1
|
Utsumi T, Mizuta H, Seto Y, Uchibori K, Nishio M, Okamoto I, Katayama R. AXL-Mediated Drug Resistance in ALK-Rearranged NSCLC Enhanced by GAS6 From Macrophages and MMP11 Positive Fibroblasts. Cancer Sci 2025; 116:1034-1047. [PMID: 39904499 PMCID: PMC11967273 DOI: 10.1111/cas.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Anaplastic lymphoma kinase (ALK) rearranged non-small cell lung cancer (NSCLC) shows marked tumor shrinkage by ALK-tyrosine kinase inhibitors (TKIs). However, tumors almost inevitably relapse owing to the development of acquired resistance. Resistance mechanisms include secondary ALK mutations and the activation of bypass pathways, such as cMET, cKIT, or EGFR, though some remain unknown. In this study, we analyzed alectinib-resistant patient samples and identified a significant increase in AXL expression in the tumor, and a high level of GAS6, the ligand for AXL, in the pleural effusion. AXL-overexpressing H3122 ALK-rearranged NSCLC cells exhibited partial resistance to alectinib, which was enhanced by GAS6 supplementation but could be overcome by the ALK/AXL inhibitor gilteritinib. Moreover, GAS6-overexpressing NIH3T3 cells and AXL-expressing H3122 cells were subcutaneously injected into the left and right sides of nude mice simultaneously, followed by alectinib treatment. The supply of GAS6 from NIH3T3 may have accelerated tumor relapse under alectinib treatment. However, even without GAS6-overexpressing NIH3T3, AXL-overexpressing H3122 tumor relapsed within 1 month possibly due to increased host mouse Gas6 expression. Single-cell RNA sequencing revealed that specific cancer-associated fibroblasts (CAFs) and a subset of tumor-associated macrophages (TAMs) are the primary sources of Gas6 in the tumor microenvironment (TME). During alectinib treatment, TAMs increased their infiltration into the TME, whereas CAFs altered their expression patterns, substantially upregulating Mmp11. These findings suggest that AXL expression in resistant cancer cells, combined with increased Gas6 production in the TME, contributes to enhanced ALK-TKI resistance.
Collapse
Affiliation(s)
- Takahiro Utsumi
- Division of Experimental Chemotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Hayato Mizuta
- Division of Experimental Chemotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
- Department of Applied Chemistry, Faculty of Science and TechnologyKeio UniversityYokohamaKanagawaJapan
| | - Yosuke Seto
- Division of Experimental Chemotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Ken Uchibori
- Division of Experimental Chemotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
- Department of Thoracic Medical Oncology, The Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Cakici O, Yilmaz OF. Does serum Gas6 level change in active uveitis? Ther Adv Ophthalmol 2025; 17:25158414251328558. [PMID: 40151682 PMCID: PMC11946291 DOI: 10.1177/25158414251328558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Purpose The aim of this study was to investigate serum Growth Arrest-Specific Protein 6 (Gas6) levels in the active and inactive periods of uveitis. Material and methods In this study, serum Gas6 levels were evaluated in 21 patients during active and inactive periods. After measuring serum Gas6 levels in the active phase, the serum Gas6 test was repeated in the inactive period. Commercial Enzyme-Linked Immunosorbent Assay (ELISA) kits (Gas6, WKEA Med Supplies Corporation, NY, USA) were used to measure Gas6 levels. Plasma concentrations were analyzed with an ELISA reader at 450 nm following the manufacturer's instructions. Results In the study, the mean age of 21 patients was 33 (7-62) years. The mean follow-up period was 30.05 ± 18.76 months. While the average Gas6 value measured during active uveitis attacks was 1.02 ± 0.39 ng/mL (range: 0.54-2.12), the Gas6 value during the passive period was 0.71 ± 0.23 ng/mL (range: 0.39-1.17). The Gas6 level during active uveitis attacks was significantly higher than during the passive period (p = 0.04). Conclusion The findings of this study suggest a notable elevation in serum Gas6 levels across all cases of active uveitis, irrespective of the underlying etiology, whether infectious or noninfectious. To successfully integrate serum Gas6 levels into the diagnostic and follow-up protocols for active uveitis, additional comprehensive investigations are imperative.
Collapse
Affiliation(s)
- Ozgur Cakici
- Medical Faculty Department of Ophthalmology, Istanbul Medeniyet University, Kadikoy, Istanbul 34700, Turkey
| | - Omer Faruk Yilmaz
- Department of Ophthalmology, Goztepe Prof. Dr. SüleymanYalçin City Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
Miao YR, Rankin EB, Giaccia AJ. Therapeutic targeting of the functionally elusive TAM receptor family. Nat Rev Drug Discov 2024; 23:201-217. [PMID: 38092952 PMCID: PMC11335090 DOI: 10.1038/s41573-023-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 03/07/2024]
Abstract
The TAM receptor family of TYRO3, AXL and MERTK regulates tissue and immune homeostasis. Aberrant TAM receptor signalling has been linked to a range of diseases, including cancer, fibrosis and viral infections. Specifically, the dysregulation of TAM receptors can enhance tumour growth and metastasis due to their involvement in multiple oncogenic pathways. For example, TAM receptors have been implicated in the epithelial-mesenchymal transition, maintaining the stem cell phenotype, immune modulation, proliferation, angiogenesis and resistance to conventional and targeted therapies. Therapeutically, multiple TAM receptor inhibitors are in preclinical and clinical development for cancers and other indications, with those targeting AXL being the most clinically advanced. Although there has been notable clinical advancement in recent years, challenges persist. This Review aims to provide both biological and clinical insights into the current therapeutic landscape of TAM receptor inhibitors, and evaluates their potential for the treatment of cancer and non-malignant diseases.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
4
|
Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019. Microorganisms 2023; 11:2038. [PMID: 37630598 PMCID: PMC10459962 DOI: 10.3390/microorganisms11082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The tyrosine kinase receptors of the TAM family-Tyro3, Axl and Mer-and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Alice Di Tizio
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Barbara Ruaro
- Pulmonology Department, University of Trieste, 34128 Trieste, Italy;
| | - Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Division of Internal Medicine, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
5
|
Crintea A, Dutu AG, Constantin AM, Fekete Z, Samasca G, Lupan I, Florian IA, Silaghi CN, Craciun AM. The First Evaluation of Serum Levels of MGP, Gas6 and EGFR after First Dose of Chemotherapy in Lung Cancer. BIOLOGY 2022; 11:biology11010082. [PMID: 35053080 PMCID: PMC8772821 DOI: 10.3390/biology11010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 01/16/2023]
Abstract
Simple Summary Serum levels of MGP, Gas6, vitamin K1, and EGFR were not significantly changed in response to the first cycle of chemotherapy. We found a strong correlation between MGP and VitK1 serum values, and a moderate negative correlation between VitK1 and EGFR in pre-treatment patients. The post-treatment value of EGFR is a strong independent factor that correlates positively with the Gas6 post-treatment values. Abstract Background: Vitamin K-dependent proteins (VKDPs) and the epidermal growth factor receptor (EGFR) are involved in lung cancer progression. Therefore, we aimed to study the serum concentration of Matrix Gla protein (MGP), Growth Arrest-specific 6 (Gas6), and EGFR before and after the first cycle of chemotherapy and to investigate how MGP, Gas6, and EGFR are modified after one cycle of chemotherapy. Methods: We performed an observational study on twenty patients diagnosed with lung cancer, by assessing the serum concentration of vitaminK1 (VitK1), MGP, Gas6, and EGFR using the ELISA technique before and after three weeks of the first cycle of chemotherapy. Patients were evaluated using RECIST 1.1 criteria. Results: Serum levels of MGP, Gas6, EGFR, and VK1 before and after treatment were not changed significantly. Regarding the pre-treatment correlation of the MGP values, we found a strong positive relationship between MGP and VK1 pre-treatment values (r = 0.821, 95%CI 0.523; 0.954, p < 0.001). Furthermore, there was a moderately negative correlation between VK1 and EGFR pre-treatment values, with the relationship between them being marginally significant (r = −0.430, 95%CI −0.772; 0.001, p = 0.058). Post-treatment, we found a strong positive relationship between MGP and VK1 post-treatment values (r = 0.758, 95%CI 0.436; 0.900, p < 0.001). We also found a moderate positive relationship between Gas6 and EGFR post-treatment values, but the correlation was only marginally significant (r = 0.442, p = 0.051).
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (C.N.S.); (A.M.C.)
| | - Alina Gabriela Dutu
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (C.N.S.); (A.M.C.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Correspondence: (A.-M.C.); (G.S.)
| | - Zsolt Fekete
- Zsolt Fekete, Department of Oncology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Correspondence: (A.-M.C.); (G.S.)
| | - Iulia Lupan
- Interdisciplinary Institute of BioNanoScience, 400006 Cluj-Napoca, Romania;
| | - Ioan Alexandru Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Ciprian Nicolae Silaghi
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (C.N.S.); (A.M.C.)
| | - Alexandra Marioara Craciun
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (C.N.S.); (A.M.C.)
| |
Collapse
|
6
|
Rajagopal S, Gupta A, Parveen R, Shukla N, Bhattacharya S, Naravula J, Kumar S A, Mathur P, Simlot A, Mehta S, Bihari C, Mehta S, Mishra AK, Nair BG, Medicherla KM, Reddy GB, Sreenivasulu N, Kishor PK, Suravajhala P. Vitamin K in human health and metabolism: A nutri-genomics review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Vitamin K Effects on Gas6 and Soluble Axl Receptors in Intensive Care Patients: An Observational Screening Study. Nutrients 2021; 13:nu13114101. [PMID: 34836355 PMCID: PMC8621311 DOI: 10.3390/nu13114101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Growth arrest-specific gene 6 protein (Gas6) is avitamin K-dependent tissue bound protein. Gas6 has been shown to promote growth and therapy resistance among different types of cancer as well as thromboembolism. The aim of this prospective screening study: ClinicalTrials.gov; Identifier: NTC3782025, was to evaluate the effects of intravenously administered vitamin K1 on Gas6 and its soluble (s)Axl receptor plasma levels in intensive care patients. Vitamin K1 was intravenously injected in non-warfarin treated patients with prolonged Owren prothrombin time international normalized ratio (PT-INR) > 1.2 and blood samples were retrieved before and 20-28 h after injection. Citrate plasma samples from 52 intensive care patients were analysed for different vitamin K dependent proteins. There was a significant, but small increase in median Gas6. Only one patient had a large increase in sAxl, but overall, no significant changes in sAxl Gas6 did not correlate to PT-INR, thrombin generation assay, coagulation factors II, VII, IX and X, but to protein S and decarboxylated matrix Gla protein (dp-ucMGP). In conclusion, there was a small increase in Gas6 over 20-28 h. The pathophysiology and clinical importance of this remains to be investigated. To verify a true vitamin K effect, improvement of Gas6 carboxylation defects needs to be studied.
Collapse
|
8
|
Khajebishak Y, Alivand M, Faghfouri AH, Moludi J, Payahoo L. The effects of vitamins and dietary pattern on epigenetic modification of non-communicable diseases. INT J VITAM NUTR RES 2021. [PMID: 34643416 DOI: 10.1024/0300-9831/a000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Non-communicable diseases (NCDs) have received more attention because of high prevalence and mortality rate. Besides genetic and environmental factors, the epigenetic abnormality is also involved in the pathogenesis of NCDs. Methylation of DNA, chromatin remodeling, modification of histone, and long non-coding RNAs are the main components of epigenetic phenomena. Methodology: In this review paper, the mechanistic role of vitamins and dietary patterns on epigenetic modification was discussed. All papers indexed in scientific databases, including PubMed, Scopus, Embase, Google Scholar, and Elsevier were searched during 2000 - 2021 using, vitamins, diet, epigenetic repression, histones, methylation, acetylation, and NCDs as keywords. Results: The components of healthy dietary patterns like Mediterranean and dietary approaches to stop hypertension diets have a beneficial effect on epigenetic hemostasis. Both quality and quantity of dietary components influence epigenetic phenomena. A diet with calorie deficiency in protein content and methyl-donor agents in a long time, with a high level of fat, disrupts epigenetic hemostasis and finally, causes genome instability. Also, soluble and insoluble vitamins have an obvious role in epigenetic modifications. Most vitamins interact directly with methylation, acetylation, and phosphorylation pathways of histone and DNA. However, numerous indirect functions related to the cell cycle stability and genome integrity have been recognized. Conclusion: Considering the crucial role of a healthy diet in epigenetic homeostasis, adherence to a healthy dietary pattern containing enough levels of vitamin and avoiding the western diet seems to be necessary. Having a healthy diet and consuming the recommended dietary level of vitamins can also contribute to epigenetic stability.
Collapse
Affiliation(s)
- Yaser Khajebishak
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalal Moludi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Laleh Payahoo
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
9
|
Zdżalik-Bielecka D, Poświata A, Kozik K, Jastrzębski K, Schink KO, Brewińska-Olchowik M, Piwocka K, Stenmark H, Miączyńska M. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci U S A 2021; 118:e2024596118. [PMID: 34244439 PMCID: PMC8285903 DOI: 10.1073/pnas.2024596118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| |
Collapse
|
10
|
Muñoz‐San Martín C, Pérez‐Ginés V, Torrente‐Rodríguez RM, Gamella M, Solís‐Fernández G, Montero‐Calle A, Pedrero M, Serafín V, Martínez‐Bosch N, Navarro P, García de Frutos P, Batlle M, Barderas R, Pingarrón JM, Campuzano S. Electrochemical immunosensing of Growth arrest‐specific 6 in human plasma and tumor cell secretomes. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Cristina Muñoz‐San Martín
- Departamento de Química Analítica, Facultad de CC. Químicas Universidad Complutense de Madrid Madrid Spain
| | - Víctor Pérez‐Ginés
- Departamento de Química Analítica, Facultad de CC. Químicas Universidad Complutense de Madrid Madrid Spain
| | | | - Maria Gamella
- Departamento de Química Analítica, Facultad de CC. Químicas Universidad Complutense de Madrid Madrid Spain
| | | | - Ana Montero‐Calle
- Chronic Disease Programme, UFIEC Carlos III Health Institute Majadahonda Madrid Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas Universidad Complutense de Madrid Madrid Spain
| | - Verónica Serafín
- Departamento de Química Analítica, Facultad de CC. Químicas Universidad Complutense de Madrid Madrid Spain
| | - Neus Martínez‐Bosch
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM) Unidad Asociada IIBB‐CSIC Barcelona Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM) Unidad Asociada IIBB‐CSIC Barcelona Spain
- Departamento de Muerte y Proliferación Celular Instituto de Investigaciones Biomédicas de Barcelona – Centro Superior de Investigaciones Científicas (IIBB‐CSIC) Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Catalonia Spain
| | - Pablo García de Frutos
- Departamento de Muerte y Proliferación Celular Instituto de Investigaciones Biomédicas de Barcelona – Centro Superior de Investigaciones Científicas (IIBB‐CSIC) Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Catalonia Spain
| | - Montserrat Batlle
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Catalonia Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardioVasculares (CIBERCV) Instituto de Carlos III Madrid Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC Carlos III Health Institute Majadahonda Madrid Spain
| | - José M. Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas Universidad Complutense de Madrid Madrid Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas Universidad Complutense de Madrid Madrid Spain
| |
Collapse
|
11
|
Bordoloi J, Ozah D, Bora T, Kalita J, Manna P. Gamma-glutamyl carboxylated Gas6 facilitates the prophylactic effect of vitamin K in inhibiting hyperlipidemia-associated inflammatory pathophysiology via arresting MCP-1/ICAM-1 mediated monocyte-hepatocyte adhesion. J Nutr Biochem 2021; 93:108635. [PMID: 33789149 DOI: 10.1016/j.jnutbio.2021.108635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/14/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022]
Abstract
Role of growth arrest-specific 6 (Gas6), member of vitamin K (VK)-dependent protein family in hyperlipidemia-associated inflammation remains unresolved. To address this, blood samples were collected from hyperlipidemic subjects and age-matched healthy controls and observed that gamma-glutamyl carboxylated Gas6 (Gla-Gas6) but not total Gas6 were significantly lower while pro-inflammatory markers, MCP-1 and ICAM-1 were remarkably higher in hyperlipidemic subjects compared to control. Correlation analyses demonstrated that Gla-Gas6 levels were inversely correlated with MCP-1 and ICAM-1 but positively with plasma VK in hyperlipidemic subjects but not in control. This suggests that boosting VK level might ameliorate the hyperlipidemia-associated inflammatory pathophysiology via augmenting Gla-Gas6. Further studies with high fat diet (HFD)-fed mice demonstrated that VK supplementation (1, 3, and 5 µg/kg BW, 8 weeks) dose-dependently reduced both hepatic and plasma levels of MCP-1 and ICAM-1 while elevating that of Gla-Gas6 but not total Gas6 in HFD-fed mice. Cell culture studies with gamma-glutamyl carboxylase (enzyme causes VK-dependent carboxylation of Gas6) knockdown hepatocytes and monocytes dissected the direct role of Gla-Gas6 in inhibiting high palmitic acid (0.75 mM)-induced inflammation via arresting MCP-1/ICAM-1 mediated hepatocyte-monocyte adhesion. The present study demonstrated an important role of Gla-Gas6 in facilitating the prophylactic effect of VK against hyperlipidemia associated inflammation.
Collapse
Affiliation(s)
- Jijnasa Bordoloi
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dibyajyoti Ozah
- Clinical Centre, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Thaneswar Bora
- Clinical Centre, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Jatin Kalita
- Research Planning and Business Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Prasenjit Manna
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
12
|
Zhang L, Richard AS, Jackson CB, Ojha A, Choe H. Phosphatidylethanolamine and Phosphatidylserine Synergize To Enhance GAS6/AXL-Mediated Virus Infection and Efferocytosis. J Virol 2020; 95:e02079-20. [PMID: 33115868 PMCID: PMC7944455 DOI: 10.1128/jvi.02079-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatidylserine (PS) receptors mediate clearance of apoptotic cells-efferocytosis-by recognizing the PS exposed on those cells. They also mediate the entry of enveloped viruses by binding PS in the virion membrane. Here, we show that phosphatidylethanolamine (PE) synergizes with PS to enhance PS receptor-mediated efferocytosis and virus entry. The presence of PE on the same surface as PS dramatically enhances recognition of PS by PS-binding proteins such as GAS6, PROS, and TIM1. Liposomes containing both PE and PS bound to GAS6 and were engulfed by AXL-expressing cells much more efficiently than those containing PS alone. Further, infection of AXL-expressing cells by infectious Zika virus or Ebola, Chikungunya, or eastern equine encephalitis pseudoviruses was inhibited with greater efficiency by the liposomes containing both PS and PE compared to a mixture of liposomes separately composed of PS and PE. These data demonstrate that simultaneous recognition of PE and PS maximizes PS receptor-mediated virus entry and efferocytosis and underscore the important contribution of PE in these major biological processes.IMPORTANCE Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are usually sequestered to the inner leaflet of the plasma membrane of the healthy eukaryotic cells. During apoptosis, these phospholipids move to the cell's outer leaflet where they are recognized by so-called PS receptors on surveilling phagocytes. Several pathogenic families of enveloped viruses hijack these PS receptors to gain entry into their target cells. Here, we show that efficiency of these processes is enhanced, namely, PE synergizes with PS to promote PS receptor-mediated virus infection and clearance of apoptotic cells. These findings deepen our understanding of how these fundamental biological processes are executed.
Collapse
Affiliation(s)
- Lizhou Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Audrey S Richard
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Cody B Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Amrita Ojha
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
13
|
Gas6/TAM Axis in Sepsis: Time to Consider Its Potential Role as a Therapeutic Target. DISEASE MARKERS 2019; 2019:6156493. [PMID: 31485279 PMCID: PMC6710761 DOI: 10.1155/2019/6156493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
Tyrosine kinase receptors are transmembrane proteins involved in cell signaling and interaction. Among them, the TAM family (composed by Tyro 3, Axl, and Mer) represents a peculiar subgroup with an important role in many physiological and pathological conditions. Despite different mechanisms of activation (e.g., protein S and Galactin-3), TAM action is tightly related to their common ligand, a protein named growth arrest-specific 6 (Gas6). Since the expression of both TAM and Gas6 is widely distributed among tissues, any alteration of one of these components can lead to different pathological conditions. Moreover, as they are indispensable for homeostasis maintenance, in recent years a growing interest has emerged regarding their role in the regulation of the inflammatory process. Due to this involvement, many authors have demonstrated the pivotal role of the Gas6/TAM axis in both sepsis and the sepsis-related inflammatory responses. In this narrative review, we highlight the current knowledge as well as the last discoveries on TAM and Gas6 implication in different clinical conditions, notably in sepsis and septic shock. Lastly, we underline not only the feasible use of Gas6 as a diagnostic and prognostic biomarker in certain systemic acute conditions but also its potential therapeutic role in these life-threatening diseases.
Collapse
|
14
|
Li M, Ye J, Zhao G, Hong G, Hu X, Cao K, Wu Y, Lu Z. Gas6 attenuates lipopolysaccharide‑induced TNF‑α expression and apoptosis in H9C2 cells through NF‑κB and MAPK inhibition via the Axl/PI3K/Akt pathway. Int J Mol Med 2019; 44:982-994. [PMID: 31524235 PMCID: PMC6657963 DOI: 10.3892/ijmm.2019.4275] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/10/2019] [Indexed: 11/06/2022] Open
Abstract
Therapeutic agents used to treat sepsis‑induced cardiac dysfunction are designed to suppress tumor necrosis factor (TNF)‑α release and inhibit cell apoptosis. Exogenous administration of growth arrest‑specific 6 (Gas6) exerts several biological and pharmacological effects; however, the role of Gas6 in sepsis‑induced myocardial dysfunction remains unclear. In this study, H9C2 cardiomyocytes were stimulated with LPS (10 µg/ml) to mimic septic cardiac dysfunction and Gas6 (100 ng/ml) was applied exogenously. Subsequently, mitogen‑activated protein kinase (MAPK) and nuclear factor (NF)‑κB activation, TNF‑α expression, and apoptosis in the presence or absence of TP‑0903 (15 nM) and Wortmannin (3 nM) were evaluated. The morphological alterations of H9C2 cells were visualized by phase‑contrast microscopy. Cell viability was determined using the Cell Counting kit 8 assay and lactate dehydrogenase release, and TNF‑α release was analyzed by ELISA analysis. Cell apoptosis was analyzed by flow cytometry and TUNEL assay. Nuclear morphological alterations were detected by Hoechst staining and caspase‑3 activity was measured using biochemical methods. The expression levels of Bax and Bcl‑2, and the phosphorylation and expression levels of Axl, Akt, IκB‑α, p65, c‑Jun N‑terminal protein kinase (JNK), extracellular signal‑regulated kinase (ERK) and p38 were determined by western blotting. Furthermore, immunofluorescence analysis was performed to visualize translocation of NF‑κB p65. The results demonstrated that Gas6 suppressed TNF‑α release and inhibited cell apoptosis, and attenuated nuclear factor (NF)‑κB and mitogen‑activated protein kinase (MAPK) activation via the Axl/PI3K/Akt pathway. Furthermore, the cardioprotective properties of Gas6 on the suppression of LPS‑induced TNF‑α release and apoptosis were abolished by treatment with TP‑0903 (an Axl inhibitor) and Wortmannin (a PI3K inhibitor). Pretreatment with TP‑0903 and Wortmannin abrogated the effects of Gas6 on phosphorylated‑IκB‑α, IκB‑α, NF‑κB, ERK1/2, JNK and p38 MAPK. These findings suggested that activation of Axl/PI3K/Akt signaling by Gas6 may inhibit LPS‑induced TNF‑α expression and apoptosis, as well as MAPK and NF‑κB activation.
Collapse
Affiliation(s)
- Mengfang Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jingjing Ye
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiyi Hu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kaiqiang Cao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - You Wu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
15
|
Pastore M, Grimaudo S, Pipitone RM, Lori G, Raggi C, Petta S, Marra F. Role of Myeloid-Epithelial-Reproductive Tyrosine Kinase and Macrophage Polarization in the Progression of Atherosclerotic Lesions Associated With Nonalcoholic Fatty Liver Disease. Front Pharmacol 2019; 10:604. [PMID: 31191323 PMCID: PMC6548874 DOI: 10.3389/fphar.2019.00604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Recent lines of evidence highlight the involvement of myeloid-epithelial-reproductive tyrosine kinase (MerTK) in metabolic disease associated with liver damage. MerTK is mainly expressed in anti-inflammatory M2 macrophages where it mediates transcriptional changes including suppression of proinflammatory cytokines and enhancement of inflammatory repressors. MerTK is regulated by metabolic pathways through nuclear sensors including LXRs, PPARs, and RXRs, in response to apoptotic bodies or to other sources of cholesterol. Nonalcoholic fatty liver disease (NAFLD) is one of the most serious public health problems worldwide. It is a clinicopathological syndrome closely related to obesity, insulin resistance, and oxidative stress. It includes a spectrum of conditions ranging from simple steatosis, characterized by hepatic fat accumulation with or without inflammation, to nonalcoholic steatohepatitis (NASH), defined by hepatic fat deposition with hepatocellular damage, inflammation, and accumulating fibrosis. Several studies support an association between NAFLD and the incidence of cardiovascular diseases including atherosclerosis, a major cause of death worldwide. This pathological condition consists in a chronic and progressive inflammatory process in the intimal layer of large- and medium-sized arteries. The complications of advanced atherosclerosis include chronic or acute ischemic damage in the tissue perfused by the affected artery, leading to cellular death. By identifying specific targets influencing lipid metabolism and cardiovascular-related diseases, the present review highlights the role of MerTK in NAFLD-associated atherosclerotic lesions as a potential innovative therapeutic target. Therapeutic advantages might derive from the use of compounds selective for nuclear receptors targeting PPARs rather than LXRs regulating macrophage lipid metabolism and macrophage mediated inflammation, by favoring the expression of MerTK, which mediates an immunoregulatory action with a reduction in inflammation and in atherosclerosis.
Collapse
Affiliation(s)
- Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Rosaria Maria Pipitone
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
16
|
Schnegg‐Kaufmann A, Calzavarini S, Limacher A, Mean M, Righini M, Staub D, Beer J, Frauchiger B, Osterwalder J, Kucher N, Matter CM, Husmann M, Banyai M, Aschwanden M, Mazzolai L, Hugli O, Nagler M, Daskalakis M, Rodondi N, Aujesky D, Angelillo‐Scherrer A. A high Gas6 level in plasma predicts venous thromboembolism recurrence, major bleeding and mortality in the elderly: a prospective multicenter cohort study. J Thromb Haemost 2019; 17:306-318. [PMID: 30570809 PMCID: PMC6850608 DOI: 10.1111/jth.14365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 12/29/2022]
Abstract
Essentials Predictive ability of pro-hemostatic Gas6 for recurrent venous thromboembolism (VTE) is unknown. We measured Gas6 levels in 864 patients with VTE over 3 years. High Gas6 (> 157%) at diagnosis is associated with VTE recurrence, major bleeding and mortality. Gas6 plasma levels measured 12 months after the index VTE are discriminatory for VTE recurrence. SUMMARY: Background Growth arrest-specific gene 6 (Gas6) is a prohemostatic protein with an unknown predictive ability for recurrent venous thromboembolism (VTE). In the elderly, VTE results in higher mortality but does not have a higher rate of recurrence than in younger patients. Consequently, anticoagulation management in the elderly is challenging. Objective To prospectively investigate the performance of Gas6 in predicting VTE recurrence, major bleeding and mortality in the elderly. Methods Consecutive patients aged ≥ 65 years with acute VTE were followed for a period of 3 years. Primary outcomes were symptomatic VTE recurrence, major bleeding, and mortality. Plasma Gas6 was measured with ELISA. Results Gas6 levels were measured in 864 patients at the time of the index VTE (T1) and, in 70% of them, also 12 months later (T2). The Gas6 level at T1 was discriminatory for VTE recurrence (C-statistic, 0.56; 95% confidence interval [CI] 0.51-0.62), major bleeding (0.60, 95% CI 0.55-0.65) and mortality (0.69, 95% CI 0.65-0.73) up to 36 months. VTE recurrence up to 24 months after T2 was discriminated by the Gas6 level at T2 (0.62, 95% CI 0.54-0.71). High Gas6 levels (> 157%) and continuous Gas6 levels at T1 were associated with VTE recurrence up to 6 months and 12 months, respectively. Conclusions In elderly patients, a high Gas6 level is associated with higher risks of VTE recurrence, major bleeding, and death. These findings support further studies to assess the performance of Gas6 in adjusting the length of anticoagulation.
Collapse
Affiliation(s)
- Annatina Schnegg‐Kaufmann
- Department of Hematology and Central Hematology Laboratory, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Sara Calzavarini
- Department of Hematology and Central Hematology Laboratory, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Andreas Limacher
- CTU Bern, and Institute of Social and Preventive Medicine (ISPM)University of BernBernSwitzerland
| | - Marie Mean
- Department of General Internal Medicine, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department of MedicineLausanne University HospitalLausanneSwitzerland
| | - Marc Righini
- Division of Angiology and HemostasisGeneva University HospitalGenevaSwitzerland
| | - Daniel Staub
- Division of AngiologyBasel University HospitalBaselSwitzerland
| | - Juerg‐Hans Beer
- Department of Internal MedicineCantonal Hospital of BadenBadenSwitzerland
| | - Beat Frauchiger
- Department of Internal MedicineCantonal Hospital of FrauenfeldFrauenfeldSwitzerland
| | | | - Nils Kucher
- University Clinic of AngiologyUniversity Hospital ZurichZurichSwitzerland
| | - Christian M. Matter
- Center for Molecular CardiologyUniversity of Zurich, and Clinic for CardiologyUniversity Heart CenterZurich University HospitalZurichSwitzerland
| | - Marc Husmann
- University Clinic of AngiologyUniversity Hospital ZurichZurichSwitzerland
| | - Martin Banyai
- Division of AngiologyCantonal Hospital of LucerneLucerneSwitzerland
| | | | - Lucia Mazzolai
- Service of AngiologyLausanne University HospitalLausanneSwitzerland
| | - Oliver Hugli
- Emergency DepartmentLausanne University HospitalLausanneSwitzerland
| | - Michael Nagler
- Department of Hematology and Central Hematology Laboratory, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Michael Daskalakis
- Department of Hematology and Central Hematology Laboratory, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Nicolas Rodondi
- Department of General Internal Medicine, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Institute of Primary Health Care (BIHAM)University of BernBernSwitzerland
| | - Drahomir Aujesky
- Department of General Internal Medicine, InselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Anne Angelillo‐Scherrer
- Department of Hematology and Central Hematology Laboratory, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| |
Collapse
|
17
|
Law LA, Graham DK, Di Paola J, Branchford BR. GAS6/TAM Pathway Signaling in Hemostasis and Thrombosis. Front Med (Lausanne) 2018; 5:137. [PMID: 29868590 PMCID: PMC5954114 DOI: 10.3389/fmed.2018.00137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
Abstract
The GAS6/TYRO3-AXL-MERTK (TAM) signaling pathway is essential for full and sustained platelet activation, as well as thrombus stabilization. Inhibition of this pathway decreases platelet aggregation, shape change, clot retraction, aggregate formation under flow conditions, and surface expression of activation markers. Transgenic mice deficient in GAS6, or any of the TAM family of receptors that engage this ligand, exhibit in vivo protection against arterial and venous thrombosis but do not demonstrate either spontaneous or prolonged bleeding compared to their wild-type counterparts. Comparable results are observed in wild-type mice treated with pharmacological inhibitors of the GAS6-TAM pathway. Thus, GAS6/TAM inhibition offers an attractive novel therapeutic option that may allow for a moderate reduction in platelet activation and decreased thrombosis while still permitting the primary hemostatic function of platelet plug formation.
Collapse
Affiliation(s)
- Luke A Law
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, United States
| | - Douglas K Graham
- Section of Hematology/Oncology, Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Jorge Di Paola
- Section of Hematology/Oncology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.,University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, United States
| | - Brian R Branchford
- Section of Hematology/Oncology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.,University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, United States
| |
Collapse
|
18
|
Popov Aleksandrov A, Mirkov I, Ninkov M, Mileusnic D, Demenesku J, Subota V, Kataranovski D, Kataranovski M. Effects of warfarin on biological processes other than haemostasis: A review. Food Chem Toxicol 2018; 113:19-32. [PMID: 29353071 DOI: 10.1016/j.fct.2018.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
Warfarin is the world's most widely used anticoagulant drug. Its anticoagulant activity is based on the inhibition of the vitamin K-dependent (VKD) step in the complete synthesis of a number of blood coagulation factors that are required for normal blood coagulation. Warfarin also affects synthesis of VKD proteins not related to haemostasis including those involved in bone growth and vascular calcification. Antithrombotic activity of warfarin is considered responsible for some aspects of its anti-tumour activity of warfarin. Some aspects of activities against tumours seem not to be related to haemostasis and included effects of warfarin on non-haemostatic VKD proteins as well as those not related to VKD proteins. Inflammatory/immunomodulatory effects of warfarin indicate much broader potential of action of this drug both in physiological and pathological processes. This review provides an overview of the published data dealing with the effects of warfarin on biological processes other than haemostasis.
Collapse
Affiliation(s)
- Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Marina Ninkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Dina Mileusnic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Jelena Demenesku
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Vesna Subota
- Institute for Medical Biochemistry, Military Medical Academy, 17 Crnotravska, 11000 Belgrade, Serbia
| | - Dragan Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; Institute of Zoology, Faculty of Biology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia.
| |
Collapse
|
19
|
Gas6 derived from cancer-associated fibroblasts promotes migration of Axl-expressing lung cancer cells during chemotherapy. Sci Rep 2017; 7:10613. [PMID: 28878389 PMCID: PMC5587707 DOI: 10.1038/s41598-017-10873-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Alterations to the tumor stromal microenvironment induced by chemotherapy could influence the behavior of cancer cells. In the tumor stromal microenvironment, cancer-associated fibroblasts (CAFs) play an important role. Because the receptor tyrosine kinase Axl and its ligand Gas6 could be involved in promoting non-small cell lung cancer (NSCLC), we investigated the role of Gas6 secreted by CAFs during chemotherapy in NSCLC. In a murine model, we found that Gas6 expression by CAFs was upregulated following cisplatin treatment. Gas6 expression might be influenced by intratumoral hypoperfusion during chemotherapy, and it increased after serum starvation in a human lung CAF line, LCAFhTERT. Gas6 is associated with LCAFhTERT cell growth. Recombinant Gas6 promoted H1299 migration, and conditioned medium (CM) from LCAFhTERT cells activated Axl in H1299 cells and promoted migration. Silencing Gas6 in LCAFhTERT reduced the Axl activation and H1299 cell migration induced by CM from LCAFhTERT. In clinical samples, stromal Gas6 expression increased after chemotherapy. Five-year disease-free survival rates for patients with tumor Axl- and stromal Gas6-positive tumors (n = 37) was significantly worse than for the double negative group (n = 12) (21.9% vs 51.3%, p = 0.04). Based on these findings, it is presumed that Gas6 derived from CAFs promotes migration of Axl-expressing lung cancer cells during chemotherapy and is involved in poor clinical outcome.
Collapse
|
20
|
Phenotypic screening identifies Axl kinase as a negative regulator of an alveolar epithelial cell phenotype. J Transl Med 2017; 97:1047-1062. [PMID: 28553934 DOI: 10.1038/labinvest.2017.52] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Loss of epithelial barrier integrity is implicated in a number of human lung diseases. However, the molecular pathways underlying this process are poorly understood. In a phenotypic screen, we identified Axl kinase as a negative regulator of epithelial phenotype and function. Furthermore, suppression of Axl activity by a small molecule kinase inhibitor or downregulation of Axl expression by small interfering RNA led to: (1) the increase in epithelial surfactant protein expression; (2) a cell morphology transition from front-rear polarity to cuboidal shape; (3) the cytoskeletal re-organization resulting in decreased cell mobility; and (4) the acquisition of epithelial junctions. Loss of Axl activity reduced activation of the Axl canonical pathway members, Akt and extracellular signal-regulated kinase-1/2 and resulted in the loss of gene expression of a unique profile of epithelial-to-mesenchymal transition transcription factors including SNAI2, HOXA5, TBX2 or TBX3. Finally, we observed that Axl was activated in hyperplasia of epithelial cells in idiopathic pulmonary fibrosis where epithelial barrier integrity was lost. These results suggest that the Axl kinase signaling pathway is associated with the loss integrity of alveolar epithelium in pathological remodeling of human lung diseases.
Collapse
|
21
|
Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis. Proc Natl Acad Sci U S A 2017; 114:8800-8805. [PMID: 28768810 DOI: 10.1073/pnas.1705365114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein S (ProS) and growth arrest-specific 6 (Gas6) bind to phosphatidylserine (PtdSer) and induce efferocytosis upon binding TAM-family receptors (Tyro3, Axl, and Mer). Here, we produced mouse ProS, Gas6, and TAM-receptor extracellular region fused to IgG fragment crystallizable region in HEK293T cells. ProS and Gas6 bound Ca2+ dependently to PtdSer (Kd 20-40 nM), Mer, and Tyro3 (Kd 15-50 nM). Gas6 bound Axl strongly (Kd < 1.0 nM), but ProS did not bind Axl. Using NIH 3T3-based cell lines expressing a single TAM receptor, we showed that TAM-mediated efferocytosis was determined by the receptor-binding ability of ProS and Gas6. Tim4 is a membrane protein that strongly binds PtdSer. Tim4 alone did not support efferocytosis, but enhanced TAM-dependent efferocytosis. Resident peritoneal macrophages, Kupffer cells, and CD169+ skin macrophages required Tim4 for TAM-stimulated efferocytosis, whereas efferocytosis by thioglycollate-elicited peritoneal macrophages or primary cultured microglia was TAM dependent, but not Tim4 dependent. These results indicate that TAM and Tim4 collaborate for efficient efferocytosis in certain macrophage populations.
Collapse
|
22
|
Cagman Z, Bingol Ozakpinar O, Cirakli Z, Gedikbasi A, Ay P, Colantonio D, Uras AR, Adeli K, Uras F. Reference intervals for growth arrest-specific 6 protein in adults. Scand J Clin Lab Invest 2017; 77:109-114. [PMID: 28150505 DOI: 10.1080/00365513.2016.1275768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/16/2016] [Indexed: 02/08/2023]
Abstract
The objective of this study was to establish reference intervals for growth arrest-specific 6 (GAS6), a vitamin K-dependent protein, in human adult plasma according to the Guideline of Clinical and Laboratory Standards Institute (CLSI) C28-A3. Blood samples were collected from 308 healthy volunteers aged 18-72 (157 female, 151 male). A non-parametric approach was used to calculate the reference interval. The plasma GAS6 reference interval was determined, with 90% confidence interval: the lower limit (2.5 percentile) was 2.5 (1.9-3.1) μg/L and the upper limit (97.5 percentile) = 18.8 (18.0-22.3) μg/L. Harris-Boyd's test did not suggest partitioning by age or gender: medians for males [7.8 (5.8-10.7) μg/L] and females [9.9 (7.1-13.5) μg/L]. Three age-subgroups were tested: 18-29 years (n = 168); 30-44 years (n = 73); 45-72 years (n = 67). The intra- and inter-assay variations were 12.6% (mean, 5.2 ± 0.7 μg/L) and 14.0% (mean, 9.2 ± 1.3 μg/L), respectively. The mean recovery was 104%. This study reports plasma GAS6 reference intervals established first according to the guideline of CLSI C28-A3.
Collapse
Affiliation(s)
- Zeynep Cagman
- a Marmara University School of Pharmacy , Department of Biochemistry , Istanbul , Turkey
| | - Ozlem Bingol Ozakpinar
- a Marmara University School of Pharmacy , Department of Biochemistry , Istanbul , Turkey
| | - Zeynep Cirakli
- b Department of Biochemistry , Bakirkoy Dr. Sadi Konuk Training and Research Hospital , Istanbul , Turkey
| | - Asuman Gedikbasi
- b Department of Biochemistry , Bakirkoy Dr. Sadi Konuk Training and Research Hospital , Istanbul , Turkey
| | - Pinar Ay
- c Marmara University School of Medicine, Department of Public Health , Istanbul , Turkey
| | - David Colantonio
- d Clinical Biochemistry, Department of Paediatric Laboratory Medicine , The Hospital for Sick Children, University of Toronto , Toronto , ON , Canada
| | - Ahmet Riza Uras
- e Department of Biochemistry , Haydarpasa Numune Training and Research Hospital , Istanbul , Turkey
| | - Khosrow Adeli
- d Clinical Biochemistry, Department of Paediatric Laboratory Medicine , The Hospital for Sick Children, University of Toronto , Toronto , ON , Canada
| | - Fikriye Uras
- a Marmara University School of Pharmacy , Department of Biochemistry , Istanbul , Turkey
| |
Collapse
|
23
|
AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc Natl Acad Sci U S A 2017; 114:2024-2029. [PMID: 28167751 DOI: 10.1073/pnas.1620558114] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although a causal relationship between Zika virus (ZIKV) and microcephaly has been established, it remains unclear why ZIKV, but not other pathogenic flaviviruses, causes congenital defects. Here we show that when viruses are produced in mammalian cells, ZIKV, but not the closely related dengue virus (DENV) or West Nile virus (WNV), can efficiently infect key placental barrier cells that directly contact the fetal bloodstream. We show that AXL, a receptor tyrosine kinase, is the primary ZIKV entry cofactor on human umbilical vein endothelial cells (HUVECs), and that ZIKV uses AXL with much greater efficiency than does DENV or WNV. Consistent with this observation, only ZIKV, but not WNV or DENV, bound the AXL ligand Gas6. In comparison, when DENV and WNV were produced in insect cells, they also infected HUVECs in an AXL-dependent manner. Our data suggest that ZIKV, when produced from mammalian cells, infects fetal endothelial cells much more efficiently than other pathogenic flaviviruses because it binds Gas6 more avidly, which in turn facilitates its interaction with AXL.
Collapse
|
24
|
Uehara S, Fukuzawa Y, Matuyama T, Gotoh K. Role of Tyro3, Axl, and Mer Receptors and Their Ligands (Gas6, and Protein S) in Patients with Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jct.2017.82010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Davra V, Kimani SG, Calianese D, Birge RB. Ligand Activation of TAM Family Receptors-Implications for Tumor Biology and Therapeutic Response. Cancers (Basel) 2016; 8:cancers8120107. [PMID: 27916840 PMCID: PMC5187505 DOI: 10.3390/cancers8120107] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/16/2016] [Accepted: 11/26/2016] [Indexed: 12/21/2022] Open
Abstract
The TAM family of receptors (i.e., Tyro3, Axl, and Mertk), and their ligands Growth arrest specific factor 6 (Gas6) and Protein S (Pros1) contribute to several oncogenic processes, such as cell survival, invasion, migration, chemo-resistance, and metastasis, whereby expression often correlates with poor clinical outcomes. In recent years, there has been great interest in the study of TAM receptors in cancer, stemming both from their roles as oncogenic signaling receptors, as well as their roles in tumor immunology. As a result, several classes of TAM inhibitors that include small molecule tyrosine kinase inhibitors, monoclonal antibodies, decoy receptors, as well as novel strategies to target TAM ligands are being developed. This paper will review the biology of TAM receptors and their ligands with a focus on cancer, as well as evidence-based data for the continued pursuit of TAM/Gas6 inhibitors in clinical practice.
Collapse
Affiliation(s)
- Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - Stanley G Kimani
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
26
|
Studer RA, Opperdoes FR, Nicolaes GAF, Mulder AB, Mulder R. Understanding the functional difference between growth arrest-specific protein 6 and protein S: an evolutionary approach. Open Biol 2015; 4:rsob.140121. [PMID: 25339693 PMCID: PMC4221892 DOI: 10.1098/rsob.140121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although protein S (PROS1) and growth arrest-specific protein 6 (GAS6) proteins are homologous with a high degree of structural similarity, they are functionally different. The objectives of this study were to identify the evolutionary origins from which these functional differences arose. Bioinformatics methods were used to estimate the evolutionary divergence time and to detect the amino acid residues under functional divergence between GAS6 and PROS1. The properties of these residues were analysed in the light of their three-dimensional structures, such as their stability effects, the identification of electrostatic patches and the identification potential protein-protein interaction. The divergence between GAS6 and PROS1 probably occurred during the whole-genome duplications in vertebrates. A total of 78 amino acid sites were identified to be under functional divergence. One of these sites, Asn463, is involved in N-glycosylation in GAS6, but is mutated in PROS1, preventing this post-translational modification. Sites experiencing functional divergence tend to express a greater diversity of stabilizing/destabilizing effects than sites that do not experience such functional divergence. Three electrostatic patches in the LG1/LG2 domains were found to differ between GAS6 and PROS1. Finally, a surface responsible for protein-protein interactions was identified. These results may help researchers to analyse disease-causing mutations in the light of evolutionary and structural constraints, and link genetic pathology to clinical phenotypes.
Collapse
Affiliation(s)
- Romain A Studer
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fred R Opperdoes
- Laboratory of Biochemistry, de Duve Institute and Université catholique de Louvain, Brussels 1200, Belgium
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - André B Mulder
- Department of Laboratory Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - René Mulder
- Department of Laboratory Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Abstract
BACKGROUND Morbidities related to atherosclerosis, such as acute coronary syndrome (ACS), remain the leading cause of mortality. Axl is a receptor tyrosine kinase that is expressed in mammalian vascular and immune cells. Axl signaling is involved in the regulation of the inflammatory response. A considerable amount of evidence indicates that inflammation is responsible for the development of atherosclerosis in patients with ACS. METHODS To assess the relation of Axl and ACS, we recruited 64 patients with coronary heart disease: 34 with ACS, 30 with stable coronary heart disease, and 24 apparently healthy controls. Serum concentrations of soluble Axl (sAxl) were quantified by enzyme-linked immunosorbent assay. High-sensitivity C-reactive protein, tumor necrosis factor alpha, troponin I, and other routine biochemical markers were also measured. RESULTS The levels of sAxl were significantly higher in patients with ACS than in the controls (P=0.005). Furthermore, correlation analysis indicated that sAxl was significantly associated with serum levels of high-sensitivity C-reactive protein (r=0.283, P=0.008), tumor necrosis factor alpha (r=0.565, P<0.001), and troponin I (r=0.264, P=0.013). Logistic regression analysis (odds ratio=1.038, 95% confidence interval, 1.008-1.069, P=0.012) indicated a significant association between sAxl and ACS. CONCLUSIONS Serum levels of sAxl correlate to inflammatory biochemical markers. These findings demonstrate for the first time that sAxl does have a role in ACS, presumably connected to the inflammation.
Collapse
|
28
|
Uras F, Küçük B, Bingöl Özakpınar Ö, Demir AM. Growth Arrest-Specific 6 (Gas6) and TAM Receptors in Mouse Platelets. Turk J Haematol 2015; 32:58-63. [PMID: 25805676 PMCID: PMC4439908 DOI: 10.4274/tjh.2013.0097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/24/2013] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Growth arrest-specific 6 (Gas6) is a newly discovered vitamin K-dependent protein, which is a ligand for TAM receptors [Tyro3 (Sky), Axl, and Mer] from the tyrosine kinase family. Gas6 knockout mice were resistant to venous and arterial thrombosis. There are contradictory reports on the presence of Gas6 and its receptors in mouse platelets. The objective of this study was to investigate whether Gas6 and its receptors were present in mouse platelets or not. MATERIALS AND METHODS Specific pathogen-free BALB/c male and female mice of 8-10 weeks old and 25-30 g in weight were anesthetized under light ether anesthesia and blood samples were taken from their hearts. RNAs were isolated from isolated platelets, and then mRNAs encoding Gas6 and TAM receptors were detected by reverse transcription-polymerase chain reaction (RT-PCR). Protein concentrations of Gas6 and TAM receptors in platelets were measured by ELISA, but not those of Mer, because of the absence of any commercial ELISA kit for mouse specimens. RESULTS RT-PCR results indicated the presence of mRNAs encoding Gas6 and Mer in mouse platelets. However, although RT-PCR reactions were performed at various temperatures and cycles, we could not detect the presence of mRNAs encoding Axl and Tyro3 (Sky). Receptor protein levels of Axl and Tyro3 were below the detection limits of the ELISA method. CONCLUSION We found the presence of mRNAs encoding Gas6 and the receptor Mer in mouse platelets, but not Axl and Tyro3. Gas6, Axl, and Tyro3 protein levels were below the detection limits of the ELISA. The presence of mRNA is not obvious evidence of protein expression in platelets that have no nucleus or DNA. Further studies are required to clarify the presence of Gas6/TAM receptors in platelets using real-time PCR and more sensitive immunological methods, and future studies on mechanisms will indicate whether the Gas6/TAM pathway is a strategy for treatment of disorders.
Collapse
Affiliation(s)
- Fikriye Uras
- Marmara University Faculty of Pharmacy, Department of Biochemistry, İstanbul, Turkey. E-mail:
| | | | | | | |
Collapse
|
29
|
Hung YJ, Lee CH, Shieh YS, Hsiao FC, Lin FH, Hsieh CH. Plasma growth arrest-specific protein 6 levels in premenopausal and postmenopausal women: the role of endogenous estrogen. Endocrine 2014; 47:923-9. [PMID: 24676757 DOI: 10.1007/s12020-014-0234-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/01/2014] [Indexed: 11/24/2022]
Abstract
Growth arrest-specific 6 (Gas6) is a vitamin K-dependent protein that interacts with receptor tyrosine kinases of the Tyro-3, AXL, Mer (TAM) family. The Gas6/TAM system contributes to the regulation of cell survival and proliferation, cell adhesion and migration, and inflammatory cytokines release. Plasma Gas6 plays an important role in the inflammatory process, and is involved in diverse human diseases. Few studies have investigated gender-specific variations in plasma Gas6 concentration. Hence, the aim of this study was to determine whether plasma Gas6 levels are associated with sex hormones in premenopausal and postmenopausal women. A total of 103 premenopausal and 135 postmenopausal women were recruited. Plasma Gas6 concentration, estradiol (E2), and sex hormone-binding globulin were assayed. The free estrogen index (FEI) was calculated. The results showed significantly lower Gas6 levels in the postmenopausal compared to the premenopausal women (P < 0.005). Plasma Gas6 levels were positively correlated with E2 levels in the pre- and postmenopausal women (r = 0.359, P < 0.001 and r = 0.261, P = 0.002, respectively). Gas6 levels were also correlated with FEI in the pre- and postmenopausal women (r = 0.234, P = 0.017 and r = 0.188, P = 0.029, respectively). After adjusting for confounders, the correlations still remained significant. In multiple stepwise regression analysis, only E2 in premenopausal and both age and E2 in postmenopausal women were independently correlated with the plasma Gas6 levels (all P < 0.001). These results suggest that plasma Gas6 is associated with sex hormones in both pre- and postmenopausal women, indicating a potential role of sex hormones in the Gas6/TAM system.
Collapse
Affiliation(s)
- Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Sec 2, Cheng-Gong Rd, Nei-Hu, Taipei, Taiwan,
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Collapse
|
31
|
Kim HA, Nam JY, Jung JY, Bae CB, An JM, Jeon JY, Kim BS, Suh CH. Serum growth arrest-specific protein 6 levels are elevated in adult-onset Still's disease. Clin Rheumatol 2014; 33:865-8. [PMID: 24770797 DOI: 10.1007/s10067-014-2629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
We investigated the growth arrest-specific protein 6 in adult-onset Still's disease. Serums were collected from 52 adult-onset Still's disease patients with follow-up samples of 21 patients. The growth arrest-specific protein 6 levels in adult-onset Still's disease were higher compared to those in the normal controls (25.37±7.71 vs. 19.86±5.01 ng/mL, p<0.001). However, growth arrest-specific protein 6 did not correlate with disease activity. Also, growth arrest-specific protein 6 was not decreased after activity was resolved in the follow-up. The growth arrest-specific protein 6 in adult-onset Still's disease patients were higher than the normal controls. However, growth arrest-specific protein 6 was not correlated with disease activity.
Collapse
Affiliation(s)
- Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, San 5, Wonchon-dong, Yeongtong-gu, Suwon, 443-721, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Abstract
TAM receptors (Tyro3, Axl, and Mer) belong to a family of receptor tyrosine kinases that have important effects on hemostasis and inflammation. Also, they affect cell proliferation, survival, adhesion, and migration. TAM receptors can be activated by the vitamin K–dependent proteins Gas6 and protein S. Protein S is more commonly known as an important cofactor for protein C as well as a direct inhibitor of multiple coagulation factors. To our knowledge, the functions of Gas6 are limited to TAM receptor activation. When activated, the TAM receptors have effects on primary hemostasis and coagulation and display an anti-inflammatory or a proinflammatory effect, depending on cell type. To comprehend the effects that the TAM receptors and their ligands have on hemostasis and inflammation, we compare studies that report the different phenotypes displayed by mice with deficiencies in the genes of this receptor family and its ligands (protein S+/−, Gas6−/−, TAM−/−, and variations of these). In this manner, we aim to display which features are attributable to the different ligands. Because of the effects TAM receptors have on hemostasis, inflammation, and cancer growth, their modulation could make interesting therapeutic targets in thromboembolic disease, atherosclerosis, sepsis, autoimmune disease, and cancer.
Collapse
|
33
|
Chen SC, Ko JL, Yang SF, Tsai MY, Tsai HT, Tang CH, Wang PH. Increased concentrations of plasma growth arrest-specific 6 and its soluble tyrosine kinase receptor sAxl in Taiwanese women with pelvic inflammatory disease. Clin Chim Acta 2013; 426:85-90. [PMID: 24045047 DOI: 10.1016/j.cca.2013.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/18/2013] [Accepted: 09/09/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUNDS To investigate the concentrations of plasma growth arrest-specific protein 6 (Gas6) and its soluble tyrosine kinase receptor sAxl in women with pelvic inflammatory disease (PID) and their association with clinical outcomes of PID. METHODS Blood specimens were consecutively collected from the 64 patients with PID before and after treatment and 70 healthy women in university hospital. Concentrations of plasma Gas6 and sAxl were detected using enzyme-linked immunosorbent assay. RESULTS The concentration of plasma Gas6 and sAxl was significantly increased in the patients with PID compared to the healthy controls, and then reduced significantly after treatment. Gas6 was significantly correlated with sAxl. When we selected 7.5 and 15.2 ng/ml as the cutoff concentration of plasma Gas6 and sAxl to detect PID respectively, the sensitivities of Gas6 and sAxl were 76.6% and 75.0%. When Gas6 and sAxl were combined, the sensitivity rose to 92.2%. They were not related to the incidences of tuboovarian abscesses and surgery, which were, however, significantly associated with length of hospital stay. CONCLUSIONS Novel application of Gas6 or sAxl in combination had a high sensitivity to detect PID and is important in order to prevent severe sequelae.
Collapse
Affiliation(s)
- Shiuan-Chih Chen
- Institute of Medicine, Chung Shan Medical University, 110, Section 1, Chien-Kuo North Road, Taichung 40201, Taiwan; School of Medicine, Chung Shan Medical University, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, 110, Section 1, Chien-Kuo North Road, Taichung 40201, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
MERTK is a receptor tyrosine kinase of the TAM (Tyro3, Axl, MERTK) family, with a defined spectrum of normal expression. However, MERTK is overexpressed or ectopically expressed in a wide variety of cancers, including leukemia, non-small cell lung cancer, glioblastoma, melanoma, prostate cancer, breast cancer, colon cancer, gastric cancer, pituitary adenomas, and rhabdomyosarcomas, potentially resulting in the activation of several canonical oncogenic signaling pathways. These include the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, as well as regulation of signal transducer and activator of transcription family members, migration-associated proteins including the focal adhesion kinase and myosin light chain 2, and prosurvival proteins such as survivin and Bcl-2. Each has been implicated in MERTK physiologic and oncogenic functions. In neoplastic cells, these signaling events result in functional phenotypes such as decreased apoptosis, increased migration, chemoresistance, increased colony formation, and increased tumor formation in murine models. Conversely, MERTK inhibition by genetic or pharmacologic means can reverse these pro-oncogenic phenotypes. Multiple therapeutic approaches to MERTK inhibition are currently in development, including ligand "traps", a monoclonal antibody, and small-molecule tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Christopher T. Cummings
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah DeRyckere
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Departments of Medicine and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas K. Graham
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Corresponding Author: Douglas K. Graham, Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Mail Stop 8302, 12800 East 19th Avenue, P18-4400, Aurora, CO 80045 USA.
| |
Collapse
|
35
|
Recarte-Pelz P, Tàssies D, Espinosa G, Hurtado B, Sala N, Cervera R, Reverter JC, de Frutos PG. Vitamin K-dependent proteins GAS6 and Protein S and TAM receptors in patients of systemic lupus erythematosus: correlation with common genetic variants and disease activity. Arthritis Res Ther 2013; 15:R41. [PMID: 23497733 PMCID: PMC3672795 DOI: 10.1186/ar4199] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/11/2013] [Indexed: 12/11/2022] Open
Abstract
Introduction Growth arrest-specific gene 6 protein (GAS6) and protein S (ProS) are vitamin K-dependent proteins present in plasma with important regulatory functions in systems of response and repair to damage. They interact with receptor tyrosine kinases of the Tyro3, Axl and MerTK receptor tyrosine kinase (TAM) family, involved in apoptotic cell clearance (efferocytosis) and regulation of the innate immunity. TAM-deficient mice show spontaneous lupus-like symptoms. Here we tested the genetic profile and plasma levels of components of the system in patients with systemic lupus erythematosus (SLE), and compare them with a control healthy population. Methods Fifty SLE patients and 50 healthy controls with matched age, gender and from the same geographic area were compared. Genetic analysis was performed in GAS6 and the TAM receptor genes on SNPs previously identified. The concentrations of GAS6, total and free ProS, and the soluble forms of the three TAM receptors (sAxl, sMerTK and sTyro3) were measured in plasma from these samples. Results Plasma concentrations of GAS6 were higher and, total and free ProS were lower in the SLE patients compared to controls, even when patients on oral anticoagulant treatment were discarded. Those parameters correlated with SLE disease activity index (SLEDAI) score, GAS6 being higher in the most severe cases, while free and total ProS were lower. All 3 soluble receptors increased its concentration in plasma of lupus patients. Conclusions The present study highlights that the GAS6/ProS-TAM system correlates in several ways with disease activity in SLE. We show here that this correlation is affected by common polymorphisms in the genes of the system. These findings underscore the importance of mechanism of regulatory control of innate immunity in the pathology of SLE.
Collapse
|
36
|
Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia. Blood Cancer J 2013; 3:e101. [PMID: 23353780 PMCID: PMC3556576 DOI: 10.1038/bcj.2012.46] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities.
Collapse
|
37
|
|
38
|
Losonczy G, Vajas A, Takács L, Dzsudzsák E, Fekete A, Márhoffer E, Kardos L, Ajzner E, Hurtado B, de Frutos PG, Berta A, Balogh I. Effect of the Gas6 c.834+7G>A polymorphism and the interaction of known risk factors on AMD pathogenesis in Hungarian patients. PLoS One 2012; 7:e50181. [PMID: 23209669 PMCID: PMC3510257 DOI: 10.1371/journal.pone.0050181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/22/2012] [Indexed: 11/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly in the developed world. Numerous genetic factors contribute to the development of the multifactorial disease. We performed a case-control study to assess the risk conferred by known and candidate genetic polymorphisms on the development of AMD. We searched for genetic interactions and for differences in dry and wet AMD etiology. We enrolled 213 patients with exudative, 67 patients with dry AMD and 106 age and ethnically matched controls. Altogether 12 polymorphisms in Apolipoprotein E, complement factor H, complement factor I, complement component 3, blood coagulation factor XIII, HTRA1, LOC387715, Gas6 and MerTK genes were tested. No association was found between either the exudative or the dry form and the polymorphisms in the Apolipoprotein E, complement factor I, FXIII and MerTK genes. Gas6 c.834+7G>A polymorphism was found to be significantly protective irrespective of other genotypes, reducing the odds of wet type AMD by a half (OR = 0.50, 95%CI: 0.26–0.97, p = 0.04). Multiple regression models revealed an interesting genetic interaction in the dry AMD subgroup. In the absence of C3 risk allele, mutant genotypes of both CFH and HTRA1 behaved as strongly significant risk factors (OR = 7.96, 95%CI: 2.39 = 26.50, p = 0.0007, and OR = 36.02, 95%CI: 3.30–393.02, p = 0.0033, respectively), but reduced to neutrality otherwise. The risk allele of C3 was observed to carry a significant risk in the simultaneous absence of homozygous CFH and HTRA1 polymorphisms only, in which case it was associated with a near-five-fold relative increase in the odds of dry type AMD (OR = 4.93, 95%CI: 1.98–12.25, p = 0.0006). Our results suggest a protective role of Gas6 c.834+7G>A polymorphism in exudative AMD development. In addition, novel genetic interactions were revealed between CFH, HTRA1 and C3 polymorphisms that might contribute to the pathogenesis of dry AMD.
Collapse
Affiliation(s)
- Gergely Losonczy
- Department of Ophthalmology, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vascular Gas6 contributes to thrombogenesis and promotes tissue factor up-regulation after vessel injury in mice. Blood 2012; 121:692-9. [PMID: 23149844 DOI: 10.1182/blood-2012-05-433730] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Gas6 (growth-arrest specific gene 6) plays a role in thrombus stabilization. Gas6 null (-/-) mice are protected from lethal venous and arterial thromboembolism through platelet signaling defects induced only by 5 μM ADP and 10 μM of the thromboxane analog, U46619. This subtle platelet defect, despite a dramatic clinical phenotype, raises the possibility that Gas6 from a source other than platelets contributes to thrombus formation. Thus, we hypothesize that Gas6 derived from the vascular wall plays a role in venous thrombus formation. Bone marrow transplantation and platelet depletion/reconstitution experiments generating mice with selective ablations of Gas6 from either the hematopoietic or nonhematopoietic compartments demonstrate an approximately equal contribution by Gas6 from both compartments to thrombus formation. Tissue factor expression was significantly reduced in the vascular wall of Gas6(-/-) mice compared with WT. In vitro, thrombin-induced tissue factor expression was reduced in Gas6(-/-) endothelial cells compared with wild-type endothelium. Taken together, these results demonstrate that vascular Gas6 contributes to thrombus formation in vivo and can be explained by the ability of Gas6 to promote tissue factor expression and activity. These findings support the notion that vascular wall-derived Gas6 may play a pathophysiologic role in venous thromboembolism.
Collapse
|
40
|
The vitamin K-dependent anticoagulant factor, protein S, inhibits multiple VEGF-A-induced angiogenesis events in a Mer- and SHP2-dependent manner. Blood 2012; 120:5073-83. [PMID: 23065156 DOI: 10.1182/blood-2012-05-429183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein S is a vitamin K-dependent glycoprotein, which, besides its anticoagulant function, acts as an agonist for the tyrosine kinase receptors Tyro3, Axl, and Mer. The endothelium expresses Tyro3, Axl, and Mer and produces protein S. The interaction of protein S with endothelial cells and particularly its effects on angiogenesis have not yet been analyzed. Here we show that human protein S, at circulating concentrations, inhibited vascular endothelial growth factor (VEGF) receptor 2-dependent vascularization of Matrigel plugs in vivo and the capacity of endothelial cells to form capillary-like networks in vitro as well as VEGF-A-induced endothelial migration and proliferation. Furthermore, protein S inhibited VEGF-A-induced endothelial VEGFR2 phosphorylation and activation of mitogen-activated kinase-Erk1/2 and Akt. Protein S activated the tyrosine phosphatase SHP2, and the SHP2 inhibitor NSC 87877 reversed the observed inhibition of VEGF-A-induced endothelial proliferation. Using siRNA directed against Tyro3, Axl, and Mer, we demonstrate that protein S-mediated SHP2 activation and inhibition of VEGF-A-stimulated proliferation were mediated by Mer. Our report provides the first evidence for the existence of a protein S/Mer/SHP2 axis, which inhibits VEGFR2 signaling, regulates endothelial function, and points to a role for protein S as an endogenous angiogenesis inhibitor.
Collapse
|
41
|
Serum growth arrest-specific protein 6 levels are a reliable biomarker of disease activity in systemic lupus erythematosus. J Clin Immunol 2012; 33:143-50. [PMID: 22914895 DOI: 10.1007/s10875-012-9765-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/09/2012] [Indexed: 01/09/2023]
Abstract
PURPOSE Growth arrest-specific protein 6 (Gas6) has been suggested to be a biomarker of disease activity in patients with systemic lupus erthematosus (SLE). We investigated the clinical significance of this protein in Korean SLE. METHODS Blood samples were collected from 150 SLE patients and 50 normal controls (NC). In addition, follow-up samples were collected from 50 SLE patients. RESULTS Serum Gas6 levels of SLE patients (43.01 ± 28.02 ng/mL) were higher than those of NC (20.15 ± 9.23 ng/mL, p<0.001). When evaluated sensitivity and specificity of the Gas6 for diagnosing SLE using ROC curves, the sensitivity and specificity were 72.7 % and 84 % with a cut-off value of 25.3 ng/mL. In the ROC analysis of Gas6, anti-dsDNA antibody, ESR, complement 3 and complement 4 to identify patients with active lupus, area under the curve (AUC) of Gas6 was highest with 0.763. Serum Gas6 levels were significantly higher in the patients with serositis (70.04 ± 30.85 ng/mL) and renal disorder (65.66 ± 32.28 ng/mL) compared to those without (41.88 ± 27.44 ng/mL, p=0.033, 40.3 ± 26.33 ng/mL, p=0.001, respectively). Gas6 levels were correlated positively with anti-dsDNA antibody (r=0.199, p=0.015), ESR (r=0.204, p=0.013) and SLEDAI (r=0.512, p<0.001). In addition, serum Gas6 levels were correlated negatively with hemoglobin (r= -0.165, p=0.043), lymphocyte count (r= -0.165, p=0.043), complement 3 (r= -0.343, p<0.001) and complement 4 (r= -0.316, p<0.001). Furthermore, change in serum Gas6 levels was correlated with change in SLEDAI levels in the SLE patients that were followed up (r=0.524, p<0.001). CONCLUSION These results suggest that serum Gas6 can be a reliable clinical marker for monitoring disease activity and treatment response in SLE.
Collapse
|
42
|
Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene 2012; 32:3420-31. [PMID: 22890323 PMCID: PMC3502700 DOI: 10.1038/onc.2012.355] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/22/2012] [Accepted: 06/30/2012] [Indexed: 01/01/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and devastating disease that claims more lives than breast, prostate, colon, and pancreatic cancers combined. Current research suggests that standard chemotherapy regimens have been optimized to maximal efficiency. Promising new treatment strategies involve novel agents targeting molecular aberrations present in subsets of NSCLC. We evaluated 88 human NSCLC tumors of diverse histology and identified Mer and Axl as receptor tyrosine kinases (RTKs) overexpressed in 69% and 93%, respectively, of tumors relative to surrounding normal lung tissue. Mer and Axl were also frequently overexpressed and activated in NSCLC cell lines. Ligand-dependent Mer or Axl activation stimulated MAPK, AKT, and FAK signaling pathways indicating roles for these RTKs in multiple oncogenic processes. In addition, we identified a novel pro-survival pathway—involving AKT, CREB, Bcl-xL, survivin, and Bcl-2—downstream of Mer, which is differentially modulated by Axl signaling. We demonstrated that shRNA knockdown of Mer or Axl significantly reduced NSCLC colony formation and growth of subcutaneous xenografts in nude mice. Mer or Axl knockdown also improved in vitro NSCLC sensitivity to chemotherapeutic agents by promoting apoptosis. When comparing the effects of Mer and Axl knockdown, Mer inhibition exhibited more complete blockade of tumor growth while Axl knockdown more robustly improved chemosensitivity. These results indicate that Mer and Axl play complementary and overlapping roles in NSCLC and suggest that treatment strategies targeting both RTKs may be more effective than singly-targeted agents. Our findings validate Mer and Axl as potential therapeutic targets in NSCLC and provide justification for development of novel therapeutic compounds that selectively inhibit Mer and/or Axl.
Collapse
|
43
|
Laurance S, Lemarié CA, Blostein MD. Growth arrest-specific gene 6 (gas6) and vascular hemostasis. Adv Nutr 2012; 3:196-203. [PMID: 22516727 PMCID: PMC3648720 DOI: 10.3945/an.111.001826] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gas6 (growth arrest-specific 6) belongs structurally to the family of plasma vitamin K-dependent proteins. Gas6 has a high structural homology with the natural anticoagulant protein S, sharing the same modular composition. Interestingly, despite the presence of a γ-carboxyglutamic acid domain in its structure, no role in the coagulation cascade has been identified for gas6. Gas6 has been shown to be involved in vascular homeostasis and more precisely is involved in proliferation, apoptosis, efferocytosis, leukocyte migration, and sequestration and platelet aggregation. It is also involved in the activation of different cell types, from platelets to endothelial and vascular smooth muscle cells. Thus, it has been shown to play a role in several pathophysiological processes such as atherosclerosis, cancer, and thrombosis. Interestingly, studies using gas6 null mice highlighted that gas6 may represent a novel potential target for anticoagulant therapy, because these animals are protected from lethal venous thromboembolism without excessive bleeding. However, the mechanism in thrombus occurrence remains to be further explored. In the present review, we will focus on the role of gas6 in innate immunity, atherosclerosis, thrombosis, and cancer-related events.
Collapse
Affiliation(s)
| | | | - Mark D. Blostein
- Lady Davis Institute for Medical Research, and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Prolonged exposure to a Mer ligand in leukemia: Gas6 favors expression of a partial Mer glycoform and reveals a novel role for Mer in the nucleus. PLoS One 2012; 7:e31635. [PMID: 22363695 PMCID: PMC3282750 DOI: 10.1371/journal.pone.0031635] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/10/2012] [Indexed: 12/28/2022] Open
Abstract
Mer tyrosine kinase is ectopically expressed in acute lymphoblastic leukemia and associated with enhanced chemoresistance and disease progression. While such effects are generally ascribed to increased engagement of oncogenic pathways downstream of Mer stimulation by its ligand, Gas6, Mer has not been characterized beyond the scope of its signaling activity. The present study explores Mer behavior following prolonged exposure to Gas6, a context similar to the Gas6-enriched microenvironment of the bone marrow, where a steady supply of ligand facilitates continuous engagement of Mer and likely sustains the presence of leukemic cells. Long-term Gas6 exposure induced production of a partially N-glycosylated form of Mer from newly synthesized stores of protein. Preferential expression of the partial Mer glycoform was associated with diminished levels of Mer on the cell surface and altered Mer localization within the nuclear-soluble and chromatin-bound fractions. The presence of Mer in the nucleus is a novel finding for this receptor, and the glycoform-specific preferences observed in each nuclear compartment suggest that glycosylation may influence Mer function within particular subcellular locales. Previous studies have established Mer as an attractive cancer biologic target, and understanding the complexity of its activity has important implications for potential strategies of Mer inhibition in leukemia therapy. Our results identify several novel features of Mer that expand the breadth of its functions and impact the development of therapeutic modalities designed to target Mer.
Collapse
|
45
|
Abstract
Axl is a receptor tyrosine kinase that was originally cloned from cancer cells. Axl belongs to the TAM (Tyro3, Axl and Mertk) family of receptor tyrosine kinases. Gas6 (growth-arrest-specific protein 6) is a ligand for Axl. Activation of Axl protects cells from apoptosis, and increases migration, aggregation and growth through multiple downstream pathways. Up-regulation of the Gas6/Axl pathway is more evident in pathological conditions compared with normal physiology. Recent advances in Axl receptor biology are summarized in the present review. The emphasis is given to translational aspects of Axl-dependent signalling under pathological conditions. In particular, inhibition of Axl reduces tumorigenesis and prevents metastasis as well. Axl-dependent signals are important for the progression of cardiovascular diseases. In contrast, deficiency of Axl in innate immune cells contributes to the pathogenesis of autoimmune disorders. Current challenges in Axl biology are related to the functional interactions of Axl with other members of the TAM family or other tyrosine kinases, mechanisms of ligand-independent activation, inactivation of the receptor and cell-cell interactions (with respect to immune cells) in chronic diseases.
Collapse
|
46
|
Lee CH, Chu NF, Shieh YS, Hung YJ. The growth arrest-specific 6 (Gas6) gene polymorphism c.834+7G>A is associated with type 2 diabetes. Diabetes Res Clin Pract 2012; 95:201-6. [PMID: 21959217 DOI: 10.1016/j.diabres.2011.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/06/2011] [Accepted: 09/12/2011] [Indexed: 01/03/2023]
Abstract
AIMS The plasma protein growth arrest-specific 6 (Gas6) is important to the inflammatory process and involved in the development of diabetic renal and vascular complications. Recently, Gas6 protein also represents a novel independent risk factor of type 2 diabetes. We further investigated the association of c.843+7G>A Gas6 polymorphism and type 2 diabetes. METHODS A total of 278 adults, including 96 with normal glucose tolerance (NGT), 82 with impaired glucose tolerance (IGT), and 100 with type 2 diabetes were recruited. All subjects were genotyped for c.843+7G>A Gas6 polymorphism. RESULTS Plasma Gas6 concentrations were significantly lower among patients with type 2 diabetes compared to subjects with IGT and NGT. Subjects with Gas6 c.843+7AA genotype had higher Gas6 levels and lower glucose values than GG genotype. The AA genotype and A allele were less frequent in patients with type 2 diabetes compared with NGT subjects. In univariate analysis, the AA genotype was found to be associated with a decreased risk for type 2 diabetes. Moreover, the association was even stronger after adjustment for established diabetes risk factors. CONCLUSIONS The Gas6 c.843+7AA genotype and A allele are less prevalent in type 2 diabetes, which may have a protective role for type 2 diabetes.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
47
|
Png KJ, Halberg N, Yoshida M, Tavazoie SF. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 2011; 481:190-4. [PMID: 22170610 DOI: 10.1038/nature10661] [Citation(s) in RCA: 423] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
Metastatic progression of cancer is a complex and clinically daunting process. We previously identified a set of human microRNAs (miRNAs) that robustly suppress breast cancer metastasis to lung and bone and which display expression levels that predict human metastasis. Although these findings revealed miRNAs as suppressors of cell-autonomous metastatic phenotypes, the roles of non-coding RNAs in non-cell-autonomous cancer progression processes remain unknown. Here we reveal that endogenous miR-126, an miRNA silenced in a variety of common human cancers, non-cell-autonomously regulates endothelial cell recruitment to metastatic breast cancer cells, in vitro and in vivo. It suppresses metastatic endothelial recruitment, metastatic angiogenesis and metastatic colonization through coordinate targeting of IGFBP2, PITPNC1 and MERTK--novel pro-angiogenic genes and biomarkers of human metastasis. Insulin-like growth factor binding protein 2 (IGFBP2) secreted by metastatic cells recruits endothelia by modulating IGF1-mediated activation of the IGF type-I receptor on endothelial cells; whereas c-Mer tyrosine kinase (MERTK) receptor cleaved from metastatic cells promotes endothelial recruitment by competitively antagonizing the binding of its ligand GAS6 to endothelial MERTK receptors. Co-injection of endothelial cells with breast cancer cells non-cell-autonomously rescues their miR-126-induced metastatic defect, revealing a novel and important role for endothelial interactions in metastatic initiation. Through loss-of-function and epistasis experiments, we delineate an miRNA regulatory network's individual components as novel and cell-extrinsic regulators of endothelial recruitment, angiogenesis and metastatic colonization. We also identify the IGFBP2/IGF1/IGF1R and GAS6/MERTK signalling pathways as regulators of cancer-mediated endothelial recruitment. Our work further reveals endothelial recruitment and endothelial interactions in the tumour microenvironment to be critical features of metastatic breast cancer.
Collapse
Affiliation(s)
- Kim J Png
- Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | |
Collapse
|
48
|
Clauser S, Meilhac O, Bièche I, Raynal P, Bruneval P, Michel JB, Borgel D. Increased secretion of Gas6 by smooth muscle cells in human atherosclerotic carotid plaques. Thromb Haemost 2011; 107:140-9. [PMID: 22072012 DOI: 10.1160/th11-05-0368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/04/2011] [Indexed: 12/14/2022]
Abstract
Vitamin K-dependent protein Gas6 (growth-arrest specific gene 6) plays a role in vascular smooth muscle cell (VSMC) survival and migration, as well as in endothelium and leukocyte activation, and could therefore be involved in atherosclerosis. However, the study of mouse models has led to contradictory results regarding the pro- or anti-atherogenic properties of Gas6, and relatively few data are available in human pathophysiology. To better understand the implication of Gas6 in human atherosclerosis, we studied Gas6 expression and secretion in vitro in human VSMC, and analysed the effect of Gas6 on inflammatory gene expression in these cells. We show that Gas6 secretion in VSMC is strongly induced by the anti-inflammatory cytokine transforming growth factor (TGF)β, and that VSMC stimulation by recombinant Gas6 decreases the expression of inflammatory genes tumour necrosis factor (TNF)α and intracellular adhesion molecule (ICAM)-1. The study of Gas6 expression in human carotid endarterectomy samples revealed that Gas6 is mainly expressed by VSMC at all stages of human atherosclerosis, but is not detected in normal vessel wall. Analysis of plaque secretomes showed that Gas6 secretion is markedly higher in non-complicated plaques than in complicated plaques, and that TGFβ secretion pattern mirrors that of Gas6. We conclude that Gas6 is secreted in human atherosclerotic plaques by VSMC following stimulation by TGFβ, and that Gas6 secretion decreases with plaque complication. Therefore, we propose that Gas6 acts as a protective factor, in part by reducing the pro-inflammatory phenotype of VSMC.
Collapse
|
49
|
Blostein MD, Rajotte I, Rao DP, Holcroft CA, Kahn SR. Elevated plasma gas6 levels are associated with venous thromboembolic disease. J Thromb Thrombolysis 2011; 32:272-8. [DOI: 10.1007/s11239-011-0597-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Ekman C, Jönsen A, Sturfelt G, Bengtsson AA, Dahlbäck B. Plasma concentrations of Gas6 and sAxl correlate with disease activity in systemic lupus erythematosus. Rheumatology (Oxford) 2011; 50:1064-9. [PMID: 21278074 PMCID: PMC3093930 DOI: 10.1093/rheumatology/keq459] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES SLE is a systemic autoimmune disease with an annual incidence of 3.8 per 100,000. Several pathogenic mechanisms are believed to be operating in SLE, including an impaired clearance of apoptotic cells, activation of the type I IFN pathway and generation of autoimmune leucocytes. Growth arrest-specific protein 6 (Gas6) and its receptor Axl are known to regulate inflammation and may be implicated in lupus pathogenesis. We have recently developed immunological methods to quantify the vitamin-K-dependent protein Gas6 and its soluble receptor sAxl in human plasma, which we have used to investigate the role of Gas6 and soluble Axl in SLE. METHODS We have investigated the relation between the plasma concentrations of Gas6 and sAxl and disease activity and specific symptoms in 96 SLE patients. RESULTS Gas6 and sAxl concentrations correlated with SLEDAI (r = 0.48, P < 0.001 and r = 0.39, P < 0.001, respectively). Furthermore, concentrations of Gas6 and sAxl correlated with ESR and CRP and inversely with haemoglobin levels. Gas6 and sAxl concentrations were significantly higher in patients with anti-DNA antibodies, leucopenia and GN. CONCLUSION The plasma concentrations of Gas6 and sAxl vary with disease activity in SLE, in particular GN, and may have a role in lupus pathogenesis. Furthermore, Gas6 and sAxl may be of use as biomarkers of disease activity.
Collapse
Affiliation(s)
- Carl Ekman
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö and and Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Andreas Jönsen
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö and and Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Gunnar Sturfelt
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö and and Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders A. Bengtsson
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö and and Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Björn Dahlbäck
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö and and Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|