1
|
Eghbali S, Heumann TR. Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches. Cancers (Basel) 2025; 17:236. [PMID: 39858016 PMCID: PMC11764197 DOI: 10.3390/cancers17020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, and, with only 15-20% of HCC patients being suitable for potentially curative treatments, the vast majority of patients with HCC ultimately require systemic therapy. For decades, the choice of effective systemic therapy for HCC remained sparse. In recent years, after the combination of atezolizumab and bevacizumab demonstrated superior overall survival over the first-line standard, sorafenib, there has been a major therapeutic paradigm shift to immunotherapy-based regimens for HCC. While representing a great leap forward for the treatment of this cancer, the reality is that less than one-third of patients achieve an objective response to immune checkpoint inhibitor-based therapy, so there remains a significant clinical need for further therapeutic optimization. In this review, we provide an overview of the current landscape of immunotherapy for unresectable HCC and delve into the tumor intrinsic and extrinsic mechanisms of resistance to established immunotherapies with a focus on novel therapeutic targets with strong translational potential. Following this, we spotlight emerging immunotherapy approaches and notable clinical trials aiming to optimize immunotherapy efficacy in HCC that include novel immune checkpoint inhibitors, tumor microenvironment modulators, targeted delivery systems, and locoregional interventions.
Collapse
Affiliation(s)
- Shabnam Eghbali
- Division of Internal Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thatcher Ross Heumann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Zhang M, Chen H, Liu H, Tang H. The impact of integrated hepatitis B virus DNA on oncogenesis and antiviral therapy. Biomark Res 2024; 12:84. [PMID: 39148134 PMCID: PMC11328401 DOI: 10.1186/s40364-024-00611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/29/2024] [Indexed: 08/17/2024] Open
Abstract
The global burden of hepatitis B virus (HBV) infection remains high, with chronic hepatitis B (CHB) patients facing a significantly increased risk of developing cirrhosis and hepatocellular carcinoma (HCC). The ultimate objective of antiviral therapy is to achieve a sterilizing cure for HBV. This necessitates the elimination of intrahepatic covalently closed circular DNA (cccDNA) and the complete eradication of integrated HBV DNA. This review aims to summarize the oncogenetic role of HBV integration and the significance of clearing HBV integration in sterilizing cure. It specifically focuses on the molecular mechanisms through which HBV integration leads to HCC, including modulation of the expression of proto-oncogenes and tumor suppressor genes, induction of chromosomal instability, and expression of truncated mutant HBV proteins. The review also highlights the impact of antiviral therapy in reducing HBV integration and preventing HBV-related HCC. Additionally, the review offers insights into future objectives for the treatment of CHB. Current strategies for HBV DNA integration inhibition and elimination include mainly antiviral therapies, RNA interference and gene editing technologies. Overall, HBV integration deserves further investigation and can potentially serve as a biomarker for CHB and HBV-related HCC.
Collapse
Affiliation(s)
- Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huan Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Xu P, Al-Anesi MMA, Huang M, Wu S, Ge Y, Chai H, Li P, Hu Q. Copy number variation of metallothionein 1 (MT1) associates with MT1X isoform expression and the overall survival of hepatocellular carcinoma patients in Guangxi. GENE REPORTS 2024; 34:101889. [DOI: 10.1016/j.genrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Ursic-Bedoya J, Desandré G, Chavey C, Marie P, Polizzi A, Rivière B, Guillou H, Assenat E, Hibner U, Gregoire D. FGF19 and its analog Aldafermin cooperate with MYC to induce aggressive hepatocarcinogenesis. EMBO Mol Med 2024; 16:238-250. [PMID: 38228803 PMCID: PMC10897482 DOI: 10.1038/s44321-023-00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.
Collapse
Affiliation(s)
- José Ursic-Bedoya
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Guillaume Desandré
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pauline Marie
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Benjamin Rivière
- Department of Pathology, Gui de Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Eric Assenat
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Urszula Hibner
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Damien Gregoire
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Xu X, Li C, Lan X, Fan X, Lv X, Ye X, Wu T. A Lightweight and Robust Framework for Circulating Genetically Abnormal Cells (CACs) Identification Using 4-Color Fluorescence In Situ Hybridization (FISH) Image and Deep Refined Learning. J Digit Imaging 2023; 36:1687-1700. [PMID: 37231288 PMCID: PMC10406746 DOI: 10.1007/s10278-023-00843-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Circulating genetically abnormal cells (CACs) constitute an important biomarker for cancer diagnosis and prognosis. This biomarker offers high safety, low cost, and high repeatability, which can serve as a key reference in clinical diagnosis. These cells are identified by counting fluorescence signals using 4-color fluorescence in situ hybridization (FISH) technology, which has a high level of stability, sensitivity, and specificity. However, there are some challenges in CACs identification, due to the difference in the morphology and intensity of staining signals. In this concern, we developed a deep learning network (FISH-Net) based on 4-color FISH image for CACs identification. Firstly, a lightweight object detection network based on the statistical information of signal size was designed to improve the clinical detection rate. Secondly, the rotated Gaussian heatmap with a covariance matrix was defined to standardize the staining signals with different morphologies. Then, the heatmap refinement model was proposed to solve the fluorescent noise interference of 4-color FISH image. Finally, an online repetitive training strategy was used to improve the model's feature extraction ability for hard samples (i.e., fracture signal, weak signal, and adjacent signals). The results showed that the precision was superior to 96%, and the sensitivity was higher than 98%, for fluorescent signal detection. Additionally, validation was performed using the clinical samples of 853 patients from 10 centers. The sensitivity was 97.18% (CI 96.72-97.64%) for CACs identification. The number of parameters of FISH-Net was 2.24 M, compared to 36.9 M for the popularly used lightweight network (YOLO-V7s). The detection speed was about 800 times greater than that of a pathologist. In summary, the proposed network was lightweight and robust for CACs identification. It could greatly increase the review accuracy, enhance the efficiency of reviewers, and reduce the review turnaround time during CACs identification.
Collapse
Affiliation(s)
- Xu Xu
- China Academy of Information and Communications Technology, No.52, Huayuan bei Road, 100191, Beijing, China
| | - Congsheng Li
- China Academy of Information and Communications Technology, No.52, Huayuan bei Road, 100191, Beijing, China
| | - Xingjie Lan
- Zhuhai Sanmed Biotech Ltd, Zhuhai, 519060, Guangdong, China
| | - Xianjun Fan
- Zhuhai Sanmed Biotech Ltd, Zhuhai, 519060, Guangdong, China
| | - Xing Lv
- Zhuhai Sanmed Biotech Ltd, Zhuhai, 519060, Guangdong, China
| | - Xin Ye
- Zhuhai Sanmed Biotech Ltd, Zhuhai, 519060, Guangdong, China
| | - Tongning Wu
- China Academy of Information and Communications Technology, No.52, Huayuan bei Road, 100191, Beijing, China.
| |
Collapse
|
6
|
Kojima R, Nakamoto S, Kogure T, Ma Y, Ogawa K, Iwanaga T, Qiang N, Ao J, Nakagawa R, Muroyama R, Nakamura M, Chiba T, Kato J, Kato N. Re-analysis of hepatitis B virus integration sites reveals potential new loci associated with oncogenesis in hepatocellular carcinoma. World J Virol 2023; 12:209-220. [PMID: 37396703 PMCID: PMC10311580 DOI: 10.5501/wjv.v12.i3.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). HBV DNA can get integrated into the hepatocyte genome to promote carcinogenesis. However, the precise mechanism by which the integrated HBV genome promotes HCC has not been elucidated. AIM To analyze the features of HBV integration in HCC using a new reference database and integration detection method. METHODS Published data, consisting of 426 Liver tumor samples and 426 paired adjacent non-tumor samples, were re-analyzed to identify the integration sites. Genome Reference Consortium Human Build 38 (GRCh38) and Telomere-to-Telomere Consortium CHM13 (T2T-CHM13 (v2.0)) were used as the human reference genomes. In contrast, human genome 19 (hg19) was used in the original study. In addition, GRIDSS VIRUSBreakend was used to detect HBV integration sites, whereas high-throughput viral integration detection (HIVID) was applied in the original study (HIVID-hg19). RESULTS A total of 5361 integration sites were detected using T2T-CHM13. In the tumor samples, integration hotspots in the cancer driver genes, such as TERT and KMT2B, were consistent with those in the original study. GRIDSS VIRUSBreakend detected integrations in more samples than by HIVID-hg19. Enrichment of integration was observed at chromosome 11q13.3, including the CCND1 pro-moter, in tumor samples. Recurrent integration sites were observed in mitochondrial genes. CONCLUSION GRIDSS VIRUSBreakend using T2T-CHM13 is accurate and sensitive in detecting HBV integration. Re-analysis provides new insights into the regions of HBV integration and their potential roles in HCC development.
Collapse
Affiliation(s)
- Ryuta Kojima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tadayoshi Kogure
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yaojia Ma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Keita Ogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Na Qiang
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Junjie Ao
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryosuke Muroyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
7
|
Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W, Wang C. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2022; 20:203-222. [PMID: 36369487 DOI: 10.1038/s41575-022-00704-9] [Citation(s) in RCA: 304] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common solid malignancies worldwide. A large proportion of patients with HCC are diagnosed at advanced stages and are only amenable to systemic therapies. We have witnessed the evolution of systemic therapies from single-agent targeted therapy (sorafenib and lenvatinib) to the combination of a checkpoint inhibitor plus targeted therapy (atezolizumab plus bevacizumab therapy). Despite remarkable advances, only a small subset of patients can obtain durable clinical benefit, and therefore substantial therapeutic challenges remain. In the past few years, emerging systemic therapies, including new molecular-targeted monotherapies (for example, donafenib), new immuno-oncology monotherapies (for example, durvalumab) and new combination therapies (for example, durvalumab plus tremelimumab), have shown encouraging results in clinical trials. In addition, many novel therapeutic approaches with the potential to offer improved treatment effects in patients with advanced HCC, such as sequential combination targeted therapy and next-generation adoptive cell therapy, have also been proposed and developed. In this Review, we summarize the latest clinical advances in the treatment of advanced HCC and discuss future perspectives that might inform the development of more effective therapeutics for advanced HCC.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linmeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Boston, MA, USA. .,Jiahui International Cancer Center, Jiahui Health, Shanghai, China.
| | - René Bernards
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Chan SL, Schuler M, Kang YK, Yen CJ, Edeline J, Choo SP, Lin CC, Okusaka T, Weiss KH, Macarulla T, Cattan S, Blanc JF, Lee KH, Maur M, Pant S, Kudo M, Assenat E, Zhu AX, Yau T, Lim HY, Bruix J, Geier A, Guillén-Ponce C, Fasolo A, Finn RS, Fan J, Vogel A, Qin S, Riester M, Katsanou V, Chaudhari M, Kakizume T, Gu Y, Porta DG, Myers A, Delord JP. A first-in-human phase 1/2 study of FGF401 and combination of FGF401 with spartalizumab in patients with hepatocellular carcinoma or biomarker-selected solid tumors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:189. [PMID: 35655320 PMCID: PMC9161616 DOI: 10.1186/s13046-022-02383-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deregulation of FGF19-FGFR4 signaling is found in several cancers, including hepatocellular carcinoma (HCC), nominating it for therapeutic targeting. FGF401 is a potent, selective FGFR4 inhibitor with antitumor activity in preclinical models. This study was designed to determine the recommended phase 2 dose (RP2D), characterize PK/PD, and evaluate the safety and efficacy of FGF401 alone and combined with the anti-PD-1 antibody, spartalizumab. METHODS Patients with HCC or other FGFR4/KLB expressing tumors were enrolled. Dose-escalation was guided by a Bayesian model. Phase 2 dose-expansion enrolled patients with HCC from Asian countries (group1), non-Asian countries (group2), and patients with other solid tumors expressing FGFR4 and KLB (group3). FGF401 and spartalizumab combination was evaluated in patients with HCC. RESULTS Seventy-four patients were treated in the phase I with single-agent FGF401 at 50 to 150 mg. FGF401 displayed favorable PK characteristics and no food effect when dosed with low-fat meals. The RP2D was established as 120 mg qd. Six of 70 patients experienced grade 3 dose-limiting toxicities: increase in transaminases (n = 4) or blood bilirubin (n = 2). In phase 2, 30 patients in group 1, 36 in group 2, and 20 in group 3 received FGF401. In total, 8 patients experienced objective responses (1 CR, 7 PR; 4 each in phase I and phase II, respectively). Frequent adverse events (AEs) were diarrhea (73.8%), increased AST (47.5%), and ALT (43.8%). Increase in levels of C4, total bile acid, and circulating FGF19, confirmed effective FGFR4 inhibition. Twelve patients received FGF401 plus spartalizumab. RP2D was established as FGF401 120 mg qd and spartalizumab 300 mg Q3W; 2 patients reported PR. CONCLUSIONS At biologically active doses, FGF401 alone or combined with spartalizumab was safe in patients with FGFR4/KLB-positive tumors including HCC. Preliminary clinical efficacy was observed. Further clinical evaluation of FGF401 using a refined biomarker strategy is warranted. TRIAL REGISTRATION NCT02325739 .
Collapse
Affiliation(s)
- Stephen L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China.
| | - Martin Schuler
- West German Cancer Center, University Hospital Essen, Germany & German Cancer Consortium (DKTK), Partner site University Hospital Essen, Essen, Germany
| | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chia-Jui Yen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Julien Edeline
- Centre Eugène Marquis, Rennes, France and ARPEGO (Accès à La Recherche Précoce Dans Le Grand-Ouest) Network, Rennes, France
| | - Su Pin Choo
- National Cancer Centre, Singapore, Singapore
| | - Chia-Chi Lin
- National Taiwan University Hospital, Taipei, Taiwan
| | | | | | - Teresa Macarulla
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), IOB Quirón, Barcelona, Spain
| | | | | | - Kyung-Hun Lee
- Seoul National University Hospital, Seoul, South Korea
| | | | | | | | - Eric Assenat
- Hôpital Saint-Eloi Montpellier, Montpellier, France
| | - Andrew X Zhu
- Massachusetts General Hospital, Boston, MA, USA.,Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | | | | | - Jordi Bruix
- Barcelona clinic liver cancer (BCLC) Group, Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | | | | | | | | | - Jia Fan
- Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Shukui Qin
- No. 81th PLA Hospital Nanjing, Jiangsu, China
| | - Markus Riester
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | | | - Yi Gu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Andrea Myers
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | |
Collapse
|
9
|
Guthrie G, Vonderohe C, Burrin D. Fibroblast growth factor 15/19 expression, regulation, and function: An overview. Mol Cell Endocrinol 2022; 548:111617. [PMID: 35301051 PMCID: PMC9038700 DOI: 10.1016/j.mce.2022.111617] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Since the discovery of fibroblast growth factor (FGF)-19 over 20 years ago, our understanding of the peptide and its role in human biology has moved forward significantly. A member of a superfamily of paracrine growth factors regulating embryonic development, FGF19 is unique in that it is a dietary-responsive endocrine hormone linked with bile acid homeostasis, glucose and lipid metabolism, energy expenditure, and protein synthesis during the fed to fasted state. FGF19 achieves this through targeting multiple tissues and signaling pathways within those tissues. The diverse functional capabilities of FGF19 is due to the unique structural characteristics of the protein and its receptor binding in various cell types. This review will cover the current literature on the protein FGF19, its target receptors, and the biological pathways they target through unique signaling cascades.
Collapse
Affiliation(s)
- Greg Guthrie
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Caitlin Vonderohe
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States.
| |
Collapse
|
10
|
Mohamed GA, Nashaat EH, Fawzy HM, ElGhandour AM. Assessment of fibroblast growth factor 19 as a non-invasive serum marker for hepatocellular carcinoma. World J Hepatol 2022; 14:623-633. [PMID: 35582295 PMCID: PMC9055196 DOI: 10.4254/wjh.v14.i3.623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/19/2022] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 19 (FGF-19) is one of the founding members of the endocrine FGF subfamily. Recently, it has been the subject of much interest owing to its role in various physiological processes affecting glucose and lipid metabolism and the regulation of bile acid secretion as well as cell proliferation, differentiation, and motility. Additionally, FGF-19 secretion in an autocrine style has reportedly contributed to cancer progression in various types of malignancies including hepatocellular carcinoma (HCC). AIM To estimate the serum FGF-19 concentrations in HCC cases and assess its diagnostic performance for the detection of HCC. METHODS We recruited 90 adult participants and divided them into three equal groups: Healthy controls, cirrhosis patients, and HCC patients. Serum FGF-19 concentrations were measured using the Human FGF-19 ELISA kit. RESULTS We detected a high statistically significant difference in serum FGF-19 levels among the three groups. The highest level was observed in the HCC group, followed by the cirrhosis and control groups (236.44 ± 40.94 vs 125.63 ± 31.54 vs 69.60 ± 20.90 pg/mL, respectively, P ≤ 0.001). FGF-19 was positively correlated with alpha fetoprotein (AFP; r = 0.383, P = 0.003) and international normalised ratio (r = 0.357, P = 0.005), while it was negatively correlated with albumin (r = -0.500, P ≤ 0.001). For the detection of HCC, receiver operating characteristic curve analysis showed that the best cut-off point of AFP was > 8.2 ng/mL with an area under the curve (AUC) of 0.78, sensitivity of 63.33%, specificity of 83.33%, positive predictive value (PPV) of 79.2%, negative predictive value (NPV) of 69.4%, and total accuracy of 78%. However, FGF-19 at a cut-off point > 180 pg/mL had an AUC of 0.98, sensitivity of 100%, specificity of 90.0%, PPV of 90.0%, NPV of 100%, and total accuracy of 98%. CONCLUSION FGF-19 represents a possible novel non-invasive marker for HCC. It may improve the prognosis of HCC patients due to its utility in several aspects of HCC detection and management.
Collapse
Affiliation(s)
- Ghada Abdelrahman Mohamed
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt.
| | - Ehab Hasan Nashaat
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Hadeer Mohamed Fawzy
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Ahmed Mohamed ElGhandour
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| |
Collapse
|
11
|
Xie H, Alem Glison DM, Kim RD. FGFR4 inhibitors for the treatment of hepatocellular carcinoma: a synopsis of therapeutic potential. Expert Opin Investig Drugs 2021; 31:393-400. [PMID: 34913780 DOI: 10.1080/13543784.2022.2017879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The mainstay pharmacological approaches to patients with hepatocellular carcinoma (HCC) are tyrosine kinase inhibitors, antiangiogenic agents, and immune checkpoint inhibitors in combination therapy. Aberrant signaling of fibroblast growth factor 19 (FGF19) and its corresponding receptor, fibroblast growth factor receptor 4 (FGFR4), are a driver of HCC cell growth and survival. However, the clinical potential of agents targeting aberrant FGF19/FGFR4 signaling has not been adequately explored. AREAS COVERED We evaluate the existing literature on aberrant signaling of FGF19/FGFR4 in HCC and address the recent preclinical and clinical advances of selective FGFR4 inhibitors in the treatment of advanced HCC. Our literature search was performed in September 2021 on clinical trials and ongoing studies published in journals or presented in conferences for cancer research. EXPERT OPINION Preclinical studies show selective FGFR4 inhibitors to be highly potent. These inhibitors also show promise in clinical trials and demonstrate manageable on-target side effects. An emphasis should be placed on the development of predictive biomarkers and on enhancing the understanding of primary and acquired resistance mechanisms. This will inspire rationale combination therapy strategies for testing in future clinical trials.
Collapse
Affiliation(s)
- Hao Xie
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Diego M Alem Glison
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Richard D Kim
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
12
|
Zhai W, Lai H, Kaya NA, Chen J, Yang H, Lu B, Lim JQ, Ma S, Chew SC, Chua KP, Alvarez JJS, Chen PJ, Chang MM, Wu L, Goh BKP, Chung AYF, Chan CY, Cheow PC, Lee SY, Kam JH, Kow AWC, Ganpathi IS, Chanwat R, Thammasiri J, Yoong BK, Ong DBL, de Villa VH, Dela Cruz RD, Loh TJ, Wan WK, Zeng Z, Skanderup AJ, Pang YH, Madhavan K, Lim TKH, Bonney G, Leow WQ, Chew V, Dan YY, Tam WL, Toh HC, Foo RSY, Chow PKH. Dynamic phenotypic heterogeneity and the evolution of multiple RNA subtypes in hepatocellular carcinoma: the PLANET study. Natl Sci Rev 2021; 9:nwab192. [PMID: 35382356 PMCID: PMC8973408 DOI: 10.1093/nsr/nwab192] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune) heterogeneity. Using one of the largest prospective surgical cohorts for hepatocellular carcinoma (HCC) with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 samples). We found that while genomic ITH was rather constant across stages, phenotypic ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% of patients were found to contain more than one transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted the importance of studying phenotypic evolution across cancer types.
Collapse
Affiliation(s)
- Weiwei Zhai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Hannah Lai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Neslihan Arife Kaya
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Jianbin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Hechuan Yang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Bingxin Lu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Jia Qi Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Siming Ma
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Sin Chi Chew
- Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Khi Pin Chua
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | | | - Pauline Jieqi Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Mei Mei Chang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Lingyan Wu
- Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Brian K P Goh
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Alexander Yaw-Fui Chung
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Chung Yip Chan
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Peng Chung Cheow
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Ser Yee Lee
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Juinn Huar Kam
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Alfred Wei-Chieh Kow
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Iyer Shridhar Ganpathi
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Rawisak Chanwat
- Hepato-Pancreato-Biliary Surgery Unit, Department of Surgery, National Cancer Institute, Bangkok 10310, Thailand
| | - Jidapa Thammasiri
- Division of Pathology, National Cancer Institute, Bangkok 10400, Thailand
| | - Boon Koon Yoong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 59100, Malaysia
| | - Diana Bee-Lan Ong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 59100, Malaysia
| | - Vanessa H de Villa
- Department of Surgery and Center for Liver Disease Management and Transplantation, The Medical City, Pasig City, Metro Manila, Philippines
| | | | - Tracy Jiezhen Loh
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Wei Keat Wan
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Zeng Zeng
- Institute for Infocomm Research, ASTAR, Singapore 138632, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Yin Huei Pang
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Krishnakumar Madhavan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Tony Kiat-Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Glenn Bonney
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Wei Qiang Leow
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, Singapore 119228, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Center Singapore, Singapore 169610, Singapore
| | - Roger Sik-Yin Foo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Pierce Kah-Hoe Chow
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| |
Collapse
|
13
|
Molecular classification of hepatocellular carcinoma: prognostic importance and clinical applications. J Cancer Res Clin Oncol 2021; 148:15-29. [PMID: 34623518 DOI: 10.1007/s00432-021-03826-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal human malignancy with a very low overall and long-term survival rate. Poor prognostic outcomes are predominantly associated with HCC due to a huge landscape of heterogeneity found in the deadliest disease. However, molecular subtyping of HCC has significantly improved the knowledge of the underlying mechanisms that contribute towards the heterogeneity and progression of the disease. In this review, we have extensively summarized the current information available about molecular classification of HCC. This review can be of great significance for providing the insight information needed for development of novel, efficient and personalized therapeutic options for the treatment of HCC patients globally.
Collapse
|
14
|
Upregulation of the ErbB family by EZH2 in hepatocellular carcinoma confers resistance to FGFR inhibitor. J Cancer Res Clin Oncol 2021; 147:2955-2968. [PMID: 34156519 PMCID: PMC8397639 DOI: 10.1007/s00432-021-03703-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC), the most common manifestation of liver cancer, is one of the leading causes of cancer-related mortality worldwide with limited treatment options. Infigratinib, a pan-FGFR inhibitor, has shown a potent antitumour effect in HCC. However, drug resistance is often observed in long-term treatment. In this study, we examined the potential feedback mechanism(s) leading to infigratinib and explored a combination therapy to overcome resistance in HCC. METHODS Patient-derived xenograft (PDX) tumours were subcutaneously implanted into SCID mice and were subsequently treated with infigratinib. Tumour growth was monitored over time, and tumour samples were subjected to immunohistochemistry and Western blotting. For drug combination studies, mice were treated with infigratinib and/or varlitinib. Gene overexpression and knockdown studies were conducted to investigate the relationship between EZH2 and ErbB activity in infigratinib resistance. RESULTS Infigratinib-resistant tumours exhibited higher levels of p-ErbB2 and p-ErbB3, concomitant with an increase in EZH2 expression. Gene overexpression and knockdown studies revealed that EZH2 directly regulates the levels of p-ErbB2 and p-ErbB3 in acquired resistance to infigratinib. The addition of varlitinib effectively overcame infigratinib resistance and prolonged the antitumour response, with minimal toxicity. CONCLUSION The upregulation of the ErbB family by EZH2 appears to contribute to infigratinib resistance. The combination of infigratinib and varlitinib showed a potent antitumour effect and did not result in additional toxicity, warranting further clinical investigation.
Collapse
|
15
|
He F, Song K, Guan G, Huo J, Xin Y, Li T, Liu C, Zhu Q, Fan N, Guo Y, Wu L. The Phenomenon of Gene Rearrangement is Frequently Associated with TP53 Mutations and Poor Disease-Free Survival in Hepatocellular Carcinoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:723-736. [PMID: 34188519 PMCID: PMC8233541 DOI: 10.2147/pgpm.s313848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023]
Abstract
Purpose Gene rearrangements (GRs) have been reported to be related to adverse prognosis in some tumours, but the relationship in hepatocellular carcinoma (HCC) remains less studied. The objective of our study was to explore the clinicopathological characteristics and prognosis of HCC patients (HCCs) with GRs (GR-HCCs). Patients and Methods This retrospective study included 297 HCCs who underwent hepatectomy and had their tumours sequenced by next-generation sequencing. Categorical variables between groups were compared by the chi-square test. The impact of variables on disease-free survival (DFS) and survival after relapse (SAR) was analysed by the Kaplan–Meier method and Cox regression. Results We observed four repetitive GR events in 297 HCCs: BRD9/TERT, ARID2/intergenic, CDKN2A/intergenic and OBSCN truncation. GR-HCCs frequently presented with low tumour differentiation, tumour necrosis, microvascular invasion, elevated AFP and gene mutations (TP53, NTRK3 and BRD9). The 1-, 2-, and 3-year cumulative DFS rates in GR-HCCs were 45.1%, 31.9%, 31.9%, respectively, which were significantly lower than those of GR-negative HCCs (NGR-HCCs) (72.5%, 57.9%, and 49.0%, respectively; P = 0.001). GR was identified as an independent risk factor for inferior DFS in HCCs (HR = 1.980, 95% CI = 1.246–3.147; P = 0.004). However, there was no significant difference in SAR between GR-HCCs and NGR-HCCs receiving targeted therapy or immunotherapy. Conclusion GR is frequently associated with TP53 mutations and significantly affects DFS following radical resection for HCC. We recommend that GR-HCCs should be closely followed up as a high-risk group for postoperative recurrence.
Collapse
Affiliation(s)
- Fu He
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Kangjian Song
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Ge Guan
- Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Yang Xin
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Tianxiang Li
- Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Chao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Qingwei Zhu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Ning Fan
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Yuan Guo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| |
Collapse
|
16
|
The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol 2021; 18:335-347. [PMID: 33568795 DOI: 10.1038/s41575-020-00404-2] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Farnesoid X receptor (FXR) is a ligand-activated transcription factor involved in the control of bile acid (BA) synthesis and enterohepatic circulation. FXR can influence glucose and lipid homeostasis. Hepatic FXR activation by obeticholic acid is currently used to treat primary biliary cholangitis. Late-stage clinical trials investigating the use of obeticholic acid in the treatment of nonalcoholic steatohepatitis are underway. Mouse models of metabolic disease have demonstrated that inhibition of intestinal FXR signalling reduces obesity, insulin resistance and fatty liver disease by modulation of hepatic and gut bacteria-mediated BA metabolism, and intestinal ceramide synthesis. FXR also has a role in the pathogenesis of gastrointestinal and liver cancers. Studies using tissue-specific and global Fxr-null mice have revealed that FXR acts as a suppressor of hepatocellular carcinoma, mainly through regulating BA homeostasis. Loss of whole-body FXR potentiates progression of spontaneous colorectal cancer, and obesity-induced BA imbalance promotes intestinal stem cell proliferation by suppressing intestinal FXR in Apcmin/+ mice. Owing to altered gut microbiota and FXR signalling, changes in overall BA levels and specific BA metabolites probably contribute to enterohepatic tumorigenesis. Modulating intestinal FXR signalling and altering BA metabolites are potential strategies for gastrointestinal and liver cancer prevention and treatment. In this Review, studies on the role of FXR in metabolic diseases and gastrointestinal and liver cancer are discussed, and the potential for development of targeted drugs are summarized.
Collapse
|
17
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [PMID: 35590232 DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
18
|
Wang H, Yang J, Zhang K, Liu J, Li Y, Su W, Song N. Advances of Fibroblast Growth Factor/Receptor Signaling Pathway in Hepatocellular Carcinoma and its Pharmacotherapeutic Targets. Front Pharmacol 2021; 12:650388. [PMID: 33935756 PMCID: PMC8082422 DOI: 10.3389/fphar.2021.650388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of primary liver cancer with poor prognosis, and its incidence and mortality rate are increasing worldwide. It is refractory to conventional chemotherapy and radiotherapy owing to its high tumor heterogeneity. Accumulated genetic alterations and aberrant cell signaling pathway have been characterized in HCC. The fibroblast growth factor (FGF) family and their receptors (FGFRs) are involved in diverse biological activities, including embryonic development, proliferation, differentiation, survival, angiogenesis, and migration, etc. Data mining results of The Cancer Genome Atlas demonstrate high levels of FGF and/or FGFR expression in HCC tumors compared with normal tissues. Moreover, substantial evidence indicates that the FGF/FGFR signaling axis plays an important role in various mechanisms that contribute to HCC development. At present, several inhibitors targeting FGF/FGFR, such as multikinase inhibitors, specific FGFR4 inhibitors, and FGF ligand traps, exhibit antitumor activity in preclinical or early development phases in HCC. In this review, we summarize the research progress regarding the molecular implications of FGF/FGFR-mediated signaling and the development of FGFR-targeted therapeutics in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Haijun Wang
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
19
|
Shin JY, Ahn SM. Src is essential for the endosomal delivery of the FGFR4 signaling complex in hepatocellular carcinoma. J Transl Med 2021; 19:138. [PMID: 33794926 PMCID: PMC8017611 DOI: 10.1186/s12967-021-02807-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Hepatocytes usually express fibroblast growth factor receptor 4 (FGFR4), but not its ligand, fibroblast growth factor 19 (FGF19). A subtype of hepatocellular carcinoma (HCC) expresses FGF19, which activates the FGFR4 signaling pathway that induces cell proliferation. FGFR4 inhibitors that target this mechanism are under clinical development for the treatment of HCCs with FGF19 amplification or FGFR4 overexpression. Src plays an essential role in the FGFR1 and FGFR2 signaling pathways. However, it is yet to be understood whether Src has any role in the FGF19-FGFR4 pathway in HCCs. In this study, we aimed to elucidate the role of Src in the FGF19-FGFR4 axis in HCC. Methods 3 HCC cell lines expressing both FGF19 and FGFR4 were selected. The expression of each protein was suppressed by siRNA treatment, and the activity-regulating relationship between FGFR4 and Src was investigated by westernblot. Co-immunoprecipitation was performed using the FGFR4 antibody to identify the endosomal complex formation and receptor endocytosis. The intracellular migration pathways of the endosomal complex were observed by immuno-fluorescence and nuclear co-immunoprecipitation. Dasatinib and BLU9931 were used for cytotoxicity comparison. Results FGFR4 modulates the activity of Src and Src modulates the expression of FGFR4, showing a mutual regulatory relationship. FGFR4 activated by FGF19 formed an endosomal complex with Src and STAT3 and moved to the nucleus. However, when Src was suppressed, the formation of the endosomal complex was not observed. FGFR4 was released from the complex transferred into the nucleus and the binding of Src and STAT3 was maintained. Dasatinib showed cytotoxic results comparable to BLU9931. The results of our study demonstrated that Src is essential for the nuclear transport of STAT3, as it induces the endosomal delivery of FGFR4 in FGF19-expressing HCC cell lines. Conclusions We found that Src is essential for the endosomal delivery of the FGFR4 signaling complex in HCC. Our findings provide a scientific rationale for repurposing Src inhibitors for the treatment of HCCs in which the FGFR4 pathway is activated. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02807-4.
Collapse
Affiliation(s)
- Ji-Yon Shin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Sung-Min Ahn
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
20
|
FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13061360. [PMID: 33802841 PMCID: PMC8002748 DOI: 10.3390/cancers13061360] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary As the most common primary liver cancer, HCC is a tricky cancer resistant to systemic therapies. The fibroblast growth factor family and its receptors are gaining more and more attention in various cancers. Noticing an explosion in the number of studies about aberrant FGF/FGFR signaling in HCC being studied, we were encouraged to summarize them. This review discusses how FGF/FGFR signaling influences HCC development and its implications in HCC prediction and target treatment, and combination treatment. Abstract Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, ranking third in cancer deaths worldwide. Over the last decade, several studies have emphasized the development of tyrosine kinase inhibitors (TKIs) to target the aberrant pathways in HCC. However, the outcomes are far from satisfactory due to the increasing resistance and adverse effects. The family of fibroblast growth factor (FGF) and its receptors (FGFR) are involved in various biological processes, including embryogenesis, morphogenesis, wound repair, and cell growth. The aberrant FGF/FGFR signaling is also observed in multiple cancers, including HCC. Anti-FGF/FGFR provides delightful benefits for cancer patients, especially those with FGF signaling alteration. More and more multi-kinase inhibitors targeting FGF signaling, pan-FGFR inhibitors, and selective FGFR inhibitors are now under preclinical and clinical investigation. This review summarizes the aberrant FGF/FGFR signaling in HCC initiating, development and treatment status, and provide new insights into the treatment of HCC.
Collapse
|
21
|
Donisi C, Puzzoni M, Ziranu P, Lai E, Mariani S, Saba G, Impera V, Dubois M, Persano M, Migliari M, Pretta A, Liscia N, Astara G, Scartozzi M. Immune Checkpoint Inhibitors in the Treatment of HCC. Front Oncol 2021; 10:601240. [PMID: 33585218 PMCID: PMC7874239 DOI: 10.3389/fonc.2020.601240] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the typical inflammation-induced neoplasia. It often prospers where a chronic liver disease persists, thus leading a strong rationale for immune therapy. Several immune-based treatments, including immune checkpoint inhibitors (ICI), cytokines, adoptive cell transfer, and vaccines, have been tested in the treatment of HCC. In this review, we summarize the role of the ICI in HCC patients in various sets of treatment. As for advanced HCC, the anti-Programmed cell Death protein 1 (PD1) antibodies and the anti-Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) antibodies have been examined in patients with enthusiastic results in phase I-II-III studies. Overall, this led the Food and Drug Administration (FDA) to approve pembrolizumab, nivolumab, and nivolumab + ipilimumab in the second-line setting. The anti- Programmed Death-Ligand 1 (PDL-1) antibodies have also been evaluated. Thanks to the results obtained from phase III IMbrave study, atezolizumab + bevacizumab is now the standard of care in the first-line advanced setting of HCC. As for localized HCC, the putative immunological effect of locoregional therapies led to evaluate the combination strategy with ICI. This way, chemoembolization, ablation with radiofrequency, and radioembolization combined with ICI are currently under study. Likewise, the study of adjuvant immunotherapy following surgical resection is underway. In addition, the different ICI has been studied in combination with other ICI as well as with multikinase inhibitors and anti-angiogenesis monoclonal antibody. The evidence available suggests that combining systemic therapies and locoregional treatments with ICI may represent an effective strategy in this context.
Collapse
Affiliation(s)
- Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valentino Impera
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
| | - Nicole Liscia
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
| | - Giorgio Astara
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| |
Collapse
|
22
|
Targeted-gene sequencing of an undifferentiated gallbladder carcinoma: a case report. Diagn Pathol 2020; 15:66. [PMID: 32487254 PMCID: PMC7268304 DOI: 10.1186/s13000-020-00981-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background Undifferentiated carcinomas of the gallbladder are extremely rare. Most undifferentiated carcinomas are accompanied by adjacent foci of other conventional carcinomas, and a transition zone is shared between them. However, genetic alterations of undifferentiated gallbladder carcinoma and the similarities or differences between the undifferentiated carcinoma and the foci conventional carcinoma are unknown. Case presentation Herein, we report a case of undifferentiated gallbladder carcinoma with osteoclast-like giant cells with invasion into the liver, duodenum, and stomach in a 56-year-old man. The tumor was microscopically formed from the tubular adenocarcinoma (< 5% of the entire tumor), the undifferentiated carcinoma, and a transition zone between them. Four somatic mutations (TP53, TERT, ARID2, and CDH1), three amplifications (CCND1, FGF19, and MET), and a tumor mutation burden (TMB) of 3.45 muts/Mb were detected in the undifferentiated component using targeted gene sequencing, whereas 102 somatic mutations (including TP53, TERT, ARID2, and CDH1), one amplification (CCND1), and a higher TMB of 87.07 muts/Mb were detected in the tubular component. This patient died of tumor recurrence 2 months after the surgery. Conclusions The undifferentiated gallbladder carcinoma had its unique molecular alterations. The similarities in the genetic alterations of the undifferentiated carcinoma and adenocarcinoma provide evidence of a common origin at the genetic level. The occurrence of an undifferentiated carcinoma may be due to heterogeneity-associated branched evolution from the tubular adenocarcinoma.
Collapse
|
23
|
Serum Fibroblast Growth Factor 19 and Total Bile Acid Concentrations Are Potential Biomarkers of Hepatocellular Carcinoma in Patients with Type 2 Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1751989. [PMID: 32104677 PMCID: PMC7036095 DOI: 10.1155/2020/1751989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Purpose Type 2 diabetes mellitus (T2DM) carries a high risk of hepatocellular carcinoma (HCC). Both serum fibroblast growth factor 19 (FGF19) and bile acid concentrations are associated with T2DM and HCC. We aimed at evaluating the relationships between FGF19 and bile acid concentrations and HCC in patients with T2DM. Methods Twenty-seven healthy volunteers (control group), 27 patients with T2DM (T2DM group), 16 patients with newly diagnosed HCC (HCC group), and 10 T2DM patients with newly diagnosed HCC (T2DM-HCC group) were studied at the Affiliated Hospital of Nantong University between June 2016 and June 2017. The serum concentrations of serum FGF19 and total bile acids (TBA) were measured in all the participants. Correlation analysis and multiple stepwise regression analysis of the FGF19 and TBA concentrations were performed in all the participants and in the four groups. Results The concentrations of FGF19 were 220.5 pg/ml, 185.1 pg/ml, 115.8 pg/ml, and 70.4 pg/ml in the HCC, T2DM-HCC, control, and T2DM groups, respectively (p < 0.001), and the TBA concentrations were 21.75 μmol/l, 14.25 μmol/l, 14.25 μmol/l, 14.25 μmol/l, 14.25 p < 0.001), and the TBA concentrations were 21.75 r = 0.777; p < 0.001), and the TBA concentrations were 21.75 r = 0.777; p < 0.001), and the TBA concentrations were 21.75 r = 0.777; p < 0.001), and the TBA concentrations were 21.75 r = 0.777; p < 0.001), and the TBA concentrations were 21.75 r = 0.777; p < 0.001), and the TBA concentrations were 21.75 Conclusions Simultaneous increase of serum FGF19 and TBA levels may be used as indicators of HCC screening at early stage in patients with T2DM.
Collapse
|
24
|
Kim RD, Sarker D, Meyer T, Yau T, Macarulla T, Park JW, Choo SP, Hollebecque A, Sung MW, Lim HY, Mazzaferro V, Trojan J, Zhu AX, Yoon JH, Sharma S, Lin ZZ, Chan SL, Faivre S, Feun LG, Yen CJ, Dufour JF, Palmer DH, Llovet JM, Manoogian M, Tugnait M, Stransky N, Hagel M, Kohl NE, Lengauer C, Sherwin CA, Schmidt-Kittler O, Hoeflich KP, Shi H, Wolf BB, Kang YK. First-in-Human Phase I Study of Fisogatinib (BLU-554) Validates Aberrant FGF19 Signaling as a Driver Event in Hepatocellular Carcinoma. Cancer Discov 2019; 9:1696-1707. [PMID: 31575541 DOI: 10.1158/2159-8290.cd-19-0555] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 01/18/2023]
Abstract
Outcomes for patients with advanced hepatocellular carcinoma (HCC) remain poor despite recent progress in drug development. Emerging data implicate FGF19 as a potential HCC driver, suggesting its receptor, FGFR4, as a novel therapeutic target. We evaluated fisogatinib (BLU-554), a highly potent and selective oral FGFR4 inhibitor, in a phase I dose-escalation/dose-expansion study in advanced HCC using FGF19 expression measured by IHC as a biomarker for pathway activation. For dose escalation, 25 patients received 140 to 900 mg fisogatinib once daily; the maximum tolerated dose (600 mg once daily) was expanded in 81 patients. Fisogatinib was well tolerated; most adverse events were manageable, grade 1/2 gastrointestinal events, primarily diarrhea, nausea, and vomiting. Across doses, the overall response rate was 17% in FGF19-positive patients [median duration of response: 5.3 months (95% CI, 3.7-not reached)] and 0% in FGF19-negative patients. These results validate FGFR4 as a targetable driver in FGF19-positive advanced HCC. SIGNIFICANCE: Fisogatinib elicited clinical responses in patients with tumor FGF19 overexpression in advanced HCC. These results validate the oncogenic driver role of the FGFR4 pathway in HCC and the use of FGF19 as a biomarker for patient selection.See related commentary by Subbiah and Pal, p. 1646.This article is highlighted in the In This Issue feature, p. 1631.
Collapse
Affiliation(s)
- Richard D Kim
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Tim Meyer
- University College London, London, United Kingdom
| | | | - Teresa Macarulla
- Vall d'Hebron University Hospital and Vall d'Hebrón Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | | | - Max W Sung
- Mount Sinai Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ho-Yeong Lim
- Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Vincenzo Mazzaferro
- University of Milan, Department of Oncology and Instituto Nazionale Tumori, IRCCS Foundation, Department of Surgery, HPB Surgery and Liver Transplantation, Milan, Italy
| | - Joerg Trojan
- Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Andrew X Zhu
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Stephen L Chan
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sandrine Faivre
- Hôpitaux Universitaires Paris Nord Val de Seine, Paris, France
| | | | - Chia-Jui Yen
- National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jean-Francois Dufour
- University Clinic for Visceral Surgery and Medicine, Inselspital Bern, Bern, Switzerland
| | - Daniel H Palmer
- Liverpool Experimental Cancer Medicine Centre, Liverpool, United Kingdom
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Catalonia, Spain
| | | | - Meera Tugnait
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Margit Hagel
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Nancy E Kohl
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | | | | | | | - Hongliang Shi
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Beni B Wolf
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
25
|
Zhu XD, Sun HC. Emerging agents and regimens for hepatocellular carcinoma. J Hematol Oncol 2019; 12:110. [PMID: 31655607 PMCID: PMC6815423 DOI: 10.1186/s13045-019-0794-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Liver cancer, mostly hepatocellular carcinoma (HCC), is the second leading cause of cancer mortality globally. Most patients need at least one systemic therapy at different phases of their treatment for HCC. Sorafenib was the first agent shown to improve the survival of patients with advanced HCC. A decade after the approval of sorafenib, most agents failed to improve patient survival more than sorafenib. In recent years, treatment practices have changed, with lenvatinib as another first-line treatment choice and regorafenib, ramucirumab, and cabozantinib as second-line treatment options. Anti-PD-1 antibodies, including nivolumab, pembrolizumab, and camrelizumab, have demonstrated promising anti-tumor effects as monotherapy for advanced HCC in phase II clinical trials. The combination of an anti-PD-1 antibody and an anti-angiogenesis agent has shown more potent anti-tumor effects in early phase clinical trials and is now the hotspot in clinical studies. Furthermore, these agents are investigated in combination treatment with surgery or other loco-regional therapies in patients with early or intermediate-stage HCC.
Collapse
Affiliation(s)
- Xiao-Dong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Hatlen MA, Schmidt-Kittler O, Sherwin CA, Rozsahegyi E, Rubin N, Sheets MP, Kim JL, Miduturu C, Bifulco N, Brooijmans N, Shi H, Guzi T, Boral A, Lengauer C, Dorsch M, Kim RD, Kang YK, Wolf BB, Hoeflich KP. Acquired On-Target Clinical Resistance Validates FGFR4 as a Driver of Hepatocellular Carcinoma. Cancer Discov 2019; 9:1686-1695. [PMID: 31575540 DOI: 10.1158/2159-8290.cd-19-0367] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide with no clinically confirmed oncogenic driver. Although preclinical studies implicate the FGF19 receptor FGFR4 in hepatocarcinogenesis, the dependence of human cancer on FGFR4 has not been demonstrated. Fisogatinib (BLU-554) is a potent and selective inhibitor of FGFR4 and demonstrates clinical benefit and tumor regression in patients with HCC with aberrant FGF19 expression. Mutations were identified in the gatekeeper and hinge-1 residues in the kinase domain of FGFR4 upon disease progression in 2 patients treated with fisogatinib, which were confirmed to mediate resistance in vitro and in vivo. A gatekeeper-agnostic, pan-FGFR inhibitor decreased HCC xenograft growth in the presence of these mutations, demonstrating continued FGF19-FGFR4 pathway dependence. These results validate FGFR4 as an oncogenic driver and warrant further therapeutic targeting of this kinase in the clinic. SIGNIFICANCE: Our study is the first to demonstrate on-target FGFR4 kinase domain mutations as a mechanism of acquired clinical resistance to targeted therapy. This further establishes FGF19-FGFR4 pathway activation as an oncogenic driver. These findings support further investigation of fisogatinib in HCC and inform the profile of potential next-generation inhibitors.See related commentary by Subbiah and Pal, p. 1646.This article is highlighted in the In This Issue feature, p. 1631.
Collapse
MESH Headings
- Aged, 80 and over
- Animals
- Carcinoma, Hepatocellular/diagnostic imaging
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Female
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/diagnostic imaging
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Male
- Mice
- Middle Aged
- Models, Molecular
- Mutation
- Neoplasm Transplantation
- Protein Domains
- Pyrans/pharmacology
- Quinazolines/pharmacology
- Receptor, Fibroblast Growth Factor, Type 4/chemistry
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
Collapse
Affiliation(s)
- Megan A Hatlen
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | | | | | - Nooreen Rubin
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Joseph L Kim
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Neil Bifulco
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Hongliang Shi
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Timothy Guzi
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Andy Boral
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Marion Dorsch
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Richard D Kim
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Beni B Wolf
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | |
Collapse
|
27
|
Raja A, Park I, Haq F, Ahn SM. FGF19- FGFR4 Signaling in Hepatocellular Carcinoma. Cells 2019; 8:E536. [PMID: 31167419 PMCID: PMC6627123 DOI: 10.3390/cells8060536] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, with an increasing mortality rate. Aberrant expression of fibroblast growth factor 19-fibroblast growth factor receptor 4 (FGF19-FGFR4) is reported to be an oncogenic-driver pathway for HCC patients. Thus, the FGF19-FGFR4 signaling pathway is a promising target for the treatment of HCC. Several pan-FGFR (1-4) and FGFR4-specific inhibitors are in different phases of clinical trials. In this review, we summarize the information, recent developments, binding modes, selectivity, and clinical trial phases of different available FGFR4/pan-FGF inhibitors. We also discuss future perspectives and highlight the points that should be addressed to improve the efficacy of these inhibitors.
Collapse
Affiliation(s)
- Aroosha Raja
- Department of Biosciences, Comsats University, Islamabad 45550, Pakistan.
| | - Inkeun Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Korea.
| | - Farhan Haq
- Department of Biosciences, Comsats University, Islamabad 45550, Pakistan.
| | - Sung-Min Ahn
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Korea.
- Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon 21565, Korea.
| |
Collapse
|