1
|
Akers AL, Albanese J, Alcazar-Felix RJ, Al-Shahi Salman R, Awad IA, Connolly ES, Danehy A, Flemming KD, Gordon E, Hage S, Kim H, Lanzino G, Lee CH, McCormick PC, Mabray MC, Marchuk DA, Smith E, Smith KM, Srivastava S, Taylor JM, Vadivelu S. Guidelines for the Diagnosis and Clinical Management of Cavernous Malformations of the Brain and Spinal Cord: Consensus Recommendations Based on a Systematic Literature Review by the Alliance to Cure Cavernous Malformation Clinical Advisory Board Experts Panel. Neurosurgery 2025:00006123-990000000-01651. [PMID: 40396744 DOI: 10.1227/neu.0000000000003459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Despite many publications about cavernous malformations (CMs), controversy remains regarding diagnostic and management strategies. To update evidence-based guidelines for the clinical management of brain and spinal cord CMs. METHODS The Alliance to Cure CMs, the patient support group in the United States advocating on behalf of patients and research in CM, convened a multidisciplinary writing group comprising expert CM clinicians to help summarize the existing literature related to the clinical care of CM, focusing on 5 topics: (1) epidemiology and natural history, (2) genetic testing and counseling, (3) diagnostic criteria and imaging standards, (4) neurosurgical considerations, and (5) neurological considerations. Building on prior evidence-based recommendations reflecting literature review through October 2014, the group conducted a systematic review of the more recent literature, identified references for mandatory citation, rated evidence, developed recommendations, and established consensus according to a prespecified protocol. Finally, the writing group outlined remaining knowledge gaps and controversies to guide future research. RESULTS From 2672 publications published between October 1, 2014, and March 15, 2023, and meeting key word criteria, 234 were selected based on prearticulated criteria for mandatory consideration in evidence-based recommendations. Topic authors used these and other supporting references to summarize current knowledge and arrive at 53 management recommendations, with unanimous consensus based on a Delphi process. These were rated by class (strength of recommendation) and level (quality of evidence) per the American Heart Association/American Stroke Association criteria. Eighteen recommendations were class 1 (34%), class 2 in 31 (58%), and class 3 in 4 (8%). Three were level A (6%), 19 (36%) were level B, and 31 (58%) were level C. CONCLUSION Current evidence supports prior and new recommendations for the management of CMs, but many reflect moderate classes and low levels, mandating further research to better inform clinical practice.
Collapse
Affiliation(s)
- Amy L Akers
- Alliance to Cure Cavernous Malformation, Charlottesville, Virginia, USA
| | - John Albanese
- Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | | | - Issam A Awad
- Neurological Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - Amy Danehy
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Errol Gordon
- Internal Medicine, The University of Oklahoma Health Sciences Center, Tulsa, Oklahoma, USA
| | - Stephanie Hage
- Neurological Surgery, University of Chicago, Chicago, Illinois, USA
| | - Helen Kim
- Anesthesis, University of California San Francisco, San Francisco, California, USA
| | | | - Cornelia H Lee
- Alliance to Cure Cavernous Malformation, Charlottesville, Virginia, USA
| | | | - Marc C Mabray
- Neuroradiology, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edward Smith
- Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | | | - J Michael Taylor
- Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sudhakar Vadivelu
- Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Li C, Huang S, Li Q, Zhuo L, Kang Y, Liu P, Huang W, Ma K, Lin X, Zhuang W, Chen D, Wang H, Yan L, Wang D, Lin Y, Kang D, Lin F. Plasma biomarkers in patients with familial cavernous malformation and their first-degree relatives: a cross-sectional study. Sci Rep 2025; 15:11284. [PMID: 40175401 PMCID: PMC11965505 DOI: 10.1038/s41598-025-91141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/18/2025] [Indexed: 04/04/2025] Open
Abstract
Familial cerebral cavernous malformation (FCCM), especially severe cases, impose a heavy physical and psychological burden on patients and their families. To explore the differences in plasma biomarker levels between patients with FCCM and their healthy first-degree relatives (FDRs) and between FCCM patients with and without severe chronic disease aggressiveness (CDA). In a cross - sectional study, magnetic resonance imaging (MRI) scanning and genetic testing were performed in patients with multiple CCMs and their FDRs. Subsequently, sixty-seven plasma biomarkers were tested using a customised multiplex bead immunoassay kit. Univariate and multivariate unconditional logistic regression analyses were conducted to determine the associations between plasma factors and the risk of developing FCCM and severe CDA. Receiver operating characteristic (ROC) curves were generated for each independent risk factor. As a result, plasma factors of 37 patients with FCCM and 37 FDRs were examined. Low CD31 (P < 0.001) and BDNF levels (P = 0.013) were independent risk factors for FCCM. The best model was achieved by combining the results of CD31 and BDNF (AUC = 0.845, sensitivity 0.838, specificity 0.784, cutoff score - 4.295) to distinguish patients with FCCM from healthy FDRs. Low Serpin E1/PAI-1 (P = 0.011) and high ROBO4 levels (P = 0.013) were independent risk factors for severe CDA in patients with FCCM. The best model was achieved by combining the results of Serpin E1/PAI-1 and ROBO4 levels (AUC = 0.913, sensitivity 1.000, specificity 0.760, cutoff score - 0.525) to identify patients with FCCM and severe CDA. In summary, the plasma concentrations of CD31 and BDNF seem to be lower in patients with FCCM than in their healthy FDRs. Low Serpin E1/PAI-1 and high ROBO4 concentrations may be correlated with high lesion burden and risk of recurrent bleeding.Trial registration: ClinicalTrials.gov Identifier: NCT03467295.
Collapse
Affiliation(s)
- Chunwang Li
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Shuna Huang
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Qixuan Li
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Lingyun Zhuo
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yaqing Kang
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Penghui Liu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Weilin Huang
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Ke Ma
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Xinru Lin
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Weiheng Zhuang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Darong Chen
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Huimin Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Lingjun Yan
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Dengliang Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Fuxin Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
3
|
Galvão GF, Trefilio LM, Salvio AL, da Silva EV, Alves-Leon SV, Fontes-Dantas FL, de Souza JM. Genetic variants in FCGR2A, PTPN2, VDR as predictive signatures of aggressive phenotypes in cerebral cavernous malformation. Gene 2025; 933:148918. [PMID: 39236970 DOI: 10.1016/j.gene.2024.148918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE The biological behavior of Cerebral Cavernous Malformation (CCM) is still controversial, lacking a clear-cut signature for a mechanistic explanation of lesion aggressiveness. In this study, we evaluated the predictive capacity of genetic variants concerning the aggressive behavior of CCM and their implications in biological processes. METHODS We genotyped the variants in VDRrs7975232, VDRrs731236, VDRrs11568820, PTPN2rs72872125 and FCGR2Ars1801274 genes using TaqMan Genotyping Assays in a cohort study with 103 patients, 42 of whom had close follow-up visits for 4 years, focusing on 2 main aspects of the disease: (1) symptomatic events, which included both intracranial bleeding or epilepsy, and (2) the onset of symptoms. The genotypes were correlated with the levels of several cytokines quantified in peripheral blood, measured using the x-MAP method. RESULTS We report a novel observation that the PTPN2rs72872125 CT and the VDRrs7975232 CC genotype were independently associated with an asymptomatic phenotype. Additionally, PTPN2rs72872125 CC genotype and serum level of GM-CSF could predict a diagnostic association with symptomatic phenotype in CCM patients, while the FCGR2Ars1801274 GG genotype could predict a symptomatic event during follow-up. The study also found a correlation between VDRrs731236 AA and VDRrs11568820 CC genotype to the time to the first symptomatic event. CONCLUSIONS These genetic markers could pave the way for precision medicine strategies for CCM, enhancing patient outcomes by enabling customized therapeutic approaches.
Collapse
Affiliation(s)
- Gustavo F Galvão
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil; Departamento de Neurocirurgia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 3938-2480, Brazil
| | - Luisa M Trefilio
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil; Laboratório de Neurofarmacogenetica, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Andreza L Salvio
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil
| | - Elielson V da Silva
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil
| | - Soniza V Alves-Leon
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil; Departamento de Neurologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 3938-2480, Brazil
| | - Fabrícia L Fontes-Dantas
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil; Laboratório de Neurofarmacogenetica, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil.
| | - Jorge M de Souza
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil; Departamento de Neurocirurgia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 3938-2480, Brazil.
| |
Collapse
|
4
|
Zhang Z, Deng J, Sun W, Wang Z. Cerebral Cavernous Malformation: From Genetics to Pharmacotherapy. Brain Behav 2025; 15:e70223. [PMID: 39740786 DOI: 10.1002/brb3.70223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
INTRODUCTION Cerebral cavernous malformation (CCM) is a type of cerebrovascular abnormality in the central nervous system linked to both germline and somatic genetic mutations. Recent preclinical and clinical studies have shown that various drugs can effectively reduce the burden of CCM lesions. Despite significant progress, the mechanisms driving CCM remain incompletely understood, and to date, no drugs have been developed that can cure or prevent CCM. This review aims to explore the genetic mutations, molecular mechanisms, and pharmacological interventions related to CCM. METHODS Literatures on the genetic mechanisms and pharmacological treatments of CCM can be searched in PubMed and Web of Science. RESULTS Germline and somatic mutations mediate the onset and development of CCM through several molecular pathways. Medications such as statins, fasudil, rapamycin, and propranolol can alleviate CCM symptoms or hinder its progression by specifically modulating the corresponding targets. CONCLUSIONS Understanding the molecular mechanisms underlying CCM offers potential for targeted therapies. Further research into novel mutations and treatment strategies is essential for improving patient outcomes.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Weiping Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
5
|
He Q, Huo R, Sun Y, Zheng Z, Xu H, Zhao S, Ni Y, Yu Q, Jiao Y, Zhang W, Zhao J, Cao Y. Cerebral vascular malformations: pathogenesis and therapy. MedComm (Beijing) 2024; 5:e70027. [PMID: 39654683 PMCID: PMC11625509 DOI: 10.1002/mco2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ran Huo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingfan Sun
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate DiagnosisTreatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
- Department of Neurosurgery Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
| | - Hongyuan Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shaozhi Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Ni
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qifeng Yu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuming Jiao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenqian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yong Cao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Collaborative Innovation CenterBeijing Institute of Brain DisordersBeijingChina
| |
Collapse
|
6
|
Glading A. KRIT1 in vascular biology and beyond. Biosci Rep 2024; 44:BSR20231675. [PMID: 38980708 PMCID: PMC11263069 DOI: 10.1042/bsr20231675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024] Open
Abstract
KRIT1 is a 75 kDa scaffolding protein which regulates endothelial cell phenotype by limiting the response to inflammatory stimuli and maintaining a quiescent and stable endothelial barrier. Loss-of-function mutations in KRIT1 lead to the development of cerebral cavernous malformations (CCM), a disease marked by the formation of abnormal blood vessels which exhibit a loss of barrier function, increased endothelial proliferation, and altered gene expression. While many advances have been made in our understanding of how KRIT1, and the functionally related proteins CCM2 and PDCD10, contribute to the regulation of blood vessels and the vascular barrier, some important open questions remain. In addition, KRIT1 is widely expressed and KRIT1 and the other CCM proteins have been shown to play important roles in non-endothelial cell types and tissues, which may or may not be related to their role as pathogenic originators of CCM. In this review, we discuss some of the unsettled questions regarding the role of KRIT1 in vascular physiology and discuss recent advances that suggest this ubiquitously expressed protein may have a role beyond the endothelial cell.
Collapse
Affiliation(s)
- Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, U.S.A
| |
Collapse
|
7
|
Li C, Huang S, Li Q, Zhuo L, Kang Y, Liu P, Huang W, Ma K, Lin X, Zhuang W, Chen D, Wang H, Yan L, Wang D, Lin Y, Kang D, Lin F. Plasma biomarkers in patients with familial cavernous malformation and their first-degree relatives. RESEARCH SQUARE 2024:rs.3.rs-4545797. [PMID: 39011103 PMCID: PMC11247933 DOI: 10.21203/rs.3.rs-4545797/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Background We aimed to explore the differences in plasma biomarker levels between patients with familial cerebral cavernous malformations (FCCM) and their healthy first-degree relatives (FDRs) and between FCCM patients with and without severe chronic disease aggressiveness (CDA). Methods Magnetic resonance imaging (MRI) scanning and genetic testing was performed in patients with multiple CCMs and their FDRs. Sixty-seven plasma biomarkers were tested using a customised multiplex bead immunoassay kit. Univariate and multivariate unconditional logistic regression analyses were conducted to determine the associations between plasma factors and the risk of developing FCCM and severe CDA. Receiver operating characteristic (ROC) curves were generated for each independent risk factor. Results Plasma factors of 37 patients with FCCM and 37 FDRs were examined. Low CD31 (P < 0.001) and BDNF levels (P = 0.013) were independent risk factors for FCCM. The best model was achieved by combining the results of CD31 and BDNF (AUC = 0.845, sensitivity 0.838, specificity 0.784, cutoff score - 4.295) to distinguish patients with FCCM from healthy FDRs. Low serpin E1/PAI-1 (P = 0.011) and high ROBO4 levels (P = 0.013) were independent risk factors for severe CDA in patients with FCCM. The best model was achieved by combining the results of E1/PAI-1 and ROBO4 levels (AUC = 0.913, sensitivity 1.000, specificity 0.760, cutoff score - 0.525) to identify patients with FCCM and severe CDA. Conclusions The plasma concentrations of CD31 and BDNF seem to be lower in patients with FCCM than in their healthy FDRs. Low serpin E1/PAI-1 and high ROBO4 concentrations may be correlated with high lesion burden and risk of recurrent bleeding.
Collapse
Affiliation(s)
- Chunwang Li
- First Affiliated Hospital of Fujian Medical University
| | - Shuna Huang
- First Affiliated Hospital of Fujian Medical University
| | - Qixuan Li
- First Affiliated Hospital of Fujian Medical University
| | - Lingyun Zhuo
- First Affiliated Hospital of Fujian Medical University
| | - Yaqing Kang
- First Affiliated Hospital of Fujian Medical University
| | - Penghui Liu
- First Affiliated Hospital of Fujian Medical University
| | - Weilin Huang
- First Affiliated Hospital of Fujian Medical University
| | - Ke Ma
- First Affiliated Hospital of Fujian Medical University
| | - Xinru Lin
- First Affiliated Hospital of Fujian Medical University
| | | | - Darong Chen
- First Affiliated Hospital of Fujian Medical University
| | - Huimin Wang
- First Affiliated Hospital of Fujian Medical University
| | - Lingjun Yan
- First Affiliated Hospital of Fujian Medical University
| | | | - Yuanxiang Lin
- First Affiliated Hospital of Fujian Medical University
| | - Dezhi Kang
- First Affiliated Hospital of Fujian Medical University
| | - Fuxin Lin
- First Affiliated Hospital of Fujian Medical University
| |
Collapse
|
8
|
Frias-Anaya E, Gallego-Gutierrez H, Gongol B, Weinsheimer S, Lai CC, Orecchioni M, Sriram A, Bui CM, Nelsen B, Hale P, Pham A, Shenkar R, DeBiasse D, Lightle R, Girard R, Li Y, Srinath A, Daneman R, Nudleman E, Sun H, Guma M, Dubrac A, Mesarwi OA, Ley K, Kim H, Awad IA, Ginsberg MH, Lopez-Ramirez MA. Mild Hypoxia Accelerates Cerebral Cavernous Malformation Disease Through CX3CR1-CX3CL1 Signaling. Arterioscler Thromb Vasc Biol 2024; 44:1246-1264. [PMID: 38660801 PMCID: PMC11111348 DOI: 10.1161/atvbaha.123.320367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Chemokine CX3CL1/metabolism
- Chemokine CX3CL1/genetics
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Disease Models, Animal
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hypoxia/metabolism
- Hypoxia/complications
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/metabolism
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Eduardo Frias-Anaya
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Helios Gallego-Gutierrez
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Brendan Gongol
- Department of Health Sciences, Victor Valley College, Victorville, CA (B.G.)
- Institute for Integrative Genome Biology, 1207F Genomics Building, University of California, Riverside (B.G.)
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Catherine Chinhchu Lai
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (M.O., K.L.)
| | - Aditya Sriram
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Cassandra M Bui
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Bliss Nelsen
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Preston Hale
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Angela Pham
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Ying Li
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Richard Daneman
- Department of Pharmacology (R.D., M.A.L.-R.), University of California San Diego, La Jolla
| | - Eric Nudleman
- Department of Ophthalmology (E.N.), University of California San Diego, La Jolla
| | - Hao Sun
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Monica Guma
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, Quebec, Canada. Département de Pathologie et Biologie Cellulaire, Université de Montréal, Quebec, Canada (A.D.)
| | - Omar A Mesarwi
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (M.O., K.L.)
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Mark H Ginsberg
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
- Department of Pharmacology (R.D., M.A.L.-R.), University of California San Diego, La Jolla
| |
Collapse
|
9
|
da Fontoura Galvão G, da Silva EV, Trefilio LM, Alves-Leon SV, Fontes-Dantas FL, de Souza JM. Comprehensive CCM3 Mutational Analysis in Two Patients with Syndromic Cerebral Cavernous Malformation. Transl Stroke Res 2024; 15:411-421. [PMID: 36723700 DOI: 10.1007/s12975-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
Cerebral cavernous malformation (CCM) is a vascular disease that affects the central nervous system, which familial form is due to autosomal dominant mutations in the genes KRIT1(CCM1), MGC4607(CCM2), and PDCD10(CCM3). Patients affected by the PDCD10 mutations usually have the onset of symptoms at an early age and a more aggressive phenotype. The aim of this study is to investigate the molecular mechanism involved with CCM3 disease pathogenesis. Herein, we report two typical cases of CCM3 phenotype and compare the clinical and neuroradiological findings with five patients with a familial form of KRIT1 or CCM2 mutations and six patients with a sporadic form. In addition, we evaluated the PDCD10 gene expression by qPCR and developed a bioinformatic pipeline to understand the structural changes of mutations. The two CCM3 patients had an early onset of symptoms and a high lesion burden. Furthermore, the sequencing showed that Patient 1 had a frameshift mutation in c.222delT; p.(Asn75Thrfs*14) that leads to lacking the last 124 C-terminal amino acids on its primary structure and Patient 2 had a variant on the splicing site region c.475-2A > G. The mRNA expression was fourfold lower in both patients with PDCD10 mutation. Using in silico analysis, we identify that the frameshift mutation transcript lacks the C-terminal FAT-homology domain compared to the wild-type PDCD10 and preserves the N-terminal dimerization domain. The two patients studied here allow estimating the potential impact of mutations in clinical interpretation as well as support to better understand the mechanism and pathogenesis of CCM3.
Collapse
Affiliation(s)
- Gustavo da Fontoura Galvão
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
- Departamento de Neurocirurgia, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | - Elielson Veloso da Silva
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
- Programa de Pós-Graduação Em Neurologia E Neurociências, Universidade Federal Fluminense, Rio de Janeiro RJ, Brazil
| | - Luisa Menezes Trefilio
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | - Soniza Vieira Alves-Leon
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
- Departamento de Neurologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | - Fabrícia Lima Fontes-Dantas
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil.
- Departamento de Farmacologia E Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual Do Rio de Janeiro, Rio de Janeiro RJ, Brazil.
| | - Jorge Marcondes de Souza
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil.
- Departamento de Neurocirurgia, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro RJ, Brazil.
| |
Collapse
|
10
|
Lauzier DC, Srienc AI, Vellimana AK, Dacey Jr RG, Zipfel GJ. Peripheral macrophages in the development and progression of structural cerebrovascular pathologies. J Cereb Blood Flow Metab 2024; 44:169-191. [PMID: 38000039 PMCID: PMC10993883 DOI: 10.1177/0271678x231217001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 11/26/2023]
Abstract
The human cerebrovascular system is responsible for maintaining neural function through oxygenation, nutrient supply, filtration of toxins, and additional specialized tasks. While the cerebrovascular system has resilience imparted by elaborate redundant collateral circulation from supportive tertiary structures, it is not infallible, and is susceptible to developing structural vascular abnormalities. The causes of this class of structural cerebrovascular diseases can be broadly categorized as 1) intrinsic developmental diseases resulting from genetic or other underlying aberrations (arteriovenous malformations and cavernous malformations) or 2) extrinsic acquired diseases that cause compensatory mechanisms to drive vascular remodeling (aneurysms and arteriovenous fistulae). Cerebrovascular diseases of both types pose significant risks to patients, in some cases leading to death or disability. The drivers of such diseases are extensive, yet inflammation is intimately tied to all of their progressions. Central to this inflammatory hypothesis is the role of peripheral macrophages; targeting this critical cell type may lead to diagnostic and therapeutic advancement in this area. Here, we comprehensively review the role that peripheral macrophages play in cerebrovascular pathogenesis, provide a schema through which macrophage behavior can be understood in cerebrovascular pathologies, and describe emerging diagnostic and therapeutic avenues in this area.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anja I Srienc
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ralph G Dacey Jr
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Li Y, Srinath A, Alcazar-Felix RJ, Hage S, Bindal A, Lightle R, Shenkar R, Shi C, Girard R, Awad IA. Inflammatory Mechanisms in a Neurovascular Disease: Cerebral Cavernous Malformation. Brain Sci 2023; 13:1336. [PMID: 37759937 PMCID: PMC10526329 DOI: 10.3390/brainsci13091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a common cerebrovascular malformation causing intracranial hemorrhage, seizures, and focal neurologic deficits. A unique CCM lesional inflammatory microenvironment has been shown to influence the clinical course of the disease. This review addresses the inflammatory cell infiltrate in the CCM lesion and the role of a defined antigen-driven immune response in pathogenicity. We summarize immune mechanisms associated with the loss of the CCM gene and disease progression, including the potential role of immunothrombosis. We also review evidence of circulating inflammatory biomarkers associated with CCM disease and its clinical activity. We articulate future directions for this research, including the role of individual cell type contributions to the immune response in CCM, single cell transcriptomics of inflammatory cells, biomarker development, and therapeutic implications. The concepts are applicable for developing diagnostic and treatment strategies for CCM and for studying other neurovascular diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (Y.L.); (C.S.)
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Roberto J. Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Stephanie Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (Y.L.); (C.S.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
- Department of Neurological Surgery, University of Chicago Medicine, 5841 S Maryland, MC3026/Neurosurgery J341, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Lucia M, Viviana M, Alba C, Giulia D, Carlo DR, Grazia PM, Luca T, Federica VM, Immacolata VA, Grazia PM. Neurological Complications in Pregnancy and the Puerperium: Methodology for a Clinical Diagnosis. J Clin Med 2023; 12:2994. [PMID: 37109329 PMCID: PMC10141482 DOI: 10.3390/jcm12082994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Neurological complications in pregnancy and the puerperium deserve particular attention from specialists due to the worsening of the clinical picture for both the mother and the fetus. This narrative review of existing data in the literature aims to analyze the most common "red flag symptoms" attributable to neurological complications such as pre-eclampsia (PE), eclampsia, HELLP syndrome, posterior reversible encephalopathy syndrome (PRES), cerebral vasoconstriction syndrome (RCVS), stroke, CVS thrombosis, pituitary apoplexy, amniotic fluid embolism and cerebral aneurysm rupture, with the aim of providing a rapid diagnostic algorithm useful for the early diagnosis and treatment of these complications. The data were derived through the use of PubMed. The results and conclusions of our review are that neurological complications of a vascular nature in pregnancy and the puerperium are conditions that are often difficult to diagnose and manage clinically. For the obstetrics specialist who is faced with these situations, it is always important to have a guide in mind in order to be able to unravel the difficulties of clinical reasoning and promptly arrive at a diagnostic hypothesis.
Collapse
Affiliation(s)
- Merlino Lucia
- Department of Maternal, Infantile and Urological Sciences, University of Rome La Sapienza, Viale del Policlinico 155, 00161 Rome, Italy; (M.V.); (C.A.); (D.G.); (P.M.G.); (V.M.F.); (V.A.I.); (P.M.G.)
| | - Matys Viviana
- Department of Maternal, Infantile and Urological Sciences, University of Rome La Sapienza, Viale del Policlinico 155, 00161 Rome, Italy; (M.V.); (C.A.); (D.G.); (P.M.G.); (V.M.F.); (V.A.I.); (P.M.G.)
| | - Crognale Alba
- Department of Maternal, Infantile and Urological Sciences, University of Rome La Sapienza, Viale del Policlinico 155, 00161 Rome, Italy; (M.V.); (C.A.); (D.G.); (P.M.G.); (V.M.F.); (V.A.I.); (P.M.G.)
| | - D’Ovidio Giulia
- Department of Maternal, Infantile and Urological Sciences, University of Rome La Sapienza, Viale del Policlinico 155, 00161 Rome, Italy; (M.V.); (C.A.); (D.G.); (P.M.G.); (V.M.F.); (V.A.I.); (P.M.G.)
| | - Della Rocca Carlo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy;
| | - Porpora Maria Grazia
- Department of Maternal, Infantile and Urological Sciences, University of Rome La Sapienza, Viale del Policlinico 155, 00161 Rome, Italy; (M.V.); (C.A.); (D.G.); (P.M.G.); (V.M.F.); (V.A.I.); (P.M.G.)
| | - Titi Luca
- Department of Anesthesia and Intensive Care Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Viscardi Maria Federica
- Department of Maternal, Infantile and Urological Sciences, University of Rome La Sapienza, Viale del Policlinico 155, 00161 Rome, Italy; (M.V.); (C.A.); (D.G.); (P.M.G.); (V.M.F.); (V.A.I.); (P.M.G.)
| | - Volpicelli Agnese Immacolata
- Department of Maternal, Infantile and Urological Sciences, University of Rome La Sapienza, Viale del Policlinico 155, 00161 Rome, Italy; (M.V.); (C.A.); (D.G.); (P.M.G.); (V.M.F.); (V.A.I.); (P.M.G.)
| | - Piccioni Maria Grazia
- Department of Maternal, Infantile and Urological Sciences, University of Rome La Sapienza, Viale del Policlinico 155, 00161 Rome, Italy; (M.V.); (C.A.); (D.G.); (P.M.G.); (V.M.F.); (V.A.I.); (P.M.G.)
| |
Collapse
|
13
|
Srinath A, Xie B, Li Y, Sone JY, Romanos S, Chen C, Sharma A, Polster S, Dorrestein PC, Weldon KC, DeBiasse D, Moore T, Lightle R, Koskimäki J, Zhang D, Stadnik A, Piedad K, Hagan M, Shkoukani A, Carrión-Penagos J, Bi D, Shen L, Shenkar R, Ji Y, Sidebottom A, Pamer E, Gilbert JA, Kahn ML, D'Souza M, Sulakhe D, Awad IA, Girard R. Plasma metabolites with mechanistic and clinical links to the neurovascular disease cavernous angioma. COMMUNICATIONS MEDICINE 2023; 3:35. [PMID: 36869161 PMCID: PMC9984539 DOI: 10.1038/s43856-023-00265-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Cavernous angiomas (CAs) affect 0.5% of the population, predisposing to serious neurologic sequelae from brain bleeding. A leaky gut epithelium associated with a permissive gut microbiome, was identified in patients who develop CAs, favoring lipid polysaccharide producing bacterial species. Micro-ribonucleic acids along with plasma levels of proteins reflecting angiogenesis and inflammation were also previously correlated with CA and CA with symptomatic hemorrhage. METHODS The plasma metabolome of CA patients and CA patients with symptomatic hemorrhage was assessed using liquid-chromatography mass spectrometry. Differential metabolites were identified using partial least squares-discriminant analysis (p < 0.05, FDR corrected). Interactions between these metabolites and the previously established CA transcriptome, microbiome, and differential proteins were queried for mechanistic relevance. Differential metabolites in CA patients with symptomatic hemorrhage were then validated in an independent, propensity matched cohort. A machine learning-implemented, Bayesian approach was used to integrate proteins, micro-RNAs and metabolites to develop a diagnostic model for CA patients with symptomatic hemorrhage. RESULTS Here we identify plasma metabolites, including cholic acid and hypoxanthine distinguishing CA patients, while arachidonic and linoleic acids distinguish those with symptomatic hemorrhage. Plasma metabolites are linked to the permissive microbiome genes, and to previously implicated disease mechanisms. The metabolites distinguishing CA with symptomatic hemorrhage are validated in an independent propensity-matched cohort, and their integration, along with levels of circulating miRNAs, enhance the performance of plasma protein biomarkers (up to 85% sensitivity and 80% specificity). CONCLUSIONS Plasma metabolites reflect CAs and their hemorrhagic activity. A model of their multiomic integration is applicable to other pathologies.
Collapse
Affiliation(s)
- Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Ying Li
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang, China
| | - Je Yeong Sone
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Chang Chen
- Bioinformatics Core, Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA
| | - Anukriti Sharma
- Department of Surgery, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
- Department of Pediatrics, The University of California San Diego and Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sean Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, The University of California San Diego and Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Pharmacology, The University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kelly C Weldon
- Department of Pediatrics, The University of California San Diego and Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Kristina Piedad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Matthew Hagan
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Abdallah Shkoukani
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Julián Carrión-Penagos
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Dehua Bi
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Le Shen
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Ashley Sidebottom
- Host-Microbe Metabolomics Facility, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Eric Pamer
- Host-Microbe Metabolomics Facility, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Jack A Gilbert
- Department of Surgery, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
- Department of Pediatrics, The University of California San Diego and Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Mark D'Souza
- Host-Microbe Metabolomics Facility, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Dinanath Sulakhe
- Host-Microbe Metabolomics Facility, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA.
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
14
|
Weinsheimer S, Nelson J, Abla AA, Ko NU, Tsang C, Okoye O, Zabramski JM, Akers A, Zafar A, Mabray MC, Hart BL, Morrison L, McCulloch CE, Kim H. Intracranial Hemorrhage Rate and Lesion Burden in Patients With Familial Cerebral Cavernous Malformation. J Am Heart Assoc 2023; 12:e027572. [PMID: 36695309 PMCID: PMC9973654 DOI: 10.1161/jaha.122.027572] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
Background Familial cerebral cavernous alformation (CCM) is an autosomal dominant disease caused by mutations in KRIT1, CCM2, or PDCD10. Cases typically present with multiple lesions, strong family history, and neurological symptoms, including seizures, headaches, or other deficits. Intracranial hemorrhage (ICH) is a severe manifestation of CCM, which can lead to death or long-term neurological deficits. Few studies have reported ICH rates and risk factors in familial CCM. We report ICH rates and assess whether CCM lesion burden, a disease severity marker, is associated with risk of symptomatic ICH during follow-up in a well-characterized cohort of familial CCM cases. Methods and Results We studied 386 patients with familial CCM with follow-up data enrolled in the Brain Vascular Malformation Consortium CCM Project. We estimated symptomatic ICH rates overall and stratified by history of ICH before enrollment. CCM lesion burden (total lesion count and large lesion size) assessed at baseline enrollment was tested for association with increased risk of subsequent ICH during follow-up using Cox regression models adjusted for history of ICH before enrollment, age, sex, and family structure and stratified on recruitment site. The symptomatic ICH rate for familial CCM cases was 2.8 per 100 patient-years (95% CI, 1.9-4.1). Those with ICH before enrollment had a follow-up ICH rate of 4.5 per 100 patient-years (95% CI, 2.6-8.1) compared with 2.0 per 100 patient-years (95% CI, 1.3-3.5) in those without (P=0.042). Total lesion count was associated with increased risk of ICH during follow-up (hazard ratio [HR], 1.37 per doubling of total lesion count [95% CI, 1.10-1.71], P=0.006). The symptomatic ICH rate for familial CCM cases was 2.8 per 100 patient-years (95% CI, 1.9-4.1). Those with ICH before enrollment had a follow-up ICH rate of 4.5 per 100 patient-years (95% CI, 2.6-8.1) compared with 2.0 per 100 patient-years (95% CI, 1.3-3.5) in those without (P=0.042). Total lesion count was associated with increased risk of ICH during follow-up (hazard ratio [HR], 1.37 per doubling of total lesion count [95% CI, 1.10-1.71], P=0.006). Conclusions Patients with familial CCM with prior history of an ICH event are at higher risk for rehemorrhage during follow-up. In addition, total CCM lesion burden is significantly associated with increased risk of subsequent symptomatic ICH; hence lesion burden may be an important predictor of patient outcome and aid patient risk stratification.
Collapse
Affiliation(s)
- Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular ResearchUniversity of California San FranciscoCA
- Institute for Human Genetics, University of California San FranciscoCA
| | - Jeffrey Nelson
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular ResearchUniversity of California San FranciscoCA
| | - Adib A. Abla
- Department of Neurological SurgeryUniversity of California San FranciscoCA
| | - Nerissa U. Ko
- Department of NeurologyUniversity of California San FranciscoCA
| | - Cynthia Tsang
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular ResearchUniversity of California San FranciscoCA
| | - Obiora Okoye
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular ResearchUniversity of California San FranciscoCA
- Global Brain Health Institute, University of California San FranciscoCA
| | | | - Amy Akers
- Alliance to Cure Cavernous MalformationCharlottesvilleVA
| | - Atif Zafar
- Department of NeurologyUniversity of New MexicoAlbuquerqueNM
| | - Marc C. Mabray
- Department of RadiologyUniversity of New MexicoAlbuquerqueNM
| | - Blaine L. Hart
- Department of RadiologyUniversity of New MexicoAlbuquerqueNM
| | - Leslie Morrison
- Department of NeurologyUniversity of New MexicoAlbuquerqueNM
| | - Charles E. McCulloch
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoCA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular ResearchUniversity of California San FranciscoCA
- Institute for Human Genetics, University of California San FranciscoCA
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoCA
| |
Collapse
|
15
|
Lai CC, Nelsen B, Frias-Anaya E, Gallego-Gutierrez H, Orecchioni M, Herrera V, Ortiz E, Sun H, Mesarwi OA, Ley K, Gongol B, Lopez-Ramirez MA. Neuroinflammation Plays a Critical Role in Cerebral Cavernous Malformation Disease. Circ Res 2022; 131:909-925. [PMID: 36285625 PMCID: PMC9669201 DOI: 10.1161/circresaha.122.321129] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/11/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are neurovascular lesions caused by loss of function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3). CCMs affect ≈1 out of 200 children and adults, and no pharmacologic therapy is available. CCM lesion count, size, and aggressiveness vary widely among patients of similar ages with the same mutation or even within members of the same family. However, what determines the transition from quiescent lesions into mature and active (aggressive) CCM lesions is unknown. METHODS We use genetic, RNA-sequencing, histology, flow cytometry, and imaging techniques to report the interaction between CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils (CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils interaction) during the pathogenesis of CCMs in the brain tissue. RESULTS Expression profile of astrocytes in adult mouse brains using translated mRNAs obtained from the purification of EGFP (enhanced green fluorescent protein)-tagged ribosomes (Aldh1l1-EGFP/Rpl10a) in the presence or absence of CCM lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) identifies a novel gene signature for neuroinflammatory astrocytes. CCM-induced reactive astrocytes have a neuroinflammatory capacity by expressing genes involved in angiogenesis, chemotaxis, hypoxia signaling, and inflammation. RNA-sequencing analysis on RNA isolated from brain endothelial cells in chronic Pdcd10BECKO mice (CCM endothelium), identified crucial genes involved in recruiting inflammatory cells and thrombus formation through chemotaxis and coagulation pathways. In addition, CCM endothelium was associated with increased expression of Nlrp3 and Il1b. Pharmacological inhibition of NLRP3 (NOD [nucleotide-binding oligomerization domain]-' LRR [leucine-rich repeat]- and pyrin domain-containing protein 3) significantly decreased inflammasome activity as assessed by quantification of a fluorescent indicator of caspase-1 activity (FAM-FLICA [carboxyfluorescein-fluorochrome-labeled inhibitors of caspases] caspase-1) in brain endothelial cells from Pdcd10BECKO in chronic stage. Importantly, our results support the hypothesis of the crosstalk between astrocytes and CCM endothelium that can trigger recruitment of inflammatory cells arising from brain parenchyma (microglia) and the peripheral immune system (leukocytes) into mature active CCM lesions that propagate lesion growth, immunothrombosis, and bleedings. Unexpectedly, partial or total loss of brain endothelial NF-κB (nuclear factor κB) activity (using Ikkbfl/fl mice) in chronic Pdcd10BECKO mice does not prevent lesion genesis or neuroinflammation. Instead, this resulted in a trend increase in the number of lesions and immunothrombosis, suggesting that therapeutic approaches designed to target inflammation through endothelial NF-κB inhibition may contribute to detrimental side effects. CONCLUSIONS Our study reveals previously unknown links between neuroinflammatory astrocytes and inflamed CCM endothelium as contributors that trigger leukocyte recruitment and precipitate immunothrombosis in CCM lesions. However, therapeutic approaches targeting brain endothelial NF-κB activity may contribute to detrimental side effects.
Collapse
Affiliation(s)
| | - Bliss Nelsen
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Eduardo Frias-Anaya
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | | | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for
Immunology, La Jolla, California, USA
| | - Victoria Herrera
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Elan Ortiz
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Hao Sun
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Omar A. Mesarwi
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for
Immunology, La Jolla, California, USA
| | - Brendan Gongol
- Department of Health Sciences, Victor Valley College,
Victorville, California, USA
- Institute for Integrative Genome Biology, 1207F Genomics
Building, University of California, Riverside, CA 92521, USA
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
- Department of Pharmacology, University of California, San
Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Tu T, Peng Z, Ren J, Zhang H. Cerebral Cavernous Malformation: Immune and Inflammatory Perspectives. Front Immunol 2022; 13:922281. [PMID: 35844490 PMCID: PMC9280619 DOI: 10.3389/fimmu.2022.922281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a type of vascular anomaly that arises due to the dyshomeostasis of brain capillary networks. In the past two decades, many advances have been made in this research field. Notably, as a more reasonable current view, the CCM lesions should be attributed to the results of a great number of additional events related to the homeostasis disorder of the endothelial cell. Indeed, one of the most fascinating concerns in the research field is the inflammatory perturbation in the immune microenvironment, which would affect the disease progression as well as the patients’ outcomes. In this work, we focused on this topic, and underlined the immune-related factors’ contribution to the CCM pathologic progression.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenghong Peng
- Health Management Department, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hongqi Zhang,
| |
Collapse
|
17
|
Yau ACY, Globisch MA, Onyeogaziri FC, Conze LL, Smith R, Jauhiainen S, Corada M, Orsenigo F, Huang H, Herre M, Olsson AK, Malinverno M, Sundell V, Rezai Jahromi B, Niemelä M, Laakso A, Garlanda C, Mantovani A, Lampugnani MG, Dejana E, Magnusson PU. Inflammation and neutrophil extracellular traps in cerebral cavernous malformation. Cell Mol Life Sci 2022; 79:206. [PMID: 35333979 PMCID: PMC8949649 DOI: 10.1007/s00018-022-04224-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3iECKO), we show that endothelial cells from Ccm3iECKO mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3iECKO mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3iECKO mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas of patients with CCM confirms the clinical relevance of NETs in CCM.
Collapse
Affiliation(s)
- Anthony C Y Yau
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Maria Ascencion Globisch
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Favour Chinyere Onyeogaziri
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Lei L Conze
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Suvi Jauhiainen
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Monica Corada
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Fabrizio Orsenigo
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Melanie Herre
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matteo Malinverno
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Maria Grazia Lampugnani
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy.,Mario Negri Institute for Pharmacological Research, 20157, Milan, Italy
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden.,Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
18
|
Maderna C, Pisati F, Tripodo C, Dejana E, Malinverno M. A murine model of cerebral cavernous malformations with acute hemorrhage. iScience 2022; 25:103943. [PMID: 35265815 PMCID: PMC8898922 DOI: 10.1016/j.isci.2022.103943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/06/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cavernomas are multi-lumen and blood-filled vascular malformations which form in the brain and the spinal cord. They lead to hemorrhage, epileptic seizures, neurological deficits, and paresthesia. An effective medical treatment is still lacking, and the available murine models for cavernomas have several limitations for preclinical studies. These include disease phenotypes that differ from human diseases, such as restriction of the lesions to the cerebellum, and absence of acute hemorrhage. Additional limitations of current murine models include rapid development of lesions, which are lethal before the first month of age. Here, we have characterized a murine model that recapitulates features of the human disease: lesions develop after weaning throughout the entire CNS, including the spinal cord, and undergo acute hemorrhage. This provides a preclinical model to develop new drugs for treatment of acute hemorrhage in the brain and spinal cord, as an unmet medical emergency for patients with cavernomas. Ccm3 deletion in endothelial progenitors drives cavernoma formation in a mouse model Mice develop acute hemorrhage and inflammation in brain and spinal cord The spleen has increased vascular density and altered hemopoiesis This model represents a useful tool for mechanistic studies and drug screening
Collapse
Affiliation(s)
- Claudio Maderna
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | - Federica Pisati
- Tumour and Microenvironment Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Claudio Tripodo
- Tumour and Microenvironment Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.,Tumour Immunology Unit, University of Palermo, Palermo, Italy
| | - Elisabetta Dejana
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 752 37, Sweden
| | - Matteo Malinverno
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| |
Collapse
|
19
|
Sporns PB, Fullerton HJ, Lee S, Kim H, Lo WD, Mackay MT, Wildgruber M. Childhood stroke. Nat Rev Dis Primers 2022; 8:12. [PMID: 35210461 DOI: 10.1038/s41572-022-00337-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 01/09/2023]
Abstract
Stroke is an important cause of neurological morbidity in children; most survivors have permanent neurological deficits that affect the remainder of their life. Stroke in childhood, the focus of this Primer, is distinguished from perinatal stroke, defined as stroke before 29 days of age, because of its unique pathogenesis reflecting the maternal-fetal unit. Although approximately 15% of strokes in adults are haemorrhagic, half of incident strokes in children are haemorrhagic and half are ischaemic. The causes of childhood stroke are distinct from those in adults. Urgent brain imaging is essential to confirm the stroke diagnosis and guide decisions about hyperacute therapies. Secondary stroke prevention strongly depends on the underlying aetiology. While the past decade has seen substantial advances in paediatric stroke research, the quality of evidence for interventions, such as the rapid reperfusion therapies that have revolutionized arterial ischaemic stroke care in adults, remains low. Substantial time delays in diagnosis and treatment continue to challenge best possible care. Effective primary stroke prevention strategies in children with sickle cell disease represent a major success, yet barriers to implementation persist. The multidisciplinary members of the International Pediatric Stroke Organization are coordinating global efforts to tackle these challenges and improve the outcomes in children with cerebrovascular disease.
Collapse
Affiliation(s)
- Peter B Sporns
- Department of Neuroradiology, Clinic of Radiology & Nuclear Medicine, University Hospital Basel, Basel, Switzerland.,Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heather J Fullerton
- Departments of Neurology and Pediatrics, Benioff Children's Hospital, University of California at San Francisco, San Francisco, CA, USA
| | - Sarah Lee
- Division of Child Neurology, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Helen Kim
- Departments of Anesthesia and Perioperative Care, and Epidemiology and Biostatistics, Center for Cerebrovascular Research, University of California at San Francisco, San Francisco, CA, USA
| | - Warren D Lo
- Departments of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Mark T Mackay
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Moritz Wildgruber
- Department of Radiology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
20
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Holmes CR, Lanzino G, Flemming KD. De novo hemorrhagic sporadic cavernous malformation appearance after COVID-19 respiratory infection: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2021; 2:CASE21543. [PMID: 36061975 PMCID: PMC9435573 DOI: 10.3171/case21543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Little is known about whether coronavirus disease 2019 (COVID-19) influences cavernous malformation (CM) formation or hemorrhage risk. OBSERVATIONS The authors present the case of a 31-year-old patient who developed a hemorrhagic, de novo CM in the setting of a developmental venous anomaly within 3 months of COVID-19 respiratory disease. The authors speculate that COVID-19 disease stimulated formation of the CM through TLR4 inflammatory pathways and subsequently led to the hemorrhagic presentation because of hypercoagulability related to the disease. LESSONS This case raises the possibility that COVID-19 may be a risk factor for de novo development of CMs in predisposed patients.
Collapse
|
22
|
Fox CK, Nelson J, McCulloch CE, Weinsheimer S, Pawlikowska L, Hart B, Mabray MC, Zafar A, Morrison L, Zabramski JM, Akers A, Kim H. Seizure Incidence Rates in Children and Adults With Familial Cerebral Cavernous Malformations. Neurology 2021; 97:e1210-e1216. [PMID: 34389651 PMCID: PMC8480481 DOI: 10.1212/wnl.0000000000012569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/07/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Seizure incidence rates related to familial cerebral cavernous malformation (FCCM) are not well described, especially for children. To measure the seizure incidence rate, examine seizure predictors, and characterize epilepsy severity, we studied a cohort of children and adults with FCCM enrolled in the Brain Vascular Malformation Consortium (BVMC). METHODS Seizure data were collected from participants with FCCM in the BVMC at enrollment and during follow-up. We estimated seizure probability by age and tested whether cerebral cavernous malformation (CCM) counts or genotype were associated with earlier seizure onset. RESULTS The study cohort included 479 FCCM cases. Median age at enrollment was 42.5 years (interquartile range 22.5-55.0) and 19% were children (<18 years old). Median large CCM count was 3 (interquartile range 1-5). Among 393 with genotyping, mutations were as follows: CCM1 (Common Hispanic Mutation) (88%), another CCM1 mutation (5%), CCM2 mutations (5%), and CCM3 mutations (2%). Prior to or during the study, 202 (42%) had a seizure. The cumulative incidence of a childhood seizure was 20.3% (95% confidence interval [CI] 17.0-23.4) and by age 80 years was 60.4% (95% CI 54.2-65.7). More total CCMs (hazard ratio [HR] 1.24 per SD unit increase, 95% CI 1.1-1.4) or more large CCMs (HR 1.5 per SD unit increase, 95% CI 1.2-1.9) than expected for age and sex increased seizure risk. A CCM3 mutation also increased risk compared to other mutations (HR 3.11, 95% CI 1.15-8.45). Individuals with a seizure prior to enrollment had increased hospitalization rates during follow-up (incidence rate ratio 10.9, 95% CI 2.41-49.32) compared to patients without a seizure history. DISCUSSION Individuals with FCCM have a high seizure incidence and those with more CCMs or CCM3 genotype are at greater risk. Seizures increase health care utilization in FCCM.
Collapse
Affiliation(s)
- Christine K Fox
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC.
| | - Jeffrey Nelson
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| | - Charles E McCulloch
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| | - Shantel Weinsheimer
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| | - Ludmila Pawlikowska
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| | - Blaine Hart
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| | - Marc C Mabray
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| | - Atif Zafar
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| | - Leslie Morrison
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| | - Joseph M Zabramski
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| | - Amy Akers
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| | - Helen Kim
- From the Departments of Neurology and Pediatrics (C.K.F.), Center for Cerebrovascular Research (C.K.F., J.N., C.E.M., S.W., L.P., H.K.), Department of Epidemiology and Biostatistics (C.E.M., H.K.), and Institute for Human Genetics (S.W., L.P.), University of California San Francisco; Departments of Radiology (B.H., M.C.M.) and Neurology (L.M.), University of New Mexico, Albuquerque; Department of Medicine (A.Z.), Division of Neurology, University of Toronto, Canada; Department of Neurosurgery (J.M.Z.), Barrow Neurological Institute, Phoenix, AZ; and Angioma Alliance (A.A., H.K.), Durham, NC
| |
Collapse
|
23
|
Choksi F, Weinsheimer S, Nelson J, Pawlikowska L, Fox CK, Zafar A, Mabray MC, Zabramski J, Akers A, Hart BL, Morrison L, McCulloch CE, Kim H. Assessing the association of common genetic variants in EPHB4 and RASA1 with phenotype severity in familial cerebral cavernous malformation. Mol Genet Genomic Med 2021; 9:e1794. [PMID: 34491620 PMCID: PMC8580075 DOI: 10.1002/mgg3.1794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/11/2022] Open
Abstract
Background To investigate whether common variants in EPHB4 and RASA1 are associated with cerebral cavernous malformation (CCM) disease severity phenotypes, including intracranial hemorrhage (ICH), total and large lesion counts. Methods Familial CCM cases enrolled in the Brain Vascular Malformation Consortium were included (n = 338). Total lesions and large lesions (≥5 mm) were counted on MRI; clinical history of ICH at enrollment was assessed by medical records. Samples were genotyped on the Affymetrix Axiom Genome‐Wide LAT1 Human Array. We tested the association of seven common variants (three in EPHB4 and four in RASA1) using multivariable logistic regression for ICH (odds ratio, OR) and multivariable linear regression for total and large lesion counts (proportional increase, PI), adjusting for age, sex, and three principal components. Significance was based on Bonferroni adjustment for multiple comparisons (0.05/7 variants = 0.007). Results EPHB4 variants were not significantly associated with CCM severity phenotypes. One RASA1 intronic variant (rs72783711 A>C) was significantly associated with ICH (OR = 1.82, 95% CI = 1.21–2.37, p = 0.004) and nominally associated with large lesion count (PI = 1.17, 95% CI = 1.03–1.32, p = 0.02). Conclusion A common RASA1 variant may be associated with ICH and large lesion count in familial CCM. EPHB4 variants were not associated with any of the three CCM severity phenotypes.
Collapse
Affiliation(s)
- Foram Choksi
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Nelson
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA
| | - Ludmila Pawlikowska
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Christine K Fox
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, Albquerque, New Mexico, USA
| | - Marc C Mabray
- Department of Radiology, University of New Mexico, Albquerque, New Mexico, USA
| | - Joseph Zabramski
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Amy Akers
- Angioma Alliance, Durham, North Carolina, USA
| | - Blaine L Hart
- Department of Radiology, University of New Mexico, Albquerque, New Mexico, USA
| | - Leslie Morrison
- Department of Neurology, University of New Mexico, Albquerque, New Mexico, USA
| | - Charles E McCulloch
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Helen Kim
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA.,Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
24
|
Perrelli A, Retta SF. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease. Free Radic Biol Med 2021; 172:403-417. [PMID: 34175437 DOI: 10.1016/j.freeradbiomed.2021.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
25
|
Snellings DA, Hong CC, Ren AA, Lopez-Ramirez MA, Girard R, Srinath A, Marchuk DA, Ginsberg MH, Awad IA, Kahn ML. Cerebral Cavernous Malformation: From Mechanism to Therapy. Circ Res 2021; 129:195-215. [PMID: 34166073 PMCID: PMC8922476 DOI: 10.1161/circresaha.121.318174] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage. These novel insights are the integrated product of human clinical studies, human genetic studies, studies in mouse and zebrafish genetic models, and basic molecular and cellular studies. This review addresses the genetic and molecular underpinnings of cerebral cavernous malformation disease, the mechanisms that lead to lesion hemorrhage, and emerging biomarkers and therapies for clinical treatment of cerebral cavernous malformation disease. It may also serve as an example for how focused basic and clinical investigation and emerging technologies can rapidly unravel a complex disease mechanism.
Collapse
Affiliation(s)
- Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC (D.A.S., D.A.M.)
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| | - Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| | - Miguel A Lopez-Ramirez
- Department of Medicine (M.A.L.-R., M.H.G.), University of California, San Diego, La Jolla
- Department of Pharmacology (M.A.L.-R.), University of California, San Diego, La Jolla
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC (D.A.S., D.A.M.)
| | - Mark H Ginsberg
- Department of Medicine (M.A.L.-R., M.H.G.), University of California, San Diego, La Jolla
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| |
Collapse
|
26
|
Rustenhoven J, Tanumihardja C, Kipnis J. Cerebrovascular Anomalies: Perspectives From Immunology and Cerebrospinal Fluid Flow. Circ Res 2021; 129:174-194. [PMID: 34166075 DOI: 10.1161/circresaha.121.318173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Appropriate vascular function is essential for the maintenance of central nervous system homeostasis and is achieved through virtue of the blood-brain barrier; a specialized structure consisting of endothelial, mural, and astrocytic interactions. While appropriate blood-brain barrier function is typically achieved, the central nervous system vasculature is not infallible and cerebrovascular anomalies, a collective terminology for diverse vascular lesions, are present in meningeal and cerebral vasculature supplying and draining the brain. These conditions, including aneurysmal formation and rupture, arteriovenous malformations, dural arteriovenous fistulas, and cerebral cavernous malformations, and their associated neurological sequelae, are typically managed with neurosurgical or pharmacological approaches. However, increasing evidence implicates interacting roles for inflammatory responses and disrupted central nervous system fluid flow with respect to vascular perturbations. Here, we discuss cerebrovascular anomalies from an immunologic angle and fluid flow perspective. We describe immune contributions, both common and distinct, to the formation and progression of diverse cerebrovascular anomalies. Next, we summarize how cerebrovascular anomalies precipitate diverse neurological sequelae, including seizures, hydrocephalus, and cognitive effects and possible contributions through the recently identified lymphatic and glymphatic systems. Finally, we speculate on and provide testable hypotheses for novel nonsurgical therapeutic approaches for alleviating neurological impairments arising from cerebrovascular anomalies, with a particular emphasis on the normalization of fluid flow and alleviation of inflammation through manipulations of the lymphatic and glymphatic central nervous system clearance pathways.
Collapse
Affiliation(s)
- Justin Rustenhoven
- Center for Brain Immunology and Glia (J.R., J.K.), Washington University in St. Louis, St Louis, MO.,Department of Pathology and Immunology, School of Medicine (J.R., J.K.), Washington University in St. Louis, St Louis, MO
| | | | - Jonathan Kipnis
- Center for Brain Immunology and Glia (J.R., J.K.), Washington University in St. Louis, St Louis, MO.,Department of Pathology and Immunology, School of Medicine (J.R., J.K.), Washington University in St. Louis, St Louis, MO
| |
Collapse
|
27
|
In Reply to the Letter to the Editor Regarding "Propranolol Treatment of Cavernous Malformations with Symptomatic Hemorrhage". World Neurosurg 2021; 145:513. [PMID: 33348494 DOI: 10.1016/j.wneu.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/23/2022]
|
28
|
Girard R, Li Y, Stadnik A, Shenkar R, Hobson N, Romanos S, Srinath A, Moore T, Lightle R, Shkoukani A, Akers A, Carroll T, Christoforidis GA, Koenig JI, Lee C, Piedad K, Greenberg SM, Kim H, Flemming KD, Ji Y, Awad IA. A Roadmap for Developing Plasma Diagnostic and Prognostic Biomarkers of Cerebral Cavernous Angioma With Symptomatic Hemorrhage (CASH). Neurosurgery 2021; 88:686-697. [PMID: 33469662 DOI: 10.1093/neuros/nyaa478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cerebral cavernous angioma (CA) is a capillary microangiopathy predisposing more than a million Americans to premature risk of brain hemorrhage. CA with recent symptomatic hemorrhage (SH), most likely to re-bleed with serious clinical sequelae, is the primary focus of therapeutic development. Signaling aberrations in CA include proliferative dysangiogenesis, blood-brain barrier hyperpermeability, inflammatory/immune processes, and anticoagulant vascular domain. Plasma levels of molecules reflecting these mechanisms and measures of vascular permeability and iron deposition on magnetic resonance imaging are biomarkers that have been correlated with CA hemorrhage. OBJECTIVE To optimize these biomarkers to accurately diagnose cavernous angioma with symptomatic hemorrhage (CASH), prognosticate the risk of future SH, and monitor cases after a bleed and in response to therapy. METHODS Additional candidate biomarkers, emerging from ongoing mechanistic and differential transcriptome studies, would further enhance the sensitivity and specificity of diagnosis and prediction of CASH. Integrative combinations of levels of plasma proteins and characteristic micro-ribonucleic acids may further strengthen biomarker associations. We will deploy advanced statistical and machine learning approaches for the integration of novel candidate biomarkers, rejecting noncorrelated candidates, and determining the best clustering and weighing of combined biomarker contributions. EXPECTED OUTCOMES With the expertise of leading CA researchers, this project anticipates the development of future blood tests for the diagnosis and prediction of CASH to clinically advance towards precision medicine. DISCUSSION The project tests a novel integrational approach of biomarker development in a mechanistically defined cerebrovascular disease with a relevant context of use, with an approach applicable to other neurological diseases with similar pathobiologic features.
Collapse
Affiliation(s)
- Romuald Girard
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Yan Li
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois.,Bioinformatics core, Center for Research Informatics, University of Chicago, Chicago, Illinois
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Nicholas Hobson
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Thomas Moore
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Abdallah Shkoukani
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | | | - Timothy Carroll
- Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Gregory A Christoforidis
- Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | | | - Kristina Piedad
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Helen Kim
- Department of Anesthesia & Perioperative Care, University of California at San Francisco, San Francisco, California
| | | | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| |
Collapse
|
29
|
Dammann P, Saban DV, Herten A, Chen B, Zhu Y, Santos A, Rauschenbach L, Wrede K, Jabbarli R, Schmidt B, Jöckel KH, Kleinschnitz C, Forsting M, Sure U. Cerebral cavernous malformations: Prevalence of cardiovascular comorbidities and allergic diseases compared to the normal population. Eur J Neurol 2021; 28:2000-2005. [PMID: 33738912 DOI: 10.1111/ene.14833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND To determine the prevalence of cardiovascular comorbidities and allergic diseases in patients with cavernous malformations of the central nervous system compared to the normal population. METHODS Clinical and magnetic resonance imaging data of 1352 patients with cerebral cavernous malformations (CCM) from an observational, cross-sectional, single-institutional study were analyzed and compared to an age-and-gender stratified and matched sample from a population-based, epidemiological study assessing cardiovascular risk factors in the local normal population of the same area (RECALL study). RESULTS Of 1352 patients, 810 (60%) were female. Mean age was 40.4 ± 16 years. 221 patients (16%) suffered from familial disease. Presence of cardiovascular risk factors and intake of certain drugs in the overall cohort was mostly equal to the normal population reference sample (n = 786). The prevalence of allergic diseases was found to be significantly higher in all CCM patients compared to the normal population (30% vs. 20%, odds ratio [OR] 1.35 [1.12-1.63]) and in sporadic CCM cases compared to the normal population and familial cases (32% vs. 20% (OR 1.46 [1.19-1.78], p = 0.0001) and 22% vs. 20%, respectively). CONCLUSIONS We present novel data on CCM using a large single-institution and population-based setup. The study elaborates disease characteristics of CCM patients in detail. For the first time, evidence for an unexplained high prevalence of allergic diseases in this patient population is described (differing between sporadic and familial cases), supporting the hypothesis that immune response is involved in the pathogenesis of CCM.
Collapse
Affiliation(s)
- Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Dino Vitali Saban
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Annika Herten
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Bixia Chen
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Alejandro Santos
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Laurèl Rauschenbach
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Karsten Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | | | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
30
|
Retta SF, Perrelli A, Trabalzini L, Finetti F. From Genes and Mechanisms to Molecular-Targeted Therapies: The Long Climb to the Cure of Cerebral Cavernous Malformation (CCM) Disease. Methods Mol Biol 2021; 2152:3-25. [PMID: 32524540 DOI: 10.1007/978-1-0716-0640-7_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cerebral cavernous malformation (CCM) is a rare cerebrovascular disorder of genetic origin consisting of closely clustered, abnormally dilated and leaky capillaries (CCM lesions), which occur predominantly in the central nervous system. CCM lesions can be single or multiple and may result in severe clinical symptoms, including focal neurological deficits, seizures, and intracerebral hemorrhage. Early human genetic studies demonstrated that CCM disease is linked to three chromosomal loci and can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity, eventually leading to the identification of three disease genes, CCM1/KRIT1, CCM2, and CCM3/PDCD10, which encode for structurally unrelated intracellular proteins that lack catalytic domains. Biochemical, molecular, and cellular studies then showed that these proteins are involved in endothelial cell-cell junction and blood-brain barrier stability maintenance through the regulation of major cellular structures and mechanisms, including endothelial cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, autophagy, and endothelial-to-mesenchymal transition, suggesting that they act as pleiotropic regulators of cellular homeostasis, and opening novel therapeutic perspectives. Indeed, accumulated evidence in cellular and animal models has eventually revealed that the emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses.In this introductory review, we present a general overview of 20 years of amazing progress in the identification of genetic culprits and molecular mechanisms underlying CCM disease pathogenesis, and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy. .,CCM Italia Research Network, Torino, Italy.
| | - Andrea Perrelli
- Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy.,CCM Italia Research Network, Torino, Italy
| | - Lorenza Trabalzini
- CCM Italia Research Network, Torino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federica Finetti
- CCM Italia Research Network, Torino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
31
|
Hart BL, Mabray MC, Morrison L, Whitehead KJ, Kim H. Systemic and CNS manifestations of inherited cerebrovascular malformations. Clin Imaging 2021; 75:55-66. [PMID: 33493737 DOI: 10.1016/j.clinimag.2021.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022]
Abstract
Cerebrovascular malformations occur in both sporadic and inherited patterns. This paper reviews imaging and clinical features of cerebrovascular malformations with a genetic basis. Genetic diseases such as familial cerebral cavernous malformations and hereditary hemorrhagic telangiectasia often have manifestations in bone, skin, eyes, and visceral organs, which should be recognized. Genetic and molecular mechanisms underlying the inherited disorders are becoming better understood, and treatments are likely to follow. An interaction between the intestinal microbiome and formation of cerebral cavernous malformations has emerged, with possible treatment implications. Two-hit mechanisms are involved in these disorders, and additional triggering mechanisms are part of the development of malformations. Hereditary hemorrhagic telangiectasia encompasses a variety of vascular malformations, with widely varying risks, and a more recently recognized association with cortical malformations. Somatic mutations are implicated in the genesis of some sporadic malformations, which means that discoveries related to inherited disorders may aid treatment of sporadic cases. This paper summarizes the current state of knowledge of these conditions, salient features regarding mechanisms of development, and treatment prospects.
Collapse
Affiliation(s)
- Blaine L Hart
- Department of Radiology, MSC10 5530, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Marc C Mabray
- Department of Radiology, MSC10 5530, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Leslie Morrison
- Department of Neurology, MSC10 5620, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Kevin J Whitehead
- Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA; George E. Wahlen Salt Lake City VA Medical Center, 500 Foothill Boulevard, Salt Lake City, UT 84148, USA.
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
32
|
Flemming KD, Lanzino G. Cerebral Cavernous Malformation: What a Practicing Clinician Should Know. Mayo Clin Proc 2020; 95:2005-2020. [PMID: 32605781 DOI: 10.1016/j.mayocp.2019.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/17/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023]
Abstract
Cavernous malformations (CMs) are angiographically occult, low-flow vascular malformations of the central nervous system. They are acquired lesions, with approximately 80% of patients having the sporadic form and 20% the familial form of the disease. The lesions may also develop years after radiotherapy. At the microscopic level, they consist of endothelium-lined cavities (or "caverns") containing blood of different ages. The endothelium proliferates abnormally, and tight junctions are absent or dysfunctional, resulting in leakiness of the endothelium and clinical manifestations in some patients. Cavernous malformations can be an incidental finding or can present with focal neurologic deficits, seizures, or headache, with or without associated hemorrhage. Management of the CM lesion requires knowledge of the natural history of the disease compared with the risk of surgical intervention. Surgery is often considered for symptomatic patients with lesions in a noneloquent location. Medical management is warranted for symptoms related to the CM. Research aimed at understanding the genes and signaling pathways related to CMs have provided potential drug targets, and clinical trials are underway to determine whether medications reduce the risk of future bleeding without surgery or modify the disease course. In addition, recent epidemiologic data have aided practitioners in determining how to treat comorbid conditions in patients with a potentially hemorrhagic lesion. This review provides an overview of the epidemiology, presentation, and clinical management of CMs.
Collapse
|
33
|
Fontes-Dantas FL, da Fontoura Galvão G, Veloso da Silva E, Alves-Leon S, Cecília da Silva Rêgo C, Garcia DG, Marques SA, Blanco Martinez AM, Reis da Silva M, Marcondes de Souza J. Novel CCM1 (KRIT1) Mutation Detection in Brazilian Familial Cerebral Cavernous Malformation: Different Genetic Variants in Inflammation, Oxidative Stress, and Drug Metabolism Genes Affect Disease Aggressiveness. World Neurosurg 2020; 138:535-540.e8. [DOI: 10.1016/j.wneu.2020.02.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/27/2022]
|
34
|
Polster SP, Sharma A, Tanes C, Tang AT, Mericko P, Cao Y, Carrión-Penagos J, Girard R, Koskimäki J, Zhang D, Stadnik A, Romanos SG, Lyne SB, Shenkar R, Yan K, Lee C, Akers A, Morrison L, Robinson M, Zafar A, Bittinger K, Kim H, Gilbert JA, Kahn ML, Shen L, Awad IA. Permissive microbiome characterizes human subjects with a neurovascular disease cavernous angioma. Nat Commun 2020; 11:2659. [PMID: 32461638 PMCID: PMC7253448 DOI: 10.1038/s41467-020-16436-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
Cavernous angiomas (CA) are common vascular anomalies causing brain hemorrhage. Based on mouse studies, roles of gram-negative bacteria and altered intestinal homeostasis have been implicated in CA pathogenesis, and pilot study had suggested potential microbiome differences between non-CA and CA individuals based on 16S rRNA gene sequencing. We here assess microbiome differences in a larger cohort of human subjects with and without CA, and among subjects with different clinical features, and conduct more definitive microbial analyses using metagenomic shotgun sequencing. Relative abundance of distinct bacterial species in CA patients is shown, consistent with postulated permissive microbiome driving CA lesion genesis via lipopolysaccharide signaling, in humans as in mice. Other microbiome differences are related to CA clinical behavior. Weighted combinations of microbiome signatures and plasma inflammatory biomarkers enhance associations with disease severity and hemorrhage. This is the first demonstration of a sensitive and specific diagnostic microbiome in a human neurovascular disease.
Collapse
Affiliation(s)
- Sean P Polster
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Anukriti Sharma
- Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
- Department of Pediatrics, The University of California San Diego and Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, 2716 South Street, Philadelphia, PA, 19146, USA
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Patricia Mericko
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ying Cao
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Julián Carrión-Penagos
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Romuald Girard
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Agnieszka Stadnik
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Sharbel G Romanos
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Seán B Lyne
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Robert Shenkar
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Kimberly Yan
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Cornelia Lee
- Angioma Alliance, 520W 21st Street, Norfolk, VA, 23517, USA
| | - Amy Akers
- Angioma Alliance, 520W 21st Street, Norfolk, VA, 23517, USA
| | - Leslie Morrison
- Department of Neurology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Myranda Robinson
- Department of Neurology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, 2716 South Street, Philadelphia, PA, 19146, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Jack A Gilbert
- Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
- Department of Pediatrics, The University of California San Diego and Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Le Shen
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA.
- Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA.
| | - Issam A Awad
- Section of Neurosurgery, Department of Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
35
|
Choquet H, Kim H. Genome-wide Genotyping of Cerebral Cavernous Malformation Type 1 Individuals to Identify Genetic Modifiers of Disease Severity. Methods Mol Biol 2020; 2152:77-84. [PMID: 32524545 DOI: 10.1007/978-1-0716-0640-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Familial cerebral cavernous malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by brain lesions that can cause hemorrhagic strokes, seizures, and neurological deficits. Carriers of the same genetic mutation can present with variable symptoms and severity of disease, suggesting the influence of modifier factors. Genetic modifiers of CCM1 disease severity have been recently identified and included common genetic variants in inflammatory, immune response, and oxidative stress genes and pathways. Here, we describe the genotyping of CCM1 patients with the same gene mutation (Q455X) using a high-throughput genotyping array optimized for individuals of Hispanic/Latino ancestry. We then review the quality control steps following the genome-wide genotyping. Genome-wide genotyping of larger cohorts of CCM1 patients might reveal additional genetic variants contributing to the disease severity of CCM1.
Collapse
Affiliation(s)
- Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA.
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, School of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
- Institute for Human Genetics, UCSF, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| |
Collapse
|
36
|
Schaffenrath J, Keller A. New Insights in the Complexity and Functionality of the Neurovascular Unit. Handb Exp Pharmacol 2020; 273:33-57. [PMID: 33582883 DOI: 10.1007/164_2020_424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The neurovascular unit (NVU) encompasses all brain cells and underlines that neurons, glia and brain vasculature are in intimate physical and functional association. Brain function is dependent on blood flow and local increases in blood flow in response to neural activity - functional hyperaemia takes place at the NVU. Although this is a vital function of the NVU, many studies have demonstrated that the NVU also performs other tasks. Blood vessels in the brain, which are composed of multiple cell types, are essential for correct brain development. They constitute the niche for brain stem cells, sense the environment and communicate changes to neural tissue, and control the immune quiescence of the CNS. In this brief chapter we will discuss new insights into the biology of NVU, which have further revealed the heterogeneity and complexity of the vascular tree and its neurovascular associations.
Collapse
Affiliation(s)
- Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.
| |
Collapse
|
37
|
Vertebral Intraosseous Vascular Malformations in a Familial Cerebral Cavernous Malformation Population: Prevalence, Histologic Features, and Associations With CNS Disease. AJR Am J Roentgenol 2019; 214:428-436. [PMID: 31825263 DOI: 10.2214/ajr.19.21492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE. The purpose of this study was to investigate whether MRI-typical and MRI-atypical intraosseous vascular malformations are associated with familial cerebral cavernous malformation (FCCM). MATERIALS AND METHODS. In a retrospective matched case-control study, two radiologists reviewed the spinal imaging, both CT and MRI, of 22 patients with FCCM seen between 2006 and 2017 and of age- and sex-matched control subjects for MRI-typical and MRI-atypical intraosseous vascular malformations. Quantitative analysis of lesions identified included vertebral level, size, and number of lesions. Pathologic samples from two lesions were analyzed for histologic and immunohistochemical features. Whether the presence of typical, atypical, and total intraosseous vascular malformations differed between patients and control subjects was tested. For patients with complete spinal imaging, whether intraosseous vascular malformations were associated with age, sex, brain lesion count, and spinal lesion count was also tested. RESULTS. MRI-atypical intraosseous vertebral malformations were more commonly present in patients with FCCM (p = 0.003). Sixteen lesions were found in nine patients and none in the control group. The numbers of MRI-typical intraosseous vascular malformations were similar between patients and control subjects (p = 0.480). Age was associated with typical intraosseous vascular malformations (p = 0.027), though not with atypical malformations. MRI-atypical malformations were larger (mean diameter double) than MRI-typical malformations (p = 0.023). Histologic analysis of two lesions from different patients with pathologic collapse revealed the same histologic features consistent with combined capillary-venous malformations. CONCLUSION. Vertebral capillary-venous malformations (MRI-atypical intraosseous vascular malformations) are common in patients with FCCM and may have a more aggressive clinical course than MRI-typical malformations.
Collapse
|
38
|
DiStefano PV, Glading AJ. VEGF signalling enhances lesion burden in KRIT1 deficient mice. J Cell Mol Med 2019; 24:632-639. [PMID: 31746130 PMCID: PMC6933401 DOI: 10.1111/jcmm.14773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
The exact molecular mechanisms underlying CCM pathogenesis remain a complicated and controversial topic. Our previous work illustrated an important VEGF signalling loop in KRIT1 depleted endothelial cells. As VEGF is a major mediator of many vascular pathologies, we asked whether the increased VEGF signalling downstream of KRIT1 depletion was involved in CCM formation. Using an inducible KRIT1 endothelial‐specific knockout mouse that models CCM, we show that VEGFR2 activation plays a role in CCM pathogenesis in mice. Inhibition of VEGFR2 using a specific inhibitor, SU5416, significantly decreased the number of lesions formed and slightly lowered the average lesion size. Notably, VEGFR2 inhibition also decreased the appearance of lesion haemorrhage as denoted by the presence of free iron in adjacent tissues. The presence of free iron correlated with increased microvessel permeability in both skeletal muscle and brain, which was completely reversed by SU5416 treatment. Finally, we show that VEGFR2 activation is a common downstream consequence of KRIT1, CCM2 and CCM3 loss of function, though the mechanism by which VEGFR2 activation occurs likely varies. Thus, our study clearly shows that VEGFR2 activation downstream of KRIT1 depletion enhances the severity of CCM formation in mice, and suggests that targeting VEGF signalling may be a potential future therapy for CCM.
Collapse
Affiliation(s)
- Peter V DiStefano
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| |
Collapse
|
39
|
Chang CW, Hsu PW, Wei KC, Chang CW, Fung HC, Hsih MS, Hsu WC, Ro LS, Chang CN, Wang JJ, Wu YR, Chen ST. CCM1 and CCM2 variants in patients with cerebral cavernous malformation in an ethnically Chinese population in Taiwan. Sci Rep 2019; 9:12387. [PMID: 31455779 PMCID: PMC6712018 DOI: 10.1038/s41598-019-48448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/11/2019] [Indexed: 11/20/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a vascular malformation characterized by clustered enlarged capillary-like channels in the central nervous system. The genes harboring variants in patients with CCM include CCM1/Krev interaction trapped-1, CCM2/MGC4607, and CCM3/programmed cell death protein 10. We aimed to identify pathogenic variants in an ethnic Chinese population in Taiwan. We recruited 95 patients with multiple CCMs or a single lesion with a relevant family history. Sanger sequencing was performed for 41 patients. Variants were identified using sequence alignment tools, and the clinical significance of these variants was determined using American College of Medical Genetics and Genomics standards and guidelines. Several pathogenic variants were found in six patients, including three unrelated patients and three affected members of one family. Two novel pathogenic variants leading to early truncation comprised a deletion variant in exon 18 of CCM1 (c.1846delA; p.Glu617LysfsTer44) and an insertion variant in exon 4 of CCM2 (c.401_402insGCCC; p.Ile136AlafsTer4). One novel pathogenic splice site variant was c.485 + 1G > C at the beginning of intron 8 of CCM1. In this study, we identified novel variants related to CCM in an ethnically Chinese population in Taiwan.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Department of Neurology, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan
| | - Peng-Wei Hsu
- Department of Neurosurgery, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Wen Chang
- Department of Neurology, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan
| | - Hon-Chung Fung
- Department of Neurology, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan
| | - Mo-Song Hsih
- Department of Neurology, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan
| | - Wen-Chuin Hsu
- Department of Neurology, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Nen Chang
- Department of Neurosurgery, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan.,Department of Neurosurgery, Xiamen Chang Gung Memorial Hospital, Xiamen, China
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.,Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Sien-Tsong Chen
- Department of Neurology, Chang Gung Memorial Hospital - Linkou Medical Center, Taoyuan, Taiwan.
| |
Collapse
|
40
|
Awad IA, Polster SP. Cavernous angiomas: deconstructing a neurosurgical disease. J Neurosurg 2019; 131:1-13. [PMID: 31261134 PMCID: PMC6778695 DOI: 10.3171/2019.3.jns181724] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 01/08/2023]
Abstract
Cavernous angioma (CA) is also known as cavernoma, cavernous hemangioma, and cerebral cavernous malformation (CCM) (National Library of Medicine Medical Subject heading unique ID D006392). In its sporadic form, CA occurs as a solitary hemorrhagic vascular lesion or as clustered lesions associated with a developmental venous anomaly. In its autosomal dominant familial form (Online Mendelian Inheritance in Man #116860), CA is caused by a heterozygous germline loss-of-function mutation in one of three genes-CCM1/KRIT1, CCM2/Malcavernin, and CCM3/PDCD10-causing multifocal lesions throughout the brain and spinal cord.In this paper, the authors review the cardinal features of CA's disease pathology and clinical radiological features. They summarize key aspects of CA's natural history and broad elements of evidence-based management guidelines, including surgery. The authors also discuss evidence of similar genetic defects in sporadic and familial lesions, consequences of CCM gene loss in different tissues at various stages of development, and implications regarding the pathobiology of CAs.The concept of CA with symptomatic hemorrhage (CASH) is presented as well as its relevance to clinical care and research in the field. Pathobiological mechanisms related to CA include inflammation and immune-mediated processes, angiogenesis and vascular permeability, microbiome driven factors, and lesional anticoagulant domains. These mechanisms have motivated the development of imaging and plasma biomarkers of relevant disease behavior and promising therapeutic targets.The spectrum of discoveries about CA and their implications endorse CA as a paradigm for deconstructing a neurosurgical disease.
Collapse
|
41
|
Lyne SB, Girard R, Koskimäki J, Zeineddine HA, Zhang D, Cao Y, Li Y, Stadnik A, Moore T, Lightle R, Shi C, Shenkar R, Carrión-Penagos J, Polster SP, Romanos S, Akers A, Lopez-Ramirez M, Whitehead KJ, Kahn ML, Ginsberg MH, Marchuk DA, Awad IA. Biomarkers of cavernous angioma with symptomatic hemorrhage. JCI Insight 2019; 4:128577. [PMID: 31217347 PMCID: PMC6629090 DOI: 10.1172/jci.insight.128577] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUNDCerebral cavernous angiomas (CAs) with a symptomatic hemorrhage (CASH) have a high risk of recurrent hemorrhage and serious morbidity.METHODSEighteen plasma molecules with mechanistic roles in CA pathobiology were investigated in 114 patients and 12 healthy subjects. The diagnostic biomarker of a CASH in the prior year was derived as that minimizing the Akaike information criterion and validated using machine learning, and was compared with the prognostic CASH biomarker predicting bleeding in the subsequent year. Biomarkers were longitudinally followed in a subset of cases. The biomarkers were queried in the lesional neurovascular unit (NVU) transcriptome and in plasma miRNAs from CASH and non-CASH patients.RESULTSThe diagnostic CASH biomarker included a weighted combination of soluble CD14 (sCD14), VEGF, C-reactive protein (CRP), and IL-10 distinguishing CASH patients with 76% sensitivity and 80% specificity (P = 0.0003). The prognostic CASH biomarker (sCD14, VEGF, IL-1β, and sROBO-4) was confirmed to predict a bleed in the subsequent year with 83% sensitivity and 93% specificity (P = 0.001). Genes associated with diagnostic and prognostic CASH biomarkers were differentially expressed in CASH lesional NVUs. Thirteen plasma miRNAs were differentially expressed between CASH and non-CASH patients.CONCLUSIONShared and unique biomarkers of recent symptomatic hemorrhage and of future bleeding in CA are mechanistically linked to lesional transcriptome and miRNA. The biomarkers may be applied for risk stratification in clinical trials and developed as a tool in clinical practice.FUNDINGNIH, William and Judith Davis Fund in Neurovascular Surgery Research, Be Brave for Life Foundation, Safadi Translational Fellowship, Pritzker School of Medicine, and Sigrid Jusélius Foundation.
Collapse
Affiliation(s)
- Seán B. Lyne
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Romuald Girard
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Janne Koskimäki
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Hussein A. Zeineddine
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Dongdong Zhang
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Ying Cao
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Yan Li
- Center for Research Informatics, The University of Chicago, Chicago, Illinois, USA
| | - Agnieszka Stadnik
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Thomas Moore
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Rhonda Lightle
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Changbin Shi
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Robert Shenkar
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Julián Carrión-Penagos
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sean P. Polster
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sharbel Romanos
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Amy Akers
- Angioma Alliance, Norfolk, Virginia, USA
| | | | - Kevin J. Whitehead
- Division of Cardiology and Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mark L. Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Douglas A. Marchuk
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, North Carolina, USA
| | - Issam A. Awad
- Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| |
Collapse
|
42
|
Frederiksen SD, Haanes KA, Warfvinge K, Edvinsson L. Perivascular neurotransmitters: Regulation of cerebral blood flow and role in primary headaches. J Cereb Blood Flow Metab 2019; 39:610-632. [PMID: 29251523 PMCID: PMC6446417 DOI: 10.1177/0271678x17747188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
In order to understand the nature of the relationship between cerebral blood flow (CBF) and primary headaches, we have conducted a literature review with particular emphasis on the role of perivascular neurotransmitters. Primary headaches are in general considered complex polygenic disorders (genetic and environmental influence) with pathophysiological neurovascular alterations. Identified candidate headache genes are associated with neuro- and gliogenesis, vascular development and diseases, and regulation of vascular tone. These findings support a role for the vasculature in primary headache disorders. Moreover, neuronal hyperexcitability and other abnormalities have been observed in primary headaches and related to changes in hemodynamic factors. In particular, this relates to migraine aura and spreading depression. During headache attacks, ganglia such as trigeminal and sphenopalatine (located outside the blood-brain barrier) are variably activated and sensitized which gives rise to vasoactive neurotransmitter release. Sympathetic, parasympathetic and sensory nerves to the cerebral vasculature are activated. During migraine attacks, altered CBF has been observed in brain regions such as the somatosensory cortex, brainstem and thalamus. In regulation of CBF, the individual roles of neurotransmitters are partly known, but much needs to be unraveled with respect to headache disorders.
Collapse
Affiliation(s)
- Simona D Frederiksen
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
43
|
Scimone C, Donato L, Marino S, Alafaci C, D’Angelo R, Sidoti A. Vis-à-vis: a focus on genetic features of cerebral cavernous malformations and brain arteriovenous malformations pathogenesis. Neurol Sci 2018; 40:243-251. [DOI: 10.1007/s10072-018-3674-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/01/2018] [Indexed: 01/07/2023]
|
44
|
Girard R, Zeineddine HA, Koskimäki J, Fam MD, Cao Y, Shi C, Moore T, Lightle R, Stadnik A, Chaudagar K, Polster S, Shenkar R, Duggan R, Leclerc D, Whitehead KJ, Li DY, Awad IA. Plasma Biomarkers of Inflammation and Angiogenesis Predict Cerebral Cavernous Malformation Symptomatic Hemorrhage or Lesional Growth. Circ Res 2018; 122:1716-1721. [PMID: 29720384 DOI: 10.1161/circresaha.118.312680] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE The clinical course of cerebral cavernous malformations is highly unpredictable, with few cross-sectional studies correlating proinflammatory genotypes and plasma biomarkers with prior disease severity. OBJECTIVE We hypothesize that a panel of 24 candidate plasma biomarkers, with a reported role in the physiopathology of cerebral cavernous malformations, may predict subsequent clinically relevant disease activity. METHODS AND RESULTS Plasma biomarkers were assessed in nonfasting peripheral venous blood collected from consecutive cerebral cavernous malformation subjects followed for 1 year after initial sample collection. A first cohort (N=49) was used to define the best model of biomarker level combinations to predict a subsequent symptomatic lesional hemorrhagic expansion within a year after the blood sample. We generated the receiver operating characteristic curves and area under the curve for each biomarker individually and each weighted linear combination of relevant biomarkers. The best model to predict lesional activity was selected as that minimizing the Akaike information criterion. In this cohort, 11 subjects experienced symptomatic lesional hemorrhagic expansion (5 bleeds and 10 lesional growths) within a year after the blood draw. Subjects had lower soluble CD14 (cluster of differentiation 14; P=0.05), IL (interleukin)-6 (P=0.04), and VEGF (vascular endothelial growth factor; P=0.0003) levels along with higher plasma levels of IL-1β (P=0.008) and soluble ROBO4 (roundabout guidance receptor 4; P=0.03). Among the 31 weighted linear combinations of these 5 biomarkers, the best model (with the lowest Akaike information criterion value, 25.3) was the weighted linear combination including soluble CD14, IL-1β, VEGF, and soluble ROBO4, predicting a symptomatic hemorrhagic expansion with a sensitivity of 86% and specificity of 88% (area under the curve, 0.90; P<0.0001). We then validated our best model in the second sequential independent cohort (N=28). CONCLUSIONS This is the first study reporting a predictive association between plasma biomarkers and subsequent cerebral cavernous malformation disease clinical activity. This may be applied in clinical prognostication and stratification of cases in clinical trials.
Collapse
Affiliation(s)
- Romuald Girard
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Hussein A Zeineddine
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Janne Koskimäki
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Maged D Fam
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Ying Cao
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Changbin Shi
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Thomas Moore
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Rhonda Lightle
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Agnieszka Stadnik
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Kiranj Chaudagar
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Sean Polster
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Robert Shenkar
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| | - Ryan Duggan
- Cytometry and Antibody Technology, Biological Sciences Division, Office of Shared Research Facilities, University of Chicago, IL (R.D., D.L.)
| | - David Leclerc
- Cytometry and Antibody Technology, Biological Sciences Division, Office of Shared Research Facilities, University of Chicago, IL (R.D., D.L.)
| | - Kevin J Whitehead
- Division of Cardiology, Department of Medicine (K.J.W., D.Y.L.), University of Utah School of Medicine, Salt Lake City
| | - Dean Y Li
- Division of Cardiology, Department of Medicine (K.J.W., D.Y.L.), University of Utah School of Medicine, Salt Lake City
| | - Issam A Awad
- From the Section of Neurosurgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, IL (R.G., H.A.Z., J.K., M.D.F., Y.C., C.S., T.M., R.L., A.S., K.C., S.P., R.S., I.A.A.)
| |
Collapse
|
45
|
Girard R, Zeineddine HA, Fam MD, Mayampurath A, Cao Y, Shi C, Shenkar R, Polster SP, Jesselson M, Duggan R, Mikati AG, Christoforidis G, Andrade J, Whitehead KJ, Li DY, Awad IA. Plasma Biomarkers of Inflammation Reflect Seizures and Hemorrhagic Activity of Cerebral Cavernous Malformations. Transl Stroke Res 2017; 9:34-43. [PMID: 28819935 DOI: 10.1007/s12975-017-0561-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
The clinical course of cerebral cavernous malformations (CCMs) is highly variable. Based on recent discoveries implicating angiogenic and inflammatory mechanisms, we hypothesized that serum biomarkers might reflect chronic or acute disease activity. This single-site prospective observational cohort study included 85 CCM patients, in whom 24 a priori chosen plasma biomarkers were quantified and analyzed in relation to established clinical and imaging parameters of disease categorization and severity. We subsequently validated the positive correlations in longitudinal follow-up of 49 subjects. Plasma levels of matrix metalloproteinase-2 and intercellular adhesion molecule 1 were significantly higher (P = 0.02 and P = 0.04, respectively, FDR corrected), and matrix metalloproteinase-9 was lower (P = 0.04, FDR corrected) in patients with seizure activity at any time in the past. Vascular endothelial growth factor and endoglin (both P = 0.04, FDR corrected) plasma levels were lower in patients who had suffered a symptomatic bleed in the prior 3 months. The hierarchical clustering analysis revealed a cluster of four plasma inflammatory cytokines (interleukin 2, interferon gamma, tumor necrosis factor alpha, and interleukin 1 beta) separating patients into what we designated "high" and "low" inflammatory states. The "high" inflammatory state was associated with seizure activity (P = 0.02) and more than one hemorrhagic event during a patient's lifetime (P = 0.04) and with a higher rate of new hemorrhage, lesion growth, or new lesion formation (P < 0.05) during prospective follow-up. Peripheral plasma biomarkers reflect seizure and recent hemorrhagic activity in CCM patients. In addition, four clustered inflammatory biomarkers correlate with cumulative disease aggressiveness and predict future clinical activity.
Collapse
Affiliation(s)
- Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Hussein A Zeineddine
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Maged D Fam
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Anoop Mayampurath
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Changbin Shi
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Sean P Polster
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Michael Jesselson
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Ryan Duggan
- Flow Cytometry Facility, The University of Chicago, Chicago, IL, USA
| | - Abdul-Ghani Mikati
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Gregory Christoforidis
- Section Neuroradiology, Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Jorge Andrade
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Kevin J Whitehead
- Division of Cardiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dean Y Li
- Division of Cardiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
46
|
Goitre L, DiStefano PV, Moglia A, Nobiletti N, Baldini E, Trabalzini L, Keubel J, Trapani E, Shuvaev VV, Muzykantov VR, Sarelius IH, Retta SF, Glading AJ. Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium. Sci Rep 2017; 7:8296. [PMID: 28811547 PMCID: PMC5558000 DOI: 10.1038/s41598-017-08373-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/07/2017] [Indexed: 01/13/2023] Open
Abstract
The intracellular scaffold KRIT1/CCM1 is an established regulator of vascular barrier function. Loss of KRIT1 leads to decreased microvessel barrier function and to the development of the vascular disorder Cerebral Cavernous Malformation (CCM). However, how loss of KRIT1 causes the subsequent deficit in barrier function remains undefined. Previous studies have shown that loss of KRIT1 increases the production of reactive oxygen species (ROS) and exacerbates vascular permeability triggered by several inflammatory stimuli, but not TNF−α. We now show that endothelial ROS production directly contributes to the loss of barrier function in KRIT1 deficient animals and cells, as targeted antioxidant enzymes reversed the increase in permeability in KRIT1 heterozygous mice as shown by intravital microscopy. Rescue of the redox state restored responsiveness to TNF-α in KRIT1 deficient arterioles, but not venules. In vitro, KRIT1 depletion increased endothelial ROS production via NADPH oxidase signaling, up-regulated Nox4 expression, and promoted NF-κB dependent promoter activity. Recombinant yeast avenanthramide I, an antioxidant and inhibitor of NF-κB signaling, rescued barrier function in KRIT1 deficient cells. However, KRIT1 depletion blunted ROS production in response to TNF-α. Together, our data indicate that ROS signaling is critical for the loss of barrier function following genetic deletion of KRIT1.
Collapse
Affiliation(s)
- Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Peter V DiStefano
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Andrea Moglia
- Department of Agriculture, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Torino, Italy
| | - Nicholas Nobiletti
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Eva Baldini
- Department of Pharmacology and Physiology, University of Rochester, New York, USA.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Julie Keubel
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Vladimir V Shuvaev
- Department of Pharmacology, University of Pennsylvania, Pennsylvania, USA
| | | | - Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | | | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, New York, USA.
| |
Collapse
|
47
|
Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N, Girard R, Zeineddine HA, Lightle R, Moore T, Cao Y, Shenkar R, Chen M, Mericko P, Yang J, Li L, Tanes C, Kobuley D, Võsa U, Whitehead KJ, Li DY, Franke L, Hart B, Schwaninger M, Henao-Mejia J, Morrison L, Kim H, Awad IA, Zheng X, Kahn ML. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 2017; 545:305-310. [PMID: 28489816 PMCID: PMC5757866 DOI: 10.1038/nature22075] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
Abstract
Cerebral cavernous malformations (CCMs) are a cause of stroke and seizure for which no effective medical therapies yet exist. CCMs arise from the loss of an adaptor complex that negatively regulates MEKK3-KLF2/4 signalling in brain endothelial cells, but upstream activators of this disease pathway have yet to be identified. Here we identify endothelial Toll-like receptor 4 (TLR4) and the gut microbiome as critical stimulants of CCM formation. Activation of TLR4 by Gram-negative bacteria or lipopolysaccharide accelerates CCM formation, and genetic or pharmacologic blockade of TLR4 signalling prevents CCM formation in mice. Polymorphisms that increase expression of the TLR4 gene or the gene encoding its co-receptor CD14 are associated with higher CCM lesion burden in humans. Germ-free mice are protected from CCM formation, and a single course of antibiotics permanently alters CCM susceptibility in mice. These studies identify unexpected roles for the microbiome and innate immune signalling in the pathogenesis of a cerebrovascular disease, as well as strategies for its treatment.
Collapse
Affiliation(s)
- Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Jaesung P Choi
- Laboratory of Cardiovascular Signaling, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yiqing Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Hussein A Zeineddine
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Patricia Mericko
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Li Li
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Ceylan Tanes
- CHOP Microbiome Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Dmytro Kobuley
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Urmo Võsa
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Kevin J Whitehead
- Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Dean Y Li
- Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Lude Franke
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Blaine Hart
- Department of Neurology and Pediatrics, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Leslie Morrison
- Department of Neurology and Pediatrics, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California 94143, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Xiangjian Zheng
- Laboratory of Cardiovascular Signaling, Centenary Institute, Sydney, New South Wales 2050, Australia
- Faculty of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
- Department of Pharmacology, School of Basic Medical Sciences, Tianjian Medical University, Tianjin, China
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
48
|
Arauz A, Patiño-Rodriguez HM, Chavarria-Medina M, Becerril M, Longo GM, Nathal E. Rebleeding and Outcome in Patients with Symptomatic Brain Stem Cavernomas. Cerebrovasc Dis 2017; 43:283-289. [DOI: 10.1159/000463392] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/08/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose: We sought to evaluate the long-term functional outcomes and identify the potential risk factors for rebleeding in patients with brain stem cavernous malformations (BCMs) who presented with hemorrhages and were surgically or conservatively treated and prospectively monitored. Methods: From January 1990 to July 2015, we included patients with first hemorrhagic episodes secondary to single BCMs. Modified Rankin score (mRS) was used for neurological status assessment. Univariate and multivariate regression statistics were used to identify the risk factors for rebleeding. Results: A total of 99 patients with BCMs hemorrhages were included (59 [59.6%] women, mean age 37± 13 years). As initial treatments, 37 patients (37.4%) underwent surgery and 62 (62.6%) received conservative treatment. The median follow-up was 3.33 years (interquartile range 1.16-7 years; 408.3 patient/years). The rebleeding rate by patient/year was 10% in conservatively treated patients. Deterioration was significantly more frequent in patients with rebleeding (p = 0.0001). At the end of the follow-up, the mRS were favorable in 49 patients (65.3%) without rebleeding, whereas only 8 (33.3%) with rebleeding evolved to favorable outcomes (p = 0.006). Lesion size >18 mm (hazards ratio, HR 3.34, 95% CI 1.54-7.26; p = 0.0001) and ventral location or crossing the brain stem's midpoint (HR 2.5, 95% CI 1.14-5.46; p = 0.022) were associated with a major risk of rebleeding in the univariate analysis, but only a lesion >18 mm remained statistically significant (HR 2.7, 95% CI 1.2-6.21; p = 0.016) in the multivariate analysis. Conclusion: A lesion size >18 mm was the principal factor associated with hemorrhage recurrence. The overall functional outcome was good. However, significant morbidity was attributable to rebleeding.
Collapse
|
49
|
Update on Novel CCM Gene Mutations in Patients with Cerebral Cavernous Malformations. J Mol Neurosci 2016; 61:189-198. [DOI: 10.1007/s12031-016-0863-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
|
50
|
Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. Int J Biochem Cell Biol 2016; 81:254-270. [PMID: 27639680 PMCID: PMC5155701 DOI: 10.1016/j.biocel.2016.09.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
CCM proteins play pleiotropic roles in various redox-sensitive signaling pathways. CCM proteins modulate the crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses. Oxidative stress and inflammation are emerging as key focal determinants of CCM lesion formation, progression and severity. The pleiotropic functions of CCM proteins may prevent vascular dysfunctions triggered by local oxidative stress and inflammatory events. The distinct therapeutic compounds proposed so far for CCM disease share the ability to modulate redox signaling and autophagy.
Cerebral Cavernous Malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or is inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions exhibit a range of different phenotypes, including wide inter-individual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Lesions may remain asymptomatic or result in pathological conditions of various type and severity at any age, with symptoms ranging from recurrent headaches to severe neurological deficits, seizures, and stroke. To date there are no direct therapeutic approaches for CCM disease besides the surgical removal of accessible lesions. Novel pharmacological strategies are particularly needed to limit disease progression and severity and prevent de novo formation of CCM lesions in susceptible individuals. Useful insights into innovative approaches for CCM disease prevention and treatment are emerging from a growing understanding of the biological functions of the three known CCM proteins, CCM1/KRIT1, CCM2 and CCM3/PDCD10. In particular, accumulating evidence indicates that these proteins play major roles in distinct signaling pathways, including those involved in cellular responses to oxidative stress, inflammation and angiogenesis, pointing to pathophysiological mechanisms whereby the function of CCM proteins may be relevant in preventing vascular dysfunctions triggered by these events. Indeed, emerging findings demonstrate that the pleiotropic roles of CCM proteins reflect their critical capacity to modulate the fine-tuned crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses, providing a novel mechanistic scenario that reconciles both the multiple signaling pathways linked to CCM proteins and the distinct therapeutic approaches proposed so far. In addition, recent studies in CCM patient cohorts suggest that genetic susceptibility factors related to differences in vascular sensitivity to oxidative stress and inflammation contribute to inter-individual differences in CCM disease susceptibility and severity. This review discusses recent progress into the understanding of the molecular basis and mechanisms of CCM disease pathogenesis, with specific emphasis on the potential contribution of altered cell responses to oxidative stress and inflammatory events occurring locally in the microvascular environment, and consequent implications for the development of novel, safe, and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Torino, Regione Gonzole 10, 10043 Orbassano, Torino, Italy; CCM Italia Research Network(1).
| | - Angela J Glading
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, 14642 Rochester, NY, USA.
| |
Collapse
|