1
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
2
|
Zhu F, Chen J, Luo M, Yao D, Hu X, Guo Y. EphrinB2 promotes the human aortic smooth muscle cell growth and migration via mediating F-actin remodeling. Vascular 2023; 31:142-151. [PMID: 34854323 DOI: 10.1177/17085381211052196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To evaluate the potential effect of EphrinB2 in human thoracic aortic dissection (TAD) and to illustrate the mechanisms governing the role of EphrinB2 in the growth of human aortic smooth muscle cells (HASMC). METHODS In the study, EphrinB2 expression was investigated by qRT-PCR and immunohistochemistry in 12 pairs of TAD and adjacent human tissues. HASMCs were used for in vitro experiments. Next, EphrinB2 overexpression and depletion in HASMCs were established by EphrinB2-overexpressing vectors and small interfering RNA, respectively. The transfection efficiency was evaluated by qRT-PCR and Western blot. The effects of overexpression and depletion of EphrinB2 on cell proliferation, migration, and invasion were tested in vitro. Cell Counting Kit-8, flow cytometry and transwell migration/invasion, and wound healing assay were used to explore the function of EphrinB2 on HASMC cell lines. The relationship between EphrinB2 and F-actin was assessed by Western blot, immunofluorescence, and Co-IP. RESULTS We found that EphrinB2 was a prognostic biomarker of TAD patients. Moreover, EphrinB2 expression negatively correlated to aortic dissection tissues, and disease incidence of males, suggesting that EphrinB2 might act as a TAD suppressor by promoting proliferation or decreasing apoptosis in HASMC. Next, over-expression of EphrinB2 in HASMC lines drove cell proliferation, migration, and invasion, and inhibited apoptosis while knockdown EphrinB2 showed the opposite phenomenon, respectively. Furthermore, the level of F-actin in mRNA, protein, and distribution in HASMC cell lines highly matched with the expression of EphrinB2, which indicated that EphrinB2 could mediate the HASMC cytoskeleton via inducing F-actin. CONCLUSIONS In conclusion, our results first provided the pivotal role of EphrinB2 in HASMC proliferation initiated by mediating F-actin and demonstrated a prognostic biomarker and the potential targets for therapy to prevent thoracic aortic dissection.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Disease Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Jia Chen
- Department of Laboratory Medicine, Longhua Hospital, 74754Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, 34736Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongting Yao
- Department of Laboratory Medicine, Longhua Hospital, 74754Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Hu
- Department of Laboratory Medicine, Longhua Hospital, 74754Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Guo
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Disease Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Kaczmarek R, Zimmer K, Gajdzis P, Gajdzis M. The Role of Eph Receptors and Ephrins in Corneal Physiology and Diseases. Int J Mol Sci 2021; 22:ijms22094567. [PMID: 33925443 PMCID: PMC8123804 DOI: 10.3390/ijms22094567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
The cornea, while appearing to be simple tissue, is actually an extremely complex structure. In order for it to retain its biomechanical and optical properties, perfect organization of its cells is essential. Proper regeneration is especially important after injuries and in the course of various diseases. Eph receptors and ephrin are mainly responsible for the proper organization of tissues as well as cell migration and communication. In this review, we present the current state of knowledge on the role of Eph and ephrins in corneal physiology and diseases, in particular, we focused on the functions of the epithelium and endothelium. Since the role of Eph and ephrins in the angiogenesis process has been well established, we also analyzed their influence on conditions with corneal neovascularization.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (R.K.); (K.Z.)
| | - Katarzyna Zimmer
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (R.K.); (K.Z.)
| | - Pawel Gajdzis
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Malgorzata Gajdzis
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (R.K.); (K.Z.)
- Correspondence: ; Tel.: +48-71-736-43-00
| |
Collapse
|
4
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
5
|
Vreeken D, Zhang H, van Zonneveld AJ, van Gils JM. Ephs and Ephrins in Adult Endothelial Biology. Int J Mol Sci 2020; 21:ijms21165623. [PMID: 32781521 PMCID: PMC7460586 DOI: 10.3390/ijms21165623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Eph receptors and their ephrin ligands are important guidance molecules during neurological and vascular development. In recent years, it has become clear that the Eph protein family remains functional in adult physiology. A subset of Ephs and ephrins is highly expressed by endothelial cells. As endothelial cells form the first barrier between the blood and surrounding tissues, maintenance of a healthy endothelium is crucial for tissue homeostasis. This review gives an overview of the current insights of the role of ephrin ligands and receptors in endothelial function and leukocyte recruitment in the (patho)physiology of adult vascular biology.
Collapse
|
6
|
Du E, Li X, He S, Li X, He S. The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis. Mol Biol Rep 2020; 47:4681-4690. [PMID: 32488576 DOI: 10.1007/s11033-020-05470-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
The significant role of VEGF (vascular endothelial growth factor) as an angiogenesis inducer is well recognized. Besides VEGF, EphrinB2/EphB4 also plays essential roles in vascular development and postnatal angiogenesis. Compared with classical proangiogenic factors, not only does EphrinB2/EphB4 promote sprouting of new vessels, it is also involved in the vessel maturation. Given their involvement in many physiologic and pathological conditions, EphB4 and EphrinB2 are increasingly recognized as attractive therapeutic targets for angiogenesis-related diseases through modulating their expression and function. Previous works mainly focused on the individual role of VEGF and EphrinB2/EphB4 in angiogenesis, respectively, but the correlation between EphrinB2/EphB4 and VEGF in angiogenesis has not been fully disclosed. Here, we summarize the structure and bidirectional signaling of EphrinB2/EphB4, provide an overview on the relationship between EphrinB2/EphB4 signaling and VEGF pathway in angiogenesis and highlight the associated potential usefulness in anti-angiogenetic therapy.
Collapse
Affiliation(s)
- Enming Du
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xue Li
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Siyu He
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiaohua Li
- Henan Eye Institute, Zhengzhou, 450003, Henan, China. .,Henan Eye Hospital, Zhengzhou, 450003, Henan, China. .,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China. .,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China. .,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China. .,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Shikun He
- Henan Eye Institute, Zhengzhou, 450003, Henan, China. .,Henan Eye Hospital, Zhengzhou, 450003, Henan, China. .,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China. .,Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, USC Roski Eye Institute, Los Angeles, CA, 90033, USA.
| |
Collapse
|
7
|
Rudzitis-Auth J, Fuß SA, Becker V, Menger MD, Laschke MW. Inhibition of erythropoietin-producing hepatoma receptor B4 (EphB4) signalling suppresses the vascularisation and growth of endometriotic lesions. Br J Pharmacol 2020; 177:3225-3239. [PMID: 32144768 DOI: 10.1111/bph.15044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The development of endometriotic lesions is crucially dependent on the formation of new blood vessels. In the present study, we analysed whether this process is regulated by erythropoietin-producing hepatoma receptor B4 (EphB4) signalling. EXPERIMENTAL APPROACH We first assessed the anti-angiogenic action of the EphB4 inhibitor NVP-BHG712 in different in vitro angiogenesis assays. Then, endometriotic lesions were surgically induced in the dorsal skinfold chamber and peritoneal cavity of NVP-BHG712- or vehicle-treated BALB/c mice. This allowed to study the effect of EphB4 inhibition on their vascularisation and growth by means of intravital fluorescence microscopy, high-resolution ultrasound imaging, histology and immunohistochemistry. KEY RESULTS Non-cytotoxic doses of NVP-BHG712 suppressed the migration, tube formation and sprouting activity of both human dermal microvascular endothelial cells (HDMEC) and mouse aortic rings. Accordingly, we also detected a lower blood vessel density in NVP-BHG712-treated endometriotic lesions. This was associated with a reduced lesion growth due to a significantly lower number of proliferating stromal cells when compared to vehicle-treated controls. CONCLUSIONS AND IMPLICATIONS Inhibition of EphB4 signalling suppresses the vascularisation and growth of endometriotic lesions. Hence, EphB4 represents a promising pharmacological target for the treatment of endometriosis.
Collapse
Affiliation(s)
| | - Sophia A Fuß
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Vivien Becker
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
8
|
Gong T, Xu J, Heng B, Qiu S, Yi B, Han Y, Lo ECM, Zhang C. EphrinB2/EphB4 Signaling Regulates DPSCs to Induce Sprouting Angiogenesis of Endothelial Cells. J Dent Res 2019; 98:803-812. [PMID: 31017515 DOI: 10.1177/0022034519843886] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are capable of facilitating angiogenesis resembling pericytes when located adjacent to endothelial cells (ECs). Nevertheless, the precise mechanisms orchestrating their proangiogenic functions remain unclear. Using a 3-dimensional (3-D) fibrin gel model, we aimed to investigate whether EphrinB2/EphB4 signaling in DPSCs plays a role in supporting vascular morphogenesis mediated by ECs, together with the underlying mechanism involved. The EphrinB2/EphB4 signaling was inhibited either by a pharmacological inhibitor of EphB4 receptor or by knocking down the expressions of EphrinB2 and EphB4 using lentiviral small hairpin RNA (shRNA). DPSCs were either encapsulated in fibrin gel together with human umbilical vein endothelial cells (HUVECs) or cultured as a monolayer on top of HUVECs to investigate both paracrine and juxtacrine interactions simultaneously. Following 10 d of direct coculture, we found that pharmacological inhibition of EphrinB2/EphB4 signaling severely impaired vessel formation and laminin deposition. When directly cocultured with HUVECs, knockdown of EphrinB2 or EphB4 in DPSCs significantly inhibited endothelial sprouting, resulting in less capillary sprouts with reduced vessel length (P < 0.05). By contrast, when DPSCs were not in direct contact with HUVECs, attenuation of EphrinB2 or EphB4 expression levels in DPSCs did not exert any significant effects on capillary morphogenesis. Noticeably, exogenous stimulation with soluble EphrinB2-Fc or EphB4-Fc (1 µg/mL) enhanced vascular endothelial growth factor (VEGF) secretion from DPSCs, thereby moderately promoting angiogenic cascades in the fibrin matrix. This study, for the first time, reveals a crucial role of EphrinB2/EphB4 signaling in regulating the capacity of DPSCs to induce sprouting angiogenesis. These findings advance our understanding of postnatal angiogenesis and may have future regenerative medicine applications.
Collapse
Affiliation(s)
- T Gong
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,4 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - J Xu
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - B Heng
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - S Qiu
- 2 Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - B Yi
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Y Han
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - E C M Lo
- 3 Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Zhang
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,4 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| |
Collapse
|
9
|
Su SA, Xie Y, Zhang Y, Xi Y, Cheng J, Xiang M. Essential roles of EphrinB2 in mammalian heart: from development to diseases. Cell Commun Signal 2019; 17:29. [PMID: 30909943 PMCID: PMC6434800 DOI: 10.1186/s12964-019-0337-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
EphrinB2, a membrane-tethered ligand preferentially binding to its receptor EphB4, is ubiquitously expressed in all mammals. Through the particular bidirectional signaling, EphrinB2 plays a critical role during the development of cardiovascular system, postnatal angiogenesis physiologically and pathologically, and cardiac remodeling after injuries as an emerging role. This review highlights the pivotal involvement of EphrinB2 in heart, from developmental cardiogenesis to pathological cardiac remodeling process. Further potential translational therapies will be discussed in targeting EphrinB2 signaling, to better understand the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Sheng-An Su
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuhao Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yutao Xi
- Texas Heart Institute, Houston, 77030, USA.
| | - Jie Cheng
- Texas Heart Institute, Houston, 77030, USA
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
10
|
Dai B, Shi X, Ma N, Ma W, Zhang Y, Yang T, Zhang J, He L. HMQ-T-B10 induces human liver cell apoptosis by competitively targeting EphrinB2 and regulating its pathway. J Cell Mol Med 2018; 22:5231-5243. [PMID: 30589500 PMCID: PMC6201340 DOI: 10.1111/jcmm.13729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent cancer worldwide and it is necessary to discover and develop novel preventive strategies and therapeutic approaches for HCC. Herein, we report that EphrinB2 expression is correlated with liver cancer progression. Moreover, by using phosphorylated proteomics array, we reveal a pro-apoptosis protein whose phosphorylation and activation levels are up-regulated upon EphrinB2 knockdown. These results suggest that EphrinB2 may act as an anti-apoptotic protein in liver cancer cells. We also explored the therapeutic potential of HMQ-T-B10 (B10), which was designed and synthesized in our laboratory, for HCC and its underlying mechanisms in vitro and in vivo. Our data demonstrate that B10 could bind EphrinB2 and show inhibitory activity on human liver cancer cells. Moreover, induction of human liver cancer cell apoptosis by B10 could be augmented upon EphrinB2 knockdown. B10 inhibited HCC cell growth and induced HCC cell apoptosis by repressing the EphrinB2 and VEGFR2 signalling pathway. Growth of xenograft tumours derived from Hep3B in nude mice was also significantly inhibited by B10. Collectively, these findings highlight the potential molecular mechanisms of B10 and its potential as an effective antitumour agent for HCC.
Collapse
Affiliation(s)
- Bingling Dai
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Xianpeng Shi
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Nan Ma
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Weina Ma
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Yanmin Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Tianfeng Yang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Jie Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Langchong He
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
11
|
Zheng LC, Wang XQ, Lu K, Deng XL, Zhang CW, Luo H, Xu XD, Chen XM, Yan L, Wang YQ, Shi SL. Ephrin-B2/Fc promotes proliferation and migration, and suppresses apoptosis in human umbilical vein endothelial cells. Oncotarget 2018; 8:41348-41363. [PMID: 28489586 PMCID: PMC5522204 DOI: 10.18632/oncotarget.17298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/03/2017] [Indexed: 01/12/2023] Open
Abstract
Tumor growth and metastasis are angiogenesis dependent. Angiogenic growth involves endothelial cell proliferation, migration, and invasion. Ephrin-B2 is a ligand for Eph receptor tyrosine kinases and is an important mediator in vascular endothelial growth factor-mediated angiogenesis. However, research offer controversial information regarding effects of ephrin-B2 on vascular endothelial cells. In this paper, proteome analyses showed that ephrin-B2/Fc significantly activates multiple signaling pathways related to cell proliferation, survival, and migration and suppresses apoptosis and cell death. Cytological experiments further confirm that ephrin-B2/Fc stimulates endothelial cell proliferation, triggers dose-dependent migration, and suppresses cell apoptosis. Results demonstrate that soluble dose-dependent ephrinB2 can promote proliferation and migration and inhibit apoptosis of human umbilical vein endothelial cells. These results also suggest that ephrinB2 prevents ischemic disease and can potentially be a new therapeutic target for treating angiogenesis-related diseases and tumors.
Collapse
Affiliation(s)
- Li-Chun Zheng
- Medical College of Xiamen University, Jinshan Community Health Service Center, Xiamen Traditional Chinese Medical Hospital, Xiamen 361000, P.R. China.,Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Xiao-Qing Wang
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Kun Lu
- Department of Basic Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Xiao-Ling Deng
- Department of Basic Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Cheng-Wei Zhang
- Department of Cardiology, Affiliated Dongnan Hospital of Xiamen University, Zhangzhou 363000, P.R. China
| | - Hong Luo
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Xu-Dong Xu
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Xiao-Man Chen
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Lu Yan
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen 361102, P.R. China
| | - Yi-Qing Wang
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Song-Lin Shi
- Department of Basic Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| |
Collapse
|
12
|
Dai B, Ma Y, Yang T, Wang W, Zhang Y. Taspine derivative 12k suppressed A549 cell migration through the Wnt/β-catenin and EphrinB2 signaling pathway. Biomed Pharmacother 2017; 87:102-109. [DOI: 10.1016/j.biopha.2016.12.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/26/2022] Open
|
13
|
A taspine derivative supresses Caco-2 cell growth by competitively targeting EphrinB2 and regulating its pathway. Oncol Rep 2016; 36:1526-34. [DOI: 10.3892/or.2016.4960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/11/2016] [Indexed: 11/05/2022] Open
|
14
|
EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease. Angiogenesis 2016; 19:297-309. [PMID: 27216867 DOI: 10.1007/s10456-016-9514-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/13/2016] [Indexed: 01/12/2023]
Abstract
Ischemic cardiovascular disease remains one of the leading causes of morbidity and mortality in the world. Proangiogenic therapy appears to be a promising and feasible strategy for the patients with ischemic cardiovascular disease, but the results of preclinical and clinical trials are limited due to the complicated mechanisms of angiogenesis. Facilitating the formation of functional vessels is important in rescuing the ischemic cardiomyocytes. EphrinB2/EphB4, a novel pathway in angiogenesis, plays a critical role in both microvascular growth and neovascular maturation. Hence, investigating the mechanisms of EphrinB2/EphB4 pathway in angiogenesis may contribute to the development of novel therapeutics for ischemic cardiovascular disease. Previous reviews mainly focused on the role of EphrinB2/EphB4 pathway in embryo vascular development, but their role in postnatal angiogenesis in ischemic heart disease has not been fully illustrated. Here, we summarized the current knowledge of EphrinB2/EphB4 in angiogenesis and their interaction with other angiogenic pathways in ischemic cardiovascular disease.
Collapse
|
15
|
Liu X, Luo Q, Zheng Y, Liu X, Hu Y, Liu W, Luo M, Zhao Y, Zou L. NOTCH4 signaling controls EFNB2-induced endothelial progenitor cell dysfunction in preeclampsia. Reproduction 2016; 152:47-55. [PMID: 27069008 DOI: 10.1530/rep-16-0132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Preeclampsia is a serious complication of pregnancy and is closely related to endothelial dysfunction, which can be repaired by endothelial progenitor cells (EPCs). The DLL4/NOTCH-EFNB2 (ephrinB2) cascade may be involved in the pathogenesis of preeclampsia by inhibiting the biological activity of EPCs. In addition, both NOTCH1 and NOTCH4, which are specific receptors for DLL4/NOTCH, play critical roles in the various steps of angiogenesis. However, it has not been determined which receptor (NOTCH1, NOTCH4, or both) is specific for the DLL4/NOTCH-EFNB2 cascade. Accordingly, we performed a series of investigations to evaluate it. EFNB2 expression was examined when NOTCH4 or NOTCH1 was downregulated, with or without DLL4 treatment. Then, the effects of NOTCH4 on EPC function were detected. Additionally, we analyzed NOTCH4 and EFNB2 expression in the EPCs from preeclampsia and normal pregnancies. Results showed that NOTCH4 downregulation led to decreased expression of EFNB2, which maintained the same level in the presence of DLL4/NOTCH activation. By contrast, NOTCH1 silencing resulted in a moderate increase in EFNB2 expression, which further increased in the presence of DLL4/NOTCH activation. The downregulation of NOTCH4 resulted in an increase of EPC biological activity, which was similar to EFNB2 silencing. NOTCH4 expression, consistent with the EFNB2 level, increased notably in preeclampsia EPCs compared with the controls. These findings suggest that NOTCH4, not NOTCH1, is the specific receptor for the DLL4/NOTCH-EFNB2 cascade. Blockade of this cascade may enhance the angiogenic property of EPCs, and act as a potential target to promote angiogenesis in patients with preeclampsia.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Obstetrics and GynecologyUnion Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Luo
- Department of Obstetrics and GynecologyUnion Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfang Zheng
- Department of Obstetrics and GynecologyUnion Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Liu
- Department of Obstetrics and GynecologyUnion Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Hu
- Department of Obstetrics and GynecologyUnion Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Weifang Liu
- Department of Obstetrics and GynecologyUnion Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Minglian Luo
- Department of Obstetrics and GynecologyUnion Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Obstetrics and GynecologyUnion Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and GynecologyUnion Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Pierscianek D, Michel A, Hindy NE, Keyvani K, Dammann P, Oezkan N, Mueller O, Sure U, Zhu Y. Activation of multiple angiogenic signaling pathways in hemangiopericytoma. Brain Tumor Pathol 2016; 33:200-8. [PMID: 26951238 DOI: 10.1007/s10014-016-0256-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Abstract
Hemangiopericytoma (HPC) is a highly vascularized mesenchymal tumor. Local recurrence and distant metastasis are common features of HPC. Considering the remarkable hyper-vasculature phenotype of HPC, we assumed that dysregulated angiogenic signaling pathways were involved in HPC. The key components of angiogenic signaling pathways including VEGF-VEGF-R2, EphrinB2-EphB4 and DLL4-Notch were examined by real-time RT-PCR, Western blotting and immunostaining in 17 surgical specimens of HPC patients and in 6 controls. A significant upregulation of VEGF and VEGF-R2 associated with elevated levels of p-Akt and proliferating cell nuclear antigen (PCNA) was detected in HPC. Moreover, a dramatic increase in the mRNA and protein expression of EphB4 and its downstream factor p-Erk1/2 was found in HPC. A massive activation of core-components of DLL4-Notch signaling was detected in HPC. Double-immunofluorescent staining confirmed the expression of these upregulated key factors in the endothelial cells of tumor vessels. The present study identified the activation of multiple and crucial angiogenic signaling pathways, which could function individually and/or synergistically to stimulate angiogenesis in HPC and eventually contribute to tumor growth and progression. Our findings emphasize the importance to target multiple angiogenic signaling pathways when an anti-angiogenic therapy is considered for this highly vascularized tumor.
Collapse
Affiliation(s)
- Daniela Pierscianek
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Anna Michel
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Nicolai El Hindy
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Neriman Oezkan
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Oliver Mueller
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
17
|
Wang M, Collins MJ, Foster TR, Bai H, Hashimoto T, Santana JM, Shu C, Dardik A. Eph-B4 mediates vein graft adaptation by regulation of endothelial nitric oxide synthase. J Vasc Surg 2016; 65:179-189. [PMID: 26817610 DOI: 10.1016/j.jvs.2015.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vein graft adaptation is characterized by loss of expression of the tyrosine kinase receptor Eph-B4, the embryonic determinant of venous identity, without increased expression of its ligand ephrin-B2, the embryonic determinant of arterial identity. Endothelial nitric oxide synthase (eNOS) is an important mediator of vessel remodeling. We hypothesized that the mechanism of action of Eph-B4 during vein graft adaptation might be through regulation of downstream eNOS activity. METHODS Mouse lung endothelial cells were stimulated with ephrin-B2/Fc, without and with preclustering, without and with the eNOS inhibitor Nω-nitro-l-arginine methyl ester hydrochloride or the Eph-B4 inhibitor NVP-BHG712, and assessed by Western blot and immunofluorescence for eNOS and Eph-B4 phosphorylation. Nitric oxide (NO) production was assessed using an NO-specific chemiluminescence analyzer. Cell migration was assessed using a Transwell assay. Human and mouse vein graft specimens were examined for eNOS activity by Western blot, and vessel remodeling was assessed in vein grafts in wild-type or eNOS knockout mice. RESULTS Ephrin-B2/Fc stimulated both Eph-B4 and eNOS phosphorylation in a bimodal temporal distribution (n = 4; P < .05), with preclustered ephrin-B2/Fc causing prolonged peak Eph-B4 and eNOS phosphorylation as well as altered subcellular localization (n = 4; P < .05). Ephrin-B2/Fc increased NO release (n = 3; P < .01) as well as increased endothelial cell migration (n = 6; P < .05) in an eNOS-dependent fashion. Both human and mouse vein grafts showed increased eNOS phosphorylation compared with normal veins (n = 3; P < .05). Vein grafts from eNOS knockout mice showed less dilation and less wall thickening compared with wild-type vein grafts (n = 7; P < .05). CONCLUSIONS eNOS is a mediator of vein graft adaptation to the arterial environment. Eph-B4 stimulates eNOS phosphorylation in vitro and may mediate vein graft adaptation by regulation of eNOS activity in vivo.
Collapse
Affiliation(s)
- Mo Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China; Vascular Biology and Therapeutics Program and Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Michael J Collins
- Vascular Biology and Therapeutics Program and Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Trenton R Foster
- Vascular Biology and Therapeutics Program and Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Hualong Bai
- Vascular Biology and Therapeutics Program and Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Takuya Hashimoto
- Vascular Biology and Therapeutics Program and Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Jeans M Santana
- Vascular Biology and Therapeutics Program and Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and Department of Surgery, Yale University School of Medicine, New Haven, Conn; Department of Surgery, VA Connecticut Healthcare System, West Haven, Conn.
| |
Collapse
|
18
|
Liu X, Luo Q, Zheng Y, Liu X, Hu Y, Wang F, Zou L. The role of Delta-like 4 ligand/Notch-ephrin-B2 cascade in the pathogenesis of preeclampsia by regulating functions of endothelial progenitor cell. Placenta 2015. [DOI: 10.1016/j.placenta.2015.07.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Su D, Li X, Gao D. Inhibition of choroidal neovascularization by anti-EphB4 monoclonal antibody. Exp Ther Med 2013; 5:1226-1230. [PMID: 23596494 PMCID: PMC3628074 DOI: 10.3892/etm.2013.962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/16/2013] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to determine the effect of the EphB4 monoclonal antibody on experimental choroidal neovascularization (CNV) progression. Experimental CNV was established by argon laser photocoagulation. In the experimental group, the EphB4 monoclonal antibody was injected into the vitreous space in the eye specimens on days 0, 3, 6 and 9 after CNV model establishment. In the control group, an equal amount of balanced salt solution was injected at the same time points. On day 10 after CNV model establishment, fluorescein isothiocyanate-dextran endocardial perfusion and choroidal stretched preparation were conducted, respectively, for the two groups. The CNV area in each light spot and the mean values were determined. Histopathological examination was conducted and the ratio of the maximum thickness of the CNV in each light spot to the surrounding normal choroidal thickness, as well as the mean ratio, were calculated. Choroidal stretched preparation confirmed that the CNV of the experimental group was smaller, whereas the CNV of the control group was wider and larger. Quantitative analysis revealed that CNV in the experimental group was significantly inhibited (t=11.84, P<0.01) and that CNV progression in the experimental group was significantly suppressed (t=7.45, P<0.01). Histopathological examination revealed that CNV in the experimental group was thinner and smaller. Vitreous injection of the EphB4 monoclonal antibody inhibits experimental CNV progression. However, its specific mechanism remains unclear. Endogenous EphrinB2/EphB4 regulates ocular neovascularization and may become a new target in treating CNV diseases.
Collapse
Affiliation(s)
- Dongfeng Su
- Department of Ophthalmology, 463rd Hospital of Chinese People's Liberation Army, Shenyang 110042; ; Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004
| | | | | |
Collapse
|
20
|
Zozulya SA, Udovichenko IP. [Eph family receptors as therapeutic targets]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 38:267-79. [PMID: 22997698 DOI: 10.1134/s106816201203017x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anti-angiogenic therapy is currently a commonly accepted and rapidly developing approach in oncology and other pathologies linked to aberrant neovascularization. Discovery and validation of additional molecular targets in angiogenesis is needed due to the limitations of the existing clinical therapeutics inhibiting activity of vascular endothelial growth factor (VEGF) and its receptors. A brief review of normal and pathological biological functions of the Eph family of receptor tyrosine kinases and their ephrin ligands is presented, and the approaches to developing therapeutics with anti- and pro-angiogenic and anti-tumor activity based on selective molecular modulation of Eph-ephrin signaling pairs are discussed. Functional roles of Eph-kinases and ephrins in such mechanisms of cancerogenesis as cell proliferation and invasion are also addressed.
Collapse
|
21
|
Salvucci O, Tosato G. Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 2012; 114:21-57. [PMID: 22588055 DOI: 10.1016/b978-0-12-386503-8.00002-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eph receptor tyrosine kinases and their Ephrin ligands represent an important signaling system with widespread roles in cell physiology and disease. Receptors and ligands in this family are anchored to the cell surface; thus Eph/Ephrin interactions mainly occur at sites of cell-to-cell contact. EphB4 and EphrinB2 are the Eph/Ephrin molecules that play essential roles in vascular development and postnatal angiogenesis. Analysis of expression patterns and function has linked EphB4/EphrinB2 to endothelial cell growth, survival, migration, assembly, and angiogenesis. Signaling from these molecules is complex, with the potential for being bidirectional, emanating both from the Eph receptors (forward signaling) and from the Ephrin ligands (reverse signaling). In this review, we describe recent advances on the roles of EphB/EphrinB protein family in endothelial cell function and outline potential approaches to inhibit pathological angiogenesis based on this understanding.
Collapse
Affiliation(s)
- Ombretta Salvucci
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
22
|
Tu Y, He S, Fu J, Li G, Xu R, Lu H, Deng J. Expression of EphrinB2 and EphB4 in glioma tissues correlated to the progression of glioma and the prognosis of glioblastoma patients. Clin Transl Oncol 2012; 14:214-20. [PMID: 22374425 DOI: 10.1007/s12094-012-0786-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The ligand EphrinB2 and the corresponding receptor EphB4 are up-regulated and involved in tumour growth in various human cancers. However, little is known about how this receptor-ligand complex contributes to the progression of glioma. This prompted us to study the association between the expressions of EphrinB2 and EphB4, clinicopathological variables, and glioma patient outcome. METHODS Immunohistochemical staining was performed to detect the expression patterns of EphrinB2 and EphB4 in the biopsies from 96 patients with primary gliomas. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognosis of patients. RESULTS Immunohistochemical analysis revealed that the expression of EphrinB2 was significantly correlated with that of EphB4 (r=0.86, p=0.002). EphrinB2 and EphB4 were significantly associated with the Karnofsky performance scale (KPS) score and World Health Organization grades of patients with gliomas, respectively. Especially, the positive expression rates of EphrinB2 and EphB4 were significantly higher in patients with higher grade (both p=0.001) and lower KPS score (p=0.002 and 0.003, respectively). Multivariate Cox regression analysis revealed that EphrinB2 and EphB4 expressions were both independent prognostic factors for progress-free survival of glioblastoma patients (both p=0.02). CONCLUSION Our data indicated for the first time that EphrinB2 and EphB4 expressions increase according to the histopathological grade and KPS score of glioma, and their expression levels are related to the progression-free survival of glioblastoma patients.
Collapse
Affiliation(s)
- Yanyang Tu
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Vadivel A, van Haaften T, Alphonse RS, Rey-Parra GJ, Ionescu L, Haromy A, Eaton F, Michelakis E, Thébaud B. Critical role of the axonal guidance cue EphrinB2 in lung growth, angiogenesis, and repair. Am J Respir Crit Care Med 2011; 185:564-74. [PMID: 22161159 DOI: 10.1164/rccm.201103-0545oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lung diseases characterized by alveolar damage currently lack efficient treatments. The mechanisms contributing to normal and impaired alveolar growth and repair are incompletely understood. Axonal guidance cues (AGC) are molecules that guide the outgrowth of axons to their targets. Among these AGCs, members of the Ephrin family also promote angiogenesis, cell migration, and organogenesis outside the nervous system. The role of Ephrins during alveolar growth and repair is unknown. OBJECTIVES We hypothesized that EphrinB2 promotes alveolar development and repair. METHODS We used in vitro and in vivo manipulation of EphrinB2 signaling to assess the role of this AGC during normal and impaired lung development. MEASUREMENTS AND MAIN RESULTS In vivo EphrinB2 knockdown using intranasal siRNA during the postnatal stage of alveolar development in rats arrested alveolar and vascular growth. In a model of O(2)-induced arrested alveolar growth in newborn rats, air space enlargement, loss of lung capillaries, and pulmonary hypertension were associated with decreased lung EphrinB2 and receptor EphB4 expression. In vitro, EphrinB2 preserved alveolar epithelial cell viability in O(2), decreased O(2)-induced alveolar epithelial cell apoptosis, and accelerated alveolar epithelial cell wound healing, maintained lung microvascular endothelial cell viability, and proliferation and vascular network formation. In vivo, treatment with intranasal EphrinB2 decreased alveolar epithelial and endothelial cell apoptosis, preserved alveolar and vascular growth in hyperoxic rats, and attenuated pulmonary hypertension. CONCLUSION The AGC EphrinB2 may be a new therapeutic target for lung repair and pulmonary hypertension.
Collapse
Affiliation(s)
- Arul Vadivel
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Edmonton, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
OLFERT IMARK, BIROT OLIVIER. Importance of Anti-angiogenic Factors in the Regulation of Skeletal Muscle Angiogenesis. Microcirculation 2011; 18:316-30. [DOI: 10.1111/j.1549-8719.2011.00092.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Ehlken C, Martin G, Lange C, Gogaki EG, Fiedler U, Schaffner F, Hansen LL, Augustin HG, Agostini HT. Therapeutic interference with EphrinB2 signalling inhibits oxygen-induced angioproliferative retinopathy. Acta Ophthalmol 2011; 89:82-90. [PMID: 19764912 DOI: 10.1111/j.1755-3768.2009.01609.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate whether EphrinB2 (EfnB2) or EphB4 influence retinal angiogenesis under physiological or pathological conditions. METHODS Using the mouse model of oxygen-induced proliferative retinopathy (OIR), the expression of EfnB2, EphB4, vascular endothelial growth factor (VEGF), VEGFR1 and VEGFR2 was quantified by quantitative polymerase chain reaction (qPCR) and localized in EfnB2- and EphB4-lacZ mice. Angioproliferative retinopathy was manipulated by intravitreal injection of dimeric EfnB2 and monomeric or dimeric EphB4. RESULTS Dimeric EphB4 (EphB4-Fc) and EfnB2 (EfnB2-Fc) enhanced hypoxia-induced angioproliferative retinopathy but not physiological angiogenesis. Monomeric EphB4 (sEphB4) reduced angiogenesis. The messenger RNA (mRNA) level of EfnB2 increased significantly in the hyperoxic phase (P7-P12), while EphB4, VEGF, VEGFR1 and VEGFR2 showed a significant - up to fivefold - increased expression at P14, the start of morphologically visible vasoproliferation caused by relative hypoxia. CONCLUSION The ephrin/Eph system is involved in angioproliferative retinopathy. Stimulation of EphB4 and EfnB2 signalling using EfnB2-Fc and EphB4-Fc, respectively, enhanced hypoxia-induced angiogenesis. In contrast, sEphB4 inhibited hypoxia-induced angiogenesis. Therefore, angiogenesis is enhanced by signalling through both EphB4 (forward) and EfnB2 (reverse). The distinction in the expression kinetics of EphB4 and EfnB2 indicates that they govern two different signalling pathways and are regulated in diverse ways. sEphB4 might be a useful drug for antiangiogenic therapy.
Collapse
|
26
|
Genander M, Holmberg J, Frisén J. Ephrins negatively regulate cell proliferation in the epidermis and hair follicle. Stem Cells 2010; 28:1196-205. [PMID: 20506314 DOI: 10.1002/stem.442] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ephrins and their Eph tyrosine kinase receptors control many processes during embryonic development. They have more recently also been identified as important regulators of proliferation of stem/progenitor cells in the adult brain and intestine and have been implicated in tumorigenesis in a large number of tissues. We here describe the expression of a large number of ephrins and Eph receptors in the adult mouse skin. Disruption of the ephrin-Eph interaction in vivo with antagonists against the A or B class resulted in an approximate doubling of cell proliferation in the hair follicle and epidermis of adult mice. We conclude that ephrins are negative regulators of proliferation in the skin and that blocking the ephrin-Eph interaction may be an attractive strategy for regenerative therapies.
Collapse
Affiliation(s)
- Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Adams RH, Eichmann A. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2010; 2:a001875. [PMID: 20452960 DOI: 10.1101/cshperspect.a001875] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endothelial cells (ECs) form extensive, highly branched and hierarchically organized tubular networks in vertebrates to ensure the proper distribution of molecular and cellular cargo in the vertebrate body. The growth of this vascular system during development, tissue repair or in disease conditions involves the sprouting, migration and proliferation of endothelial cells in a process termed angiogenesis. Surprisingly, specialized ECs, so-called tip cells, which lead and guide endothelial sprouts, share many feature with another guidance structure, the axonal growth cone. Tip cells are motile, invasive and extend numerous filopodial protrusions sensing growth factors, extracellular matrix and other attractive or repulsive cues in their tissue environment. Axonal growth cones and endothelial tip cells also respond to signals belonging to the same molecular families, such as Slits and Roundabouts, Netrins and UNC5 receptors, Semaphorins, Plexins and Neuropilins, and Eph receptors and ephrin ligands. Here we summarize fundamental principles of angiogenic growth, the selection and function of tip cells and the underlying regulation by guidance cues, the Notch pathway and vascular endothelial growth factor signaling.
Collapse
Affiliation(s)
- Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany
| | | |
Collapse
|
28
|
Abstract
In this article, we provide the results of experimental studies demonstrating that corneal avascularity is an active process involving the production of anti-angiogenic factors, which counterbalance the pro-angiogenic/lymphangiogenic factors that are upregulated during wound healing. We also summarize pertinent published reports regarding corneal neovascularization (NV), corneal lymphangiogenesis and corneal angiogenic/lymphangiogenic privilege. We outline the clinical causes of corneal NV, and discuss the angiogenic proteins (VEGF and bFGF) and angiogenesis regulatory proteins. We also describe the role of matrix metalloproteinases MMP-2, -7, and MT1-MMP, anti-angiogenic factors, and lymphangiogenic regulatory proteins during corneal wound healing. Established and potential new therapies for the treatment of corneal neovascularization are also discussed.
Collapse
|
29
|
Genander M, Halford MM, Xu NJ, Eriksson M, Yu Z, Qiu Z, Martling A, Greicius G, Thakar S, Catchpole T, Chumley MJ, Zdunek S, Wang C, Holm T, Goff SP, Pettersson S, Pestell RG, Henkemeyer M, Frisén J. Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell 2009; 139:679-92. [PMID: 19914164 DOI: 10.1016/j.cell.2009.08.048] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 05/20/2009] [Accepted: 08/27/2009] [Indexed: 01/25/2023]
Abstract
Signaling proteins driving the proliferation of stem and progenitor cells are often encoded by proto-oncogenes. EphB receptors represent a rare exception; they promote cell proliferation in the intestinal epithelium and function as tumor suppressors by controlling cell migration and inhibiting invasive growth. We show that cell migration and proliferation are controlled independently by the receptor EphB2. EphB2 regulated cell positioning is kinase-independent and mediated via phosphatidylinositol 3-kinase, whereas EphB2 tyrosine kinase activity regulates cell proliferation through an Abl-cyclin D1 pathway. Cyclin D1 regulation becomes uncoupled from EphB signaling during the progression from adenoma to colon carcinoma in humans, allowing continued proliferation with invasive growth. The dissociation of EphB2 signaling pathways enables the selective inhibition of the mitogenic effect without affecting the tumor suppressor function and identifies a pharmacological strategy to suppress adenoma growth.
Collapse
Affiliation(s)
- Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
He S, Kumar SR, Zhou P, Krasnoperov V, Ryan SJ, Gill PS, Hinton DR. Soluble EphB4 inhibition of PDGF-induced RPE migration in vitro. Invest Ophthalmol Vis Sci 2009; 51:543-52. [PMID: 19696168 DOI: 10.1167/iovs.09-3475] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE EphB4 receptor (EphB4) and its ligand (EphrinB2) play an important role in the regulation of cell adhesion, growth, and migration. The purpose of this study was to determine the effects of EphB4 blockade by soluble EphB4 (sEphB4) on retinal pigment epithelial (RPE) cell migration and proliferation, induced by platelet-derived growth factor-BB (PDGF), and to establish its relevance to proliferative vitreoretinopathy (PVR). METHODS The expression of EphB4 and EphrinB2 in early-passage human RPE cells and in human PVR membranes was evaluated by confocal microscopy. The effect of sEphB4 (0.1-3 microg/mL) on PDGF (20 ng/mL)-induced RPE migration and proliferation was evaluated using a modified Boyden chamber assay and an MTT assay, respectively. Attachment to basement membrane matrix and fibronectin was assayed by MTT. Phosphorylation of FAK and p42/44 mitogen-activated protein kinase (MAPK) in retinal pigment epithelium was determined by Western blot analysis after exposure to sEphB4. The effect of sEphB4 on the phosphorylation of EphB4/EphrinB2 was demonstrated with the use of immunoprecipitation assays. RESULTS EphrinB2 and EphB4 were expressed on human RPE cells in vitro and in cells within human PVR membranes. sEphB4 blocked EphB4 and EphrinB2 phosphorylation in RPE cells in vitro. sEphB4 reduced RPE migration in response to PDGF stimulation (P < 0.01). Similarly, sEphB4 inhibited RPE attachment and proliferation in a dose-dependent manner (P < 0.05). PDGF-induced phosphorylation of FAK and MAPK was inhibited by sEphB4. CONCLUSIONS EphB4 and EphrinB2 are expressed in RPE cells and PVR membranes. sEphB4 inhibits PDGF-induced RPE cell attachment, proliferation, and migration. This effect may result from the inhibition of FAK and MAPK phosphorylation.
Collapse
Affiliation(s)
- Shikun He
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
EphrinB reverse signaling contributes to endothelial and mural cell assembly into vascular structures. Blood 2009; 114:1707-16. [PMID: 19411631 DOI: 10.1182/blood-2008-12-192294] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EphrinB transmembrane ligands and their cognate EphB receptor tyrosine kinases regulate vascular development through bidirectional cell-to-cell signaling, but little is known about the role of EphrinB during postnatal vascular remodeling. We report that EphrinB is a critical mediator of postnatal pericyte-to-endothelial cell assembly into vascular structures. This function is dependent upon extracellular matrix-supported cell-to-cell contact, engagement of EphrinB by EphB receptors expressed on another cell, and Src-dependent phosphorylation of the intracytoplasmic domain of EphrinB. Phosphorylated EphrinB marks angiogenic blood vessels in the developing and hypoxic retina, the wounded skin, and tumor tissue, and is detected at contact points between endothelial cells and pericytes. Furthermore, inhibition ofEphrinB activity prevents proper assembly of pericytes and endothelial cells into vascular structures. These results reveal a role for EphrinB signaling in orchestrating pericyte/endothelial cell assembly, and suggest that therapeutic targeting of EphrinB may prove useful for disrupting angiogenesis when it contributes to disease.
Collapse
|
32
|
Gordon SR. Cell Migration along the Basement Membrane during Wound Repair. The Corneal Endothelium as a Model System. BIOENGINEERING RESEARCH OF CHRONIC WOUNDS 2009. [DOI: 10.1007/978-3-642-00534-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Katsu M, Koyama H, Maekawa H, Kurihara H, Uchida H, Hamada H. Ex vivo gene delivery of ephrin-B2 induces development of functional collateral vessels in a rabbit model of hind limb ischemia. J Vasc Surg 2008; 49:192-8. [PMID: 18950979 DOI: 10.1016/j.jvs.2008.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 08/07/2008] [Accepted: 08/07/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In this study, we delivered ephrin-B2 to the ischemic hind limb of rabbits using an ex vivo method of gene transfer and evaluated whether the in vivo application of ephrin-B2 contributed to the development of functional collateral vessels. Ephrin-B2 is a transmembrane ligand of several Eph receptors and bidirectional signaling between ephrin-B2 and Eph-B4 is considered to be essential in angiogenesis and the development of arteries and veins. METHOD The left femoral artery of male Japanese White rabbits was excised to induce limb ischemia, and a primary culture of autofibroblasts was obtained from a skin section. Nineteen days later, the gene expressing ephrin-B2 (ephrin group) or beta-galactosidase gene (control group) was adenovirally transfected to the cultured auto-fibroblasts (5 x 10(6) cells); then 48 hours later, the gene-transduced cells were injected through the left internal iliac artery of the same rabbit. At 28 days after injection, the development of collateral vessels and their function were assessed (control group, n = 12; ephrin group, n = 10). RESULTS The gene expressing ephrin-B2 was successfully transferred to the rabbit autofibroblasts, and ephrin-B2, expressed on the cell membrane, possessed binding ability with its receptor, Eph-B4. Calf blood pressure ratio (control group: 0.523 +/- 0.047 vs ephrin group: 0.658 +/- 0.049, P < .0001), angiographic score (0.344 +/- 0.091 vs 0.525 +/- 0.109, P = .0006), in vivo blood flow of the left internal iliac artery (rest: 11.963 +/- 2.806 vs 17.202 +/- 3.622 mL/min, P = .0014; maximum: 27.652 +/- 10.377 vs 43.400 +/- 7.108 mL/min, P = .0007), collateral conductance (32.740 +/- 7.408 vs 54.489 +/- 18.809 mL/min/100 mm Hg, P = .0097), and capillary density of the left thigh muscle (118.517 +/- 18.669 vs 167.400 +/- 31.271, P = .0002) showed significant improvement in the ephrin-B2 group compared with controls. CONCLUSION These findings suggest that auto-fibroblasts expressing ephrin-B2 potentially promote arteriogenesis as well as angiogenesis in the adult vasculature, resulting in the development of functional collateral vessels to an ischemic lesion.
Collapse
Affiliation(s)
- Masatake Katsu
- Department of Vascular Regeneration, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Distinct membrane compartmentalization and signaling of ephrin-A5 and ephrin-B1. Biochem Biophys Res Commun 2008; 375:362-6. [DOI: 10.1016/j.bbrc.2008.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 08/01/2008] [Indexed: 01/09/2023]
|
35
|
Zhang G, Fenyö D, Neubert TA. Screening for EphB signaling effectors using SILAC with a linear ion trap-orbitrap mass spectrometer. J Proteome Res 2008; 7:4715-26. [PMID: 18816084 DOI: 10.1021/pr800255a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Erythropoietin-producing hepatocellular carcinoma (Eph) receptors play important roles in development, neural plasticity, and cancer. We used an Orbitrap mass spectrometer and stable isotope labeling by amino acids in cell culture (SILAC) to identify and quantify 204 proteins with significantly changed abundance in antiphosphotyrosine immunoprecipitates after ephrinB1-Fc stimulation. More than half of all known effectors downstream of EphB receptors were identified in this study, as well as numerous novel candidates for EphB signaling.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Pharmacology and Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
36
|
Hicks PJ, Staten JL, Palmer ND, Langefeld CD, Ziegler JT, Keene KL, Sale MM, Bowden DW, Freedman BI. Association analysis of the ephrin-B2 gene in African-Americans with end-stage renal disease. Am J Nephrol 2008; 28:914-20. [PMID: 18580054 DOI: 10.1159/000141934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Accepted: 05/12/2008] [Indexed: 01/13/2023]
Abstract
BACKGROUND Genome scans in African-Americans with end-stage renal disease (ESRD) identified linkage on chromosome 13q33 in the region containing the ephrin-B2 ligand (EFNB2) genes. Interactions between the ephrin-B2 receptor and ephrin-B2 ligand play essential roles in renal angiogenesis, blood vessel maturation, and kidney disease. METHODS The EFNB2 gene was evaluated as a positional candidate for non-diabetic and diabetic ESRD susceptibility in 1,071 unrelated African-American subjects; 316 with non-diabetic etiologies of ESRD, 394 with type 2 diabetes-associated ESRD and 361 healthy controls. Single nucleotide polymorphism (SNP) genotyping was performed on the Sequenom Mass Array System. Statistical analyses were computed using Dandelion version 1.26, Snpaddmix version 1.4 and Haploview version 3.32. RESULTS Twenty-eight HapMap tag SNPs were genotyped spanning the 39 kilobases (kb) of the EFNB2 coding region, with average spacing of 1.43 kb. Analysis of 710 ESRD patient samples and 361 controls provided no evidence of single SNP associations in either diabetic or non-diabetic ESRD; although nominal evidence of association with all-cause ESRD was observed with a two SNP (p = 0.022) and three SNP (p = 0.023) haplotype, both containing SNPs rs7490924 and rs2391335 in intron 1. CONCLUSIONS Although an attractive positional candidate gene, polymorphisms in the EFNB2 gene do not appear to contribute in a substantial way to non-diabetic, diabetic or all-cause ESRD susceptibility in African-Americans. Additional genes within the chromosome 13q33 linkage interval are likely contributors to African-American non-diabetic ESRD.
Collapse
Affiliation(s)
- Pamela J Hicks
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1053, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Angiopoietin-Related Growth Factor Enhances Blood Flow Via Activation of the ERK1/2-eNOS-NO Pathway in a Mouse Hind-Limb Ischemia Model. Arterioscler Thromb Vasc Biol 2008; 28:827-34. [DOI: 10.1161/atvbaha.107.149674] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Objective—
Transgenic mice overexpressing angiopoietin-related growth factor (AGF) exhibit enhanced angiogenesis, suggesting that AGF may be a useful drug target in ischemic disease. Our goal was to determine whether AGF enhances blood flow in a mouse hind-limb ischemia model and to define molecular mechanisms underlying AGF signaling in endothelial cells.
Methods and Results—
Intramuscular injection of adenovirus harboring AGF into the ischemic limb increased AGF production, which increased blood flow through induction of angiogenesis and arteriogenesis, thereby reducing the necessity for limb amputation. In vitro analysis showed that exposing human umbilical venous endothelial cells to AGF increased nitric oxide (NO) production through activation of an ERK1/2-endothelial NO synthetase (eNOS) signaling pathway. AGF-stimulated eNOS phosphorylation, NO production, and endothelial cell migration were all abolished by specific MEK1/2 inhibitors. Moreover, AGF did not restore blood flow to ischemic hind-limbs of either mice receiving NOS inhibitor L-NAME or eNOS knockout mice.
Conclusion—
Activation of an ERK1/2-eNOS-NO pathway is a crucial signaling mechanism by which AGF increases blood flow through induction of angiogenesis and arteriogenesis. Further investigation of the regulation underlying AGF signaling pathway may contribute to develop a new clinical strategy for ischemic vascular diseases.
Collapse
|
38
|
Phillips JM, Goodman JI. Identification of genes that may play critical roles in phenobarbital (PB)-induced liver tumorigenesis due to altered DNA methylation. Toxicol Sci 2008; 104:86-99. [PMID: 18359763 DOI: 10.1093/toxsci/kfn063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aberrant DNA methylation plays important roles in tumorigenesis, and the nongenotoxic rodent tumor promoter phenobarbital (PB) alters methylation patterns to a greater extent in liver tumor susceptible as compared to resistant mice (Watson and Goodman, 2002). Unique hepatic regions of altered DNA methylation (RAMs) were identified in sensitive B6C3F1, as compared to resistant C57BL/6, mice at 2 or 4 weeks of PB treatment using a novel approach involving methylation-sensitive restriction digestion, arbitrarily primed PCR, and capillary electrophoresis (Bachman et al., 2006b). PCR products representing 90 of 170 (53%) total unique B6C3F1 RAMs at 2 or 4 weeks were cloned and subjected to BLAST-like alignment tool searches that resulted in 51 gene matches; some of these have documented oncogenic or tumor suppressor roles. Importantly, uniquely hypomethylated genes play roles in angiogenesis (e.g., chymase 1, tyrosine kinase nonreceptor 2, and possibly ephrin B2 and triple functional domain, PTPRF interacting) and invasion and metastasis, including those involved in the epithelial-mesenchymal transition (transcription factor 4, transforming growth factor beta receptor II, and ral guanine nucleotide dissociation stimulator). Common cellular targets and regulators of the genes representing unique B6C3F1 RAMs were uncovered, indicating that they might act in concert to more efficiently promote tumorigenesis. Genes not previously associated with mouse liver tumorigenesis exhibited altered methylation at these very early times following PB treatment. We hypothesize that at least some of the unique PB-induced B6C3F1 RAMs represent key events facilitating transformation, which is consistent with a causative role of altered DNA methylation during early stages of tumorigenesis.
Collapse
Affiliation(s)
- Jennifer M Phillips
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
39
|
Kuijper S, Turner CJ, Adams RH. Regulation of angiogenesis by Eph-ephrin interactions. Trends Cardiovasc Med 2007; 17:145-51. [PMID: 17574121 DOI: 10.1016/j.tcm.2007.03.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 03/01/2007] [Indexed: 01/11/2023]
Abstract
The large families of Eph receptor tyrosine kinases and their ephrin ligands transduce signals in a cell-cell contact-dependent fashion and thereby coordinate the growth, differentiation, and patterning of almost every organ and tissue. Eph-ephrin interactions can trigger a wide array of cellular responses, including cell adhesion, boundary formation, and repulsion. The exact mechanisms leading to this diversity of responses are unclear but appear to involve differential signaling, proteolytic cleavage of ephrins, and endocytosis of the ligand-receptor complex. In the developing cardiovascular system, Eph and ephrin molecules control the angiogenic remodeling of blood vessels and lymphatic vessels and play essential roles in endothelial cells as well as in supporting pericytes and vascular smooth muscle cells. Recent evidence suggests that Ephs and ephrins may also be involved in pathological angiogenesis, in particular, the neovascularization of tumors. Consequently, the expression, interactions, or signaling of Eph-ephrin molecules might be targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Sanne Kuijper
- Vascular Development Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | | | |
Collapse
|
40
|
Abstract
We have previously demonstrated that binding of ephrin-A1 to Eph receptors on human CD4+ T cells stimulates migration. Here, we show that a distinct population of CD8+ T lymphocytes, expressing the chemokine receptor CCR7, also binds ephrin-A1 and is stimulated to migrate after binding. The Eph receptor signaling pathway taking part in the migration event was here investigated. Induced tyrosine phosphorylation of several proteins was seen after ephrin-A1 binding. In particular, induced phosphorylation and kinase activity of the Src kinase family member Lck was observed. An Lck inhibitor inhibited ephrin-A1-induced migration, indicating the involvement of Lck in the migration event. In addition, we observed an induced association of the focal adhesion-like kinase proline-rich tyrosine kinase 2 (Pyk2) and the guanidine exchange factor Vav1 with Lck. PI3K inhibitors also inhibited migration, and studies in transfectants indicate an association of PI3K with EphA1. Further, ephrin-A1-induced migration could be related to the activation of Rho GTPases. This was also observed by using an inhibitor of the Rho-associated kinase ROCK, a downstream effector of Rho. Our results suggest that stimulation of Eph receptors on CD8+CCR7+ T cells leads to migration involving activation of Lck, Pyk2, PI3K, Vav1 and Rho GTPase.
Collapse
Affiliation(s)
- Hanne S Hjorthaug
- Department of Immunology, Institute for Cancer Research, Rikshospitalet-Radiumhopitalet Medical Center, and Department of Medical Genetics, Ullevål University Hospital, Oslo, Norway
| | | |
Collapse
|
41
|
Kojima T, Chung TY, Chang JH, Sayegh R, Casanova FH, Azar DT. Comparison of EphA receptor tyrosine kinases and ephrinA ligand expression to EphB-ephrinB in vascularized corneas. Cornea 2007; 26:569-78. [PMID: 17525654 DOI: 10.1097/ico.0b013e3180335526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Eph cell surface receptors and their ligands, ephrins, are involved in neuronal patterning and neovascularization. Our purpose is to compare and characterize the expression of ephrinA ligands and EphA receptors to ephrinB ligands and EphB receptors in excised mouse corneal tissue, in corneal epithelial and keratocyte cell lines, and during corneal angiogenesis. METHODS Mouse corneal epithelial cells and keratocytes were immortalized using SV40T antigen viral infection of primary cultures. The immortalized epithelial cells and keratocytes were cloned and characterized using antibodies to keratin, vimentin, integrin alpha5beta1, and alpha-smooth muscle actin. Basic fibroblast growth factor pellets were implanted to induce corneal neovascularization. The eyes of wild-type, ephrinB2(tlacZ/+), and EphB4(tlacZ/+) heterozygous mice were harvested and sectioned 7 days after pellet implantation. Confocal immunohistochemistry was performed to compare the expression of the Eph/ephrinA family (EphA1-8, ephrinA1-5) and Eph/ephrinB family (EphB1-4, EphB6 ephrinB1-3). RESULTS EphA1, EphA3, ephrinA1, ephrinA2, EphB1, EphB4, ephrinB1, and ephrinB2 were detected in wild-type mouse corneal epithelial cells and keratocytes. EphA2 was immunolocalized only in epithelial cells. Also, EphA3, ephrinA1, EphB1, EphB4, and ephrinB1 were immunolocalized to the corneal epithelium and stroma. In the vascularized corneas, ephrinB1 was immunolocalized mainly to the keratocytes around the vessels, and ephrinB2, EphB1, and EphB4 were colocalized mainly with CD31 to the vascular endothelial cells. CONCLUSIONS The characterization of ephrin ligand and Eph receptor expression during cornea angiogensis in this study suggests that the Eph/ephrin family of receptor tyrosine kinases and their ligands may play a role in the regulation of corneal angiogenesis.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
42
|
Stokowski A, Shi S, Sun T, Bartold PM, Koblar SA, Gronthos S. EphB/ephrin-B interaction mediates adult stem cell attachment, spreading, and migration: implications for dental tissue repair. Stem Cells 2007; 25:156-64. [PMID: 17204606 DOI: 10.1634/stemcells.2006-0373] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human adult dental pulp stem cells (DPSCs) reside predominantly within the perivascular niche of dental pulp and are thought to originate from migrating neural crest cells during development. The Eph family of receptor tyrosine kinases and their ligands, the ephrin molecules, play an essential role in the migration of neural crest cells during development and stem cell niche maintenance. The present study examined the expression and function of the B-subclass Eph/ephrin molecules on DPSCs. Multiple receptors were primarily identified on DPSCs within the perivascular niche, whereas ephrin-B1 and ephrin-B3 were expressed by the surrounding pulp tissue. EphB/ephrin-B bidirectional signaling inhibited cell attachment and spreading, predominately via the mitogen-activated protein kinase (MAPK) pathway for forward signaling and phosphorylation of Src family tyrosine kinases via reverse ephrin-B signaling. DPSC migration was restricted through unidirectional ephrin-B1-activated EphB forward signaling, primarily signaling through the MAPK pathway. Furthermore, we observed that ephrin-B1 was downregulated in diseased adult teeth compared with paired uninjured controls. Collectively, these studies suggest that EphB/ephrin-B molecules play a role in restricting DPSC attachment and migration to maintain DPSCs within their stem cell niche under steady-state conditions. These results may have implications for dental pulp development and regeneration.
Collapse
Affiliation(s)
- Agnieszka Stokowski
- Australian Research Council, Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Yuuki T, Kanda T, Kishi S. Expression of ephrin in retinal neovascularization and iris rubeosis. J Int Med Res 2007; 34:485-94. [PMID: 17133777 DOI: 10.1177/147323000603400505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We investigated expression of ephrin-B2 and Eph-B4 in the retinal tissues of six primate eyes with neovascularization and iris rubeosis secondary to laser-induced central retinal vein occlusion and in tissue from 10 human eyes with proliferative diabetic retinopathy. Two primate eyes with rubeosis and retinal neovascularization were enucleated 1, 2 and 4 weeks after the creation of central retinal vein occlusion. Antibodies were localized using the avidin-biotin reaction. In the primate eyes, ephrin-B2 was negative at I week and positive at 2 and 4 weeks in the rubeotic tissue, but was positive only at 2 weeks in the retinal neovascular membrane. Eph-B4 was negative in all the primate eye specimens. In the human tissue, ephrin-B2 was detected in two of the five eyes with rubeosis and three of the five eyes with retinal neovascularization. These data suggest that ephrin-B2 is a key regulator of neovascularization.
Collapse
Affiliation(s)
- T Yuuki
- Department of Ophthalmology, Gunma University School of Medicine, Gunma, Japan.
| | | | | |
Collapse
|
44
|
Kojima T, Chang JH, Azar DT. Proangiogenic role of ephrinB1/EphB1 in basic fibroblast growth factor-induced corneal angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:764-73. [PMID: 17255342 PMCID: PMC1851865 DOI: 10.2353/ajpath.2007.060487] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2006] [Indexed: 11/20/2022]
Abstract
Corneal neovascularization is a vision-threatening condition caused by various ocular pathological conditions. The aim of this study was to evaluate the function of the ephrin ligands and Eph receptors in vitro and in vivo in corneal angiogenesis in a mouse model. The Eph tyrosine kinase receptors and their ligands, ephrins, are expressed on the cell surface. The functions of Eph and ephrins have been shown to regulate axonal guidance, segmentation, cell migration, and angiogenesis. Understanding the roles of Eph and ephrin in corneal angiogenesis may provide a therapeutic intervention for the treatment of angiogenesis-related disorders. Immunohistochemical studies demonstrated that ephrinB1 and EphB1 were expressed in basic fibroblast growth factor (bFGF)-induced vascularized corneas. EphB1 was specifically colocalized with vascular endothelial marker CD31 surrounded by type IV collagen. EphrinB1 was expressed in corneal-resident keratocytes and neutrophils. Recombinant ephrinB1-Fc, which induces EphB receptor activation, enhanced bFGF-induced tube formation in an in vitro aortic ring assay and promoted bFGF-induced corneal angiogenesis in vivo in a corneal pocket assay. Synergistically enhanced and sustained activation of extracellular signal-regulated kinase was noted in vascular endothelial cell lines after stimulation with ephrin B1 and bFGF combinations. These results suggest that ephrinB1 plays a synergistic role in corneal neovascularization.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Ophthalmology, Massachusetts Eyue and Ear Infirmary, and the Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
45
|
Makino H, Miyamoto Y, Sawai K, Mori K, Mukoyama M, Nakao K, Yoshimasa Y, Suga SI. Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes 2006; 55:2747-56. [PMID: 17003339 DOI: 10.2337/db05-1683] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glomerular injury plays a pivotal role in the development of diabetic nephropathy. To elucidate molecular mechanisms underlying diabetic glomerulopathy, we compared glomerular gene expression profiles of db/db mice with those of db/m control mice at a normoalbuminuric stage characterized by hyperglycemia and at an early stage of diabetic nephropathy with elevated albuminuria, using cDNA microarray. In db/db mice at the normoalbuminuric stage, hypoxia-inducible factor-1alpha (HIF-1alpha), ephrin B2, glomerular epithelial protein 1, and Pod-1, which play key roles in glomerulogenesis, were already upregulated in parallel with an alteration of genes related to glucose metabolism, lipid metabolism, and oxidative stress. Podocyte structure-related genes, actinin 4alpha and dystroglycan 1 (DG1), were also significantly upregulated at an early stage. The alteration in the expression of these genes was confirmed by quantitative RT-PCR. Through pioglitazone treatment, gene expression of ephrin B2, Pod-1, actinin 4alpha, and DG1, as well as that of oxidative stress and lipid metabolism, was restored concomitant with attenuation of albuminuria. In addition, HIF-1alpha protein expression was partially attenuated by pioglitazone. These results suggest that not only metabolic alteration and oxidative stress, but also the alteration of gene expression related to glomerulogenesis and podocyte structure, may be involved in the pathogenesis of early diabetic glomerulopathy in type 2 diabetes.
Collapse
Affiliation(s)
- Hisashi Makino
- Department of Atherosclerosis and Diabetes, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita City, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kumar SR, Singh J, Xia G, Krasnoperov V, Hassanieh L, Ley EJ, Scehnet J, Kumar NG, Hawes D, Press MF, Weaver FA, Gill PS. Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:279-93. [PMID: 16816380 PMCID: PMC1698769 DOI: 10.2353/ajpath.2006.050889] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
EphB4, a member of the largest family of receptor tyrosine kinases, is normally expressed on endothelial and neuronal cells. Although aberrant expression of EphB4 has been reported in several human tumors, including breast cancer, its functional significance is not understood. We report here that EphB4 is expressed in 7 of 12 (58%) human breast cancer specimens and 4 of 4 (100%) breast tumor cell lines examined. Overexpression of EphB4 in breast cancer cells was driven by gene amplification and by the erbB family of receptors via activation of Janus tyrosine kinase-signal transducers and activators of transcription and protein kinase B. The aberrantly expressed receptor was phosphorylated by its natural ligand, EphrinB2, and signaled via the protein kinase B pathway. Targeted knockdown of EphB4 expression by small interference RNA (and antisense oligodeoxynucleotides (ODNs)) led to dose-dependent reduction in cell survival, increased apoptosis, and sensitization to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Antisense ODN-mediated EphB4 knockdown resulted in reduced tumor growth in a murine tumor xenograft model. Antisense ODN-treated tumors were 72% smaller than control tumors at 6 weeks, with an 86% reduction in proliferating cells, 15-fold increase in apoptosis, and 44% reduction in tumor microvasculature. Our data indicate that biologically active EphB4 functions as a survival factor in breast cancer and is a novel target for therapy.
Collapse
Affiliation(s)
- S Ram Kumar
- Department of Pathology, Keck School of Medicine of the University of Southern California, 1441 Eastlake Avenue, NOR 6330, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Human leukocytes express ephrinB2 which activates microvascular endothelial cells. Cell Immunol 2006; 242:99-109. [DOI: 10.1016/j.cellimm.2006.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 10/04/2006] [Indexed: 12/14/2022]
|
48
|
Salvucci O, de la Luz Sierra M, Martina JA, McCormick PJ, Tosato G. EphB2 and EphB4 receptors forward signaling promotes SDF-1-induced endothelial cell chemotaxis and branching remodeling. Blood 2006; 108:2914-22. [PMID: 16840724 PMCID: PMC1895526 DOI: 10.1182/blood-2006-05-023341] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The complex molecular mechanisms that drive endothelial cell movement and the formation of new vessels are poorly understood and require further investigation. Eph receptor tyrosine kinases and their membrane-anchored ephrin ligands regulate cell movements mostly by cell-cell contact, whereas the G-protein-coupled receptor CXCR4 and its unique SDF-1 chemokine ligand regulate cell movement mostly through soluble gradients. By using biochemical and functional approaches, we investigated how ephrinB and SDF-1 orchestrate endothelial cell movement and morphogenesis into capillary-like structures. We describe how endogenous EphB2 and EphB4 signaling are required for the formation of extracellular matrix-dependent capillary-like structures in primary human endothelial cells. We further demonstrate that EphB2 and EphB4 activation enhance SDF-1-induced signaling and chemotaxis that are also required for extracellular matrix-dependent endothelial cell clustering. These results support a model in which SDF-1 gradients first promote endothelial cell clustering and then EphB2 and EphB4 critically contribute to subsequent cell movement and alignment into cord-like structures. This study reveals a requirement for endogenous Eph signaling in endothelial cell morphogenic processes, uncovers a novel link between EphB forward signaling and SDF-1-induced signaling, and demonstrates a mechanism for cooperative regulation of endothelial cell movement.
Collapse
Affiliation(s)
- Ombretta Salvucci
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Inflammation is associated with a decreased adhesion between endothelial cells in blood vessels and an increased adhesion of circulating leukocytes to vascular endothelium and to epithelia of internal organs. These changes lead to leukocyte extravasation and tissue transmigration. We propose that ephrins and Eph receptors play important, but underappreciated, signaling roles in these processes. At early stages of inflammation, EphA2 receptor and ephrin-B2 are overexpressed in endothelial and epithelial cells, thus leading to those events (expression of adhesion molecules on the cell surface and reorganization of the intracellular cytoskeleton) that cause cell repulsion and disruption of endothelial and epithelial barriers. At later stages of inflammation, expression of EphA1, EphA3, EphB3, and EphB4 on leukocytes and endothelial cells decreases, thus promoting adhesion of leukocytes to endothelial cells. Taking into consideration the abundance of ephrins and Eph receptors in tissues and the robustness of their signaling effects, the proposed involvement is likely to be substantial and may constitute a novel therapeutic target.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
50
|
Milan J, Charalambous C, Elhag R, Chen TC, Li W, Guan S, Hofman FM, Zidovetzki R. Multiple signaling pathways are involved in endothelin-1-induced brain endothelial cell migration. Am J Physiol Cell Physiol 2006; 291:C155-64. [PMID: 16452160 DOI: 10.1152/ajpcell.00239.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have observed that the vasoactive peptide endothelin-1 is a potent inducer of migration of primary human brain-derived microvascular endothelial cells. By blocking signal transduction pathways with specific inhibitors, and using dominant negative mutant infections, we have demonstrated that multiple pathways are involved in endothelin-1-induced migration. Absolutely required for migration are protein tyrosine kinase Src, Ras, protein kinase C (PKC), phosphatidylinositol 3-kinase, ERK, and JNK; partial requirements were exhibited by cAMP-activated protein kinase and p38 kinase. Partial elucidation of the signal transduction sequences showed that the MAPKs ERK, JNK, and p38 are positioned downstream of both PKC and cAMP-activated protein kinase in the signal transduction scheme. The results show that human brain endothelial cell migration has distinct characteristics, different from cells derived from other vascular beds, or from other species, often used as model systems. Furthermore, the results indicate that endothelin-1, secreted by many tumors, is an important contributor to tumor-produced proangiogenic microenvironment. This growth factor has been associated with increased microvessel density in tumors and is responsible for endothelial cell proliferation, migration, invasion, and tubule formation. Because many signal transduction pathways investigated in this study are potential or current targets for anti-angiogenesis therapy, these results are of critical importance for designing physiological antiangiogenic protocols.
Collapse
Affiliation(s)
- Johanna Milan
- Department of Cell Biology and Neuroscience, University of California, Riverside, 92521, USA
| | | | | | | | | | | | | | | |
Collapse
|