1
|
Haque MA, Poullikkas T, Al-Amin Kaisar FM, Haque S, Khatun MH, Mamun A, Khan A. PHLPP1 depletion promotes tumorigenesis and stemness in triple-negative breast cancer cells through AKT signaling. Med Oncol 2025; 42:80. [PMID: 39979645 DOI: 10.1007/s12032-025-02630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Breast cancer, particularly triple-negative breast cancer (TNBC), is a major cause of women's mortality, and effective treatment options are still lacking due to the absence of known mechanisms and biomarkers. Therefore, unveiling novel molecular mechanisms to identify potential biomarkers is urgently needed to ensure an effective TNBC treatment. In this study, we investigated the role of PHLPP1, a tumor suppressor gene, in the tumorigenesis and induction of cancer stem cells in TNBC using publicly available data and experimental protocols. Our study found that lower levels of PHLPP1 contributed negatively to patient overall survival. In addition, loss of PHLPP1 increased breast cancer cell proliferation, long-term colony regrowth ability, and the number of migrated and invaded cells. Consequently, we designed a stable PHLPP1 knockdown (KD) cell line to understand its impact through its stemness potential. As expected, PHLPP1 KD dramatically upregulated breast cancer stemness markers (NANOG, OCT4, and SOX2) expression and significantly increased cancer stem cell frequencies in TNBC cells. Mechanistically, PHLPP1 loss enhanced AKT phosphorylation at Ser473, thus activating AKT signaling, leading to larger tumor formation in vivo and elevated stemness expression. This study concludes that PHLPP1 has the capability to reduce the expression of cancer stemness genes by negatively regulating the AKT signaling pathway. Therefore, these findings may pave the way for discoveries in the context of cancer stemness and future strategies for developing effective treatment options for TNBC patients.
Collapse
Affiliation(s)
- Md Anwarul Haque
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Thanasis Poullikkas
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET, Maastricht, The Netherlands
| | - F M Al-Amin Kaisar
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shariful Haque
- Department of Pharmacy, Pabna University of Science and Technology, Pabna, 6600, Bangladesh
| | - Mst Hajera Khatun
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi, 6204, Bangladesh
| | - Al Mamun
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Alam Khan
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
2
|
Javed SR, Skolariki A, Zameer MZ, Lord SR. Implications of obesity and insulin resistance for the treatment of oestrogen receptor-positive breast cancer. Br J Cancer 2024; 131:1724-1736. [PMID: 39251829 PMCID: PMC11589622 DOI: 10.1038/s41416-024-02833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common cancer in women, and incidence rates are rising, it is thought in part, due to increasing levels of obesity. Endocrine therapy (ET) remains the cornerstone of systemic therapy for early and advanced oestrogen receptor-positive (ER + ) breast cancer, but despite treatment advances, it is becoming more evident that obesity and insulin resistance are associated with worse outcomes. Here, we describe the current understanding of the relationship between both obesity and diabetes and the prevalence and outcomes for ER+ breast cancer. We also discuss the mechanisms associated with resistance to ET and the relationship to treatment toxicity.
Collapse
Affiliation(s)
| | | | | | - Simon R Lord
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Nsairat H, Alshaer W, Lafi Z, Ahmad S, Al-Sanabrah A, El-Tanani M. Development and validation of reversed-phase-HPLC method for simultaneous quantification of fulvestrant and disulfiram in liposomes. Bioanalysis 2023; 15:1393-1405. [PMID: 37847056 DOI: 10.4155/bio-2023-0137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
This study aims to develop and validate an HPLC technique for the determination of fulvestrant and disulfiram in liposomes. Encapsulation of both drugs into liposomes may improve their anticancer potential. Validation was performed following the International Conference on Harmonization guidelines for specificity, linearity, limit of detection, limit of quantification, precision, accuracy and robustness. Method specificity displayed no interference and linearity over 25-200 and 12.5-100 μg/ml for fulvestrant and disulfiram, respectively. Precision and accuracy exhibited a low relative standard deviation (<1.70%) and appropriate recovery. The validated method could be designated as a proper method for the simultaneous determination of fulvestrant and disulfiram in liposomes. The liposomes displayed 148.5 ± 5.1 nm size. The encapsulation efficiencies were 73.52 and 50.50% for fulvestrant and disulfiram, respectively.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman, 11942, Jordan
| | - Zainab Lafi
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Somaya Ahmad
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Alaa Al-Sanabrah
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Mohamed El-Tanani
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
4
|
Wang X, Xu X, Zhang T, Jin Y, Xu S, Chen L, Lai Y, Zhang L, Pan R, Yu Y. Estrogen upregulates DNA2 expression through the PI3K-AKT pathway in endometrial carcinoma. J Zhejiang Univ Sci B 2023; 24:262-268. [PMID: 36916001 PMCID: PMC10014318 DOI: 10.1631/jzus.b2200436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Endometrial cancer is the most common gynecological malignancy, affecting up to 3% of women at some point during their lifetime (Morice et al., 2016; Li and Wang, 2021). Based on the pathogenesis and biological behavioral characteristics, endometrial cancer can be divided into estrogen-dependent (I) and non-estrogen-dependent (II) types (Ulrich, 2011). Type I accounts for approximately 80% of cases, of which the majority are endometrioid carcinomas, and the remaining are mucinous adenocarcinomas (Setiawan et al., 2013). It is generally recognized that long-term stimulation by high estrogen levels with the lack of progesterone antagonism is the most important risk factor; meanwhile, there is no definite conclusion on the specific pathogenesis. The incidence of endometrial cancer has been on the rise during the past two decades (Constantine et al., 2019; Gao et al., 2022; Luo et al., 2022). Moreover, the development of assisted reproductive technology and antiprogestin therapy following breast cancer surgery has elevated the risk of developing type I endometrial cancer to a certain extent (Vassard et al., 2019). Therefore, investigating the influence of estrogen in type I endometrial cancer may provide novel concepts for risk assessment and adjuvant therapy, and at the same time, provide a basis for research on new drugs to treat endometrial cancer.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Gynecology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiuling Xu
- Department of Gynecology and Obstetrics, Hangzhou Hospital of Traditional Chinese Medicine, Affiliated Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Ting Zhang
- Department of Gynecology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yang Jin
- Department of Gynecology and Obstetrics, Hangzhou Hospital of Traditional Chinese Medicine, Affiliated Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Sheng Xu
- Department of Gynecology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Lifeng Chen
- Department of Gynecology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yucheng Lai
- Department of Gynecology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Ling Zhang
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou 311122, China.,Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou 311122, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou 311122, China. .,Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou 311122, China.
| | - Yan Yu
- Department of Gynecology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
5
|
Neuregulin modulates hormone receptor levels in breast cancer through concerted action on multiple signaling pathways. Clin Sci (Lond) 2023; 137:1-15. [PMID: 36511917 PMCID: PMC9805957 DOI: 10.1042/cs20220472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
The Neuregulins (NRGs) are growth factors that bind and activate ErbB/HER receptor tyrosine kinases. Some reports have described an interplay between this ligand-receptor system and hormonal receptors in breast cancer. However, the mechanisms by which NRGs regulate hormonal receptor signaling have not been sufficiently described. Here, we show that in breast cancer cells the activation of NRG receptors down-regulated ERα through a double mechanism that included post-transcriptional and transcriptional effects. This regulation required the concerted participation of three signaling routes: the PI3K/AKT/mTOR, ERK1/2, and ERK5 pathways. Moreover, these three routes were also involved in the phosphorylation of ERα at serines 118 and 167, two residues implicated in resistance to endocrine therapies. On the other hand, NRGs conferred resistance to fulvestrant in breast cancer cells and this resistance could be reversed when the three pathways activated by NRGs were simultaneously inhibited. Our results indicate that estrogen receptor-positive (ER+) breast tumors that can have access to NRGs may be resistant to fulvestrant. This resistance could be overcome if strategies to target the three main pathways involved in the interplay between NRG receptors and ERα could be developed.
Collapse
|
6
|
Lai HZ, Han JR, Fu X, Ren YF, Li ZH, You FM. Targeted Approaches to HER2-Low Breast Cancer: Current Practice and Future Directions. Cancers (Basel) 2022; 14:cancers14153774. [PMID: 35954438 PMCID: PMC9367369 DOI: 10.3390/cancers14153774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary HER2-low breast cancer (BC) accounts for more than half of breast cancer patients. Anti-HER2 therapy has been ineffective in HER2-low BC, for which palliative chemotherapy is the main treatment modality. The definitive efficacy of T-Dxd in HER2-low BC breaks previous treatment strategies, which will redefine HER2-low and thus reshape anti-HER2 therapy. This review summarizes detection technologies and novel agents for HER2-low BC, and explores their possible role in future clinics, to provide ideas for the diagnosis and treatment of HER2-low BC. Abstract HER2-low breast cancer (BC) has a poor prognosis, making the development of more suitable treatment an unmet clinical need. While chemotherapy is the main method of treatment for HER2-low BC, not all patients benefit from it. Antineoplastic therapy without chemotherapy has shown promise in clinical trials and is being explored further. As quantitative detection techniques become more advanced, they assist in better defining the expression level of HER2 and in guiding the development of targeted therapies, which include directly targeting HER2 receptors on the cell surface, targeting HER2-related intracellular signaling pathways and targeting the immune microenvironment. A new anti-HER2 antibody-drug conjugate called T-DM1 has been successfully tested and found to be highly effective in clinical trials. With this progress, it could eventually be transformed from a disease without a defined therapeutic target into a disease with a defined therapeutic molecular target. Furthermore, efforts are being made to compare the sequencing and combination of chemotherapy, endocrine therapy, and HER2-targeted therapy to improve prognosis to customize the subtype of HER2 low expression precision treatment regimens. In this review, we summarize the current and upcoming treatment strategies, to achieve accurate management of HER2-low BC.
Collapse
|
7
|
Pal P, Millner A, Semina SE, Huggins RJ, Running L, Aga DS, Tonetti DA, Schiff R, Greene GL, Atilla-Gokcumen GE, Frasor J. Endocrine Therapy-Resistant Breast Cancer Cells Are More Sensitive to Ceramide Kinase Inhibition and Elevated Ceramide Levels Than Therapy-Sensitive Breast Cancer Cells. Cancers (Basel) 2022; 14:2380. [PMID: 35625985 PMCID: PMC9140186 DOI: 10.3390/cancers14102380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
ET resistance is a critical problem for estrogen receptor-positive (ER+) breast cancer. In this study, we have investigated how alterations in sphingolipids promote cell survival in ET-resistant breast cancer. We have performed LC-MS-based targeted sphingolipidomics of tamoxifen-sensitive and -resistant MCF-7 breast cancer cell lines. Follow-up studies included treatments of cell lines and patient-derived xenograft organoids (PDxO) with small molecule inhibitors; cytometric analyses to measure cell death, proliferation, and apoptosis; siRNA-mediated knockdown; RT-qPCR and Western blot for gene and protein expression; targeted lipid analysis; and lipid addback experiments. We found that tamoxifen-resistant cells have lower levels of ceramides and hexosylceramides compared to their tamoxifen-sensitive counterpart. Upon perturbing the sphingolipid pathway with small molecule inhibitors of key enzymes, we identified that CERK is essential for tamoxifen-resistant breast cancer cell survival, as well as a fulvestrant-resistant PDxO. CERK inhibition induces ceramide-mediated cell death in tamoxifen-resistant cells. Ceramide-1-phosphate (C1P) partially reverses CERK inhibition-induced cell death in tamoxifen-resistant cells, likely through lowering endogenous ceramide levels. Our findings suggest that ET-resistant breast cancer cells maintain lower ceramide levels as an essential pro-survival mechanism. Consequently, ET-resistant breast cancer models have a unique dependence on CERK as its activity can inhibit de novo ceramide production.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.P.); (S.E.S.)
| | - Alec Millner
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Svetlana E. Semina
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.P.); (S.E.S.)
| | - Rosemary J. Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.J.H.); (G.L.G.)
| | - Logan Running
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Diana S. Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Debra A. Tonetti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.J.H.); (G.L.G.)
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.P.); (S.E.S.)
| |
Collapse
|
8
|
García-Sáenz JÁ, Martínez-Jáñez N, Cubedo R, Jerez Y, Lahuerta A, González-Santiago S, Ferrer N, Ramos M, Alonso-Romero JL, Antón A, Carrasco E, Chen J, Neuwirth R, Galinsky K, Vincent S, Leonard EJ, Slamon D. Sapanisertib plus Fulvestrant in Postmenopausal Women with Estrogen Receptor-Positive/HER2-Negative Advanced Breast Cancer after Progression on Aromatase Inhibitor. Clin Cancer Res 2022; 28:1107-1116. [PMID: 34980598 PMCID: PMC9365359 DOI: 10.1158/1078-0432.ccr-21-2652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 12/27/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE This phase II study investigated daily or weekly sapanisertib (a selective dual inhibitor of mTOR complexes 1 and 2) in combination with fulvestrant. PATIENTS AND METHODS Postmenopausal women with estrogen receptor-positive (ER+)/HER2-negative (HER2-) advanced or metastatic breast cancer following progression during/after aromatase inhibitor treatment were randomized to receive fulvestrant 500 mg (28-day treatment cycles), fulvestrant plus sapanisertib 4 mg daily, or fulvestrant plus sapanisertib 30 mg weekly, until progressive disease, unacceptable toxicity, consent withdrawal, or study completion. RESULTS Among 141 enrolled patients, baseline characteristics were balanced among treatment arms, including prior cyclin-dependent kinase-4/6 (CDK4/6) inhibitor treatment in 33% to 35% of patients. Median progression-free survival (PFS; primary endpoint) was 3.5 months in the single-agent fulvestrant arm, compared with 7.2 months for fulvestrant plus sapanisertib daily [HR, 0.77; 95% confidence interval (CI), 0.47-1.26] and 5.6 months for fulvestrant plus sapanisertib weekly (HR, 0.88; 95% CI, 0.53-1.45). The greatest PFS benefits were seen in patients who had previously received CDK4/6 inhibitors. The most common adverse events were nausea, vomiting, and hyperglycemia, all occurring more frequently in the combination therapy arms. Treatment discontinuation due to adverse events occurred more frequently in the two combination therapy arms than with single-agent fulvestrant (32% and 36% vs. 4%, respectively). CONCLUSIONS Fulvestrant plus sapanisertib daily/weekly resulted in numerically longer PFS in patients with ER+/HER2- advanced or metastatic breast cancer, compared with single-agent fulvestrant. The combination was associated with increased toxicity. Further development of sapanisertib using these dosing schedules in this setting is not supported by these data.
Collapse
Affiliation(s)
- José Á. García-Sáenz
- Medical Oncology, Hospital Clínico Universitario San Carlos, Madrid, Spain.,Centro de Investigación Biomédica en Red CIBERONC-ISCIII, Madrid, Spain.,GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Corresponding Author: José Á. García-Sáenz, Medical Oncology, Hospital Clínico Universitario San Carlos, Calle del Prof Martín Lagos, Madrid 28040, Spain. Phone: 349-1330-3000, ext. 7768; E-mail:
| | - Noelia Martínez-Jáñez
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ricardo Cubedo
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Yolanda Jerez
- Centro de Investigación Biomédica en Red CIBERONC-ISCIII, Madrid, Spain.,GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Fundación de Investigación Biomédica, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Universidad Complutense de Madrid, Madrid, Spain
| | - Ainhara Lahuerta
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Onkologikoa, Gipuzkoa, Spain
| | - Santiago González-Santiago
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Universitario San Pedro de Alcántara, Cáceres, Spain
| | - Nieves Ferrer
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Universitari Son Espases, Palma, Spain
| | - Manuel Ramos
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Centro Oncológico de Galicia, A Coruña, Spain
| | - Jose L. Alonso-Romero
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Antonio Antón
- GEICAM Spanish Breast Cancer Group, Madrid, Spain.,Medical Oncology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Eva Carrasco
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
| | - Jingjing Chen
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Rachel Neuwirth
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Kevin Galinsky
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Sylvie Vincent
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - E. Jane Leonard
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Dennis Slamon
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
9
|
Tsoi H, Shi L, Leung MH, Man EPS, So ZQ, Chan WL, Khoo US. Overexpression of BQ323636.1 Modulated AR/IL-8/CXCR1 Axis to Confer Tamoxifen Resistance in ER-Positive Breast Cancer. Life (Basel) 2022; 12:93. [PMID: 35054486 PMCID: PMC8778777 DOI: 10.3390/life12010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
NCOR2 is a co-repressor for estrogen receptor (ER) and androgen receptor (AR). Our group previously identified a novel splice variant of NCOR2, BQ323636.1 (BQ), that mediates tamoxifen resistance via interference of NCOR2 repression on ER. Luciferase reporter assay showed BQ overexpression could enhance the transcriptional activity of androgen response element (ARE). We proposed that BQ employs both AR and ER to confer tamoxifen resistance. Through in silico analysis, we identified interleukin-8 (IL-8) as the sole ERE and ARE containing gene responsiveness to ER and AR activation. We confirmed that BQ overexpression enhanced the expression of IL-8 in ER+ve breast cancer cells, and AR inhibition reduced IL-8 expression in the BQ overexpressing cell lines, suggesting that AR was involved in the modulation of IL-8 expression by BQ. Moreover, we demonstrated that IL-8 could activate both AKT and ERK1/2 via CXCR1 to confer tamoxifen resistance. Targeting CXCR1/2 by a small inhibitor repertaxin reversed tamoxifen resistance of BQ overexpressing breast cancer cells in vitro and in vivo. In conclusion, BQ overexpression in ER+ve breast cancer can enhance IL-8 mediated signaling to modulate tamoxifen resistance. Targeting IL-8 signaling is a promising approach to overcome tamoxifen resistance in ER+ve breast cancer.
Collapse
Affiliation(s)
- Ho Tsoi
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| | - Ling Shi
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| | - Man-Hong Leung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| | - Ellen P. S. Man
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| | - Zi-Qing So
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| | - Wing-Lok Chan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| |
Collapse
|
10
|
The expression and clinical significance of GPR39 in colon cancer. Ir J Med Sci 2021; 191:1577-1585. [PMID: 34586565 DOI: 10.1007/s11845-021-02792-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Colorectal cancer is the third most common cancer and requires more prognostic biomarkers for precise treatment. GPR39 is a GPCR which can interact with Zn and modulate the colonocytes' survival. The clinical significance of GPR39 in colon cancer has never been reported. MATERIALS In our study, we compared GPR39 expression between colon cancers and tumor-adjacent tissues by retrieving TCGA data and detected the expression of GPR39 in colon cancers with qPCR and immunohistochemistry. The clinical significance of GPR39 was evaluated by analyzing the correlations with clinicopathological factors with the chi-square test. The prognostic significance of GPR39 was estimated with univariate and multivariate analyses. The expression of several other biomarkers including PPARG, EPCAM, and PD-L1 was investigated by re-analyzing TCGA data, qPCR, and IHC. The prognostic value of PPARG, EPCAM, and PD-L1 was also estimated with univariate analysis. RESULTS In both TCGA database and our 15 colon cancer pairs, GPR39 expression was significantly upregulated in colon cancer tissues. GPR39 was an independent prognostic biomarker in colon cancer for poor prognosis. With TCGA data re-analysis, qPCR, and IHC, we showed that GPR39 expression was significantly correlated with the expression of EPCAM and PD-L1, but not PPARG. EPCAM and PD-L1 were also unfavorable prognostic biomarkers of colon cancer. CONCLUSIONS GPR39 was upregulated in colon cancer tissues compared with tumor-adjacent tissues. GPR39 was an independent prognostic biomarker in colon cancer for poor prognosis. EPCAM and PD-L1 were substantially associated with GPR39 expression, and they were also identified as prognostic biomarkers in colon cancers.
Collapse
|
11
|
Zinc Signaling in the Mammary Gland: For Better and for Worse. Biomedicines 2021; 9:biomedicines9091204. [PMID: 34572390 PMCID: PMC8469023 DOI: 10.3390/biomedicines9091204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.
Collapse
|
12
|
Lim B, Potter DA, Salkeni MA, Silverman P, Haddad TC, Forget F, Awada A, Canon JL, Danso M, Lortholary A, Bourgeois H, Tan-Chiu E, Vincent S, Bahamon B, Galinsky KJ, Patel C, Neuwirth R, Leonard EJ, Diamond JR. Sapanisertib Plus Exemestane or Fulvestrant in Women with Hormone Receptor-Positive/HER2-Negative Advanced or Metastatic Breast Cancer. Clin Cancer Res 2021; 27:3329-3338. [PMID: 33820779 DOI: 10.1158/1078-0432.ccr-20-4131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 03/31/2021] [Indexed: 02/01/2023]
Abstract
PURPOSE This open-label, multicenter, phase IB/II study evaluated sapanisertib, a dual inhibitor of mTOR kinase complexes 1/2, plus exemestane or fulvestrant in postmenopausal women with hormone receptor-positive (HR+)/HER2-negative (HER2-) advanced/metastatic breast cancer. PATIENTS AND METHODS Eligible patients had previously progressed on everolimus with exemestane/fulvestrant and received ≤3 (phase IB) or ≤1 (phase II) prior chemotherapy regimens. Patients received sapanisertib 3 to 5 mg every day (phase IB), or 4 mg every day (phase II) with exemestane 25 mg every day or fulvestrant 500 mg monthly in 28-day cycles. Phase II enrolled parallel cohorts based on prior response to everolimus. The primary objective of phase II was to evaluate antitumor activity by clinical benefit rate at 16 weeks (CBR-16). RESULTS Overall, 118 patients enrolled in phase IB (n = 24) and II (n = 94). Five patients in phase IB experienced dose-limiting toxicities, at sapanisertib doses of 5 mg every day (n = 4) and 4 mg every day (n = 1); sapanisertib 4 mg every day was the MTD in combination with exemestane or fulvestrant. In phase II, in everolimus-sensitive versus everolimus-resistant cohorts, CBR-16 was 45% versus 23%, and overall response rate was 8% versus 2%, respectively. The most common adverse events were nausea (52%), fatigue (47%), diarrhea (37%), and hyperglycemia (33%); rash occurred in 17% of patients. Molecular analysis suggested positive association between AKT1 mutation status and best treatment response (complete + partial response; P = 0.0262). CONCLUSIONS Sapanisertib plus exemestane or fulvestrant was well tolerated and exhibited clinical benefit in postmenopausal women with pretreated everolimus-sensitive or everolimus-resistant breast cancer.
Collapse
Affiliation(s)
- Bora Lim
- M.D. Anderson Cancer Center, Houston, Texas.
| | | | | | - Paula Silverman
- University Hospitals Seidman Cancer Center Cleveland, Cleveland, Ohio
| | | | | | - Ahmad Awada
- Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | - Michael Danso
- Virginia Oncology Associates - Hampton, Chesapeake, Virginia
| | | | | | | | - Sylvie Vincent
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Brittany Bahamon
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Kevin J Galinsky
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Chirag Patel
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Rachel Neuwirth
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - E Jane Leonard
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | | |
Collapse
|
13
|
Khatpe AS, Adebayo AK, Herodotou CA, Kumar B, Nakshatri H. Nexus between PI3K/AKT and Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2021; 13:369. [PMID: 33498407 PMCID: PMC7864210 DOI: 10.3390/cancers13030369] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Signaling from estrogen receptor alpha (ERα) and its ligand estradiol (E2) is critical for growth of ≈70% of breast cancers. Therefore, several drugs that inhibit ERα functions have been in clinical use for decades and new classes of anti-estrogens are continuously being developed. Although a significant number of ERα+ breast cancers respond to anti-estrogen therapy, ≈30% of these breast cancers recur, sometimes even after 20 years of initial diagnosis. Mechanism of resistance to anti-estrogens is one of the intensely studied disciplines in breast cancer. Several mechanisms have been proposed including mutations in ESR1, crosstalk between growth factor and ERα signaling, and interplay between cell cycle machinery and ERα signaling. ESR1 mutations as well as crosstalk with other signaling networks lead to ligand independent activation of ERα thus rendering anti-estrogens ineffective, particularly when treatment involved anti-estrogens that do not degrade ERα. As a result of these studies, several therapies that combine anti-estrogens that degrade ERα with PI3K/AKT/mTOR inhibitors targeting growth factor signaling or CDK4/6 inhibitors targeting cell cycle machinery are used clinically to treat recurrent ERα+ breast cancers. In this review, we discuss the nexus between ERα-PI3K/AKT/mTOR pathways and how understanding of this nexus has helped to develop combination therapies.
Collapse
Affiliation(s)
- Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher A. Herodotou
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Xu T, Liu P, Li Q, Shi C, Wang X. Inhibitory effects of everolimus in combination with paclitaxel on adriamycin-resistant breast cancer cell line MDA-MB-231. Taiwan J Obstet Gynecol 2020; 59:828-834. [PMID: 33218396 DOI: 10.1016/j.tjog.2020.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE We aimed to evaluate the therapeutic effects of paclitaxel in combination with mTOR inhibitor everolimus on adriamycin-resistant breast cancer cell line MDA-MB-231 (MDA-MB-231/ADR). MATERIALS AND METHODS MDA-MB-231/ADR cells were treated with different concentrations of paclitaxel and everolimus. The IC50 values after 48 h of treatment were measured by the MTT assay. The apoptosis rate and cell cycle were detected by flow cytometry. The protein expressions of Akt, PI3K, mTOR, p-pI3K, p-AKT and p-mTOR were detected by Western blot. RESULTS When paclitaxel at ≥1.56 μg/ml was used, the growth of MDA-MB-231/ADR cells was inhibited more significantly than that of control group (P < 0.05). After treatment with ≥6.25 μg/ml everolimus, the cell growth was also suppressed more significantly (P < 0.05). The IC50 values of everolimus and paclitaxel were 32.50 μg/ml and 7.80 μg/ml, respectively. The inhibition rate of paclitaxel plus everolimus was significantly enhanced with increasing paclitaxel concentration (P < 0.001). After treatment with 7.80 μg/ml paclitaxel, the two drugs had best synergistic inhibitory effects on proliferation. Compared with drugs alone, the combination significantly promoted apoptosis (P < 0.001). The paclitaxel + everolimus group had significantly more cells in the G0-G1 phase than those of control and individual drug groups (P < 0.001). Everolimus significantly decreased mTOR and p-mTOR expressions compared with those of control group (P < 0.001). Compared with everolimus alone, the combination reduced the expressions more significantly (P < 0.05). Paclitaxel decreased the expression levels of PI3K, p-PI3K and p-AKT. Compared with paclitaxel alone, the combination significantly promoted the reduction of PI3K, p-PI3K and p-AKT expressions (P < 0.05). CONCLUSION Everolimus can enhance the effect of paclitaxel on MDA-MB-231/ADR cells, inhibit cell proliferation, induce apoptosis and arrest cell cycle in the G1 phase mainly by down-regulating the expressions of key proteins in the mTOR signaling pathway.
Collapse
Affiliation(s)
- Tinghua Xu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Pengxi Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qingming Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Changbin Shi
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xinjie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
15
|
Liu Y, Ma H, Yao J. ERα, A Key Target for Cancer Therapy: A Review. Onco Targets Ther 2020; 13:2183-2191. [PMID: 32210584 PMCID: PMC7073439 DOI: 10.2147/ott.s236532] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor α (ERα) is closely associated with both hormone-dependent and hormone-independent tumors, and it is also essential for the development of these cancers. The functions of ERα are bi-faceted; it can contribute to cancer progression as well as cancer inhibition. Therefore, understanding ERα is vital for the treatment of those cancers that are closely associated with its expression. Here, we will elaborate on ERα based on its structure, localization, activation, modification, and mutation. Also, we will look at co-activators of ERα, elucidate the signaling pathway activated by ERα, and identify cancers related to its activation. A comprehensive understanding of ERα could help us to find new ways to treat cancers.
Collapse
Affiliation(s)
- Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
16
|
Du L, Du DH, Chen B, Ding Y, Zhang T, Xiao W. Anti-Inflammatory Activity of Sanjie Zhentong Capsule Assessed By Network Pharmacology Analysis of Adenomyosis Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:697-713. [PMID: 32109994 PMCID: PMC7039068 DOI: 10.2147/dddt.s228721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/08/2020] [Indexed: 12/23/2022]
Abstract
Background Sanjie Zhentong capsule (SZC) offers excellent effect in treating adenomyosis (AM), which is a common and difficult gynecological disease in the clinic. However, the systematic analysis of its mechanism has not been carried out yet and further studies are needed to reveal the role of SZC. Methods A systematic network pharmacology analysis was conducted by integrating construction of SZC compound database and AM target database, prediction of potential active compounds and targets by molecular docking combined with compound-target prediction graph (CTPG), protein-protein interaction (PPI) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Then, the anti-inflammation experiments in vitro were performed by investigating SZC and the representative compounds regulating nitric oxide (NO), interleukin-6 (IL-6), and interleukin-10 (IL-10). Results Our findings show that SZC mainly treated AM by stimulating 28 core targets through 30 key potential active compounds, and affecting 4 crucial pathways. The treatment was associated with inflammation reaction, hormone regulation, cell adhesion, proliferation, and angiogenesis. Additionally, SZC achieved the anti-inflammatory activity by the cooperation of the compounds through inhibiting NO and IL-6, both promoting and inhibiting IL-10. Conclusion This study investigated the anti-inflammatory activity of SZC based on a systematic analysis of SZC remedying AM, which was revealed to be one of the essential mechanisms. These findings will provide valuable guidance for further research of the SZC treatment of AM, and help improve the comprehension of SZC pharmacological basis as well as AM pathogenesis.
Collapse
Affiliation(s)
- Li Du
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - De-Hui Du
- Shanghai Key Laboratory of Trustworthy Computing and Software Engineering Institute, East China Normal University, Shanghai, People's Republic of China
| | - Biao Chen
- Shanghai Key Laboratory of Trustworthy Computing and Software Engineering Institute, East China Normal University, Shanghai, People's Republic of China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wei Xiao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Jiangsu Kanion Pharmaceutical Co., Ltd, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Mero M, Asraf H, Sekler I, Taylor KM, Hershfinkel M. ZnR/GPR39 upregulation of K +/Cl --cotransporter 3 in tamoxifen resistant breast cancer cells. Cell Calcium 2019; 81:12-20. [PMID: 31146164 DOI: 10.1016/j.ceca.2019.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Expression of the zinc receptor, ZnR/GPR39, is increased in higher grade breast cancer tumors and cells. Zinc, its ligand, is accumulated at larger concentrations in the tumor tissue and can therefore activate ZnR/GPR39-dependent Ca2+ signaling leading to tumor progression. The K+/Cl- co-transporters (KCC), activated by intracellular signaling, enhance breast cancer cell migration and invasion. We asked if ZnR/GPR39 enhances breast cancer cell malignancy by activating KCC. Activation of ZnR/GPR39 by Zn2+ upregulated K+/Cl- co-transport activity, measured using NH4+ as a surrogate to K+ while monitoring intracellular pH. Upregulation of NH4+ transport was monitored in tamoxifen resistant cells with functional ZnR/GPR39-dependent Ca2+ signaling but not in MCF-7 cells lacking this response. The NH4+ transport was Na+-independent, and we therefore focused on KCC family members. Silencing of KCC3, but not KCC4, expression abolished Zn2+-dependent K+/Cl- co-transport, suggesting that KCC3 is mediating upregulated NH4+ transport. The ZnR/GPR39-dependent KCC3 activation accelerated scratch closure rate, which was abolished by inhibiting KCC transport with [(DihydroIndenyl) Oxy] Alkanoic acid (DIOA). Importantly, silencing of either ZnR/GPR39 or KCC3 attenuated Zn2+-dependent scratch closure. Thus, a novel link between KCC3 and Zn2+, via ZnR/GPR39, promotes breast cancer cell migration and proliferation.
Collapse
Affiliation(s)
- Maayan Mero
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
18
|
Najim O, Huizing M, Papadimitriou K, Trinh XB, Pauwels P, Goethals S, Zwaenepoel K, Peterson K, Weyler J, Altintas S, van Dam P, Tjalma W. The prevalence of estrogen receptor-1 mutation in advanced breast cancer: The estrogen receptor one study (EROS1). Cancer Treat Res Commun 2019; 19:100123. [PMID: 30826563 DOI: 10.1016/j.ctarc.2019.100123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Breast cancer has, due its high incidence, the highest mortality of cancer in women. The most common molecular variety of breast cancer is luminal subtype that expresses estrogen and progesterone receptors. Estrogen receptor alpha (ERα), encoded by the estrogen receptor1 (ESR1) gene, is expressed in approximately 70% of all breast cancers, and hormonal therapy represents a major treatment modality in all stages of ER positive breast cancers. Acquired mutations in the ligand-binding domain (LBD) of ERα, referred as ESR1 mutation, result in resistance to different endocrine therapies leading to disease progression or recurrence. Recent studies reviled that these ESR1 mutations lead to constitutive activity of the estrogen receptor ER, meaning that the receptor is active in absence of its ligand conferring resistance against endocrine therapy and tumor growth. Published studies have not yet been able to determine the exact prevalence rate of ESR1 mutations, but set the outer boundaries between 11-55%. PURPOSE The goal of the present study is to determine the frequency rate of ESR1 mutations in ER positive recurrent breast cancer by using digital droplet PCR (ddPCR) technique. MATERIALS AND METHODS This retrospective study was conducted in the Multidisciplinary Breast Clinic of Antwerp University Hospital. The seven most common ESR1mutations (c.1138G>C (p. (E380Q)), c.1610A>G (p.(Y537C)), c.1613A>G (p.(p.D538G)), c.1607T>G (p.(L536R)), c.1387T>C (p.S463R)), c.16410A>C (p.(Y537S)), c.609T>A (p.(Y537N)) were assessed in available baseline plasma samples of 21 patients with ER positive recurrent breast cancer. Inclusion criteria for study participation were: female, age above 18 years, ER positive breast cancer, 5years adjuvant hormonal therapy of primary disease, and disease recurrence or metastasis during or after stop of endocrine therapy. ESR1 mutations were analyzed in cell-free DNA (cfDNA) by using digital droplet PCR (ddPCR). RESULTS cfDNA was obtained from 21 patients with recurrent breast cancer. ESR1 mutations were found in 4/21 (19%; 95% CI, 5%-42%). The test sensitivity was lower than the targeted value <0.1% in 29% of patients (6/21). No significant statistical difference in baseline clinical characteristics was observed in patients with wild-type and mutant ER (p>0.05). Adjuvant endocrine therapy for primary disease was Tamoxifen (TAM) for 57% of patients (12 of 21) of whom 8 patients had received aromatase inhibitor (AI) after two years, while 43% of patients (9 of 21) had received AI as first line adjuvant hormonal therapy. All the patients had received aromatase inhibitor AI therapy in first or second line therapy with initially a variable period of good response. CONCLUSION ESR1 mutation analysis could be determined in archived plasma samples using simple non-invasive methods. In the future, screening for mutation status could improve the therapeutic strategies in controlling ER signaling before the occurrence of wide spread disease metastasis.
Collapse
Affiliation(s)
- Omar Najim
- Multidisciplinary Breast Clinic of Antwerp, University Hospital of Antwerp, Wilrijkstraat 10. Antwerp 2650, Belgium.
| | - Manon Huizing
- Faculty of Medicine, University of Antwerp, Antwerp, Belgium; Biobank Department, University Hospital of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital of Antwerp, Antwerp, Belgium
| | - Konstantinos Papadimitriou
- Multidisciplinary Breast Clinic of Antwerp, University Hospital of Antwerp, Wilrijkstraat 10. Antwerp 2650, Belgium; Department of Oncology, University Hospital of Antwerp, Antwerp, Belgium
| | - Xuan Bich Trinh
- Multidisciplinary Breast Clinic of Antwerp, University Hospital of Antwerp, Wilrijkstraat 10. Antwerp 2650, Belgium; Faculty of Medicine, University of Antwerp, Antwerp, Belgium; Unit of Gynecologic Oncology, Department of Obstetrics & Gynecology, University Hospital of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- Department of Pathology, University Hospital of Antwerp, Antwerp, Belgium
| | - Sofie Goethals
- Biobank Department, University Hospital of Antwerp, Antwerp, Belgium
| | - Karen Zwaenepoel
- Department of Pathology, University Hospital of Antwerp, Antwerp, Belgium
| | - Kevin Peterson
- Department of Medicine, General Hospital of Monica, Antwerp, Belgium
| | - Joost Weyler
- Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Sevilay Altintas
- Multidisciplinary Breast Clinic of Antwerp, University Hospital of Antwerp, Wilrijkstraat 10. Antwerp 2650, Belgium; Department of Oncology, University Hospital of Antwerp, Antwerp, Belgium
| | - Peter van Dam
- Multidisciplinary Breast Clinic of Antwerp, University Hospital of Antwerp, Wilrijkstraat 10. Antwerp 2650, Belgium; Faculty of Medicine, University of Antwerp, Antwerp, Belgium; Unit of Gynecologic Oncology, Department of Obstetrics & Gynecology, University Hospital of Antwerp, Antwerp, Belgium
| | - Wiebren Tjalma
- Multidisciplinary Breast Clinic of Antwerp, University Hospital of Antwerp, Wilrijkstraat 10. Antwerp 2650, Belgium; Faculty of Medicine, University of Antwerp, Antwerp, Belgium; Unit of Gynecologic Oncology, Department of Obstetrics & Gynecology, University Hospital of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Zinger L, Merenbakh-Lamin K, Klein A, Elazar A, Journo S, Boldes T, Pasmanik-Chor M, Spitzer A, Rubinek T, Wolf I. Ligand-binding Domain–activating Mutations of ESR1 Rewire Cellular Metabolism of Breast Cancer Cells. Clin Cancer Res 2019; 25:2900-2914. [DOI: 10.1158/1078-0432.ccr-18-1505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/18/2018] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
|
20
|
Haque MM, Desai KV. Pathways to Endocrine Therapy Resistance in Breast Cancer. Front Endocrinol (Lausanne) 2019; 10:573. [PMID: 31496995 PMCID: PMC6712962 DOI: 10.3389/fendo.2019.00573] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancers with positive expression of Estrogen Receptor (ER+) are treated with anti-hormone/endocrine therapy which targets the activity of the receptor, the half-life of the receptor or the availability of estrogen. This has significantly decreased mortality in women with ER+ breast cancer, however, about 25-30% of treated women run the risk or recurrence due to either intrinsic or acquired resistance to endocrine therapies. While ER itself is a predictor of response to such therapies, there exists a need to find more biomarkers and novel targets to treat resistant tumors. In this review, we summarize the known mechanisms and describe the ability of genomics in unraveling rare mutations and gene rearrangements that may impact the development of resistance and therefore treatment of ER+ breast cancer in the near future.
Collapse
|
21
|
Zhang X, Zhao Y, Wang C, Ju H, Liu W, Zhang X, Miao S, Wang L, Sun Q, Song W. Rhomboid domain-containing protein 1 promotes breast cancer progression by regulating the p-Akt and CDK2 levels. Cell Commun Signal 2018; 16:65. [PMID: 30286765 PMCID: PMC6172813 DOI: 10.1186/s12964-018-0267-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Background Our previous work revealed that rhomboid domain-containing protein 1 (RHBDD1) participates in the modulation of cell growth and apoptosis in colorectal cancer cells. This study aimed to investigate the function of RHBDD1 in regulating breast cancer progression and its underlying molecular basis. Methods Immunohistochemistry was performed to evaluate RHBDD1 expression in 116 breast cancer tissue and 39 adjacent normal tissue and expression of RHBDD1, phospho-Akt (p-Akt) and cyclin-dependent kinase 2 (CDK2) in the same 84 breast cancer specimens. RHBDD1-knock-out cells were established using breast cancer cell lines. In vitro studies were carried out to estimate the function of RHBDD1 in cell proliferation, migration and invasion. Fluorescence microscopy assay and flow cytometric analysis were used to measure apoptosis and cell cycle regulation. RNA sequencing and western blot analysis were used to investigate the molecular mechanisms of RHBDD1. Results RHBDD1 was highly up-regulated in breast cancer tissue compared with that in normal tissue and associated with pathological tumor (pT) stage, pathological tumor-node-metastasis (pTNM) stage and estrogen receptor (ER) expression. RHBDD1 up-regulation was associated with poor prognosis in several subtypes of breast cancer. Deletion of RHBDD1 promoted apoptosis and suppressed proliferation, migration and invasion in breast cancer cells. RHBDD1 deletion suppressed Akt activation and decreased CDK2 protein level via proteasome pathway, thus inhibited cell cycle progression and G1/S phase transition. Moreover, the protein level of RHBDD1, p-Akt and CDK2 was significantly positively correlated in breast cancer tissue. Conclusions Our study reveals that RHBDD1 promotes breast cancer progression by regulating p-Akt and CDK2 protein levels, and might be a potential biomarker and prognostic indicator for breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s12964-018-0267-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.,Weifang Medical University, Weifang, 261000, China
| | - Yuechao Zhao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Hongge Ju
- Department of Pathology, Baotou Medical College, Baotou, 014040, China.,Department of Pathology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Wenjie Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
22
|
Ventura-Bixenshpaner H, Asraf H, Chakraborty M, Elkabets M, Sekler I, Taylor KM, Hershfinkel M. Enhanced ZnR/GPR39 Activity in Breast Cancer, an Alternative Trigger of Signaling Leading to Cell Growth. Sci Rep 2018; 8:8119. [PMID: 29802348 PMCID: PMC5970167 DOI: 10.1038/s41598-018-26459-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Acquired resistance to the estrogen receptor (ER) antagonist tamoxifen, is a major obstacle in treatment of breast cancer. Changes in Zn2+ accumulation and distribution are associated with tamoxifen-resistance and breast cancer progression. The Zn2+-sensing G-protein coupled receptor, ZnR/GPR39, triggers signaling leading to cell growth, but a role for this receptor in breast cancer in unknown. Using fluorescence imaging, we found Zn2+-dependent Ca2+ release, mediated by ZnR/GPR39 activity, in TAMR tamoxifen-resistant cells derived from MCF-7 cells, but not in ER-expressing MCF-7 or T47D cells. Furthermore, ZnR/GPR39 signaling was monitored in ER negative BT20, MDA-MB-453 and JIMT-1 cells. Expression of ZnR/GPR39 was increased in grade 3 human breast cancer biopsies compared to grade 2. Consistently, analysis of two breast cancer patient cohorts, GDS4057 and TCGA, indicated that in ER-negative tumors higher ZnR/GPR39 mRNA levels are associated with more aggressive tumors. Activation of ZnR/GPR39 in TAMR cells triggered MAPK, mTOR and PI3K signaling. Importantly, enhanced cell growth and invasiveness was observed in the ER negative breast cancer cells, TAMR, MDA-MB-453 and BT20 cells but not in the ER expressing MCF-7 cells. Thus, we suggest ZnR/GPR39 as a potential therapeutic target for combination treatment in breast cancer, particularly relevant in ER negative tumors.
Collapse
Affiliation(s)
- Hila Ventura-Bixenshpaner
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moumita Chakraborty
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
23
|
Li S, Jiang J, Yang Z, Li Z, Ma X, Li X. Cardiac progenitor cell‑derived exosomes promote H9C2 cell growth via Akt/mTOR activation. Int J Mol Med 2018; 42:1517-1525. [PMID: 29786755 PMCID: PMC6089767 DOI: 10.3892/ijmm.2018.3699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
Exosomes are cell-derived vesicles released from a variety of mammalian cells that are involved in cell-to-cell signalling. It has been reported that cardiac progenitor cells (CPCs) derived from an adult heart are one of the most promising stem cell types for cardioprotection and repair. The mammalian target of rapamycin (mTOR) signalling pathway is a pivotal regulator in CPCs, therefore, CPC-derived exosomes were used in the present study to investigate whether it can promote H9C2 cell growth through the protein kinase B (PKB, or Akt)/mTOR signalling pathway. The CPCs were isolated from Sprague-Dawley hearts. Following treatment with a specific medium, the exosomes were purified and identified by electron micrograph and western blot assays, using CD63 and CD81 as markers. The methyl-thiazolyl-tetrazolium and 5-ethynyl-2′-deoxyuridine methods were used to detect H9C2 cell growth. The expression of Akt and mTOR were detected by western blot analysis following treatment with 200 or 400 µg/ml of exosomes for 24 or 48 h, respectively. It was found that, compared with higher concentrations of exosomes, prolonging the duration of exposure promoted cell growth. Accordingly, CPC-derived exosomes stimulated the expression of Akt to a marked degree; groups treated with exosomes for 48 h showed higher expression of Akt than those treated for 24 h at the same concentration. mTOR was also stimulated by CPC-derived exosomes. The activation of mTOR increased in accordance with the treatment time at an exosome concentration of 200 µg/ml and decreased with treatment time at an exosome concentration of 400 µg/ml. In conclusion, the present study demonstrated that CPC-derived exosomes promoted H9C2 cell growth via the activation of Akt/mTOR in a time-dependent manner at a relatively low exosome concentration, which may provide a novel therapy for cardiovascular disease.
Collapse
Affiliation(s)
- Shentang Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie Jiang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhuoying Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P.R. China
| | - Xin Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
24
|
Hershfinkel M. The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease. Int J Mol Sci 2018; 19:ijms19020439. [PMID: 29389900 PMCID: PMC5855661 DOI: 10.3390/ijms19020439] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
A distinct G-protein coupled receptor that senses changes in extracellular Zn2+, ZnR/GPR39, was found in cells from tissues in which Zn2+ plays a physiological role. Most prominently, ZnR/GPR39 activity was described in prostate cancer, skin keratinocytes, and colon epithelial cells, where zinc is essential for cell growth, wound closure, and barrier formation. ZnR/GPR39 activity was also described in neurons that are postsynaptic to vesicular Zn2+ release. Activation of ZnR/GPR39 triggers Gαq-dependent signaling and subsequent cellular pathways associated with cell growth and survival. Furthermore, ZnR/GPR39 was shown to regulate the activity of ion transport mechanisms that are essential for the physiological function of epithelial and neuronal cells. Thus, ZnR/GPR39 provides a unique target for therapeutically modifying the actions of zinc in a specific and selective manner.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, POB 653, Ben-Gurion Ave. Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
25
|
García-Aranda M, Redondo M. Protein Kinase Targets in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122543. [PMID: 29186886 PMCID: PMC5751146 DOI: 10.3390/ijms18122543] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
With 1.67 million new cases and 522,000 deaths in the year 2012, breast cancer is the most common type of diagnosed malignancy and the second leading cause of cancer death in women around the world. Despite the success of screening programs and the development of adjuvant therapies, a significant percentage of breast cancer patients will suffer a metastatic disease that, to this day, remains incurable and justifies the research of new therapies to improve their life expectancy. Among the new therapies that have been developed in recent years, the emergence of targeted therapies has been a milestone in the fight against cancer. Over the past decade, many studies have shown a causal role of protein kinase dysregulations or mutations in different human diseases, including cancer. Along these lines, cancer research has demonstrated a key role of many protein kinases during human tumorigenesis and cancer progression, turning these molecules into valid candidates for new targeted therapies. The subsequent discovery and introduction in 2001 of the kinase inhibitor imatinib, as a targeted treatment for chronic myelogenous leukemia, revolutionized cancer genetic pathways research, and lead to the development of multiple small-molecule kinase inhibitors against various malignancies, including breast cancer. In this review, we analyze studies published to date about novel small-molecule kinase inhibitors and evaluate if they would be useful to develop new treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
- Biochemistry Department, Facultad de Medicina de la Universidad de Málaga, Bulevar Louis Pasteur 32, 29010 Málaga, Spain.
| |
Collapse
|
26
|
Pronzato P. Role of everolimus in the treatment of metastatic HER2-negative/HR-positive breast cancer. Future Oncol 2017; 13:1371-1384. [PMID: 28443700 DOI: 10.2217/fon-2017-0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Metastatic breast cancer (mBC) is a leading cause of mortality for women around the world. The response to hormonotherapy of the patients with HER2-negative/HR-positive mBC is usually limited, and many strategies are in place to contrast the hormonotherapy resistance. Since efficacy and effectiveness of everolimus have been established by many trials, this review is aimed to give a structured synthesis to define the everolimus clinical role among the treatment options for mBC. Key aspects of everolimus dosing and safety profile, drawn up by relevant findings, are included, as well as the role of biomarkers to identify subgroups of mBC patients who may best benefit from everolimus treatment.
Collapse
|
27
|
Ding JH, Yuan LY, Chen GA. Aspirin enhances the cytotoxic activity of bortezomib against myeloma cells via suppression of Bcl-2, survivin and phosphorylation of AKT. Oncol Lett 2017; 13:647-654. [PMID: 28356941 PMCID: PMC5351279 DOI: 10.3892/ol.2016.5472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
In our previous study, it was found that aspirin (ASA) exerted antimyeloma actions in vivo and in vitro. The resistance to bortezomib (BTZ) in multiple myeloma (MM) is partly due to AKT activation and the upregulation of survivin induced by BTZ, which are the targets of ASA in gastric and ovarian cancer, respectively. Thus, the present study investigated the interaction between ASA and BTZ in MM and further clarified the underlying mechanisms. MM1.S and RPMI-8226 cell lines harboring the N- and K-Ras mutations, respectively, were treated with 2.5 mM ASA, 10 nM BTZ and ASA+BTZ for different durations. The proliferation and apoptosis of the cells were determined, and the underlying mechanisms governing the interaction of ASA and BTZ were examined in the MM cells. Treatment with ASA+BTZ caused higher rates of proliferative inhibition and apoptosis in the MM1.S and RPMI-8226 cells in time-dependent manner, compared with either agent alone. A drug interaction assay revealed the additive effect of ASA and BTZ on the myeloma cells. ASA alone inhibited the levels of phosphorylated AKT (p-AKT) and survivin, whereas BTZ alone augmented the levels of p-AKT and survivin. Of note, ASA markedly decreased the upregulation of p-AKT and survivin induced by BTZ. Treatment with ASA+BTZ significantly suppressed the level of Bcl-2, compared with either agent alone. ASA may potentiate the antimyeloma activity of BTZ against myeloma cells via suppression of AKT phosphorylation, survivin and Bcl-2, indicating the potential of ASA+BTZ in treating MM, particularly for cases of BTZ-refractory/relapsed MM.
Collapse
Affiliation(s)
- Jiang-Hua Ding
- Hematology and Oncology Department, The No. 171st Hospital of PLA, Jiujiang, Jiangxi 332000, P.R. China
| | - Li-Ya Yuan
- Hematology Department, Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330006, P.R. China
| | - Guo-An Chen
- Hematology Department, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
Lux MP, Fasching PA, Schrauder MG, Hein A, Jud SM, Rauh C, Beckmann MW. The PI3K Pathway: Background and Treatment Approaches. Breast Care (Basel) 2016; 11:398-404. [PMID: 28228706 DOI: 10.1159/000453133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Two-thirds of all breast cancer patients with metastases have a hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative subtype. Endocrine therapy is the treatment of choice in these patients since in addition to its effectiveness it can also maintain the patients' quality of life over a longer term. However, 44-62% of postmenopausal patients with metastatic breast carcinoma have primary tamoxifen resistance. After 3-5 years, 30-40% of the patients receiving tamoxifen treatment develop secondary resistance. Understanding the way in which resistance develops is therefore essential for developing treatment approaches that can prevent or reverse endocrine resistance. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a central role here. As a result of the numerous interactions involved, complex issues arise that need to be taken into account in the development and use of therapeutic agents. In addition, this signaling pathway is the one that most frequently undergoes mutations in breast cancer. The prognostic and predictive significance of individual mutations has not yet been fully explained, but it might provide a basis for patient selection in clinical studies. Initial research results on the use of PI3K inhibitors suggest that this may be a highly promising therapeutic approach, with an acceptable side effect profile.
Collapse
Affiliation(s)
- Michael P Lux
- University Breast Center for Franconia, Department of Gynecology, Erlangen University Hospital, CCC Erlangen-EMN, Erlangen, Germany
| | - Peter A Fasching
- University Breast Center for Franconia, Department of Gynecology, Erlangen University Hospital, CCC Erlangen-EMN, Erlangen, Germany
| | - Michael G Schrauder
- University Breast Center for Franconia, Department of Gynecology, Erlangen University Hospital, CCC Erlangen-EMN, Erlangen, Germany
| | - Alexander Hein
- University Breast Center for Franconia, Department of Gynecology, Erlangen University Hospital, CCC Erlangen-EMN, Erlangen, Germany
| | - Sebastian M Jud
- University Breast Center for Franconia, Department of Gynecology, Erlangen University Hospital, CCC Erlangen-EMN, Erlangen, Germany
| | - Claudia Rauh
- University Breast Center for Franconia, Department of Gynecology, Erlangen University Hospital, CCC Erlangen-EMN, Erlangen, Germany
| | - Matthias W Beckmann
- University Breast Center for Franconia, Department of Gynecology, Erlangen University Hospital, CCC Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
29
|
Gelsomino L, Gu G, Rechoum Y, Beyer AR, Pejerrey SM, Tsimelzon A, Wang T, Huffman K, Ludlow A, Andò S, Fuqua SAW. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling. Breast Cancer Res Treat 2016; 157:253-265. [PMID: 27178332 DOI: 10.1007/s10549-016-3829-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Guowei Gu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yassine Rechoum
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda R Beyer
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sasha M Pejerrey
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Anna Tsimelzon
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Tao Wang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kenneth Huffman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Ludlow
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sebastiano Andò
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Suzanne A W Fuqua
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Dan L Duncan Cancer Center, Houston, TX, USA.
| |
Collapse
|
30
|
Zhang M, Chen H, Gu J. Analysis of factors affecting endocrine therapy resistance in breast cancer. Oncol Lett 2015; 11:379-384. [PMID: 26870221 DOI: 10.3892/ol.2015.3887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to identify the factors involved in the resistance to endocrine therapy in breast cancer (BC) patients with a positive estrogen receptor status via the collection of clinical, pathological and immunohistochemical indices. A retrospective survey was performed in patients who experienced the relapse and metastasis of BC between November 2007 and March 2013. A total of 45 patients were enrolled, and the observational duration was 7-84 months. The Kaplan-Meier method was used to create a survival curve, while the log-rank test was used to analyze the survival curve and the Cox regression analysis was used to investigate the associated factors contributing to the resistance to endocrine therapy. Univariate analysis showed that the age of onset, the use of radiotherapy, the endocrine treatment program, and the expression levels of progesterone receptor (PR) and CerbB2 affected the impact of endocrine treatment. The Cox regression analysis indicated that the age of onset, the use of radiotherapy, and the expression levels of PR and CerbB2 affected the disease-free survival time after endocrine therapy. A young age of onset, not receiving radiotherapy, a low expression level of PR and a high expression level of CerbB2 were the risk factors involved in the resistance to endocrine therapy in patients with BC.
Collapse
Affiliation(s)
- Min Zhang
- Department of Mastopathy, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Hui Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
31
|
Reinert T, Barrios CH. Optimal management of hormone receptor positive metastatic breast cancer in 2016. Ther Adv Med Oncol 2015; 7:304-20. [PMID: 26557899 PMCID: PMC4622303 DOI: 10.1177/1758834015608993] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hormone receptor positive tumors represent the most common form of breast cancer and account for most of the deaths from the disease. Endocrine therapy represents the main initial therapeutic strategy for these patients and has been associated with significant clinical benefits in a majority of patients. While in early stages endocrine therapy is administered as part of a curative approach once clinical metastases develop, the disease is considered incurable and the main management objectives are tumor control and quality of life. The two major clinical paradigms of always indicating endocrine therapy in the absence of visceral crises and sequencing endocrine treatments have been guiding our therapeutic approach to these patients. However, for many decades, we have delivered endocrine therapy with a 'one size fits all' approach by applying agents that interfere with hormone receptor signaling equally in every clinical patient scenario. We have been unable to incorporate the well-known biologic principle of different degrees of hormone receptor dependency in our therapeutic recommendations. Recent developments in the understanding of molecular interactions of hormone signaling with other important growth factor, metabolic and cell division pathways have opened the possibility of improving results by modulating hormone signaling and interfering with resistance mechanisms yet to be fully understood. Unfortunately, limitations in the design of trials conducted in this area have made it difficult to develop predictive biomarkers and most of the new combinations with targeted agents, even though showing improvements in clinical endpoints, have been directed to an unselected population of patients. In this review we explore some of the current and most relevant literature in the management of hormone receptor positive advance breast cancer.
Collapse
Affiliation(s)
- Tomas Reinert
- Instituto do Câncer, Sistema de Saúde Mãe de Deus, Porto Alegre, RS, Brazil
| | - Carlos H. Barrios
- PUCRS School of Medicine, Department of Medicine, Padre Chagas 66/203, CEP 90 570 080, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Abstract
Therapies targeting estrogen receptor alpha (ERα), including selective ER modulators such as tamoxifen, selective ER downregulators such as fulvestrant (ICI 182 780), and aromatase inhibitors such as letrozole, are successfully used in treating breast cancer patients whose initial tumor expresses ERα. Unfortunately, the effectiveness of endocrine therapies is limited by acquired resistance. The role of microRNAs (miRNAs) in the progression of endocrine-resistant breast cancer is of keen interest in developing biomarkers and therapies to counter metastatic disease. This review focuses on miRNAs implicated as disruptors of antiestrogen therapies, their bona fide gene targets and associated pathways promoting endocrine resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| |
Collapse
|
33
|
The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells. Mol Cell Biochem 2015; 410:187-95. [PMID: 26350565 DOI: 10.1007/s11010-015-2551-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/02/2015] [Indexed: 01/04/2023]
Abstract
Estrogen is synthesized from cholesterol and high cholesterol levels are suggested to be associated with increased risk of estrogen receptor(ER)-positive breast cancer. The cholesterol metabolite 27-hydroxycholesterol (27-OHC) was recently identified as a selective estrogen receptor modulator (SERM) and may therefore impact breast cancer progression. However, the mechanisms by which 27-OHC may contribute to breast cancer are not all known. We determined the extent to which 27-OHC regulates cell proliferation in MCF7 ER-positive breast cancer cell line involving the tumor suppressor protein p53. We found that treatment of MCF7 cells with 27-OHC resulted reduced p53 transcriptional activity. Conversely, treatment of the ER-negative MDA-MB 231 cells with 27-OHC induced no significant change in p53 activity. Exposure of MCF7 cells to 27-OHC was also associated with increased protein levels of the E3 ubiquitin protein ligase MDM2 and decreased levels of p53. Moreover, 27-OHC also enhanced physical interaction between p53 and MDM2. Furthermore, 27-OHC-induced proliferation was attenuated using either the p53 activator Tenovin-1 or the MDM2 inhibitor Nutlin-3 and Mdm2 siRNA. Taken together, our results indicate that 27-OHC may contribute to ER-positive breast cancer progression by disrupting constitutive p53 signaling in an MDM2-dependent manner.
Collapse
|
34
|
Abstract
Around 70% of all breast cancers are estrogen receptor alpha positive and hence their development is highly dependent on estradiol. While the invention of endocrine therapies has revolusioned the treatment of the disease, resistance to therapy eventually occurs in a large number of patients. This paper seeks to illustrate and discuss the complexity and heterogeneity of the mechanisms which underlie resistance and the approaches proposed to combat them. It will also focus on the use and development of methods for predicting which patients are likely to develop resistance.
Collapse
|
35
|
Iñiguez G, Castro JJ, Garcia M, Kakarieka E, Johnson MC, Cassorla F, Mericq V. IGF-IR signal transduction protein content and its activation by IGF-I in human placentas: relationship with gestational age and birth weight. PLoS One 2014; 9:e102252. [PMID: 25050889 PMCID: PMC4106823 DOI: 10.1371/journal.pone.0102252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/16/2014] [Indexed: 02/05/2023] Open
Abstract
Introduction The human placenta expresses the IGF-I and IGF-IR proteins and their intracellular signal components (IRS-1, AKT and mTOR). The aim of this study was to assess the IGF-IR content and activation of downstream signaling molecules in placentas from newborns who were classified by gestational age and birth weight. We studied placentas from 25 term appropriate (T-AGA), 26 term small (T-SGA), 22 preterm AGA (PT-AGA), and 20 preterm SGA (PT-SGA) newborns. The total and phosphorylated IGF-IR, IRS-1, AKT, and mTOR contents were determined by Western Blot and normalized by actin or with their respective total content. The effect of IGF-I was determined by stimulating placental explants with recombinant IGF-I 10-8 mol/L for 15, 30, and 60 minutes. Results The IGF-IR content was higher in T-SGA compared to T-AGA placentas, and the IRS-1 content was higher in PT-placentas compared with their respective T-placentas. The effect of IGF-I on the phosphorylated forms of IGF-IR was increased in T-SGA (150%) and PT-SGA (300%) compared with their respective AGA placentas. In addition, AKT serine phosphorylation was higher in PT-SGA compared to PT-AGA and T-SGA placentas (90% and 390% respectively). Conclusion The higher protein content and response to IGF-I of IGF-IR, IRS-1, and AKT observed in SGA placentas may represent a compensatory mechanism in response to fetal growth restriction.
Collapse
Affiliation(s)
- Germán Iñiguez
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
- * E-mail:
| | - Juan José Castro
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| | - Mirna Garcia
- Hospital Clínico San Borja-Arriarán, University of Chile, Santiago, Chile
| | - Elena Kakarieka
- Hospital Clínico San Borja-Arriarán, University of Chile, Santiago, Chile
| | - M. Cecilia Johnson
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| | - Fernando Cassorla
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| | - Verónica Mericq
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| |
Collapse
|
36
|
von Minckwitz G, Fontanella C. Pathway-oriented concepts in adjuvant and neoadjuvant breast cancer therapy. ACTA ACUST UNITED AC 2014; 8:246-7. [PMID: 24415976 DOI: 10.1159/000354788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gunter von Minckwitz
- German Breast Group, Neu-Isenburg, University of Frankfurt, Germany ; Women's Hospital, University of Frankfurt, Germany ; Senologic Oncology, Düsseldorf, Germany
| | - Caterina Fontanella
- German Breast Group, Neu-Isenburg, University of Frankfurt, Germany ; Department of Oncology, University Hospital of Udine, Italy
| |
Collapse
|