1
|
Tugui CG, Sorokin DY, Hijnen W, Wunderer J, Bout K, van Loosdrecht MCM, Pabst M. Exploring the metabolic potential of Aeromonas to utilise the carbohydrate polymer chitin. RSC Chem Biol 2025; 6:227-239. [PMID: 39703203 PMCID: PMC11653859 DOI: 10.1039/d4cb00200h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Members of the Aeromonas genus are commonly found in natural aquatic ecosystems. However, they are also frequently present in non-chlorinated drinking water distribution systems. High densities of these bacteria indicate favorable conditions for microbial regrowth, which is considered undesirable. Studies have indicated that the presence of Aeromonas is associated with loose deposits and the presence of invertebrates, specifically Asellus aquaticus. Therefore, a potential source of energy in these nutrient poor environments is chitin, the structural shell component in these invertebrates. In this study, we demonstrate the ability of two Aeromonas strains, commonly encountered in drinking water distribution systems, to effectively degrade and utilize chitin as a sole carbon and nitrogen source. We conducted a quantitative proteomics study on the cell biomass and secretome from pure strain cultures when switching the nutrient source from glucose to chitin, uncovering a diverse array of hydrolytic enzymes and metabolic pathways specifically dedicated to the utilization of chitin. Additionally, a genomic analysis of different Aeromonas species suggests the general ability of this genus to degrade and utilize a variety of carbohydrate biopolymers. This study indicates the relation between the utilization of chitin by Aeromonas and their association with invertebrates such as A. aquaticus in loose deposits in drinking water distribution systems.
Collapse
Affiliation(s)
- Claudia G Tugui
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
| | - Dimitry Y Sorokin
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, RAS Moscow Russia
| | - Wim Hijnen
- Evides Water Company Rotterdam The Netherlands
| | | | - Kaatje Bout
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
| | | | - Martin Pabst
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
| |
Collapse
|
2
|
Shi J, Deng C, Zhang C, Quan S, Fan L, Zhao L. Combinatorial metabolic engineering of Escherichia coli for de novo production of structurally defined and homogeneous Amino oligosaccharides. Synth Syst Biotechnol 2024; 9:713-722. [PMID: 38868610 PMCID: PMC11167392 DOI: 10.1016/j.synbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Amino oligosaccharides (AOs) possess various biological activities and are valuable in the pharmaceutical, food industries, and agriculture. However, the industrial manufacturing of AOs has not been realized yet, despite reports on physical, chemical, and biological approaches. In this study, the de novo production of chitin oligosaccharides (CHOS), a type of structurally defined AOs, was achieved in Escherichia coli through combinatorial pathway engineering. The most suitable glycosyltransferase for CHOS production was found to be NodCL from Mesorhizobium Loti. Then, by knocking out the nagB gene to block the flow of N-acetyl-d-glucosamine (NAG) to the glycolytic pathway in E. coli and adjusting the copy number of NodCL-coding gene, the CHOS yield was increased by 6.56 times. Subsequently, by introducing of UDP-N-acetylglucosamine (UDP-GlcNAc) salvage pathway for and optimizing fermentation conditions, the yield of CHOS reached 207.1 and 468.6 mg/L in shake-flask cultivation and a 5-L fed-batch bioreactor, respectively. Meanwhile, the concentration of UDP-GlcNAc was 91.0 mg/L, the highest level reported in E. coli so far. This study demonstrated, for the first time, the production of CHOS with distinct structures in plasmid-free E. coli, laying the groundwork for the biosynthesis of CHOS and providing a starting point for further engineering and commercial production.
Collapse
Affiliation(s)
- Jinqi Shi
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| |
Collapse
|
3
|
Thai M, Bell TL, Kertesz MA. Mycovorax composti gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from button mushroom compost. Int J Syst Evol Microbiol 2024; 74:006496. [PMID: 39190453 PMCID: PMC11349053 DOI: 10.1099/ijsem.0.006496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Two Gram-stain-negative, aerobic, rod-shaped, orange-coloured bacterial strains, designated strain C216T and strain M2295, were isolated from mature mushroom compost from composting facilities in Victoria and South Australia, Australia, respectively. External structures such as flagella or pili were not observed on the cells under scanning electron microscopy. Optimal growth was found to occur at 45 °C, at pH 7.25 and in the absence of NaCl on Emerson's 350 YpSs medium. The genome sequence of strain C216T was 3 342 126 bp long with a G+C content of 40.5 mol%. Functional analysis of the genome of strain C216T revealed genes encoding chitinolytic and hemi-cellulolytic functions, with 166 predicted genes associated with carbohydrate metabolism (8.9% of the predicted genes). These functions are important for survival in the mushroom compost environment, which is rich in hemicelluloses. No antibiotic resistance genes were found in the genome sequence. The major fatty acids of strain C216T were iso-C15 : 0 (56.7%), iso-C17 : 0 3-OH (15.6%), C16 : 1 ω7c/iso-C15 : 0 2-OH (7.3%) and iso-C15 : 1 G (6.1%). The only respiratory quinone was MK-7. The major polar lipid of strain C216T was phosphatidylethanolamine, but three unidentified phospholipids, four unidentified aminophospholipids/aminolipids and one unidentified glycolipid were also detected. Phylogenetic analysis based on proteins encoded by the core genome (bac120, 120 conserved bacterial genes) showed that strain C216T forms a distinct lineage in the family Chitinophagaceae and that the closest identified relative is Niabella soli (69.69% ANI). These data demonstrate that strain C216T represents a novel genus and novel species within the family Chitinophagaceae, for which we propose the name Mycovorax composti. The type strain is C216T (=DSM 114558T=LMG 32998T).
Collapse
Affiliation(s)
- Meghann Thai
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tina L. Bell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael A. Kertesz
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
Abstract
It has been widely appreciated that numerous bacterial species express chitinases for the purpose of degrading environmental chitin. However, chitinases and chitin-binding proteins are also expressed by pathogenic bacterial species during infection even though mammals do not produce chitin. Alternative molecular targets are therefore likely present within the host. Here, we will describe our current understanding of chitinase/chitin-binding proteins as virulence factors that promote bacterial colonization and infection. The targets of these chitinases in the host have been shown to include immune system components, mucins, and surface glycans. Bacterial chitinases have also been shown to interact with other microorganisms, targeting the peptidoglycan or chitin in the bacterial and fungal cell wall, respectively. This review highlights that even though the name "chitinase" implies activity toward chitin, chitinases can have a wide diversity of targets, including ones relevant to host infection. Chitinases may therefore be useful as a target of future anti-infective therapeutics.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Reuter J, Otten C, Jacquier N, Lee J, Mengin-Lecreulx D, Löckener I, Kluj R, Mayer C, Corona F, Dannenberg J, Aeby S, Bühl H, Greub G, Vollmer W, Ouellette SP, Schneider T, Henrichfreise B. An NlpC/P60 protein catalyzes a key step in peptidoglycan recycling at the intersection of energy recovery, cell division and immune evasion in the intracellular pathogen Chlamydia trachomatis. PLoS Pathog 2023; 19:e1011047. [PMID: 36730465 PMCID: PMC9928106 DOI: 10.1371/journal.ppat.1011047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2023] [Accepted: 12/06/2022] [Indexed: 02/04/2023] Open
Abstract
The obligate intracellular Chlamydiaceae do not need to resist osmotic challenges and thus lost their cell wall in the course of evolution. Nevertheless, these pathogens maintain a rudimentary peptidoglycan machinery for cell division. They build a transient peptidoglycan ring, which is remodeled during the process of cell division and degraded afterwards. Uncontrolled degradation of peptidoglycan poses risks to the chlamydial cell, as essential building blocks might get lost or trigger host immune response upon release into the host cell. Here, we provide evidence that a primordial enzyme class prevents energy intensive de novo synthesis and uncontrolled release of immunogenic peptidoglycan subunits in Chlamydia trachomatis. Our data indicate that the homolog of a Bacillus NlpC/P60 protein is widely conserved among Chlamydiales. We show that the enzyme is tailored to hydrolyze peptidoglycan-derived peptides, does not interfere with peptidoglycan precursor biosynthesis, and is targeted by cysteine protease inhibitors in vitro and in cell culture. The peptidase plays a key role in the underexplored process of chlamydial peptidoglycan recycling. Our study suggests that chlamydiae orchestrate a closed-loop system of peptidoglycan ring biosynthesis, remodeling, and recycling to support cell division and maintain long-term residence inside the host. Operating at the intersection of energy recovery, cell division and immune evasion, the peptidoglycan recycling NlpC/P60 peptidase could be a promising target for the development of drugs that combine features of classical antibiotics and anti-virulence drugs.
Collapse
Affiliation(s)
- Jula Reuter
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christian Otten
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Junghoon Lee
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dominique Mengin-Lecreulx
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Iris Löckener
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Robert Kluj
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Federico Corona
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Julia Dannenberg
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sébastien Aeby
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Henrike Bühl
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Scot P. Ouellette
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Beate Henrichfreise
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Crystal structure of ChbG from Klebsiella pneumoniae reveals the molecular basis of diacetylchitobiose deacetylation. Commun Biol 2022; 5:862. [PMID: 36002585 PMCID: PMC9402603 DOI: 10.1038/s42003-022-03824-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The chitobiose (chb) operon is involved in the synthesis of chitooligosaccharide and is comprised of a BCARFG gene cluster. ChbG encodes a chitooligosaccharide deacetylase (CDA) which catalyzes the removal of one acetyl group from N,N’-diacetylchitobiose. It is considered a novel type of CDA due to its lack of sequence homology. Although there are various structural studies of CDAs linked to the kinetic properties of the enzyme, the structural information of ChbG is unavailable. In this study, the crystal structure of ChbG from Klebsiella pneumoniae is provided. The molecular basis of deacetylation of diacetylchitobiose by ChbG is determined based on structural analysis, mutagenesis, biophysical analysis, and in silico docking of the substrate, diacetylchitobiose. This study contributes towards a deeper understanding of chitin and chitosan biology, as well as provides a platform to engineer CDA biocatalysts. Structural and functional characterization of Klebsiella pneumonia ChbG (which lacks sequence homology) reveals the mechanism of chitooligosaccharide processing by ChbG.
Collapse
|
7
|
NamZ1 and NamZ2 from the oral pathogen Tannerella forsythia are peptidoglycan processing exo-β- N-acetylmuramidases with distinct substrate specificity. J Bacteriol 2022; 204:e0059721. [PMID: 35129368 DOI: 10.1128/jb.00597-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative periodontal pathogen Tannerella forsythia is inherently auxotrophic for N-acetylmuramic acid (MurNAc), which is an essential carbohydrate constituent of the peptidoglycan (PGN) of the bacterial cell wall. Thus, to build up its cell wall, T. forsythia strictly depends on the salvage of exogenous MurNAc or sources of MurNAc, such as polymeric or fragmentary PGN, derived from cohabiting bacteria within the oral microbiome. In our effort to elucidate how T. forsythia satisfies its demand for MurNAc, we recognized that the organism possesses three putative orthologs of the exo-β-N-acetylmuramidase BsNamZ from Bacillus subtilis, which cleaves non-reducing end, terminal MurNAc entities from the artificial substrate pNP-MurNAc and the naturally-occurring disaccharide substrate MurNAc-N-acetylglucosamine (GlcNAc). TfNamZ1 and TfNamZ2 were successfully purified as soluble, pure recombinant His6-fusions and characterized as exo-lytic β-N-acetylmuramidases with distinct substrate specificities. The activity of TfNamZ1 was considerably lower compared to TfNamZ2 and BsNamZ, in the cleavage of MurNAc-GlcNAc. When peptide-free PGN glycans were used as substrates, we revealed striking differences in the specificity and mode of action of these enzymes, as analyzed by mass spectrometry. TfNamZ1, but not TfNamZ2 or BsNamZ, released GlcNAc-MurNAc disaccharides from these glycans. In addition, glucosamine (GlcN)-MurNAc disaccharides were generated when partially N-deacetylated PGN glycans from B. subtilis 168 were applied. This characterizes TfNamZ1 as a unique disaccharide-forming exo-lytic β-N-acetylmuramidase (exo-disaccharidase), and, TfNamZ2 and BsNamZ as sole MurNAc monosaccharide-lytic exo-β-N-acetylmuramidases. IMPORTANCE Two exo-N-acetylmuramidases from T. forsythia belonging to glycosidase family GH171 (www.cazy.org) were shown to differ in their activities, thus revealing a functional diversity within this family: NamZ1 releases disaccharides (GlcNAc-MurNAc/GlcN-MurNAc) from the non-reducing ends of PGN glycans, whereas NamZ2 releases terminal MurNAc monosaccharides. This work provides a better understanding of how T. forsythia may acquire the essential growth factor MurNAc by the salvage of PGN from cohabiting bacteria in the oral microbiome, which may pave avenues for the development of anti-periodontal drugs. On a broad scale, our study indicates that the utilization of PGN as a nutrient source, involving exo-lytic N-acetylmuramidases with different modes of action, appears to be a general feature of bacteria, particularly among the phylum Bacteroidetes.
Collapse
|
8
|
Müller M, Calvert M, Hottmann I, Kluj RM, Teufel T, Balbuchta K, Engelbrecht A, Selim KA, Xu Q, Borisova M, Titz A, Mayer C. The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases. J Biol Chem 2021; 296:100519. [PMID: 33684445 PMCID: PMC8054146 DOI: 10.1016/j.jbc.2021.100519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 11/11/2022] Open
Abstract
Endo-β-N-acetylmuramidases, commonly known as lysozymes, are well-characterized antimicrobial enzymes that catalyze an endo-lytic cleavage of peptidoglycan; i.e., they hydrolyze the β-1,4-glycosidic bonds connecting N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc). In contrast, little is known about exo-β-N-acetylmuramidases, which catalyze an exo-lytic cleavage of β-1,4-MurNAc entities from the non-reducing ends of peptidoglycan chains. Such an enzyme was identified earlier in the bacterium Bacillus subtilis, but the corresponding gene has remained unknown so far. We now report that ybbC of B. subtilis, renamed namZ, encodes the reported exo-β-N-acetylmuramidase. A ΔnamZ mutant accumulated specific cell wall fragments and showed growth defects under starvation conditions, indicating a role of NamZ in cell wall turnover and recycling. Recombinant NamZ protein specifically hydrolyzed the artificial substrate para-nitrophenyl β-MurNAc and the peptidoglycan-derived disaccharide MurNAc-β-1,4-GlcNAc. Together with the exo-β-N-acetylglucosaminidase NagZ and the exo-muramoyl-l-alanine amidase AmiE, NamZ degraded intact peptidoglycan by sequential hydrolysis from the non-reducing ends. A structure model of NamZ, built on the basis of two crystal structures of putative orthologs from Bacteroides fragilis, revealed a two-domain structure including a Rossmann-fold-like domain that constitutes a unique glycosidase fold. Thus, NamZ, a member of the DUF1343 protein family of unknown function, is now classified as the founding member of a new family of glycosidases (CAZy GH171; www.cazy.org/GH171.html). NamZ-like peptidoglycan hexosaminidases are mainly present in the phylum Bacteroidetes and less frequently found in individual genomes within Firmicutes (Bacilli, Clostridia), Actinobacteria, and γ-proteobacteria.
Collapse
Affiliation(s)
- Maraike Müller
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Matthew Calvert
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Isabel Hottmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Robert Maria Kluj
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Tim Teufel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Katja Balbuchta
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alicia Engelbrecht
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Khaled A Selim
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany; Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Giza, Egypt
| | - Qingping Xu
- GM/CA @ APS, Argonne National Laboratory, Lemont, Illinois, USA
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|