1
|
Li ZA, Gao Y, Han L, Xie BC, Sun YC, Zhai XY, Zhang P, Li YD, Yue JY, Yan RF, Cui HK. HR-MRI-based nomogram network calculator to predict stroke recurrence in high-risk non-disabling ischemic cerebrovascular events patients. Front Neurol 2024; 15:1407516. [PMID: 39022730 PMCID: PMC11252045 DOI: 10.3389/fneur.2024.1407516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Background and objective To investigate the use of high-resolution magnetic resonance imaging (HR-MRI) to identify the characteristics of culprit plaques in intracranial arteries, and to evaluate the predictive value of the characteristics of culprit plaques combined with the modified Essen score for the recurrence risk of high-risk non-disabling ischemic cerebrovascular events (HR-NICE) patients. Methods A retrospective analysis was conducted on 180 patients with HR-NICE at the First Affiliated Hospital of Xinxiang Medical University, including 128 patients with no recurrence (non-recurrence group) and 52 patients with recurrence (recurrence group). A total of 65 patients with HR-NICE were collected from the Sixth Affiliated Hospital of Shanghai Jiaotong University as a validation group, and their modified Essen scores, high-resolution magnetic resonance vessel wall images, and clinical data were collected. The culprit plaques were analyzed using VesselExplorer2 software. Univariate and multivariate logistic regression analyses were used to identify independent risk factors for recurrence, and a nomogram was constructed using R software to evaluate the discrimination of the model. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) was used to evaluate the model performance. Calibration curves and Decision Curve Analysis (DCA) were used to evaluate the model efficacy. Results Intra-plaque hemorrhage (OR = 3.592, 95% CI = 1.474-9.104, p = 0.006), homocysteine (OR = 1.098, 95% CI = 1.025-1.179, p = 0.007), and normalized wall index (OR = 1.114, 95% CI = 1.027-1.222, p = 0.015) were significantly higher in the recurrent stroke group than in the non-recurrent stroke group, and were independent risk factors for recurrent stroke. The performance of the nomogram model (AUC = 0.830, 95% CI: 0.769-0.891; PR-AUC = 0.628) was better than that of the modified Essen scoring model (AUC = 0.660, 95% CI: 0.583-0.738) and the independent risk factor combination model (AUC = 0.827, 95% CI: 0.765-0.889). The nomogram model still had good model performance in the validation group (AUC = 0.785, 95% CI: 0.671-0.899), with a well-fitting calibration curve and a DCA curve indicating good net benefit efficacy for patients. Conclusion High-resolution vessel wall imaging combined with a modified Essen score can effectively assess the recurrence risk of HR-NICE patients, and the nomogram model can provide a reference for identifying high-risk populations with good clinical application prospects.
Collapse
Affiliation(s)
- Zi-ang Li
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yu Gao
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lin Han
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Bei-chen Xie
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yan-cong Sun
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiao-yang Zhai
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ping Zhang
- Department of Neurology Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yong-dong Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-yan Yue
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Rui-fang Yan
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hong-Kai Cui
- Department of Neurointerventional Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Lee S, Choi YJ, Huo C, Alishir A, Kang KS, Park IH, Jang T, Kim KH. Laricitrin 3-Rutinoside from Ginkgo biloba Fruits Prevents Damage in TNF-α-Stimulated Normal Human Dermal Fibroblasts. Antioxidants (Basel) 2023; 12:1432. [PMID: 37507970 PMCID: PMC10376084 DOI: 10.3390/antiox12071432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Human skin comprises the epidermis and dermis, which perform interactive functional activities with each other in order to maintain the skin's tensile strength. In particular, the dermal layer is crucial for skin protection. However, skin aging destroys collagen and elastin fibers, causing wrinkles, pigments, and sagging. Skin aging-related factors, such as tumor necrosis factor-α (TNF-α), promote the generation of intercellular reactive oxygen species (ROS). These are known to stimulate the hypersecretion of matrix metalloproteinase-1 (MMP-1), which degrades collagen and inhibits collagen synthesis. In this study, as part of our ongoing discovery of natural products, we investigated potential natural products derived from ginkgo fruit (Ginkgo biloba fruit) with protective effects against TNF-α-induced skin aging. Phytochemical investigation of the MeOH extract of G. biloba fruits, aided by liquid chromatography-mass spectrometry, led to the isolation of 14 compounds (1-14) from the n-butanol-soluble fraction. These were structurally determined to be: (E)-coniferin (1), syringin (2), 4-hydroxybenzoic acid 4-O-β-D-glucopyranoside (3), vanillic acid 4-O-β-D-glucopyranoside (4), glucosyringic acid (5), (E)-ferulic acid 4-O-β-D-glucoside (6), (E)-sinapic acid 4-O-β-D-glucopyranoside (7), ginkgotoxin-5-glucoside (8), ginkgopanoside (9), (Z)-4-coumaric acid 4-O-β-D-glucopyranoside (10), (1'R,2'S,5'R,8'S,2'Z,4'E)-dihydrophaseic acid 3'-O-β-D-glucopyranoside (11), eucomic acid (12), rutin (13), and laricitrin 3-rutinoside (L3R) (14). Biological evaluation of the isolated compounds for their effects on intracellular ROS generation showed that, of these 14 compounds, L3R (14) inhibited TNF-α-stimulated ROS generation (p < 0.001 at 100 μM). Inhibition of ROS generation by L3R led to the suppression of MMP-1 secretion and protection against collagen degradation. The inhibitory effect of L3R was mediated by the inhibition of extracellular signal regulated kinase (ERK) phosphorylation. Furthermore, L3R diminished the secretion of pro-inflammatory cytokines interleukin 6 (IL-6) and interleukin 8 (IL-8). Based on these experimental results, L3R is a potential bioactive natural product that can be used to protect against skin damage, including aging, in cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Yea Jung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Akida Alishir
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Il-Ho Park
- College of Pharmacy, Sahmyook University, 815, Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Taesu Jang
- Health Administration, Dankook University, Cheonan 31116, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Otsu Y, Ae R, Kuwabara M. Folate and cardiovascular disease. Hypertens Res 2023; 46:1816-1818. [PMID: 37173431 DOI: 10.1038/s41440-023-01307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Affiliation(s)
- Yu Otsu
- Department of Cardiology, Toranomon Hospital, Tokyo, Japan
| | - Ryusuke Ae
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Tochigi, Japan
| | - Masanari Kuwabara
- Department of Cardiology, Toranomon Hospital, Tokyo, Japan.
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
5
|
Cziraki A, Nemeth Z, Szabados S, Nagy T, Szántó M, Nyakas C, Koller A. Morphological and Functional Remodeling of the Ischemic Heart Correlates with Homocysteine Levels. J Cardiovasc Dev Dis 2023; 10:jcdd10030122. [PMID: 36975886 PMCID: PMC10056082 DOI: 10.3390/jcdd10030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Homocysteine (Hcy) is involved in various methylation processes, and its plasma level is increased in cardiac ischemia. Thus, we hypothesized that levels of homocysteine correlate with the morphological and functional remodeling of ischemic hearts. Thus, we aimed to measure the Hcy levels in the plasma and pericardial fluid (PF) and correlate them with morphological and functional changes in the ischemic hearts of humans. Methods: Concentration of total homocysteine (tHcy) and cardiac troponin-I (cTn-I) of plasma and PF were measured in patients undergoing coronary artery bypass graft (CABG) surgery (n = 14). Left-ventricular (LV) end-diastolic diameter (LVED), LV end-systolic diameter (LVES), right atrial, left atrial (LA) area, thickness of interventricular septum (IVS) and posterior wall, LV ejection fraction (LVEF), and right ventricular outflow tract end-diastolic area (RVOT EDA) of CABG and non-cardiac patients (NCP; n = 10) were determined by echocardiography, and LV mass was calculated (cLVM). Results: Positive correlations were found between Hcy levels of plasma and PF, tHcy levels and LVED, LVES and LA, and an inverse correlation was found between tHcy levels and LVEF. cLVM, IVS, and RVOT EDA were higher in CABG with elevated tHcy (>12 µM/L) compared to NCP. In addition, we found a higher cTn-I level in the PF compared to the plasma of CABG patients (0.08 ± 0.02 vs. 0.01 ± 0.003 ng/mL, p < 0.001), which was ~10 fold higher than the normal level. Conclusions: We propose that homocysteine is an important cardiac biomarker and may have an important role in the development of cardiac remodeling and dysfunction in chronic myocardial ischemia in humans.
Collapse
Affiliation(s)
- Attila Cziraki
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Zoltan Nemeth
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
- Eötvös Loránd Research Network, Semmelweis University (ELRN-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Department of Translational Medicine, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Sandor Szabados
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Tamas Nagy
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Márk Szántó
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Csaba Nyakas
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
| | - Akos Koller
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
- Eötvös Loránd Research Network, Semmelweis University (ELRN-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Department of Translational Medicine, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
- Research Center for Sports Physiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
- Correspondence: ; Tel.: +1-914-594-4085 or +36-70-902-0681
| |
Collapse
|
6
|
Yang Y, Lu M, Xu Y, Qian J, Le G, Xie Y. Dietary Methionine via Dose-Dependent Inhibition of Short-Chain Fatty Acid Production Capacity Contributed to a Potential Risk of Cognitive Dysfunction in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15225-15243. [PMID: 36413479 DOI: 10.1021/acs.jafc.2c04847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-methionine diets induce impaired learning and memory function, dementia-like neurodegeneration, and Alzheimer's disease, while low-methionine diets improve learning and memory function. We speculated that variations in intestinal microbiota may mediate these diametrically opposed effects; thus, this study aimed to verify this hypothesis. The ICR mice were fed either a low-methionine diet (LM, 0.17% methionine), normal methionine diet (NM, 0.86% methionine), or high-methionine diet (HM, 2.58% methionine) for 11 weeks. We found that HM diets damaged nonspatial recognition memory, working memory, and hippocampus-dependent spatial memory and induced anxiety-like behaviors in mice. LM diets improved nonspatial recognition memory and hippocampus-dependent spatial memory and ameliorated anxiety-like behavior, but the differences did not reach a significant level. Moreover, HM diets significantly decreased the abundance of putative short-chain fatty acid (SCFA)-producing bacteria (Roseburia, Blautia, Faecalibaculum, and Bifidobacterium) and serotonin-producing bacteria (Turicibacter) and significantly increased the abundance of proinflammatory bacteria Escherichia-Shigella. Of note, LM diets reversed the results. Consequently, the SCFA and serotonin levels were significantly decreased with HM diets and significantly increased with LM diets. Furthermore, HM diets induced hippocampal oxidative stress and inflammation and selectively downregulated the hippocampus-dependent memory-related gene expression, whereas LM diets selectively upregulated the hippocampus-dependent memory-related gene expression. In conclusion, dietary methionine via dose-dependent inhibition of SCFA production capacity contributed to a potential risk of cognitive dysfunction in mice.
Collapse
Affiliation(s)
- Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Manman Lu
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Qian
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
7
|
Gender-Specific Behaviour in Obesity Stages I-II: Imbalance of Aminothiol Status and Adipomyokine Profile in Subjects with Different Insulin Resistance Severity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9713582. [PMID: 34868459 PMCID: PMC8635872 DOI: 10.1155/2021/9713582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 12/03/2022]
Abstract
The hyperproduction of oxidative stress and inflammatory biomarkers, which is paralleled by decreased levels of antioxidant and anti-inflammatory mediators, is part of cellular mechanisms that contribute to the disruption of metabolic homeostasis in obesity. Whether gender-specific alterations and gender-restricted associations in these biomarkers underlie the increased cardiometabolic risk in men compared to women is unclear. We enrolled 31 women and 29 men, aged ≥50 and ≤70 years and with body mass index ≥ 30 and <40 kg/m2. We assessed the concentrations of aminothiols (cysteine, homocysteine, and glutathione), expression of oxidant/antioxidant balance, adipomyokines (leptin, adiponectin, myostatin, and interleukin-6), markers of chronic inflammation, and vitamin D, an index of nutritional state, in plasma and serum samples by using HPLC, ELISA, and chemiluminescent immunoassay methods. We measured insulin resistance (IR) by the homeostasis model assessment (HOMA) index. Despite comparable levels of visceral adiposity, IR, and a similar dietary regimen, men showed, with respect to women, higher oxidant concentrations and lower antioxidant levels, which paralleled IR severity. Myostatin levels correlated with prooxidant aminothiols among men only. Gender-specific alterations in aminothiol status and adipomyokine profile and the gender-restricted association between these biomarkers and metabolic derangement are consistent with an increased cardiometabolic risk in men compared to age-matched women with stage I-II obesity. Strict control of redox and inflammatory status, even addressing gender-specific nutritional targets, may be useful to prevent obesity-related metabolic alterations and comorbidities.
Collapse
|
8
|
Holmen M, Hvas AM, Arendt JFH. Hyperhomocysteinemia and Ischemic Stroke: A Potential Dose-Response Association-A Systematic Review and Meta-analysis. TH OPEN 2021; 5:e420-e437. [PMID: 34595387 PMCID: PMC8463136 DOI: 10.1055/s-0041-1735978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose Previous studies suggest an association between increased homocysteine (Hcy) and risk of ischemic stroke. Yet, it remains unknown whether a dose-response association exists between Hcy levels and risk of ischemic stroke. Methods Systematic literature searches were performed in PubMed, Embase, Scopus, and Web of Science. Inclusion criteria were studies investigating ischemic stroke risk in an adult population with measured Hcy levels. We computed odds ratios (ORs) for a 5 µmol/L increase in Hcy levels using a random effects meta-analysis. Results In total, 108 studies met the inclusion criteria of which 22 were rated as high-quality studies, and 20 studies included a dose-response analysis. Hcy levels were analyzed either as a continuous or categorical variable. The majority of the studies found an increased risk of ischemic stroke when comparing the highest-to-lowest Hcy strata. A graded association was observed over the Hcy strata, indicating a dose-response association, with the most apparent effect when Hcy levels exceeded approximately 15 µmol/L. No studies explored a potential nonlinear association between Hcy levels and ischemic stroke. Six studies were included in a meta-analysis, showing an OR of 1.43 (95% confidence interval [CI]: 1.28-1.61) per 5 µmol/L increase in Hcy levels. Conclusion This review and meta-analysis indicate a dose-response association between Hcy levels and ischemic stroke. An evident increase in effect measures was observed when Hcy levels exceeded 15 µmol/L, indicating a nonlinear association between ischemic stroke and Hcy levels. This nonlinear association warrants further study. This study is registered with clinical trial ( https://www.crd.york.ac.uk/prospero/ ; unique identifier: CRD42019130371).
Collapse
Affiliation(s)
- Marte Holmen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johan F. H. Arendt
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Xu Y, Zhang B, Chen Y, Wang X, Li Y, Wu J, Dong H, Wang S. Simvastatin increases circulating endothelial progenitor cells and inhibits the formation of intracranial aneurysms in rats with diet-induced hyperhomocysteinemia. Neurosci Lett 2021; 760:136072. [PMID: 34147541 DOI: 10.1016/j.neulet.2021.136072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE Endothelial dysfunction triggers early pathological changes in artery, leading to the formation of intracranial aneurysm (ICA). Increase in plasma homocysteine (Hcy) impairs endothelium and endothelial progenitor cells (EPCs) are critical in repairing damaged endothelium. The aim of this study was to assess the impact of simvastatin on ICA formation in rats with hyperhomocysteinemia (HHcy). METHODS ICAs were induced in Male Sprague-Dawley rats after surgical induction in the presence of HHcy induced by a high L-methionine diet with or without oral simvastatin treatment. The size and media thickness of ICAs were evaluated 2 months after aneurysm induction. EPCs and serum vascular endothelial grow factor (VEGF) were measured be flow cytometry and ELISA respectively. Plasma Hcy levels and expression of VEGF, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), matrix metalloproteinase-2 (MMP-2), and MMP-9 in aneurysmal walls were examined and correlated with ICA formation. RESULTS HHcy accelerates ICA formation and rats treated with simvastatin exhibited a significant increase in media thickness and a reduction in aneurysmal size. Simvastatin increased levels of circulating EPCs and decreased iNOS, MMP-2, MMP-9 and VEGF mRNA levels, while increased eNOS mRNA in aneurysmal tissue. CONCLUSION In a rat model, HHcy reduces circulating EPCs and accelerates ICA formation. Simvastatin treatment increases circulating EPCs and inhabits the formation of ICA. We have shown a close association among circulating EPCs, biochemical markers related to vascular remodeling and the formation of ICA.
Collapse
Affiliation(s)
- Yong Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Li
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiangping Wu
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Dong
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Paganelli F, Mottola G, Fromonot J, Marlinge M, Deharo P, Guieu R, Ruf J. Hyperhomocysteinemia and Cardiovascular Disease: Is the Adenosinergic System the Missing Link? Int J Mol Sci 2021; 22:1690. [PMID: 33567540 PMCID: PMC7914561 DOI: 10.3390/ijms22041690] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
The influence of hyperhomocysteinemia (HHCy) on cardiovascular disease (CVD) remains unclear. HHCy is associated with inflammation and atherosclerosis, and it is an independent risk factor for CVD, stroke and myocardial infarction. However, homocysteine (HCy)-lowering therapy does not affect the inflammatory state of CVD patients, and it has little influence on cardiovascular risk. The HCy degradation product hydrogen sulfide (H2S) is a cardioprotector. Previous research proposed a positive role of H2S in the cardiovascular system, and we discuss some recent data suggesting that HHCy worsens CVD by increasing the production of H2S, which decreases the expression of adenosine A2A receptors on the surface of immune and cardiovascular cells to cause inflammation and ischemia, respectively.
Collapse
Affiliation(s)
- Franck Paganelli
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Department of Cardiology, North Hospital, F-13015 Marseille, France
| | - Giovanna Mottola
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Julien Fromonot
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Marion Marlinge
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Pierre Deharo
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Department of Cardiology, Timone Hospital, F-13005 Marseille, France
| | - Régis Guieu
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
- Laboratory of Biochemistry, Timone Hospital, F-13005 Marseille, France
| | - Jean Ruf
- C2VN, INSERM, INRAE, Aix-Marseille University, F-13005 Marseille, France; (F.P.); (G.M.); (J.F.); (M.M.); (P.D.); (R.G.)
| |
Collapse
|
11
|
Larsson SC, Traylor M, Markus HS. Homocysteine and small vessel stroke: A mendelian randomization analysis. Ann Neurol 2019; 85:495-501. [PMID: 30785218 PMCID: PMC6594149 DOI: 10.1002/ana.25440] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Objective Trials of B vitamin therapy to lower blood total homocysteine (tHcy) levels for prevention of stroke are inconclusive. Secondary analyses of trial data and epidemiological studies suggest that tHcy levels may be particularly associated with small vessel stroke (SVS). We assessed whether circulating tHcy and B vitamin levels are selectively associated with SVS, but not other stroke subtypes, using Mendelian randomization. Methods We used summary statistics data for single‐nucleotide polymorphisms (SNPs) associated with tHcy (n = 18), folate (n = 3), vitamin B6 (n = 1), and vitamin B12 (n = 14) levels, and the corresponding data for stroke from the MEGASTROKE consortium (n = 16,952 subtyped ischemic stroke cases and 404,630 noncases). Results Genetically predicted tHcy was associated with SVS, with an odds ratio of 1.34 (95% confidence interval [CI], 1.13–1.58; p = 6.7 × 10–4) per 1 standard deviation (SD) increase in genetically predicted tHcy levels, but was not associated with large artery or cardioembolic stroke. The association was mainly driven by SNPs at or near the MTHFR and MUT genes. The odds ratios of SVS per 1 SD increase in genetically predicted folate and vitamin B6 levels were 0.49 (95% CI, 0.34–0.71; p = 1.3 × 10–4) and 0.70 (95% CI, 0.52–0.94; p = 0.02), respectively. Genetically higher vitamin B12 levels were not associated with any stroke subtype. Interpretation These findings suggest that any effect of homocysteine‐lowering treatment in preventing stroke will be confined to the SVS subtype. Whether genetic variants at or near the MTHFR and MUT genes influence SVS risk through pathways other than homocysteine levels and downstream effects require further investigation. Ann Neurol 2019;85:495–501
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Matthew Traylor
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Đurić M, Kostić S, Lončar-Stojiljković D, Mutavdžin S, Čolović M, Krstić D, Stevanović P, Đurić D. The effects of gasotransmitters inhibition on homocysteine acutely induced changes in oxidative stress markers in rat plasma. SCRIPTA MEDICA 2019. [DOI: 10.5937/scriptamed50-21100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
13
|
Wu L, Gardiner JE, Kumawat LK, Han HH, Guo R, Li X, He XP, Elmes RBP, Sedgwick AC, Bull SD, James TD. Coumarin-based fluorescent ‘AND’ logic gate probes for the detection of homocysteine and a chosen biological analyte. RSC Adv 2019; 9:26425-26428. [PMID: 35530981 PMCID: PMC9070123 DOI: 10.1039/c9ra04908h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022] Open
Abstract
With this research we set out to develop a number of coumarin-based ‘AND’ logic fluorescence probes that were capable of detecting a chosen analyte in the presence of HCys. Probe JEG-CAB was constructed by attaching the ONOO− reactive unit, benzyl boronate ester, to a HCys/Cys reactive fluorescent probe, CAH. Similarly, the core unit CAH was functionalised with the nitroreductase (NTR) reactive p-nitrobenzyl unit to produce probe JEG-CAN. Both, JEG-CAB and JEG-CAN exhibited a significant fluorescence increase when exposed to either HCys and ONOO− (JEG-CAB) or HCys and NTR (JEG-CAN) thus demonstrating their effectiveness to function as AND logic gates for HCys and a chosen analyte. With this research we set out to develop of a number of coumarin-based ‘AND’ logic fluorescence probes that were capable of detecting a chosen analyte in the presence of HCys.![]()
Collapse
Affiliation(s)
- Luling Wu
- Department of Chemistry
- University of Bath
- Bath
- UK
| | | | - Lokesh K. Kumawat
- Department of Chemistry
- Maynooth University Human Health Institute
- Maynooth University
- National University of Ireland
- Ireland
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Ruiying Guo
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xin Li
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Robert B. P. Elmes
- Department of Chemistry
- Maynooth University Human Health Institute
- Maynooth University
- National University of Ireland
- Ireland
| | | | | | | |
Collapse
|
14
|
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci 2018; 10:376. [PMID: 30505270 PMCID: PMC6250852 DOI: 10.3389/fnagi.2018.00376] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease (AD), characterized by progressive cognitive impairment, memory loss, and thinking or speech problems. VaD is usually caused by cerebrovascular disease, during which, cerebrovascular endothelial cells (CECs) are vulnerable. CEC dysfunction occurs before the onset of VaD and can eventually lead to dysregulation of cerebral blood flow and blood-brain barrier damage, followed by the activation of glia and inflammatory environment in the brain. White matter, neuronal axons, and synapses are compromised in this process, leading to cognitive impairment. The present review summarizes the mechanisms underlying CEC impairment during hypoperfusion and pathological role of CECs in VaD. Through the comprehensive examination and summarization, endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway, Ras homolog gene family member A (RhoA) signaling pathway, and CEC-derived caveolin-1 (CAV-1) are proposed to serve as targets of new drugs for the treatment of VaD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
El-Missiry MA, Othman AI, El-Sawy MR, Lebede MF. Neuroprotective effect of epigallocatechin-3-gallate (EGCG) on radiation-induced damage and apoptosis in the rat hippocampus. Int J Radiat Biol 2018; 94:798-808. [PMID: 29939076 DOI: 10.1080/09553002.2018.1492755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE This study investigated the potential neuroprotective effect of epigallocatechin-3-gallate (EGCG) on radiation-induced cell death and damage in the hippocampus. MATERIALS AND METHODS Adult male Wister rats received oral treatment with EGCG at doses of 2.5 and 5 mg/kg/d for 3 d before 4 Gy γ irradiation. RESULTS The pretreatment of irradiated rats with EGCG significantly ameliorated the increased plasma levels of homocysteine, amyloid β, TNF-α and IL-6 levels and the decrease of dopamine and serotonin. Pretreatment with EGCG also significantly ameliorated the irradiation-induced increase in the 4-HNE and protein carbonyl levels and the decreased antioxidants including glutathione level, and the activities of glutathione peroxidase and glutathione reductase in the hippocampus. EGCG treatment prior to radiation exposure protected against DNA damage and apoptosis in the hippocampus. The increase in the levels of p53, Cytochrome-c, Bax and caspases 3 and 9 in the hippocampus were significantly ameliorated with a significant increase in Bcl-2. These changes were supported by marked protection of the dentate gyrus that exhibited a similar histological structure of the control animals. CONCLUSIONS EGCG can attenuate the severity of radiation-induced damage and cell death in hippocampus recommending polyphenols as successful option for protecting against radiation-induced hippocampal damage.
Collapse
Affiliation(s)
- Mohamed A El-Missiry
- a Zoology Department, Faculty of Science , Mansoura University , Mansoura , Egypt.,b Prince Sultan Military Collage of Health Sciences , Dhahran , KSA
| | - Azza I Othman
- a Zoology Department, Faculty of Science , Mansoura University , Mansoura , Egypt
| | - Mamdouh R El-Sawy
- a Zoology Department, Faculty of Science , Mansoura University , Mansoura , Egypt
| | - Mohamad F Lebede
- c Medical Laboratory Department, Faculty of Medical Technology , Tobruk University , Tobruk , Libya
| |
Collapse
|
16
|
Oikonomou EK, Antoniades C. Immunometabolic Regulation of Vascular Redox State: The Role of Adipose Tissue. Antioxid Redox Signal 2018; 29:313-336. [PMID: 28657335 DOI: 10.1089/ars.2017.7017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Vascular oxidative stress plays a crucial role in atherogenesis and cardiovascular disease (CVD). Recent evidence suggests that vascular redox state is under the control of complex pathophysiological mechanisms, ranging from inflammation to obesity and insulin resistance (IR). Recent Advances: Adipose tissue (AT) is now recognized as a dynamic endocrine and paracrine organ that secretes several bioactive molecules, called adipokines. AT has recently been shown to regulate vascular redox state in both an endocrine and a paracrine manner through the secretion of adipokines, therefore providing a mechanistic link for the association between obesity, IR, inflammation, and vascular disease. Importantly, AT behaves as a sensor of cardiovascular oxidative stress, modifying its secretory profile in response to cardiovascular oxidative injury. CRITICAL ISSUES The present article presents an up-to-date review of the association between AT and vascular oxidative stress. We focus on the effects of individual adipokines on modulating reactive oxygen species production and scavenging in the vascular wall. In addition, we highlight how inflammation, obesity, and IR alter the biology and secretome of AT leading to a more pro-oxidant phenotype with a particular focus on the local regulatory mechanisms of perivascular AT driven by vascular oxidation. FUTURE DIRECTIONS The complex and dynamic biology of AT, as well as its importance in the regulation of vascular redox state, provides numerous opportunities for the development of novel, targeted treatments in the management of CVD. Therapeutic modulation of AT biology could improve vascular redox state affecting vascular disease pathogenesis. Antioxid. Redox Signal. 29, 313-336.
Collapse
Affiliation(s)
- Evangelos K Oikonomou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Oxford, United Kingdom
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Oxford, United Kingdom
| |
Collapse
|
17
|
Zhu J, Zhao Y, Yu L, Wang M, Li Q, Xu S. Pioglitazone restores the homocysteine‑impaired function of endothelial progenitor cells via the inhibition of the protein kinase C/NADPH oxidase pathway. Mol Med Rep 2018; 18:1637-1643. [PMID: 29901193 PMCID: PMC6072150 DOI: 10.3892/mmr.2018.9154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
Homocysteine (Hcy) has been shown to impair the migratory and adhesive activity of endothelial progenitor cells (EPCs). As a peroxisome proliferator-activated receptor γ agonist, pioglitazone (PIO) has been predicted to regulate angiogenesis, and cell adhesion, migration and survival. The aim of the present study was to determine whether PIO could inhibit Hcy-induced EPC dysfunctions such as impairments of cell migration and adhesion. EPC migration and adhesion were assayed using 8.0-µm pore size Transwell membranes and fibronectin-coated culture dishes, respectively. Hcy at a concentration of 200 µM was observed to markedly impair cell migration and adhesiveness, and PIO at a concentration of 10 µM attenuated the Hcy-mediated inhibition of EPC migration and adhesion. The mechanism of these effects may be through the inhibition of protein kinase C (PKC) and reactive oxygen species production. The expression levels of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, NADPH oxidase 2 (Nox2) and p67phox, were upregulated by Hcy, with a peak in levels following treatment with a concentration of 200 µM. PIO downregulated the expression levels of Nox2 and p67phox via the PKC signaling pathway. Furthermore, the mechanism of PIO associated with downregulating the p67phox and Nox2 subunits of NADPH oxidase was verified. Thus, PKC and NADPH oxidase may serve a major role in the protective effects of PIO in EPCs under conditions of high Hcy concentrations.
Collapse
Affiliation(s)
- Junhui Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yanbo Zhao
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lu Yu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Qinfeng Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shengjie Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
18
|
Raddino R, Caretta G, Teli M, Bonadei I, Robba D, Zanini G, Madureri A, Nodari S, Dei Cas L. Nitric Oxide and Cardiovascular Risk Factors. Heart Int 2018. [DOI: 10.1177/1826186807003001-203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Riccardo Raddino
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Giorgio Caretta
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Melissa Teli
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Ivano Bonadei
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Debora Robba
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Gregoriana Zanini
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Alberto Madureri
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Savina Nodari
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Livio Dei Cas
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| |
Collapse
|
19
|
El-Missiry MA, ElKomy MA, Othman AI, AbouEl-Ezz AM. Punicalagin ameliorates the elevation of plasma homocysteine, amyloid-β, TNF-α and apoptosis by advocating antioxidants and modulating apoptotic mediator proteins in brain. Biomed Pharmacother 2018; 102:472-480. [PMID: 29579708 DOI: 10.1016/j.biopha.2018.03.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the neuroprotective role of punicalagin, a major polyphenolic compound of pomegranate on methionine-induced brain injury. Hyperhomocysteinemia (HHcy) was induced in two months old male BALB c mice by methionine supplementation in drinking water (1 g/kg body weight) for 30 days. Punicalagin (1 mg/kg) was injected i.p every other day concurrently with methionine. Punicalagin significantly prevented the rise in the levels of homocysteine, amyloid-β and TNF-α. HHcy is associated with a decrease in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (PGx) and glutathione reductase (GR) and glutathione (GSH) levels in the brains of methionine-treated mice while these antioxidants are increased by punicalagin supplementation. The treatment with punicalagin significantly decreased oxidative stress as indicated by decreased malondialdehyde and protein carbonyl formation in the brain. Compared with methionine-treated animals, mice that treated with methionine and punicalagin remarkably displayed less apoptosis, indicated by the lower level of proapoptotic protein (Bax, caspases- 3, 9 and p53) and higher levels of antiapoptotic Bcl-2 protein than those in hyperhomocysteinemic mice. The potent bioactivity of punicalagin extends to protect neuronal DNA as evidenced by the inhibition of the increase of comet parameters compared to the methionine-treated mice. In conclusion, punicalagin protected from methionine-induced HHcy and brain damage with an ability to repress apoptosis by modulating apoptotic mediators and maintaining DNA integrity in the brain of mice.
Collapse
Affiliation(s)
- Mohammed A El-Missiry
- Zoology Department, Faculty of Science, Mansoura University, Egypt; Prince Sultan Military Collage of Health Science, Dhahran, Saudi Arabia.
| | - Magda A ElKomy
- Zoology Department, Faculty of Science, Mansoura University, Egypt
| | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Egypt
| | - Ali M AbouEl-Ezz
- Zoology Department, Faculty of Science, Mansoura University, Egypt.
| |
Collapse
|
20
|
Chen L, Wang B, Wang J, Ban Q, Wu H, Song Y, Zhang J, Cao J, Zhou Z, Liu L, Cao T, Gao L, Guo H, Zhang T, Tang G, Huang X, Zhang Y, Li J, Huo Y, Cheng X, Zang T, Xu X, Zhang H, Qin X. Association between serum total homocysteine and arterial stiffness in adults: a community-based study. J Clin Hypertens (Greenwich) 2018; 20:686-693. [PMID: 29481715 DOI: 10.1111/jch.13246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/17/2018] [Accepted: 01/28/2018] [Indexed: 02/03/2023]
Abstract
Both increased arterial stiffness and higher total homocysteine (tHcy) are associated with an elevated risk for cardiovascular disease. However, the relationship between tHcy and arterial stiffness is still inconclusive. The authors aimed to test the relationship of tHcy with carotid-femoral pulse wave velocity (cfPWV) and examine the possible effect modifiers in adults. A study was conducted from July to September 2016 in Jiangsu Province, China. A total of 16 644 participants were enrolled in the final analysis. Increased arterial stiffness is defined as a cfPWV ≥10 m/s. Overall, there was a positive association between tHcy and cfPWV levels (per 5-μmol/L tHcy increase: β = 0.10; 95% confidence interval [CI], 0.08-0.13) and increased arterial stiffness (per 5-μmol/L tHcy increase: odds ratio, 1.11; 95% CI, 1.07-1.14). Compared with participants with tHcy <10 μmol/L, the significantly higher cfPWV levels were observed in those with tHcy ≥15 μmol/L (β = 0.37; 95% CI, 0.28-0.47). Accordingly, a higher prevalence of increased arterial stiffness was found in patients with tHcy10 to <15 μmol/L (odds ratio, 1.18; 95% CI, 1.05-1.33) and tHcy ≥15 μmol/L (odds ratio, 1.50; 95% CI, 1.32-1.71) as compared with participants with tHcy <10 μmol/L. Furthermore, the stronger positive association was found in participants who were older (≥60 years, P for interaction = .008), had low body mass index (<25 kg/m2 , P for interaction = .026), high systolic blood pressure levels (≥145 mm Hg [median], P for interaction = .048), or diabetes mellitus (P for interaction = .045). The present study demonstrated that serum tHcy concentrations were positively associated with cfPWV and the prevalence of increased arterial stiffness. These results suggest that the cardiovascular effects of tHcy may partly be mediated through arterial stiffness.
Collapse
Affiliation(s)
- Lulu Chen
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Jiancheng Wang
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianyun Ban
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Hongxu Wu
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Yun Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, the Key Laboratory for Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingping Zhang
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Jingjing Cao
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Ziyi Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, the Key Laboratory for Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lishun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, the Key Laboratory for Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tianyu Cao
- University of California, Santa Barbara, CA, USA
| | - Lan Gao
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, the Key Laboratory for Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tao Zhang
- Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Genfu Tang
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Xiao Huang
- Department of Cardiology, Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xiaoshu Cheng
- Department of Cardiology, Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Tonghua Zang
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Xiping Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, the Key Laboratory for Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, the Key Laboratory for Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xianhui Qin
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Yeh EL, Huang YC, Tsai SF, Yu TM, Wu MJ, Chen CH. Relationship between plasma levels of homocysteine and the related B vitamins in patients with hemodialysis adequacy or inadequacy. Nutrition 2018; 53:103-108. [PMID: 29674265 DOI: 10.1016/j.nut.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Hemodialysis (HD) with dialysis adequacy could increase the excretion of B vitamins (folate, vitamin B6, and B12) and raise the plasma level of homocysteine. Here we determined the associations of plasma homocysteine with B vitamins in patients with HD adequacy or inadequacy. METHODS We recruited 68 patients who had received HD treatments (three times a week, 4 h each). Based on the individual's hemogram and quarterly urea reduction rate (Kt/V), patients were pooled into one of the following two groups: the first group with dialysis adequacy (Kt/V > 1.2, n = 48) and the second with dialysis inadequacy (Kt/V ≤ 1.2, n = 20). We also recorded the anthropometric date of each patient and their biochemical data and dietary intakes. Plasma levels of homocysteine, cysteine, folate, pyridoxal 5'-phosphate (PLP), and vitamin B12 were measured twice, once before and once after HD. RESULTS The plasma levels of homocysteine, cysteine, folate, PLP, and vitamin B12 dropped significantly at the end of HD. The plasma levels of vitamin B12 were negatively correlated with the plasma levels of homocysteine, both pre- and post-HD, and in both groups regardless of dialysis adequacy or inadequacy. In contrast, plasma levels of folate and PLP were not correlated with homocysteine at both pre- or post-HD in both groups. CONCLUSIONS The plasma level of vitamin B12, but not folate or vitamin B6, was negatively correlated with that of homocysteine both before and after HD treatment, and regardless of dialysis adequacy or inadequacy.
Collapse
Affiliation(s)
- En-Ling Yeh
- Graduate Program in Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Chia Huang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shang-Feng Tsai
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Tong-Min Yu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Division of Basic Medical Sciences, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
22
|
Izzo C, Carrizzo A, Alfano A, Virtuoso N, Capunzo M, Calabrese M, De Simone E, Sciarretta S, Frati G, Oliveti M, Damato A, Ambrosio M, De Caro F, Remondelli P, Vecchione C. The Impact of Aging on Cardio and Cerebrovascular Diseases. Int J Mol Sci 2018; 19:E481. [PMID: 29415476 PMCID: PMC5855703 DOI: 10.3390/ijms19020481] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/03/2023] Open
Abstract
A growing number of evidences report that aging represents the major risk factor for the development of cardio and cerebrovascular diseases. Understanding Aging from a genetic, biochemical and physiological point of view could be helpful to design a better medical approach and to elaborate the best therapeutic strategy to adopt, without neglecting all the risk factors associated with advanced age. Of course, the better way should always be understanding risk-to-benefit ratio, maintenance of independence and reduction of symptoms. Although improvements in treatment of cardiovascular diseases in the elderly population have increased the survival rate, several studies are needed to understand the best management option to improve therapeutic outcomes. The aim of this review is to give a 360° panorama on what goes on in the fragile ecosystem of elderly, why it happens and what we can do, right now, with the tools at our disposal to slow down aging, until new discoveries on aging, cardio and cerebrovascular diseases are at hand.
Collapse
Affiliation(s)
- Carmine Izzo
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
| | - Albino Carrizzo
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
| | - Antonia Alfano
- Heart Department, A.O.U. “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.A.); (E.D.S.)
| | - Nicola Virtuoso
- Department of Cardiovascular Medicine, A.O.U. Federico II, 80131 Naples, Italy;
| | - Mario Capunzo
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
| | - Mariaconsiglia Calabrese
- Rehabilitation Department, A.O.U. “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Eros De Simone
- Heart Department, A.O.U. “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.A.); (E.D.S.)
| | - Sebastiano Sciarretta
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Giacomo Frati
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Marco Oliveti
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
| | - Antonio Damato
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
| | - Mariateresa Ambrosio
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
| | - Francesco De Caro
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
| | - Paolo Remondelli
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
| | - Carmine Vecchione
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
| |
Collapse
|
23
|
Fan CD, Sun JY, Fu XT, Hou YJ, Li Y, Yang MF, Fu XY, Sun BL. Astaxanthin Attenuates Homocysteine-Induced Cardiotoxicity in Vitro and in Vivo by Inhibiting Mitochondrial Dysfunction and Oxidative Damage. Front Physiol 2017; 8:1041. [PMID: 29311972 PMCID: PMC5733103 DOI: 10.3389/fphys.2017.01041] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Homocysteine (Hcy) as an independent risk factor contributes to the occurrence and development of human cardiovascular diseases (CVD). Induction of oxidative stress and apoptosis was commonly accepted as the major mechanism in Hcy-induced cardiotoxicity. Astaxanthin (ATX) as one of the most powerful antioxidants exhibits novel cardioprotective potential against Hcy-induced endothelial dysfunction. However, the protective effect and mechanism of ATX against Hcy-induced cardiotoxicity in cardiomyocytes have not been elucidated yet. Herein, H9c2 rat cardiomyocytes and Hcy-injured animal model were employed in the present study. The MTT, flow cytometry analysis (FCM), TUNEL-DAPI and western blotting results all demonstrated that ATX significantly alleviated Hcy-induced cytotoxicity in H9c2 cells through inhibition of mitochondria-mediated apoptosis. The JC-1 and Mito-tracker staining both revealed that ATX pre-treatment blocked Hcy-induced mitochondrial dysfunction by regulating Bcl-2 family expression. Moreover, DCFH-DA and Mito-SOX staining showed that ATX effectively attenuated Hcy-induced oxidative damage via scavenging intracellular reactive oxygen species (ROS). Importantly, the ELISA and immunohistochemical results indicated that Hcy-induced cardiotoxicity in vivo was also significantly inhibited by ATX through inhibition of oxidative damage and apoptosis, and improvement of the angiogenesis. Taken together, our results demonstrated that ATX suppressed Hcy-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Our findings validated the strategy of using ATX may be a highly efficient way to combat Hcy-mediated human CVD.
Collapse
Affiliation(s)
- Cun-Dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Jing-Yi Sun
- Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Xiao-Ting Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Ya-Jun Hou
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Yuan Li
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Xiao-Yan Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China.,Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
| |
Collapse
|
24
|
Sharma S, Kaur A, Sharma S. Preconditioning potential of purmorphamine: a hedgehog activator against ischaemic reperfusion injury in ovariectomised rat heart. Perfusion 2017; 33:209-218. [PMID: 29065787 DOI: 10.1177/0267659117732401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The present study was been designed to investigate the role and pharmacological potential of hedgehog in oestrogen-deficient rat heart. METHODS Oestrogen deficiency was produced in female Wistar rats by the surgical removal of both ovaries and these animals were used four weeks later. Isolated rat heart was subjected to 30 min ischaemia followed by 120 min of reperfusion (I/R). The heart was subjected to pharmacological preconditioning with the hedgehog agonist purmorphamine (1μM) and GDC-0449, a hedgehog antagonist, in the last episode of reperfusion before I/R. Myocardial infarction was assessed in terms of the increase in lactate dehydrogenase (LDH), creatinine kinase-MB (CK-MB), myeloperoxidase (MPO) level and infarct size (triphenyltetrazolium chloride staining). Immunohistochemistry analysis was done for the assessment of tumour necrosis factor (TNF)-α level in cardiac tissue. eNOS expression was estimated by rt-PCR. RESULTS Pharmacological preconditioning with purmorphamine significantly attenuated I/R-induced myocardial infarction, TNF-α, MPO level and release of LDH and CK-MB compared to the I/R control group. However, GDC-0449 prevented the ameliorative preconditioning effect of estradiol. CONCLUSION It may be concluded that the hedgehog agonist purmorphamine prevents the ovariectomised heart from ischaemic reperfusion injury.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Pharmacology, Cardiovascular Division, I.S.F College of Pharmacy, Moga, India
| | - Avileen Kaur
- Department of Pharmacology, Cardiovascular Division, I.S.F College of Pharmacy, Moga, India
| | - Saurabh Sharma
- Department of Pharmacology, Cardiovascular Division, I.S.F College of Pharmacy, Moga, India
| |
Collapse
|
25
|
Tung HC, Hsu SJ, Tsai MH, Lin TY, Hsin IF, Huo TI, Lee FY, Huang HC, Ho HL, Lin HC, Lee SD. Homocysteine deteriorates intrahepatic derangement and portal-systemic collaterals in cirrhotic rats. Clin Sci (Lond) 2017; 131:69-86. [DOI: 10.1042/cs20160470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
In liver cirrhosis, the altered levels of vasoactive substances, especially endothelin-1 (ET-1) and nitric oxide (NO) lead to elevated intrahepatic resistance, increased portal-systemic collaterals and abnormal intra- and extra-hepatic vascular responsiveness. These derangements aggravate portal hypertension-related complications such as gastro-oesophageal variceal bleeding. Homocysteine, a substance implicated in cardiovascular diseases, has been found with influences on vasoresponsiveness and angiogenesis. However, their relevant effects in liver cirrhosis have not been investigated. In the present study, liver cirrhosis was induced by common bile duct ligation (BDL) in Sprague–Dawley rats. In acute study, the results showed that homocysteine enhanced hepatic vasoconstriction to ET-1 but decreased portal-systemic collateral vasocontractility to arginine vasopressin (AVP). Homocysteine down-regulated hepatic phosphorylated endothelial NO synthase (p-eNOS) and p-Akt protein expressions. Inducible NOS (iNOS) and cyclooxygenase (COX)-2 expressions were up-regulated by homocysteine in splenorenal shunt (SRS), the most prominent intra-abdominal collateral vessel. In chronic study, BDL or thioacetamide (TAA) rats received homocysteine or vehicle for 14 days. The results revealed that homocysteine increased hepatic collagen fibre deposition and fibrotic factors expressions in both BDL- and TAA-induced liver fibrotic rats. Portal-systemic shunting and expressions of mesenteric angiogenetic factors [vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), PDGF receptor β (PDGFRβ) and p-eNOS] were also increased in BDL rats. In conclusion, homocysteine is harmful to vascular derangements and liver fibrosis in cirrhosis.
Collapse
Affiliation(s)
- Hung-Chun Tung
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shao-Jung Hsu
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ming-Hung Tsai
- Chang Gung University College of Medicine and Division of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Te-Yueh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Fang Hsin
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Te-Ia Huo
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hui-Chun Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Ling Ho
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Sanda GM, Deleanu M, Toma L, Stancu CS, Simionescu M, Sima AV. Oxidized LDL-Exposed Human Macrophages Display Increased MMP-9 Expression and Secretion Mediated by Endoplasmic Reticulum Stress. J Cell Biochem 2016; 118:661-669. [PMID: 27341688 DOI: 10.1002/jcb.25637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023]
Abstract
Oxidatively modified low-density lipoproteins (oxLDL) alter the proper function of the endoplasmic reticulum (ER), inducing ER stress (ERS), which consequently activates inflammatory pathways in macrophages. Matrix metalloproteinase-9 (MMP-9) is the main protease acting on the degradation of the extracellular matrix and the ensuing destabilization of the atherosclerotic plaque. We aimed to investigate whether ERS induced by oxLDL or tunicamycin (TM) in human macrophages is associated with the stimulation of MMP-9 expression and secretion. The results showed that oxLDL induced in THP-1 macrophages: (i) increase of MMP-9 gene expression and its pro-form secretion, (ii) intracellular accumulation of 7-ketocholesterol, (iii) ERS activation (increased eIF2α phosphorylation, XBP1 and CHOP mRNA levels, and Grp78 protein expression), and (iv) oxidative stress (increased levels of reactive oxygen species and NADPH oxidase activity). Incubation of macrophages with ERS inducer, TM determined the secretion of both pro- and active-form of MMP-9 and oxidative stress. Treatment of oxLDL or TM-incubated cells with ERS inhibitor, sodium phenylbutyrate decreased MMP-9 gene expression, secretion, and activity. The inhibitor of NADPH oxidase, apocynin, decreased XBP-1 and CHOP mRNA levels, and MMP-9 gene expression and secretion in oxLDL-exposed cells. In conclusion, oxLDL stimulate MMP-9 expression and secretion in human macrophages by mechanisms involving ERS. J. Cell. Biochem. 118: 661-669, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gabriela M Sanda
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania
| | - Mariana Deleanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania.,Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| | - Laura Toma
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania
| | - Camelia S Stancu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania
| | - Anca V Sima
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania
| |
Collapse
|
27
|
Abstract
Hyperhomocysteinemia is a risk factor for cardiovascular disease and stroke. Like many other cardiovascular risk factors, hyperhomocysteinemia produces endothelial dysfunction due to impaired bioavailability of endothelium-derived nitric oxide (NO). The molecular mechanisms responsible for decreased NO bioavailabil ity in hyperhomocysteinemia are incompletely understood, but emerging evidence suggests that asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase, may be a key mediator. Homocysteine is produced during the synthesis of ADMA and can alter ADMA metabolism by inhibiting dimethylarginine dimethy laminohydrolase (DDAH). Several animal and clinical studies have demonstrated a strong association between plasma total homocysteine, plasma ADMA, and endothelial dysfunction. These observations suggest a model in which elevation of ADMA may be a unifying mechanism for endothelial dysfunction during hyper homocysteinemia. The recent development of transgenic mice with altered ADMA metabolism should provide further mechanistic insights into the role of ADMA in hyperhomocysteinemia.
Collapse
|
28
|
Bagi Z, Hamar P, Kardos M, Koller A. Lack of flow mediated dilation and enhanced angiotensin II-induced constriction in skeletal muscle arterioles of lupus-prone autoimmune mice. Lupus 2016; 15:326-34. [PMID: 16830878 DOI: 10.1191/0961203306lu2297oa] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Systemic lupus erythematosus (SLE) is associated with disturbances in the microcirculation of various tissues, yet the nature of arteriolar dysfunction has not been characterized. Thus, changes in diameter of isolated, pressurized skeletal muscle arterioles of mice with systemic autoimmune disease (lupus prone, MRL/lpr four-month old female) and control (MRL) mice were investigated by video-microscopy. Arteriolar responses to changes in intraluminal pressure, flow, and to vasoactive agents with known mechanisms of action were compared. The active and passive (in Ca2+ free solution) diameter of MRL/lpr arterioles were not significantly different compared to MRL and morphometric changes were not apparent. Compared to MRL mice the endothelium-dependent dilations to increase in flow, acetylcholine and bradykinin were markedly reduced in arterioles of MRL/lpr mice. Endothelium-independent dilations to sodium-nitroprusside and adenosine were similar in MRL and MRL/lpr arterioles. Furthermore, angiotensin II elicited greater constrictions in MRL/lpr arterioles, whereas serotonin-induced constrictions were similar in both groups. Thus, in arterioles of MRL/lpr mice endothelium-dependent dilator mechanisms are impaired and constriction to angiotensin II is enhanced, suggesting specific alterations in the vasomotor function of microvessels that are likely contribute to the disturbance of skeletal muscle blood flow observed in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Z Bagi
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
| | | | | | | |
Collapse
|
29
|
Chaturvedi P, Kamat PK, Kalani A, Familtseva A, Tyagi SC. High Methionine Diet Poses Cardiac Threat: A Molecular Insight. J Cell Physiol 2016; 231:1554-61. [PMID: 26565991 DOI: 10.1002/jcp.25247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
High methionine diet (HMD) for example red meat which includes lamb, beef, pork can pose cardiac threat and vascular dysfunction but the mechanisms are unclear. We hypothesize that a diet rich in methionine can malfunction the cardiovascular system in three ways: (1) by augmenting oxidative stress; (2) by inflammatory manifestations; and (3) by matrix/vascular remodeling. To test this hypothesis we used four groups of mice: (1) WT; (2) WT + methionine; (3) CBS(+/-) ; (4) CBS(+/-) +methionine. We observed high oxidative stress in mice fed with methionine which was even higher in CBS(+/-) and CBS(+/-) +methionine. Higher oxidative stress was indicated by high levels of SOD-1 in methionine fed mouse hearts whereas IL-1β, IL-6, TNFα, and TLR4 showed high inflammatory manifestations. The upregulated levels of eNOS/iNOS and upregulated levels of MMP2/MMP9 along with high collagen deposition indicated vascular and matrix remodeling in methionine fed mouse. We evaluated the cardiac function which was dysregulated in the mice fed with HMD. These mice had decreased ejection fraction and left ventricular dysfunction which subsequently leads to adverse cardiac remodeling. In conclusion, our study clearly shows that HMD poses a cardiac threat by increasing oxidative stress, inflammatory manifestations, matrix/vascular remodeling, and decreased cardiac function.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Pradip K Kamat
- Department of Anesthesiology, University of Florida, Gainesville, Florida
| | - Anuradha Kalani
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Anastasia Familtseva
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
30
|
Zhao LP, You T, Chan SP, Chen JC, Xu WT. Adropin is associated with hyperhomocysteine and coronary atherosclerosis. Exp Ther Med 2015; 11:1065-1070. [PMID: 26998038 DOI: 10.3892/etm.2015.2954] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 11/23/2015] [Indexed: 12/29/2022] Open
Abstract
Homocysteine has been recognized as a risk factor for atherosclerosis and cardiovascular diseases. Adropin is a newly-identified energy homeostasis protein with a potential protective effect against coronary artery disease (CAD). This study attempted to measure the correlation between serum homocysteine and adropin levels in patients with CAD, and to ascertain how the two hormones could affect the severity of coronary atherosclerosis. A cohort of CAD patients who had undergone coronary angiography was prospectively recruited. The serum homocysteine and adropin levels of the patients were measured and the severity of coronary atherosclerosis was quantified with the SYNTAX score. The data were analyzed with a generalized structural equation model. In total, 170 consecutive patients were recruited with a mean serum homocysteine level of 15.9±8.3 µmol/l, and 76 (44.7%) patients were identified as hyperhomocysteinemic with a serum homocysteine level >15 µmol/l. Serum homocysteine level was found to be significantly negatively correlated with serum adropin level (r=-0.169, P=0.028). Patients with hyperhomocysteinemia had lower serum adropin levels and higher SYNTAX scores than patients without hyperhomocysteinemia. Further analysis with a generalized structural equation model showed that adropin was significantly associated with hyperhomocysteinemia (adjusted odds ratio: 0.95, 95% confidence interval: 0.93 to 0.98; P=0.002), which in turn was significantly associated with the SYNTAX score (coefficient: 4.71, 95% confidence interval: 1.39 to 8.03; P=0.005). In conclusion, the serum homocysteine level was inversely correlated with the serum adropin level in patients with CAD. A low serum adropin level was associated with hyperhomocysteinemia and more severe coronary atherosclerosis, as reflected by a higher SYNTAX score.
Collapse
Affiliation(s)
- Liang-Ping Zhao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Tao You
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Siew-Pang Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, National University Health System, Singapore 119228, Republic of Singapore; Department of Mathematics and Statistics, School of Engineering and Mathematical Sciences, Faculty of Engineering, Technology and Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jian-Chang Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wei-Ting Xu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
31
|
Effects of mild hyperhomocysteinemia on electron transport chain complexes, oxidative stress, and protein expression in rat cardiac mitochondria. Mol Cell Biochem 2015; 411:261-70. [PMID: 26472730 DOI: 10.1007/s11010-015-2588-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor of cardiovascular disease, but the mechanisms of tissue injury are poorly understood. In the present study, we investigated the effect of HHcy on rat heart function, activities electron transport chain (ETC) complexes, mitochondrial protein expression, and protein oxidative damage. HHcy was induced by subcutaneous injection of Hcy (0.45 μmol/g of body weight) twice a day for a period of 2 weeks. Performance of hearts excised after the Hcy treatment was examined according to the Langendorff method at a constant pressure. Left ventricular developed pressure, as well as maximal rates of contraction (+dP/dt) and relaxation (-dP/dt), was significantly depressed in HHcy rats. HHcy was accompanied by significant inhibition of ETC complexes II-IV, whereas activity of the complex I was unchanged. The decline in ETC activities was not associated with elevated protein oxidative damage, as indicated by unchanged protein carbonyl, thiol, and dityrosine contents. Moreover, the level of protein adducts with 4-hydroxynonenal was decreased in HHcy rats. Additionally, 2D-gel electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry did not show alterations in contents of inhibited ETC complexes. However, mass spectrometry analyses identified 8 proteins whose expression was significantly increased by HHcy. These proteins are known to play important roles in the cellular stress response, bioenergetics, and redox balance. Altogether, the results suggest that oxidative damage and altered protein expression are not possible causes of ETC dysfunction in HHcy rats. Increased expression of the other mitochondrial proteins indicates a protective response to Hcy-induced myocardial injury.
Collapse
|
32
|
Rohilla A, Ahmad A, Khan M, Khanam R. A comparative study on the cardioprotective potential of atorvastatin and simvastatin in hyperhomocysteinemic rat hearts. Eur J Pharmacol 2015; 764:48-54. [DOI: 10.1016/j.ejphar.2015.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 01/04/2023]
|
33
|
Diebold BA, Smith SM, Li Y, Lambeth JD. NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid Redox Signal 2015; 23:375-405. [PMID: 24512192 PMCID: PMC4545678 DOI: 10.1089/ars.2014.5862] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/08/2014] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. RECENT ADVANCES Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. CRITICAL ISSUES Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. FUTURE DIRECTIONS NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Becky A. Diebold
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M.E. Smith
- Department of Biology and Physics, Kennesaw State University, Kennesaw, Georgia
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - J. David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
34
|
Wang X, Ye P, Cao R, Yang X, Xiao W, Zhang Y, Bai Y, Wu H. Plasma Homocysteine is a Predictive Factor for Arterial Stiffness: A Community-Based 4.8-Year Prospective Study. J Clin Hypertens (Greenwich) 2015; 17:594-600. [PMID: 25894449 PMCID: PMC8032057 DOI: 10.1111/jch.12555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/22/2023]
Abstract
The authors investigated whether plasma total homocysteine (tHcy) is a predictive factor for arterial stiffness (carotid-femoral pulse wave velocity [cf-PWV] and carotid-radial PWV) in 1447 patients from a 4.8-year prospective study in Beijing, People's Republic of China. Baseline tHcy showed a significant relationship with follow-up cf-PWV (β=0.817, P=.015) in a multivariable linear regression analysis. A stepwise logistic regression model showed that baseline levels of tHcy were significantly associated with follow-up cf-PWV in the adjusted models. Furthermore, the baseline tHcy levels showed a significant association with increases in cf-PWV. There was no association between the change in tHcy and increase in PWV. The present study clearly demonstrated an association between tHcy levels and arterial stiffness, indicating that tHcy is an independent predictive factor for arterial stiffness in a community-based population.
Collapse
Affiliation(s)
- Xiao‐Na Wang
- Department of Geriatric CardiologyChinese PLA General HospitalBeijingChina
| | - Ping Ye
- Department of Geriatric CardiologyChinese PLA General HospitalBeijingChina
| | - Rui‐Hua Cao
- Department of Geriatric CardiologyChinese PLA General HospitalBeijingChina
| | - Xu Yang
- Department of Geriatric CardiologyChinese PLA General HospitalBeijingChina
| | - Wen‐Kai Xiao
- Department of Geriatric CardiologyChinese PLA General HospitalBeijingChina
| | - Yun Zhang
- Department of Geriatric CardiologyChinese PLA General HospitalBeijingChina
| | - Yong‐Yi Bai
- Department of Geriatric CardiologyChinese PLA General HospitalBeijingChina
| | - Hong‐Mei Wu
- Department of Geriatric CardiologyChinese PLA General HospitalBeijingChina
| |
Collapse
|
35
|
Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. Int J Mol Sci 2015; 16:15918-53. [PMID: 26184181 PMCID: PMC4519931 DOI: 10.3390/ijms160715918] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023] Open
Abstract
The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan.
Collapse
|
36
|
Song S, Kertowidjojo E, Ojaimi C, Martin-Fernandez B, Kandhi S, Wolin M, Hintze TH. Long-term methionine-diet induced mild hyperhomocysteinemia associated cardiac metabolic dysfunction in multiparous rats. Physiol Rep 2015; 3:3/5/e12292. [PMID: 26009634 PMCID: PMC4463811 DOI: 10.14814/phy2.12292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mild hyperhomocysteinemia (HHcy, clinically defined as less than 30 μmol/L) is an independent cardiovascular disease (CVD) risk factor, and is associated with many complications during pregnancy, such as preeclampsia (PE). The aim of this study was to assess the effect of long-term mild HHcy on cardiac metabolic function of multiparous rats. Female rats were mated 3 to 4 times and were fed with methionine in drinking water to increase plasma Hcy (2.9 ± 0.3 to 10.5 ± 2.3 μmol/L) until termination. This caused significant increase of heart weight/body weight (0.24 ± 0.01 to 0.27 ± 0.01 g/100 g) and left ventricle weight (0.69 ± 0.03 to 0.78 ± 0.01 g). Superoxide production was increased by 2.5-fold in HHcy hearts using lucigenin chemiluminescence. The ability of bradykinin and carbachol to regulate myocardial oxygen consumption (MVO2) in vitro was impaired by 59% and 66% in HHcy heart, and it was restored by ascorbic acid (AA), tempol, or apocynin (Apo). Protein expression of p22phox subunit of NAD(P)H oxidase was increased by 2.6-fold, but there were no changes in other NAD(P)H oxidase subunits, NOSs or SODs. Microarray revealed 1518 genes to be differentially regulated (P < 0.05). The mRNA level of NAD(P)H oxidase subunits, NOSs or SODs remained unchanged. In conclusion, long-term mild HHcy increases cardiac superoxide mainly through regulation of p22phox component of the NAD(P)H oxidase and impairs the ability of NO to regulate MVO2 in heart of multiparous mothers.
Collapse
Affiliation(s)
- Su Song
- Department of Physiology, New York Medical College, Valhalla, New York, 10595, USA
| | | | - Caroline Ojaimi
- Department of Physiology, New York Medical College, Valhalla, New York, 10595, USA
| | | | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York, 10595, USA
| | - Michael Wolin
- Department of Physiology, New York Medical College, Valhalla, New York, 10595, USA
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York, 10595, USA
| |
Collapse
|
37
|
Selective homocysteine-lowering gene transfer attenuates pressure overload-induced cardiomyopathy via reduced oxidative stress. J Mol Med (Berl) 2015; 93:609-18. [DOI: 10.1007/s00109-015-1281-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/28/2015] [Accepted: 03/30/2015] [Indexed: 12/26/2022]
|
38
|
Abstract
The mechanism by which reactive oxygen species (ROS) are produced by tumour cells remained incompletely understood until the discovery over the last 15 years of the family of NADPH oxidases (NOXs 1–5 and dual oxidases DUOX1/2) which are structural homologues of gp91phox, the major membrane-bound component of the respiratory burst oxidase of leucocytes. Knowledge of the roles of the NOX isoforms in cancer is rapidly expanding. Recent evidence suggests that both NOX1 and DUOX2 species produce ROS in the gastrointestinal tract as a result of chronic inflammatory stress; cytokine induction (by interferon-γ, tumour necrosis factor α, and interleukins IL-4 and IL-13) of NOX1 and DUOX2 may contribute to the development of colorectal and pancreatic carcinomas in patients with inflammatory bowel disease and chronic pancreatitis, respectively. NOX4 expression is increased in pre-malignant fibrotic states which may lead to carcinomas of the lung and liver. NOX5 is highly expressed in malignant melanomas, prostate cancer and Barrett's oesophagus-associated adenocarcinomas, and in the last it is related to chronic gastro-oesophageal reflux and inflammation. Over-expression of functional NOX proteins in many tissues helps to explain tissue injury and DNA damage from ROS that accompany pre-malignant conditions, as well as elucidating the potential mechanisms of NOX-related damage that contribute to both the initiation and the progression of a wide range of solid and haematopoietic malignancies.
Collapse
|
39
|
Manea A, Manea SA, Todirita A, Albulescu IC, Raicu M, Sasson S, Simionescu M. High-glucose-increased expression and activation of NADPH oxidase in human vascular smooth muscle cells is mediated by 4-hydroxynonenal-activated PPARα and PPARβ/δ. Cell Tissue Res 2015; 361:593-604. [PMID: 25722086 DOI: 10.1007/s00441-015-2120-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 12/29/2014] [Indexed: 01/04/2023]
Abstract
High glucose induces vascular smooth muscle cell (SMC) dysfunction by generating oxidative stress attributable, in part, to the up-regulated NADPH oxidases (Nox). We have attempted to elucidate the high-glucose-generated molecular signals that mediate this effect and hypothesize that products of high-glucose-induced lipid peroxidation regulate Nox by activating peroxisome proliferator-activated receptors (PPARs). Human aortic SMCs were exposed to glucose (5.5-25 mM) or 4-hydroxynonenal (1-25 μM, 4-HNE). Lucigenin assay, real-time polymerase chain reaction, western blot, and promoter analyses were employed to investigate Nox. We found that high glucose generated an increase in Nox activity and expression. It also promoted oxidative stress that consequently induced lipid peroxidation, which resulted in the production of 4-HNE. Pharmacological inhibition of Nox activity significantly reduced the formation of high-glucose-induced 4-HNE. Exposure of SMCs to non-cytotoxic concentrations (1-10 μM) of 4-HNE alone mimicked the effect of high glucose incubation, whereas scavenging of 4-HNE by N-acetyl L-cysteine completely abolished both the effects of high glucose and 4-HNE. The latter exerted its effect by activating PPARα and PPARβ/δ, but not PPARγ, as assessed pharmacologically by the inhibitory effect of selective antagonists and following the silencing of the expression of these receptors. These new data indicate that 4-HNE, generated following Nox activation, functions as an endogenous activator of PPARα and PPARβ/δ. The newly discovered "lipid peroxidation products-PPARs-Nox axis" represents a novel mechanism of Nox regulation and an additional therapeutic target for oxidative stress in diabetes.
Collapse
Affiliation(s)
- Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Hasdeu Street, 050568, Bucharest, Romania,
| | | | | | | | | | | | | |
Collapse
|
40
|
Veeranki S, Tyagi SC. Mechanisms of hyperhomocysteinemia induced skeletal muscle myopathy after ischemia in the CBS-/+ mouse model. Int J Mol Sci 2015; 16:1252-65. [PMID: 25608649 PMCID: PMC4307302 DOI: 10.3390/ijms16011252] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022] Open
Abstract
Although hyperhomocysteinemia (HHcy) elicits lower than normal body weights and skeletal muscle weakness, the mechanisms remain unclear. Despite the fact that HHcy-mediated enhancement in ROS and consequent damage to regulators of different cellular processes is relatively well established in other organs, the nature of such events is unknown in skeletal muscles. Previously, we reported that HHcy attenuation of PGC-1α and HIF-1α levels enhanced the likelihood of muscle atrophy and declined function after ischemia. In the current study, we examined muscle levels of homocysteine (Hcy) metabolizing enzymes, anti-oxidant capacity and focused on protein modifications that might compromise PGC-1α function during ischemic angiogenesis. Although skeletal muscles express the key enzyme (MTHFR) that participates in re-methylation of Hcy into methionine, lack of trans-sulfuration enzymes (CBS and CSE) make skeletal muscles more susceptible to the HHcy-induced myopathy. Our study indicates that elevated Hcy levels in the CBS-/+ mouse skeletal muscles caused diminished anti-oxidant capacity and contributed to enhanced total protein as well as PGC-1α specific nitrotyrosylation after ischemia. Furthermore, in the presence of NO donor SNP, either homocysteine (Hcy) or its cyclized version, Hcy thiolactone, not only increased PGC-1α specific protein nitrotyrosylation but also reduced its association with PPARγ in C2C12 cells. Altogether these results suggest that HHcy exerts its myopathic effects via reduction of the PGC-1/PPARγ axis after ischemia.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
41
|
The Role of BMP Signaling and NF-κB Signaling on Osteoblastic Differentiation, Cancer Development, and Vascular Diseases—Is the Activation of NF-κB a Friend or Foe of BMP Function? BONE MORPHOGENIC PROTEIN 2015; 99:145-70. [DOI: 10.1016/bs.vh.2015.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Staiculescu MC, Foote C, Meininger GA, Martinez-Lemus LA. The role of reactive oxygen species in microvascular remodeling. Int J Mol Sci 2014; 15:23792-835. [PMID: 25535075 PMCID: PMC4284792 DOI: 10.3390/ijms151223792] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
The microcirculation is a portion of the vascular circulatory system that consists of resistance arteries, arterioles, capillaries and venules. It is the place where gases and nutrients are exchanged between blood and tissues. In addition the microcirculation is the major contributor to blood flow resistance and consequently to regulation of blood pressure. Therefore, structural remodeling of this section of the vascular tree has profound implications on cardiovascular pathophysiology. This review is focused on the role that reactive oxygen species (ROS) play on changing the structural characteristics of vessels within the microcirculation. Particular attention is given to the resistance arteries and the functional pathways that are affected by ROS in these vessels and subsequently induce vascular remodeling. The primary sources of ROS in the microcirculation are identified and the effects of ROS on other microcirculatory remodeling phenomena such as rarefaction and collateralization are briefly reviewed.
Collapse
Affiliation(s)
- Marius C Staiculescu
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Christopher Foote
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
43
|
Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med 2014; 5:927-46. [PMID: 25489440 PMCID: PMC4258672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/04/2014] [Indexed: 01/10/2023] Open
Abstract
Background: Atherosclerosis is the major cause of morbidities and mortalities worldwide. In this study we aimed to review the mechanism of atherosclerosis and its risk factors, focusing on new findings in atherosclerosis markers and its risk factors. Furthermore, the role of antioxidants and medicinal herbs in atherosclerosis and endothelial damage has been discussed and a list of important medicinal plants effective in the treatment and prevention of hyperlipidemia and atherosclerosis is presented. Methods: The recently published papers about atherosclerosis pathogenesis and herbal medicines effective in the treatment and prevention of hyperlipidemia and atherosclerosis were searched. Results: Inflammation has a crucial role in pathogenesis of atherosclerosis. The disease is accompanied by excessive fibrosis of the intima, fatty plaques formation, proliferation of smooth muscle cells, and migration of a group of cells such as monocytes, T cells, and platelets which are formed in response to inflammation. The oxidation of low density lipoprotein (LDL) to Ox-LDL indicates the first step of atherosclerosis in cardiovascular diseases. Malondialdehyde factor shows the level of lipoperoxidation and is a sign of increased oxidative pressure and cardiovascular diseases. In special pathological conditions such as severe hypercholesterolemia, peroxynitrite concentration increases and atherosclerosis and vascular damage are intensified. Medicinal plants have shown to be capable of interacting these or other pathogenesis factors to prevent atherosclerosis. Conclusions: The pathogenesis factors involved in atherosclerosis have recently been cleared and the discovery of these factors has brought about new hopes for better prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | - Mahbubeh Setorki
- Department of Biology, Izeh Branch, Islamic Azad University, Izeh, Iran
| | - Monir Doudi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Azar Baradaran
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Nasri
- Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
44
|
Barsalou J, Bradley TJ, Silverman ED. Cardiovascular risk in pediatric-onset rheumatological diseases. Arthritis Res Ther 2014; 15:212. [PMID: 23731870 PMCID: PMC3672705 DOI: 10.1186/ar4212] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular morbidity and mortality are becoming major health concerns for adults with inflammatory rheumatic diseases. The enhanced atherogenesis in this patient population is promoted by the exposure to traditional risk factors as well as nontraditional cardiovascular insults, such as corticosteroid therapy, chronic inflammation and autoantibodies. Despite definite differences between many adult-onset and pediatric-onset rheumatologic diseases, it is extremely likely that atherosclerosis will become the leading cause of morbidity and mortality in this pediatric patient population. Because cardiovascular events are rare at this young age, surrogate measures of atherosclerosis must be used. The three major noninvasive vascular measures of early atherosclerosis--namely, flow-mediated dilatation, carotid intima-media thickness and pulse wave velocity--can be performed easily on children. Few studies have explored the prevalence of cardiovascular risk factors and even fewer have used the surrogate vascular measures to document signs of early atherosclerosis in children with pediatric-onset rheumatic diseases. The objective of this review is to provide an overview on cardiovascular risk and early atherosclerosis in pediatric-onset systemic lupus erythematosus, juvenile idiopathic arthritis and juvenile dermatomyositis patients, and to review cardiovascular preventive strategies that should be considered in this population.
Collapse
|
45
|
Sulistyoningrum DC, Singh R, Devlin AM. Epigenetic regulation of glucocorticoid receptor expression in aorta from mice with hyperhomocysteinemia. Epigenetics 2014; 7:514-21. [DOI: 10.4161/epi.19836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Protective vascular and cardiac effects of inducible nitric oxide synthase in mice with hyperhomocysteinemia. PLoS One 2014; 9:e107734. [PMID: 25226386 PMCID: PMC4167199 DOI: 10.1371/journal.pone.0107734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
Diet-induced hyperhomocysteinemia produces endothelial and cardiac dysfunction and promotes thrombosis through a mechanism proposed to involve oxidative stress. Inducible nitric oxide synthase (iNOS) is upregulated in hyperhomocysteinemia and can generate superoxide. We therefore tested the hypothesis that iNOS mediates the adverse oxidative, vascular, thrombotic, and cardiac effects of hyperhomocysteinemia. Mice deficient in iNOS (Nos2-/-) and their wild-type (Nos2+/+) littermates were fed a high methionine/low folate (HM/LF) diet to induce mild hyperhomocysteinemia, with a 2-fold increase in plasma total homocysteine (P<0.001 vs. control diet). Hyperhomocysteinemic Nos2+/+ mice exhibited endothelial dysfunction in cerebral arterioles, with impaired dilatation to acetylcholine but not nitroprusside, and enhanced susceptibility to carotid artery thrombosis, with shortened times to occlusion following photochemical injury (P<0.05 vs. control diet). Nos2-/- mice had decreased rather than increased dilatation responses to acetylcholine (P<0.05 vs. Nos2+/+ mice). Nos2-/- mice fed control diet also exhibited shortened times to thrombotic occlusion (P<0.05 vs. Nos2+/+ mice), and iNOS deficiency failed to protect from endothelial dysfunction or accelerated thrombosis in mice with hyperhomocysteinemia. Deficiency of iNOS did not alter myocardial infarct size in mice fed the control diet but significantly increased infarct size and cardiac superoxide production in mice fed the HM/LF diet (P<0.05 vs. Nos2+/+ mice). These findings suggest that endogenous iNOS protects from, rather than exacerbates, endothelial dysfunction, thrombosis, and hyperhomocysteinemia-associated myocardial ischemia-reperfusion injury. In the setting of mild hyperhomocysteinemia, iNOS functions to blunt cardiac oxidative stress rather than functioning as a source of superoxide.
Collapse
|
47
|
TNF-α augmented Porphyromonas gingivalis invasion in human gingival epithelial cells through Rab5 and ICAM-1. BMC Microbiol 2014; 14:229. [PMID: 25179218 PMCID: PMC4159534 DOI: 10.1186/s12866-014-0229-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 08/19/2014] [Indexed: 01/12/2023] Open
Abstract
Background Tumor necrosis factor alpha (TNF-α) plays a central role in the initiation and maintenance of immune responses to periodontopathic bacteria. However, excess TNF-α leads to dysregulated immune responses and progression of periodontitis. Porphyromonas gingivalis (P. gingivalis) invades gingival epithelial cells and then multiplies and survives for a long period. Additionally, increment of TNF-α in periodontal sites is associated with a high prevalence of gram-negative anaerobes such as P. gingivalis. However, it has not been determined whether TNF-α affects invasion of P. gingivalis in periodontal tissues. Results We examined the effect of TNF-α on invasion of P. gingivalis in gingival epithelial cells and clarified the mechanism by which TNF-α augments invasion of P. gingivalis. Invasion of P. gingivalis into Ca9-22 cells was augmented by stimulation with TNF-α and it was inhibited by treatment with an antibody to TNF receptor-1. TNF-α increased production of ICAM-1, and P. gingivalis invasion was inhibited by an antibody to ICAM-1 in Ca9-22 cells. Silencing of Rab5 mRNA inhibited P. gingivalis invasion. Furthermore, the JNK inhibitor SP600125 inhibited invasion of P. gingivalis and also decreased the active form of Rab5 in Ca9-22 cells. Conclusion TNF-α augments invasion of P. gingivalis in human gingival epithelial cells through increment of ICAM-1 and activation of Rab5. These phenomena may contribute to persistent infection of P. ginigvalis and prolongation of immune responses in periodontal tissues. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0229-z) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study. Thromb Res 2014; 134:288-93. [PMID: 24928335 DOI: 10.1016/j.thromres.2014.05.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/07/2014] [Accepted: 05/18/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) still represents the major cause of mortality in developed countries. Large research programs have been focused on the identification of new risk factors to prevent CAD, with special attention to homocysteine (Hcy), due to the known associated increased thrombogenicity, oxidative stress status and endothelial dysfunction. However, controversy still exists on the association between Hcy and CAD. Therefore, aim of the current study was to investigate the association of Hcy with the prevalence and extent of CAD in a large consecutive cohort of patients undergoing coronary angiography. METHODS Our population is represented by a total of 3056 consecutive patients undergoing coronary angiography between at the Azienda Ospedaliera "Maggiore della Carità", Novara, Italy. Fasting samples were collected for homocysteine levels assessment. Coronary disease was defined for at least 1 vessel stenosis>50% as evaluated by QCA. RESULTS Study population was divided according to Hcy tertiles (<13,3, 13,3-18.2, >18.2nmol/ml). High plasmatic level of homocysteine was related with age (p<0.001), male gender (p<0.001), hypertension (p<0.001) renal failure (p<0.001), family history of CAD (p<0.001), previous cerebrovascular accident (p<0.001), previous MI (p=0.002), previous CABG (p=0.003), ejection fraction (p<0.001), higher baseline creatinine (p<0.001), in treatment with nitrates (p<0.001), calcium antagonists (p<0.001), diuretics (p<0.001), Ace inhibitors (ACE-I) (p=0.006), Clopidogrel (p=0.05), haemoglobin (p=0.001), white blood cells (WBC) count (p=0.008), total cholesterol (p=0.04), Low-Density Lipoproteins (LDL) (p=0.01). A significant relationship was found between Hcy levels and the extent of coronary artery disease (71.8% vs 77.8% vs 77.4%, OR[95%CI]=1.18[1.11-1.252.], p<0.001 and severe CAD (23.6% vs 29.5% vs 32.1%, OR [95%CI]=1.275 [1.209-1.344], p<0.001). Elevated Hcy was significantly associated with increased risk of CAD (adjusted OR[95%CI]=1.087[1.009-1.171], p=0.02 and severe CAD (adjusted OR [95%CI]=1.07 [1.01-1.16, P=0.04]). The results were confirmed in the majority of high risk subsets of patients. CONCLUSIONS This study showed that high levels of plasmatic Hcy are independently associated with CAD. Further large studies are certainly needed to explore the adjunctive benefits from vitamin administration in patients with elevated Hcy to prevent the occurrence and progression of CAD.
Collapse
|
49
|
Bhatia P, Gupta S, Sharma S. Homocysteine Excess and Vascular Endothelium Dysfunction: Delineating the Pathobiological Mechanisms. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.200.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Xiao GF, Xu SH, Chao Y, Xie LD, Xu CS, Wang HJ. PPARδ activation inhibits homocysteine-induced p22(phox) expression in EA.hy926 cells through reactive oxygen species/p38MAPK pathway. Eur J Pharmacol 2014; 727:29-34. [PMID: 24486703 DOI: 10.1016/j.ejphar.2014.01.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/17/2023]
Abstract
Increased expression of the p22(phox) subunit of the NADPH oxidase complex may possibly contribute to both the enzyme׳s increased activation and the occurrence of oxidative stress during hyperhomocysteinaemia. However, the activation of peroxisome proliferator-activated receptor (PPAR) δ has been shown to inhibit p22(phox) expression. The purpose of this study was to elucidate the signaling pathway by which PPARδ activation regulated homocysteine-induced expression of p22(phox). EA.hy926 cells were stimulated with homocysteine (Hcy) in the presence or absence of the PPARδ-specific agonist, GW0742, or of various signaling inhibitors, including the antioxidants N-acetylcysteine (NAC), NADPH oxidase inhibitor, diphenyleneiodonium (DPI), and the p38MAPK inhibitor, SB203580. Expression of p22(phox) mRNA and phospho-p38MAPK protein were measured by real-time PCR and western blot analysis, respectively, and reactive oxygen species were measured by fluorescence microscopy. Our data indicate that Hcy increased both the expression of p22(phox) in a concentration-dependent manner and also increased phosphoryation of p38 MAPK and reactive oxygen species production in a time-dependent manner. However, activation of the PPARδ signaling pathway by the agonist GW0742 reversed all these changes induced by Hcy. Furthermore, SB203580 prevented the increase in p22(phox) expression, and NAC and DPI not only inhibited Hcy-induced phosphorylation of p38MAPK, but also prevented expression of p22(phox). These findings indicate that Hcy-induced expression of p22(phox) is regulated by the reactive oxygen species/p38MAPK pathway and that PPARδ activation is capable of attenuating this pathway by eliminating Hcy-induced reactive oxygen species production.
Collapse
Affiliation(s)
- Gen-Fa Xiao
- Department of Cardiology, The Second Hospital of Nanping, Jianyang, Fujian 354200, China
| | - Shang-Hua Xu
- Department of Cardiology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian 353000, China.
| | - Yi Chao
- Department of Cardiology, The Second Hospital of Nanping, Jianyang, Fujian 354200, China.
| | - Liang-Di Xie
- Hypertension Institute of Fujian Province, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Chang-Sheng Xu
- Hypertension Institute of Fujian Province, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hua-Jun Wang
- Hypertension Institute of Fujian Province, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|