabrication protocols to a good manufacturing practice manufacturing process, including all quality controls required, and the design of an advanced therapy clinical trial. The experimental development and successful translation of advanced therapy medicinal products for clinical application has to overcome many obstacles, especially when undertaken by academia or SMEs. We expect that our experience and research strategy may help future researchers to efficiently transfer their preclinical results into the clinical settings.
Collapse
Affiliation(s)
- Laura Rico-Sánchez
- Andalusian Initiative for Advanced Therapies, Progress and Health Andalusian Public Foundation, Sevilla, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria IBS, Granada, Spain
| | - Miguel González-Andrades
- Unidad de Oftalmología, Hospital Universitario San Cecilio, Granada, Spain.,Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts, Harvard Medical School, Boston, MA.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - Antonio Ruíz-García
- Unidad de Producción Celular e Ingeniería Tisular, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria IBS, Granada, Spain.,PhD Programme in Clinical Medicine and Public Health, Escuela de Posgrado, University of Granada, Granada, Spain
| | - Miriam Punzano
- Unidad de Producción Celular e Ingeniería Tisular, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Antonio Lizana-Moreno
- Unidad de Producción Celular e Ingeniería Tisular, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria IBS, Granada, Spain
| | - Jose Ignacio Muñoz-Ávila
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria IBS, Granada, Spain
| | - Maria Del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria IBS, Granada, Spain
| | - Juliana Martínez-Atienza
- Andalusian Initiative for Advanced Therapies, Progress and Health Andalusian Public Foundation, Sevilla, Spain
| | - Luis Lopez-Navas
- Andalusian Initiative for Advanced Therapies, Progress and Health Andalusian Public Foundation, Sevilla, Spain
| | - Rosario Sanchez-Pernaute
- Andalusian Initiative for Advanced Therapies, Progress and Health Andalusian Public Foundation, Sevilla, Spain
| | - Roke Iñaki Oruezabal
- Andalusian Initiative for Advanced Therapies, Progress and Health Andalusian Public Foundation, Sevilla, Spain
| | - Santiago Medialdea
- Unidad de Oftalmología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Gloria Carmona
- Andalusian Initiative for Advanced Therapies, Progress and Health Andalusian Public Foundation, Sevilla, Spain.,PhD Programme in Biomedicine, Escuela de Posgrado, University of Granada, Granada, Spain
| | | | - Matías Perez
- Servicio de Análisis Clínicos e Inmunología, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria IBS, Granada, Spain
| | - Pilar Jimenez
- Servicio de Análisis Clínicos e Inmunología, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria IBS, Granada, Spain
| | - Natividad Cuende
- Andalusian Initiative for Advanced Therapies, Progress and Health Andalusian Public Foundation, Sevilla, Spain.,Coordinación Autonómica de Trasplantes de Andalucía, Servicio Andaluz de Salud, Sevilla, Spain
| | - Antonio Campos
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria IBS, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria IBS, Granada, Spain
| |
Collapse
|
49
|
Egea-Guerrero JJ, Carmona G, Correa E, Mata R, Arias-Santiago S, Alaminos M, Gacto P, Cuende N. Transplant of Tissue-Engineered Artificial Autologous Human Skin in Andalusia: An Example of Coordination and Institutional Collaboration. Transplant Proc 2019; 51:3047-3050. [PMID: 31627920 DOI: 10.1016/j.transproceed.2019.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A new model of tissue-engineered artificial autologous human skin developed in Andalusia is currently being transplanted into patients suffering from large burns within the Andalusian Public Healthcare System. This product is considered an advanced therapy medicinal product (ATMP) in Europe, and its clinical use implies meeting transplant and medicinal product legal requirements, being the Guidelines of Good Manufacturing Practice for ATMPs of particular importance. The preclinical research and clinical translation of the product have represented a technical, regulatory, and organizational challenge, which has taken 10 years since the first preclinical experiments were designed. Twelve patients with large burns, including 3 pediatric patients, have hitherto received artificial autologous skin grafts with an overall survival rate of 75% and positive clinical, homeostatic, and histologic results. Achieving such a milestone within our Healthcare System was possible through a multidisciplinary approach and the joint efforts of multiple publicly funded institutions and units under the coordination of the Andalusian Initiative for Advanced Therapies. In this article, we present the organizational model set up to facilitate collaboration and logistics among the professionals involved, totaling more than 80 people. The similarities between the tissue-engineered artificial autologous human skin transplant and other organ and tissue transplants, in terms of logistic requirements, reveal how regional and hospital transplant coordination have played a crucial role.
Collapse
Affiliation(s)
| | - Gloria Carmona
- Andalusian Initiative for Advanced Therapies (AIAT), Junta de Andalucía, Seville, Spain; PhD Program in Biomedicine, Escuela de Posgrado, University of Granada, Granada, Spain
| | - Elena Correa
- Hospital Transplant Coordination, University Hospital Virgen del Rocío, Seville, Spain
| | - Rosario Mata
- Andalusian Initiative for Advanced Therapies (AIAT), Junta de Andalucía, Seville, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, AIAT's GMP Network, University Hospital Virgen de las Nieves, Granada, Spain; Dermatology Department, University Hospital Virgen de las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| | - Miguel Alaminos
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain; Tissue Engineering Group, Histology Department, University of Granada, Spain
| | | | - Natividad Cuende
- Andalusian Transplant Coordination, Servicio Andaluz de Salud, Seville, Spain; Andalusian Initiative for Advanced Therapies (AIAT), Junta de Andalucía, Seville, Spain.
| |
Collapse
|
50
|
Carriel V, Vizcaíno-López G, Chato-Astrain J, Durand-Herrera D, Alaminos M, Campos A, Sánchez-Montesinos I, Campos F. Scleral surgical repair through the use of nanostructured fibrin/agarose-based films in rabbits. Exp Eye Res 2019; 186:107717. [PMID: 31265829 DOI: 10.1016/j.exer.2019.107717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Scleral defects can result as a consequence of trauma, infectious diseases or cancer and surgical repair with allogeneic scleral grafts can be required. However, this method has limitations and novel alternatives are needed. Here, the efficacy of acellular nanostructured fibrin-agarose hydrogel-based substitutes (NFAH) in the repair of scleral defects in rabbits was studied. For this, scleral defects of 5-mm diameter were made on 18 adult-male New Zealand rabbits and repaired with acellular NFAH, NFAH crosslinked with genipin (NFAH-GP) or glutaraldehyde (NFAH-GA), allogeneic scleral grafts as control (C-CTR) or not repaired (negative control N-CTR) (n = 3 each). Macroscopic and histological analyses were performed after 40-days. Macroscopy confirmed the repair of all defects in a comparable manner than the C-CTR. Histology showed no degradation nor integration in C-CTR while NFAH-GP and NFAH-GA biomaterials were encapsulated by connective and inflammatory tissues with partial biodegradation. The NFAH were fully biodegraded and replaced by a loose connective tissue and sclera covering the defects. This in vivo study demonstrated that the NFAH are a promising biocompatible and pro-regenerative alternative to the use of allogeneic cadaveric grafts. However, large defects and long-term studies are needed to demonstrate the potential clinical usefulness of these substitutes.
Collapse
Affiliation(s)
- Víctor Carriel
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain.
| | - Gerson Vizcaíno-López
- Doctoral Program in Biomedicine, University of Granada, Spain; Department of Histology, Autonomous University of Santo Domingo, Dominican Republic
| | - Jesús Chato-Astrain
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain
| | - Daniel Durand-Herrera
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain
| | - Miguel Alaminos
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain
| | - Antonio Campos
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain
| | - Indalecio Sánchez-Montesinos
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain; Department of Human Anatomy & Embryology, Faculty of Medicine, University of Granada, Spain.
| | - Fernando Campos
- Department of Histology & Tissue Engineering Group, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain
| |
Collapse
|