1
|
Feng S, Zhang L, Sun T, Xu L, Quan X, Zhao G, Zhang H. OVOL1 Promotes Proliferation and Metastasis of Non-Small Cell Lung Cancer by Regulating APOE-Mediated Cholesterol Metabolism. J Cell Mol Med 2025; 29:e70634. [PMID: 40437660 PMCID: PMC12119240 DOI: 10.1111/jcmm.70634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 06/01/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a highly lethal malignant tumour characterised by its resistance to treatment, often due to metabolic reprogramming. Despite this, the underlying mechanisms by which aberrant cholesterol metabolism influences the development and progression of NSCLC remain unclear. In our study, we observed that OVOL1 is significantly upregulated in NSCLC and is correlated with a poor prognosis. Furthermore, our functional assays revealed that OVOL1 enhances the proliferation and metastasis of NSCLC cells both in vitro and in vivo. Mechanistically, OVOL1 was found to modulate cholesterol reprogramming and increase the expression of APOE, thereby intensifying cholesterol metabolism and facilitating cell migration and invasion. In conclusion, our findings suggest that OVOL1 acts as an oncogene in NSCLC, promoting tumour growth and metastasis through the enhancement of cholesterol metabolism. This underscores the potential of OVOL1 as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Shoujie Feng
- Thoracic Surgery LaboratoryXuzhou Medical UniversityXuzhouJiangsuChina
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Li Zhang
- Editorial Office of International Journal of Anesthesiology and ResuscitationXuzhou Medical UniversityXuzhouJiangsuChina
| | - Teng Sun
- Thoracic Surgery LaboratoryXuzhou Medical UniversityXuzhouJiangsuChina
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Lei Xu
- Department of Emergency MedicineThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Xiaoyu Quan
- Thoracic Surgery LaboratoryXuzhou Medical UniversityXuzhouJiangsuChina
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Guoqing Zhao
- Thoracic Surgery LaboratoryXuzhou Medical UniversityXuzhouJiangsuChina
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Hao Zhang
- Thoracic Surgery LaboratoryXuzhou Medical UniversityXuzhouJiangsuChina
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
2
|
Jiang H, Foroozandeh P, Kaplan N, Xu D, Yang W, Qi X, Nalbant EK, Clutter ED, Zhu Y, Xu J, Schipma MJ, Ren Z, Peng H. IFITM1/OVOL1 Axis Is a Novel Regulator of the Expansion of the Limbal Epithelial Stem/Early Transient Amplifying Cell Population. FASEB J 2025; 39:e70648. [PMID: 40372397 PMCID: PMC12090970 DOI: 10.1096/fj.202500783r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/18/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Limbal epithelial stem cells (LESCs), located in the basal layer of the limbal epithelium, rarely proliferate under normal conditions. Upon proliferation, LESCs give rise to early transient amplifying (eTA) cells, which are thought to be morphologically and phenotypically indistinguishable from LESCs. Following corneal epithelial wounding, LESCs are activated to repair the corneal epithelium via expansion of eTA cells, a process crucial for maintaining corneal epithelial homeostasis and tissue transparency as well as essential for clear vision. To understand how this process is regulated, we conducted a single cell RNA sequencing assay of mouse corneal rims with and without injury and observed an expansion of the stem/eTA cell cluster after corneal injury. Interestingly, we found that Interferon Induced Transmembrane Protein 1 (IFITM1) was predominantly expressed in stem/eTA cells and was positively associated with such stem/eTA cell expansion after corneal wounding. In vivo knockdown of IFITM1 using an AAV (adeno-associated virus) vector significantly attenuated stem/eTA cell expansion and activation of stem/eTA cells to proliferate after mouse corneal wounding. In human limbal epithelial cell cultures, IFITM1 positively impacted the proliferation of stem/eTA cell-enriched limbal epithelial cells, contributing to expansion of the stem/eTA cell population. Such expansion was due, in part, to inhibition of OVOL1 (Ovo like zinc finger 1), a negative regulator of epithelial cell proliferation. These results provide key molecular insights into how stem cell activation and eTA cell expansion are regulated. Elucidating the IFITM1/OVOL1 pathway that governs stem/eTA cell proliferation not only deepens our knowledge of tissue homeostasis but also opens avenues for developing novel regenerative therapies.
Collapse
Affiliation(s)
- Huimin Jiang
- Department of Dermatology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of OphthalmologyThe Second Hospital of Anhui Medical UniversityHefeiChina
| | - Parisa Foroozandeh
- Department of Dermatology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Nihal Kaplan
- Department of Dermatology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Dan Xu
- Microbiology‐Immunology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Wending Yang
- Department of Dermatology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Xiaolin Qi
- Department of Dermatology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Elif Kayaalp Nalbant
- Department of Dermatology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Elwin D. Clutter
- Department of Dermatology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Yongling Zhu
- Department of Ophthalmology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Jian Xu
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Matthew John Schipma
- Department of Biochemistry and Molecular Genetics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ziyou Ren
- Department of Dermatology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Han Peng
- Department of Dermatology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
3
|
Drago-Garcia D, Giri S, Chatterjee R, Simoni-Nieves A, Abedrabbo M, Genna A, Rios MLU, Lindzen M, Sekar A, Gupta N, Aharoni N, Bhandari T, Mayalagu A, Schwarzmüller L, Tarade N, Zhu R, Mohan-Raju HR, Karatekin F, Roncato F, Eyal-Lubling Y, Keidar T, Nof Y, Belugali Nataraj N, Bernshtein KS, Wagner B, Nair NU, Sanghvi N, Alon R, Seger R, Pikarsky E, Donzelli S, Blandino G, Wiemann S, Lev S, Prywes R, Barkan D, Rueda OM, Caldas C, Ruppin E, Shiloh Y, Dahlhoff M, Yarden Y. Re-epithelialization of cancer cells increases autophagy and DNA damage: Implications for breast cancer dormancy and relapse. Sci Signal 2025; 18:eado3473. [PMID: 40261955 DOI: 10.1126/scisignal.ado3473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/25/2024] [Accepted: 03/07/2025] [Indexed: 04/24/2025]
Abstract
Cellular plasticity mediates tissue development as well as cancer growth and progression. In breast cancer, a shift to a more epithelial phenotype (epithelialization) underlies a state of reversible cell growth arrest called tumor dormancy, which enables drug resistance, tumor recurrence, and metastasis. Here, we explored the mechanisms driving epithelialization and dormancy in aggressive mesenchymal-like breast cancer cells in three-dimensional cultures. Overexpressing either of the epithelial lineage-associated transcription factors OVOL1 or OVOL2 suppressed cell proliferation and migration and promoted transition to an epithelial morphology. The expression of OVOL1 (and of OVOL2 to a lesser extent) was regulated by steroid hormones and growth factors and was more abundant in tumors than in normal mammary cells. An uncharacterized and indirect target of OVOL1/2, C1ORF116, exhibited genetic and epigenetic aberrations in breast tumors, and its expression correlated with poor prognosis in patients. We further found that C1ORF116 was an autophagy receptor that directed the degradation of antioxidant proteins, including thioredoxin. Through C1ORF116 and unidentified mediators, OVOL1 expression dysregulated both redox homeostasis (in association with increased ROS, decreased glutathione, and redistribution of the transcription factor NRF2) and DNA damage and repair (in association with increased DNA oxidation and double-strand breaks and an altered interplay among the kinases p38-MAPK, ATM, and others). Because these effects, as they accumulate in cells, can promote metastasis and dormancy escape, the findings suggest that OVOLs not only promote dormancy entry and maintenance in breast cancer but also may ultimately drive dormancy exit and tumor recurrence.
Collapse
Affiliation(s)
- Diana Drago-Garcia
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Suvendu Giri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rishita Chatterjee
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Arturo Simoni-Nieves
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maha Abedrabbo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alessandro Genna
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mary Luz Uribe Rios
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moshit Lindzen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Arunachalam Sekar
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nitin Gupta
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tithi Bhandari
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Agalyan Mayalagu
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luisa Schwarzmüller
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Nooraldeen Tarade
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Rong Zhu
- MRC-Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
| | - Harsha-Raj Mohan-Raju
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Feride Karatekin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Francesco Roncato
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaniv Eyal-Lubling
- Cancer Research UK Cambridge Institute, Department of Oncology, University of Cambridge and the Cambridge Cancer Centre, Cambridge CB2 0RE, UK
| | - Tal Keidar
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yam Nof
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nishanth Belugali Nataraj
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Bugworks Research India Pvt. Ltd., Center for Cellular and Molecular Platforms (C-CAMP), NCBS Campus, Bangalore 560 065, India
| | | | - Bettina Wagner
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Nishanth Ulhas Nair
- Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Neel Sanghvi
- Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eli Pikarsky
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Dalit Barkan
- Department of Human Biology, University of Haifa, Haifa 3103301, Israel
| | - Oscar M Rueda
- MRC-Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Department of Oncology, University of Cambridge and the Cambridge Cancer Centre, Cambridge CB2 0RE, UK
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv 6997801, Israel
| | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Zhong X, Mitchell R, Billstrand C, Thompson EE, Sakabe NJ, Aneas I, Salamone IM, Gu J, Sperling AI, Schoettler N, Nóbrega MA, He X, Ober C. Integration of functional genomics and statistical fine-mapping systematically characterizes adult-onset and childhood-onset asthma genetic associations. Genome Med 2025; 17:35. [PMID: 40205616 PMCID: PMC11983851 DOI: 10.1186/s13073-025-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified hundreds of loci underlying adult-onset asthma (AOA) and childhood-onset asthma (COA). However, the causal variants, regulatory elements, and effector genes at these loci are largely unknown. METHODS We performed heritability enrichment analysis to determine relevant cell types for AOA and COA, respectively. Next, we fine-mapped putative causal variants at AOA and COA loci. To improve the resolution of fine-mapping, we integrated ATAC-seq data in blood and lung cell types to annotate variants in candidate cis-regulatory elements (CREs). We then computationally prioritized candidate CREs underlying asthma risk, experimentally assessed their enhancer activity by massively parallel reporter assay (MPRA) in bronchial epithelial cells (BECs) and further validated a subset by luciferase assays. Combining chromatin interaction data and expression quantitative trait loci, we nominated genes targeted by candidate CREs and prioritized effector genes for AOA and COA. RESULTS Heritability enrichment analysis suggested a shared role of immune cells in the development of both AOA and COA while highlighting the distinct contribution of lung structural cells in COA. Functional fine-mapping uncovered 21 and 67 credible sets for AOA and COA, respectively, with only 16% shared between the two. Notably, one-third of the loci contained multiple credible sets. Our CRE prioritization strategy nominated 62 and 169 candidate CREs for AOA and COA, respectively. Over 60% of these candidate CREs showed open chromatin in multiple cell lineages, suggesting their potential pleiotropic effects in different cell types. Furthermore, COA candidate CREs were enriched for enhancers experimentally validated by MPRA in BECs. The prioritized effector genes included many genes involved in immune and inflammatory responses. Notably, multiple genes, including TNFSF4, a drug target undergoing clinical trials, were supported by two independent GWAS signals, indicating widespread allelic heterogeneity. Four out of six selected candidate CREs demonstrated allele-specific regulatory properties in luciferase assays in BECs. CONCLUSIONS We present a comprehensive characterization of causal variants, regulatory elements, and effector genes underlying AOA and COA genetics. Our results supported a distinct genetic basis between AOA and COA and highlighted regulatory complexity at many GWAS loci marked by both extensive pleiotropy and allelic heterogeneity.
Collapse
Affiliation(s)
- Xiaoyuan Zhong
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Robert Mitchell
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Isabella M Salamone
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Jing Gu
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Anne I Sperling
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nathan Schoettler
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Marcelo A Nóbrega
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Rohena-Rivera K, You S, Kim M, Billet S, Ten Hoeve J, Gonzales G, Huang C, Heard A, Chan KS, Bhowmick NA. Targeting ketone body metabolism in mitigating gemcitabine resistance. JCI Insight 2024; 9:e177840. [PMID: 39509334 DOI: 10.1172/jci.insight.177840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Chemotherapy is often combined with surgery for muscle invasive and nonmuscle invasive bladder cancer (BCa). However, 70% of the patients recur within 5 years. Metabolic reprogramming is an emerging hallmark in cancer chemoresistance. Here, we report a gemcitabine resistance mechanism that promotes cancer reprogramming via the metabolic enzyme OXCT1. This mitochondrial enzyme, responsible for the rate-limiting step in β-hydroxybutyrate (βHB) catabolism, was elevated in muscle invasive disease and in patients with chemoresistant BCa. Resistant orthotopic tumors presented an OXCT1-dependent rise in mitochondrial oxygen consumption rate, ATP, and nucleotide biosynthesis. In resistant BCa, knocking out OXCT1 restored gemcitabine sensitivity, and administering the nonmetabolizable βHB enantiomer (S-βHB) only partially restored gemcitabine sensitivity. Suggesting an extrametabolic role for OXCT1, multi-omics analysis of gemcitabine sensitive and resistant cells revealed an OXCT1-dependent signature with the transcriptional repressor OVOL1 as a master regulator of epithelial differentiation. The elevation of OVOL1 target genes was associated with its cytoplasmic translocation and poor prognosis in a cohort of patients with BCa who have been treated with chemotherapy. The KO of OXCT1 restored OVOL1 transcriptional repressive activity by its nuclear translocation. Orthotopic mouse models of BCa supported OXCT1 as a mediator of gemcitabine sensitivity through ketone metabolism and regulating cancer stem cell differentiation.
Collapse
Affiliation(s)
- Krizia Rohena-Rivera
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Cancer Center, Los Angeles, California, USA
| | - Sungyong You
- Samuel Oschin Cancer Center, Los Angeles, California, USA
- Department of Urology and
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Cancer Center, Los Angeles, California, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Gabrielle Gonzales
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Cancer Center, Los Angeles, California, USA
| | - Chengqun Huang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ashley Heard
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Cancer Center, Los Angeles, California, USA
| | - Keith Syson Chan
- Department of Urology and Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Cancer Center, Los Angeles, California, USA
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
6
|
Togo A, Mitsuzuka K, Hanawa S, Nakajima R, Izumi K, Sato K, Ishimoto H. Downregulation of SPARC Expression Enhances the Fusion of BeWo Choriocarcinoma Cells. Reprod Sci 2024; 31:2342-2353. [PMID: 38728000 DOI: 10.1007/s43032-024-01563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/12/2024] [Indexed: 07/31/2024]
Abstract
Syncytiotrophoblasts, which are formed by the fusion of villous cytotrophoblasts, play an essential role in maintaining a successful pregnancy. Secreted protein acidic and rich in cysteine (SPARC) is a non-structural Ca2+-binding extracellular matrix glycoprotein involved in tissue remodeling and cell proliferation, differentiation, and migration. Previous studies have revealed that SPARC is expressed in villous and extravillous cytotrophoblasts in the first trimester and that RNA interference targeted at SPARC significantly inhibited invasion of human extravillous trophoblast HTR8/SVneo cells. However, the involvement of SPARC in cytotrophoblast fusion remains unknown. This study aimed to investigate the role of SPARC in cytotrophoblast fusion, using the BeWo choriocarcinoma cell line as a model of villous cytotrophoblasts. Immunohistochemical analysis was conducted to assess SPARC expression in normal human placentas using placental tissues obtained during the first and third trimesters of pregnancy. We investigated the effects of SPARC knockdown on trophoblast differentiation markers and cell fusion in BeWo cells using small interfering RNA. Immunohistochemical analysis revealed that SPARC expression was high in the early gestational chorionic villi and low in the late gestational chorionic villi. SPARC knockdown increased the expressions of human chorionic gonadotropin and Ovo-like transcriptional repressor 1; however, glial cells missing transcription factor 1, syncytin-1, and syncytin-2 showed no significant changes. The assessment revealed that SPARC knockdown significantly enhanced cell fusion compared to the non-silencing control. Our data suggest that SPARC plays a vital role in regulating trophoblast fusion and differentiation during placental development.
Collapse
Affiliation(s)
- Atsuko Togo
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan.
| | - Kanako Mitsuzuka
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Sachiko Hanawa
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Rie Nakajima
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Kenji Izumi
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Kenji Sato
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| |
Collapse
|
7
|
Wang Y, Shi L, He Y, Gong W, Cui Y, Zuo R, Wang Y, Luo Y, Chen L, Liu Z, Chen P, Guo H. OVOL2 induces autophagy-mediated epithelial-mesenchymal transition by the ERK1/2 MAPK signaling in lung adenocarcinoma. iScience 2024; 27:108873. [PMID: 38318371 PMCID: PMC10838806 DOI: 10.1016/j.isci.2024.108873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) plays an important role in malignant tumor progression. Recently, accumulating evidence has shown that autophagy is involved in the regulation of EMT-induced migration. Therefore, the exploration of targets to inhibit EMT by targeting autophagy is important. In this study, we found that OVO-like zinc finger 2 (OVOL2) may be a key target for regulating autophagy-induced EMT. Firstly, we found that OVOL2 expression was dramatically downregulated in LUAD. Low expression of OVOL2 is an indicator of poor prognosis in LUAD. In vitro experiments have shown that downregulation of OVOL2 expression induces EMT, thereby promoting malignant biological behavior, such as proliferation, migration, and invasion of LUAD cells. Interestingly, autophagy is a key step in regulating OVOL2 and inducing EMT. Furthermore, OVOL2 regulates autophagy through the MAPK signaling pathway, ultimately inhibiting the malignant progression of LUAD.
Collapse
Affiliation(s)
- Yali Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Lin Shi
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Oncology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia 010000, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yanyan Cui
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Ran Zuo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Zhiyong Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| |
Collapse
|
8
|
Shyam S, Ramu S, Sehgal M, Jolly MK. A systems-level analysis of the mutually antagonistic roles of RKIP and BACH1 in dynamics of cancer cell plasticity. J R Soc Interface 2023; 20:20230389. [PMID: 37963558 PMCID: PMC10645512 DOI: 10.1098/rsif.2023.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important axis of phenotypic plasticity-a hallmark of cancer metastasis. Raf kinase-B inhibitor protein (RKIP) and BTB and CNC homology 1 (BACH1) are reported to influence EMT. In breast cancer, they act antagonistically, but the exact nature of their roles in mediating EMT and associated other axes of plasticity remains unclear. Here, analysing transcriptomic data, we reveal their antagonistic trends in a pan-cancer manner in terms of association with EMT, metabolic reprogramming and immune evasion via PD-L1. Next, we developed and simulated a mechanism-based gene regulatory network that captures how RKIP and BACH1 engage in feedback loops with drivers of EMT and stemness. We found that RKIP and BACH1 belong to two antagonistic 'teams' of players-while BACH1 belonged to the one driving pro-EMT, stem-like and therapy-resistant cell states, RKIP belonged to the one enabling pro-epithelial, less stem-like and therapy-sensitive phenotypes. Finally, we observed that low RKIP levels and upregulated BACH1 levels associated with worse clinical outcomes in many cancer types. Together, our systems-level analysis indicates that the emergent dynamics of underlying regulatory network enable the antagonistic patterns of RKIP and BACH1 with various axes of cancer cell plasticity, and with patient survival data.
Collapse
Affiliation(s)
- Sai Shyam
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Manas Sehgal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Jiang Y, Zhang Z. OVOL2: an epithelial lineage determiner with emerging roles in energy homeostasis. Trends Cell Biol 2023; 33:824-833. [PMID: 37336658 PMCID: PMC10524639 DOI: 10.1016/j.tcb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023]
Abstract
Ovo like zinc finger 2 (OVOL2) is an evolutionarily conserved regulator of epithelial lineage determination and differentiation during embryogenesis. OVOL2 binds to DNA using zinc-finger domains to suppress epithelial-mesenchymal transition (EMT), which is critical for tumor metastasis. However, recent studies have suggested some noncanonical roles of OVOL2 that do not rely on the DNA binding of zinc-finger domains or regulation of EMT. OVOL2 and EMT regulators have emerging roles in adipogenesis, thermogenesis, and lipid metabolism. Here, we review different roles of OVOL2 from embryo development to adult tissue homeostasis, and discuss how OVOL2 and other EMT regulators orchestrate a regulatory network to control energy homeostasis. Last, we propose potential applications of targeting OVOL2 to reduce human obesity.
Collapse
Affiliation(s)
- Yiao Jiang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Dhungel N, Youngblood R, Chu M, Carroll J, Dragoi AM. Assessing the epithelial-to-mesenchymal plasticity in a small cell lung carcinoma (SCLC) and lung fibroblasts co-culture model. Front Mol Biosci 2023; 10:1096326. [PMID: 36936987 PMCID: PMC10022497 DOI: 10.3389/fmolb.2023.1096326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The tumor microenvironment (TME) is the source of important cues that govern epithelial-to-mesenchymal transition (EMT) and facilitate the acquisition of aggressive traits by cancer cells. It is now recognized that EMT is not a binary program, and cancer cells rarely switch to a fully mesenchymal phenotype. Rather, cancer cells exist in multiple hybrid epithelial/mesenchymal (E/M) states responsible for cell population heterogeneity, which is advantageous for the ever-changing environment during tumor development and metastasis. How are these intermediate states generated and maintained is not fully understood. Here, we show that direct interaction between small cell lung carcinoma cells and lung fibroblasts induces a hybrid EMT phenotype in cancer cells in which several mesenchymal genes involved in receptor interaction with the extracellular matrix (ECM) and ECM remodeling are upregulated while epithelial genes such as E-cadherin remain unchanged or slightly increase. We also demonstrate that several core EMT-regulating transcription factors (EMT-TFs) are upregulated in cancer cells during direct contact with fibroblasts, as is Yes-associated protein (YAP1), a major regulator of the Hippo pathway. Further, we show that these changes are transient and reverse to the initial state once the interaction is disrupted. Altogether, our results provide evidence that tumor cells' direct contact with the fibroblasts in the TME initiates a signaling cascade responsible for hybrid E/M states of cancer cells. These hybrid states are maintained during the interaction and possibly contribute to therapy resistance and immune evasion, while interference with direct contact will result in slow recovery and switch to the initial states.
Collapse
Affiliation(s)
- Nilu Dhungel
- Department of Molecular and Cellular Physiology, LSUHSC-Shreveport, Shreveport, LA, United States
| | - Reneau Youngblood
- Department of Molecular and Cellular Physiology, LSUHSC-Shreveport, Shreveport, LA, United States
| | - Min Chu
- Feist-Weiller Cancer Center, INLET Core, LSUHSC-Shreveport, Shreveport, LA, United States
| | - Jennifer Carroll
- Center for Emerging Viral Threats (CEVT), LSUHSC-Shreveport, Shreveport, LA, United States
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC-Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, INLET Core, LSUHSC-Shreveport, Shreveport, LA, United States
| |
Collapse
|
11
|
Wang T, Rho O, Eguiarte-Solomon F, DiGiovanni J. Twist1 as a target for prevention of cutaneous squamous cell carcinoma. Mol Carcinog 2023; 62:62-76. [PMID: 36373194 PMCID: PMC9772054 DOI: 10.1002/mc.23482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) represents an important clinical problem requiring novel approaches for both prevention and treatment. The transcription factor, Twist-related protein 1 (Twist1), has been identified as having a key mechanistic role in the development and progression of cSCC. Studies in relevant mouse models of cSCC have shown that Twist1 regulates epithelial-mesenchymal transition (EMT) and stemness driving progression and metastasis of cSCC. In addition, further research has shown that Twist1 regulates the balance between keratinocyte proliferation and differentiation and therefore impacts earlier stages of cSCC development. Through use of keratinocyte specific Twist1 knockout models, a role for this gene in keratinocyte stem cell homeostasis has been revealed. As a transcription factor, Twist1 regulates a large number of genes both in a positive, as well as a negative manner across several interdependent pathways. Studies in keratinocyte specific knockout models have shown that Twist1 upregulates the expression of genes involved in proliferation, stemness, and EMT while downregulating the expression of genes associated with differentiation. Furthermore, a number of compounds, including naturally occurring compounds, have been identified that target Twist1 and can block its effects in cancer cells and in keratinocytes in vivo. Collectively, the current understanding of Twist1 function in cSCC development and progression suggests that it represents a potential target for prevention and treatment of cSCC.
Collapse
Affiliation(s)
- Tingzeng Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Fernando Eguiarte-Solomon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX 78723, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, United States
| |
Collapse
|
12
|
Toomer G, Workman A, Harrison KS, Stayton E, Hoyt PR, Jones C. Stress Triggers Expression of Bovine Herpesvirus 1 Infected Cell Protein 4 (bICP4) RNA during Early Stages of Reactivation from Latency in Pharyngeal Tonsil. J Virol 2022; 96:e0101022. [PMID: 36416585 PMCID: PMC9749472 DOI: 10.1128/jvi.01010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, establishes lifelong latency in sensory neurons within trigeminal ganglia (TG) after acute infection. The BoHV-1 latency-reactivation cycle, like other alphaherpesvirinae subfamily members, is essential for viral persistence and transmission. Notably, cells within pharyngeal tonsil (PT) also support a quiescent or latent BoHV-1 infection. The synthetic corticosteroid dexamethasone, which mimics the effects of stress, consistently induces BoHV-1 reactivation from latency allowing early stages of viral reactivation to be examined in the natural host. Based on previous studies, we hypothesized that stress-induced cellular factors trigger expression of key viral transcriptional regulatory genes. To explore this hypothesis, RNA-sequencing studies compared viral gene expression in PT during early stages of dexamethasone-induced reactivation from latency. Strikingly, RNA encoding infected cell protein 4 (bICP4), which is translated into an essential viral transcriptional regulatory protein, was detected 30 min after dexamethasone treatment. Ninety minutes after dexamethasone treatment bICP4 and, to a lesser extent, bICP0 RNA were detected in PT. All lytic cycle viral transcripts were detected within 3 h after dexamethasone treatment. Surprisingly, the latency related (LR) gene, the only viral gene abundantly expressed in latently infected TG neurons, was not detected in PT during latency. In TG neurons, bICP0 and the viral tegument protein VP16 are expressed before bICP4 during reactivation, suggesting distinct viral regulatory genes mediate reactivation from latency in PT versus TG neurons. Finally, these studies confirm PT is a biologically relevant site for BoHV-1 latency, reactivation from latency, and virus transmission. IMPORTANCE BoHV-1, a neurotropic herpesvirus, establishes, maintains, and reactivates from latency in neurons. BoHV-1 DNA is also detected in pharyngeal tonsil (PT) from latently infected calves. RNA-sequencing studies revealed the viral infected cell protein 4 (bICP4) RNA was expressed in PT of latently infected calves within 30 min after dexamethasone was used to initiate reactivation. As expected, bICP4 RNA was not detected during latency. All lytic cycle viral genes were expressed within 3 h after dexamethasone treatment. Conversely, bICP0 and the viral tegument protein VP16 are expressed prior to bICP4 in trigeminal ganglionic neurons during reactivation. The viral latency related gene, which is abundantly expressed in latently infected neurons, was not abundantly expressed in PT during latency. These studies provide new evidence PT is a biologically relevant site for BoHV-1 latency and reactivation. Finally, we predict other alphaherpesvirinae subfamily members utilize PT as a site for latency and reactivation.
Collapse
Affiliation(s)
- Gabriela Toomer
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Aspen Workman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Kelly S. Harrison
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Erin Stayton
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Peter R. Hoyt
- Oklahoma State University, Department of Biochemistry and Molecular Biology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
13
|
Terán S, Ahumada F, Vergara F, Meza J, Zoroquiain P. OVOL1 immunohistochemical expression is a useful tool to diagnose invasion in ocular surface squamous neoplasms. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2022; 97:504-509. [PMID: 35787378 DOI: 10.1016/j.oftale.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES OVOL1 is a gene that negatively regulates mesenchymal transformation, which allows epithelial cells to invade the stroma. On the other hand, it negatively regulates c-Myc, which has a positive effect on cell proliferation. The aim of this study is to evaluate the expression of OVOL1 and c-Myc in ocular surface squamous neoplasia (OSSN). PATIENTS AND METHODS Cross-sectional cohort study of 36 samples including 6 squamous papillomas, 19 conjunctival intraepithelial neoplasms, 6 squamous carcinomas and 7 normal conjunctivae were evaluated using immunohistochemistry against OVOL1 and c-Myc. The expression of both markers was analysed using the H-score (intensity 1-3 multiplied by the percentage of positive cells). RESULTS Percentages of 98 and 100 of the OSSN, and 57 and 71% of the normal conjunctivae expressed OVOL1 and c-Myc respectively, however, the mean H-score of OVOL1 and c-Myc was higher in the OSSN than in normal conjunctivae group (P=0.0001 in both). Within the OSSN, OVOL1 demonstrated a higher H-score in the conjunctival intraepithelial neoplasms and papilloma, compared to the squamous carcinoma (P<0.01) group. c-Myc did not show differences between the OSSN groups. An H-score lower than 35 differentiates a squamous cell carcinoma from other OSSN lesions with a sensitivity of 83.3% and a specificity of 100%. CONCLUSIONS The expression of OVOL1 is a useful tool to differentiate between a squamous carcinoma of conjunctival intraepithelial neoplasms and papilloma. OVOL1 could play a role in the invasiveness of squamous neoplasms and places it as a potential therapeutic target.
Collapse
Affiliation(s)
- S Terán
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Ahumada
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Vergara
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J Meza
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P Zoroquiain
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
14
|
Kalogirou EM, Foutadakis S, Koutsi MA, Vatsellas G, Vlachodimitropoulos D, Petsinis V, Sklavounou A, Agelopoulos M, Tosios KI. Decoding a gene expression program that accompanies the phenotype of sporadic and Basal Cell Nevus Syndrome-associated odontogenic keratocyst. J Oral Pathol Med 2022; 51:649-658. [PMID: 35665542 DOI: 10.1111/jop.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Odontogenic keratocyst (OKC) is characterized by local aggressive behavior and a high recurrence rate, as well as the potential to develop in association with the Basal Cell Nevus Syndrome (BCNS). The aim of this study was to decode the gene expression program accompanying OKC phenotype. METHODS 150-bp paired-end RNA-sequencing was applied on 6 sporadic and 6 BSCN-associated whole-tissue OKC samples in comparison to 6 dental follicles, coupled to bioinformatics and complemented by immunohistochemistry. RESULTS 2,654 and 2,427 differentially expressed genes were captured to characterize the transcriptome of sporadic and BCNS-associated OKCs, respectively. Gene ontologies (GOs) related to "epidermis/skin development" and "keratinocyte/epidermal cell differentiation" were enriched among the upregulated genes (KRT10, NCCRP1, TP63, GRHL3, SOX21), while "extracellular matrix (ECM) organization" (ITGA5, LOXL2) and "odontogenesis" (MSX1, LHX8) GOs were overrepresented among the downregulated genes in OKC. Interestingly, upregulation of various embryonic stem cells (ESCs) markers (EPHA1, SCNN1A) and genes committed in cellular reprogramming (SOX2, KLF4, OVOL1, IRF6, TACSTD2, CDH1) was found in OKC. These findings were highly shared between sporadic and BCNS-associated OKCs. Immunohistochemistry verified SOX2, KLF4, OVOL1, IRF6, TACSTD2/TROP2, CDH1/E-cadherin, and p63 expression predominantly in the OKC suprabasal epithelial layers. CONCLUSION The OKC transcriptomic profile is characterized by a prominent epidermal and dental epithelial fate, a repressed dental mesenchyme fate combined with deregulated ECM organization, and enhanced stemness gene signatures. Thus, we propose a developed epidermis-like phenotype in the OKC suprabasal epithelial cells, established in parallel to a significant upregulation of marker genes related to ESCs and cellular reprogramming. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eleni-Marina Kalogirou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyros Foutadakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Marianna A Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Giannis Vatsellas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Vassilis Petsinis
- Department of Oral and Maxillofacial Surgery, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Sklavounou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Konstantinos I Tosios
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Zhang R, Geng GJ, Guo JG, Mi YJ, Zhu XL, Li N, Liu HM, Lin JF, Wang JW, Zhao G, Ye GZ, Li BA, Luo QC, Jiang J. An NF-κB/OVOL2 circuit regulates glucose import and cell survival in non-small cell lung cancer. Cell Commun Signal 2022; 20:40. [PMID: 35346238 PMCID: PMC8962559 DOI: 10.1186/s12964-022-00845-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Tumor cells tend to utilize glycolysis rather than aerobic respiration even under aerobic conditions. OVOL2, an inhibitory C2H2 zinc finger transcription factor, is a potential tumor suppressor in cancers. However, the association between OVOL2 and tumor energy metabolism is unknown. METHODS Western blotting was used to determine the expression of OVOL2 in different non-small cell lung cancer (NSCLC) cell lines and mouse models. The metabolic parameters in NSCLC cells following overexpression or knockdown OVOL2 were examined. To define the mechanism by which OVOL2 regulates aerobic glycolysis, interacting protein of OVOl2 and downstream molecular events were identified by luciferase assay and co-immunoprecipitation. We documented the regulatory mechanism in mouse xenograft models. Finally, clinical relevance of OVOL2, NF-κB signaling and GLUT1 was measured by immunostaining. RESULTS OVOL2 is downregulated in NSCLC and overexpression of OVOL2 inhibits the survival of cancer cells. Moreover, OVOL2 directly binds to P65 and inhibits the recruitment of P300 but facilitates the binding of HDAC1 to P65, which in turn negatively regulates NF-κB signaling to suppress GLUT1 translocation and glucose import. In contrast, OVOL2 expression is negatively regulated by NF-κB signaling in NSCLC cells via the ubiquitin-proteasome pathway. Re-expression of OVOL2 significantly compromise NF-κB signaling-induced GLUT1 translocation, aerobic glycolysis in NSCLC cells and mouse models. Immunostaining revealed inverse correlations between the OVOL2 and phosphorylated P65 levels and between the OVOL2 and membrane GLUT1 levels, and a strong correlation between the phosphorylated P65 and membrane GLUT1 levels. CONCLUSIONS These results suggest a regulatory circuit linking NF-κB and OVOL2, which highlights the role of NF-κB signaling and OVOL2 in the modulation of glucose metabolism in NSCLC. Video Abstract.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Guo-Jun Geng
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Jian-Guang Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361100 Fujian China
| | - Yan-Jun Mi
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Xiao-Lei Zhu
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Ning Li
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Hong-Ming Liu
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Jun-Feng Lin
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Jian-Weng Wang
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Guang Zhao
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Guan-Zhi Ye
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Bo-An Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361100 Fujian China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361100 Fujian China
| | - Qi-Cong Luo
- Laboratory of Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| | - Jie Jiang
- Department of Thoracic Surgery and Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 Fujian China
| |
Collapse
|
16
|
Leon A, Subirana L, Magre K, Cases I, Tena JJ, Irimia M, Gomez-Skarmeta JL, Escriva H, Bertrand S. Gene regulatory networks of epidermal and neural fate choice in a chordate. Mol Biol Evol 2022; 39:6547258. [PMID: 35276009 PMCID: PMC9004418 DOI: 10.1093/molbev/msac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.
Collapse
Affiliation(s)
- Anthony Leon
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Kevin Magre
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
17
|
Ye M, Li L, Liu D, Wang Q, Zhang Y, Zhang J. Identification and validation of a novel zinc finger protein-related gene-based prognostic model for breast cancer. PeerJ 2021; 9:e12276. [PMID: 34721975 PMCID: PMC8530103 DOI: 10.7717/peerj.12276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background Breast invasive carcinoma (BRCA) is a commonly occurring malignant tumor. Zinc finger proteins (ZNFs) constitute the largest transcription factor family in the human genome and play a mechanistic role in many cancers' development. The prognostic value of ZNFs has yet to be approached systematically for BRCA. Methods We analyzed the data of a training set from The Cancer Genome Atlas (TCGA) database and two validation cohort from GSE20685 and METABRIC datasets, composed of 3,231 BRCA patients. After screening the differentially expressed ZNFs, univariate Cox regression, LASSO, and multiple Cox regression analysis were performed to construct a risk-based predictive model. ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and gene set enrichment analyses (GSEA) were utilized to assess the potential relations among the tumor immune microenvironment and ZNFs in BRCA. Results In this study, we profiled ZNF expression in TCGA based BRCA cohort and developed a novel prognostic model based on 14 genes with ZNF relations. This model was composed of high and low-score groups for BRCA classification. Based upon Kaplan-Meier survival curves, risk-status-based prognosis illustrated significant differences. We integrated the 14 ZNF-gene signature with patient clinicopathological data for nomogram construction with accurate 1-, 3-, and 5-overall survival predictive capabilities. We then accessed the Genomics of Drug Sensitivity in Cancer database for therapeutic drug response prediction of signature-defined BRCA patient groupings for our selected TCGA population. The signature also predicts sensitivity to chemotherapeutic and molecular-targeted agents in high- and low-risk patients afflicted with BRCA. Functional analysis suggested JAK STAT, VEGF, MAPK, NOTCH TOLL-like receptor, NOD-like receptor signaling pathways, apoptosis, and cancer-based pathways could be key for ZNF-related BRCA development. Interestingly, based on the results of ESTIMATE, ssGSEA, and GSEA analysis, we elucidated that our ZNF-gene signature had pivotal regulatory effects on the tumor immune microenvironment for BRCA. Conclusion Our findings shed light on the potential contribution of ZNFs to the pathogenesis of BRCA and may inform clinical practice to guide individualized treatment.
Collapse
Affiliation(s)
- Min Ye
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Liang Li
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Donghua Liu
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Qiuming Wang
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Yunuo Zhang
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Jinfeng Zhang
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| |
Collapse
|
18
|
Subbalakshmi AR, Sahoo S, McMullen I, Saxena AN, Venugopal SK, Somarelli JA, Jolly MK. KLF4 Induces Mesenchymal-Epithelial Transition (MET) by Suppressing Multiple EMT-Inducing Transcription Factors. Cancers (Basel) 2021; 13:5135. [PMID: 34680284 PMCID: PMC8533753 DOI: 10.3390/cancers13205135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial-Mesenchymal Plasticity (EMP) refers to reversible dynamic processes where cells can transition from epithelial to mesenchymal (EMT) or from mesenchymal to epithelial (MET) phenotypes. Both these processes are modulated by multiple transcription factors acting in concert. While EMT-inducing transcription factors (TFs)-TWIST1/2, ZEB1/2, SNAIL1/2/3, GSC, and FOXC2-are well-characterized, the MET-inducing TFs are relatively poorly understood (OVOL1/2 and GRHL1/2). Here, using mechanism-based mathematical modeling, we show that transcription factor KLF4 can delay the onset of EMT by suppressing multiple EMT-TFs. Our simulations suggest that KLF4 overexpression can promote a phenotypic shift toward a more epithelial state, an observation suggested by the negative correlation of KLF4 with EMT-TFs and with transcriptomic-based EMT scoring metrics in cancer cell lines. We also show that the influence of KLF4 in modulating the EMT dynamics can be strengthened by its ability to inhibit cell-state transitions at the epigenetic level. Thus, KLF4 can inhibit EMT through multiple parallel paths and can act as a putative MET-TF. KLF4 associates with the patient survival metrics across multiple cancers in a context-specific manner, highlighting the complex association of EMP with patient survival.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (A.R.S.); (S.S.); (S.K.V.)
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (A.R.S.); (S.S.); (S.K.V.)
| | | | | | - Sudhanva Kalasapura Venugopal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (A.R.S.); (S.S.); (S.K.V.)
| | - Jason A. Somarelli
- Department of Medicine, Duke University, Durham, NC 27708, USA;
- Duke Cancer Institute, Duke University, Durham, NC 27708, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (A.R.S.); (S.S.); (S.K.V.)
| |
Collapse
|
19
|
Chen J, Tang H, Li T, Jiang K, Zhong H, Wu Y, He J, Li D, Li M, Cai X. Comprehensive Analysis of the Expression, Prognosis, and Biological Significance of OVOLs in Breast Cancer. Int J Gen Med 2021; 14:3951-3960. [PMID: 34345183 PMCID: PMC8323863 DOI: 10.2147/ijgm.s326402] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background The study aimed to investigate the expression of OVOLs in breast cancer (BRCA) tissues and their value in prognosis. Methods ONCOMINE was used to analyze the expressions of OVOL1, OVOL2, and OVOL3 mRNA between BRCA tissues and normal breast tissues. The Wilcoxon rank sum test and t-test were used to assess the expression of OVOLs between BRCA tissues and unpaired/paired normal breast tissues. GEPIA and ROC curves were used to analyze the relationship between OVOLs expression and clinical pathological stage. Kaplan–Meier plotter was used to analyze prognosis. cBioPortal was used to analyze the mutation of OVOLs. GEPIA was used to analyze the co-expression of OVOLs. GO and KEGG analyses were performed by the DAVID software to predict the function of OVOLs co-expression genes. Results The expression of OVOL1/2 was significantly higher in BRCA tissues than in normal breast tissues. The OVOL3 expression correlated with tumor stage. The AUC of OVOLs was 0.757, 0.754, and 0.537, respectively. OVOL1 high expression was associated with shorter overall survival (HR: 1.48; 95% CI: 1.07–2.04; P=0.018). The OVOLs were associated with pathways including axon guidance, thyroid hormone signaling pathway, and ubiquinone and other terpenoid-quinone biosynthesis. Conclusion OVOL1 is a new potential marker of prognosis in BRCA, and OVOL1/2 are potential therapeutic targets in BRCA.
Collapse
Affiliation(s)
- Jingsheng Chen
- Department of Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China.,Medical Department, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Hongjun Tang
- Department of Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Taidong Li
- Department of Thoracic Surgery, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Kangwei Jiang
- Medical Department, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Haiming Zhong
- Department of Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Yuye Wu
- Department of Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Jiangtao He
- Department of Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Dongbing Li
- MyGene Diagnostics Co., Ltd, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Mengzhen Li
- MyGene Diagnostics Co., Ltd, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Xingsheng Cai
- MyGene Diagnostics Co., Ltd, Guangzhou, 510000, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Chakraborty P, Chen EL, McMullen I, Armstrong AJ, Kumar Jolly M, Somarelli JA. Analysis of immune subtypes across the epithelial-mesenchymal plasticity spectrum. Comput Struct Biotechnol J 2021; 19:3842-3851. [PMID: 34306571 PMCID: PMC8283019 DOI: 10.1016/j.csbj.2021.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal plasticity plays a critical role in many solid tumor types as a mediator of metastatic dissemination and treatment resistance. In addition, there is also a growing appreciation that the epithelial/mesenchymal status of a tumor plays a role in immune evasion and immune suppression. A deeper understanding of the immunological features of different tumor types has been facilitated by the availability of large gene expression datasets and the development of methods to deconvolute bulk RNA-Seq data. These resources have generated powerful new ways of characterizing tumors, including classification of immune subtypes based on differential expression of immunological genes. In the present work, we combine scoring algorithms to quantify epithelial-mesenchymal plasticity with immune subtype analysis to understand the relationship between epithelial plasticity and immune subtype across cancers. We find heterogeneity of epithelial-mesenchymal transition (EMT) status both within and between cancer types, with greater heterogeneity in the expression of EMT-related factors than of MET-related factors. We also find that specific immune subtypes have associated EMT scores and differential expression of immune checkpoint markers.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Andrew J. Armstrong
- Department of Medicine, Durham, NC, United Kingdom
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, United Kingdom
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United Kingdom
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jason A. Somarelli
- Department of Medicine, Durham, NC, United Kingdom
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, United Kingdom
| |
Collapse
|
21
|
Morgani SM, Su J, Nichols J, Massagué J, Hadjantonakis AK. The transcription factor Rreb1 regulates epithelial architecture, invasiveness, and vasculogenesis in early mouse embryos. eLife 2021; 10:e64811. [PMID: 33929320 PMCID: PMC8131102 DOI: 10.7554/elife.64811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/16/2021] [Indexed: 12/23/2022] Open
Abstract
Ras-responsive element-binding protein 1 (Rreb1) is a zinc-finger transcription factor acting downstream of RAS signaling. Rreb1 has been implicated in cancer and Noonan-like RASopathies. However, little is known about its role in mammalian non-disease states. Here, we show that Rreb1 is essential for mouse embryonic development. Loss of Rreb1 led to a reduction in the expression of vasculogenic factors, cardiovascular defects, and embryonic lethality. During gastrulation, the absence of Rreb1 also resulted in the upregulation of cytoskeleton-associated genes, a change in the organization of F-ACTIN and adherens junctions within the pluripotent epiblast, and perturbed epithelial architecture. Moreover, Rreb1 mutant cells ectopically exited the epiblast epithelium through the underlying basement membrane, paralleling cell behaviors observed during metastasis. Thus, disentangling the function of Rreb1 in development should shed light on its role in cancer and other diseases involving loss of epithelial integrity.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Jie Su
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
22
|
Kittelmann S, Preger-Ben Noon E, McGregor AP, Frankel N. A complex gene regulatory architecture underlies the development and evolution of cuticle morphology in Drosophila. Curr Opin Genet Dev 2021; 69:21-27. [PMID: 33529925 DOI: 10.1016/j.gde.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The cuticle of insects is decorated with non-sensory hairs called trichomes. A few Drosophila species independently lost most of the dorso-lateral trichomes on first instar larvae. Genetic experiments revealed that this naked cuticle phenotype was caused by the evolution of enhancer function at the ovo/shavenbaby (ovo/svb) locus. Here we explore how this discovery catalyzed major new insights into morphological evolution in different developmental contexts, enhancer pleiotropy in gene regulation and the functionality and evolution of the Svb gene regulatory network (GRN). Taken together this highlights the importance of understanding the architecture and evolution of gene regulatory networks in detail and the great potential for further study of the Svb GRN.
Collapse
Affiliation(s)
- Sebastian Kittelmann
- Centre for Functional Genomics, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 3109601, Israel
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Nicolás Frankel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, CONICET-UBA), Buenos Aires 1428, Argentina; Departamento de Ecología, Genética y Evolución (FCEyN, UBA), Buenos Aires 1428, Argentina.
| |
Collapse
|
23
|
Pasani S, Sahoo S, Jolly MK. Hybrid E/M Phenotype(s) and Stemness: A Mechanistic Connection Embedded in Network Topology. J Clin Med 2020; 10:E60. [PMID: 33375334 PMCID: PMC7794989 DOI: 10.3390/jcm10010060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis remains an unsolved clinical challenge. Two crucial features of metastasizing cancer cells are (a) their ability to dynamically move along the epithelial-hybrid-mesenchymal spectrum and (b) their tumor initiation potential or stemness. With increasing functional characterization of hybrid epithelial/mesenchymal (E/M) phenotypes along the spectrum, recent in vitro and in vivo studies have suggested an increasing association of hybrid E/M phenotypes with stemness. However, the mechanistic underpinnings enabling this association remain unclear. Here, we develop a mechanism-based mathematical modeling framework that interrogates the emergent nonlinear dynamics of the coupled network modules regulating E/M plasticity (miR-200/ZEB) and stemness (LIN28/let-7). Simulating the dynamics of this coupled network across a large ensemble of parameter sets, we observe that hybrid E/M phenotype(s) are more likely to acquire stemness relative to "pure" epithelial or mesenchymal states. We also integrate multiple "phenotypic stability factors" (PSFs) that have been shown to stabilize hybrid E/M phenotypes both in silico and in vitro-such as OVOL1/2, GRHL2, and NRF2-with this network, and demonstrate that the enrichment of hybrid E/M phenotype(s) with stemness is largely conserved in the presence of these PSFs. Thus, our results offer mechanistic insights into recent experimental observations of hybrid E/M phenotype(s) that are essential for tumor initiation and highlight how this feature is embedded in the underlying topology of interconnected EMT (Epithelial-Mesenchymal Transition) and stemness networks.
Collapse
Affiliation(s)
- Satwik Pasani
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.P.); (S.S.)
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.P.); (S.S.)
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.P.); (S.S.)
| |
Collapse
|