1
|
Beth Payne L, Tewari BP, Dunkenberger L, Bond S, Savelli A, Darden J, Zhao H, Willi C, Kanodia R, Gude R, Powell MD, Oestreich KJ, Sontheimer H, Dal-Pra S, Chappell JC. Pericyte Progenitor Coupling to the Emerging Endothelium During Vasculogenesis via Connexin 43. Arterioscler Thromb Vasc Biol 2022; 42:e96-e114. [PMID: 35139658 PMCID: PMC8957572 DOI: 10.1161/atvbaha.121.317324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Vascular pericytes stabilize blood vessels and contribute to their maturation, while playing other key roles in microvascular function. Nevertheless, relatively little is known about involvement of their precursors in the earliest stages of vascular development, specifically during vasculogenesis. METHODS We combined high-power, time-lapse imaging with transcriptional profiling of emerging pericytes and endothelial cells in reporter mouse and cell lines. We also analyzed conditional transgenic animals deficient in Cx43/Gja1 (connexin 43/gap junction alpha-1) expression within Ng2+ cells. RESULTS A subset of Ng2-DsRed+ cells, likely pericyte/mural cell precursors, arose alongside endothelial cell differentiation and organization and physically engaged vasculogenic endothelium in vivo and in vitro. We found no overlap between this population of differentiating pericyte/mural progenitors and other lineages including hemangiogenic and neuronal/glial cell types. We also observed cell-cell coupling and identified Cx43-based gap junctions contributing to pericyte-endothelial cell precursor communication during vascular assembly. Genetic loss of Cx43/Gja1 in Ng2+ pericyte progenitors compromised embryonic blood vessel formation in a subset of animals, while surviving mutants displayed little-to-no vessel abnormalities, suggesting a resilience to Cx43/Gja1 loss in Ng2+ cells or potential compensation by additional connexin isoforms. CONCLUSIONS Together, our data suggest that a distinct pericyte lineage emerges alongside vasculogenesis and directly communicates with the nascent endothelium via Cx43 during early vessel formation. Cx43/Gja1 loss in pericyte/mural cell progenitors can induce embryonic vessel dysmorphogenesis, but alternate connexin isoforms may be able to compensate. These data provide insight that may reshape the current framework of vascular development and may also inform tissue revascularization/vascularization strategies.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Bhanu P. Tewari
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903, USA
| | - Logan Dunkenberger
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Samantha Bond
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Alyssa Savelli
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Jordan Darden
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Huaning Zhao
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Caroline Willi
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Ronak Kanodia
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Rosalie Gude
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Michael D. Powell
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903, USA
| | - Sophie Dal-Pra
- Division of Cardiovascular Medicine and Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - John C. Chappell
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Eltanahy AM, Koluib YA, Gonzales A. Pericytes: Intrinsic Transportation Engineers of the CNS Microcirculation. Front Physiol 2021; 12:719701. [PMID: 34497540 PMCID: PMC8421025 DOI: 10.3389/fphys.2021.719701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pericytes in the brain are candidate regulators of microcirculatory blood flow because they are strategically positioned along the microvasculature, contain contractile proteins, respond rapidly to neuronal activation, and synchronize microvascular dynamics and neurovascular coupling within the capillary network. Analyses of mice with defects in pericyte generation demonstrate that pericytes are necessary for the formation of the blood-brain barrier, development of the glymphatic system, immune homeostasis, and white matter function. The development, identity, specialization, and progeny of different subtypes of pericytes, however, remain unclear. Pericytes perform brain-wide 'transportation engineering' functions in the capillary network, instructing, integrating, and coordinating signals within the cellular communicome in the neurovascular unit to efficiently distribute oxygen and nutrients ('goods and services') throughout the microvasculature ('transportation grid'). In this review, we identify emerging challenges in pericyte biology and shed light on potential pericyte-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed M. Eltanahy
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Yara A. Koluib
- Tanta University Hospitals, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Albert Gonzales
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
3
|
Yang D, Zhang M, Liu K. Tissue engineering to treat pelvic organ prolapse. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2118-2143. [PMID: 34313549 DOI: 10.1080/09205063.2021.1958184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Pelvic organ prolapse (POP) is a frequent chronic illness, which seriously affects women's living quality. In recent years, tissue engineering has made superior progress in POP treatment, and biological scaffolds have received considerable attention. Nevertheless, pelvic floor reconstruction still faces severe challenges, including the construction of ideal scaffolds, the selection of optimal seed cells, and growth factors. This paper summarizes the recent progress of pelvic floor reconstruction in tissue engineering, and discusses the problems that need to be further considered and solved to provide references for the further development of this field.
Collapse
Affiliation(s)
- Deyu Yang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Min Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| |
Collapse
|
4
|
Schaub T, Gürgen D, Maus D, Lange C, Tarabykin V, Dragun D, Hegner B. mTORC1 and mTORC2 Differentially Regulate Cell Fate Programs to Coordinate Osteoblastic Differentiation in Mesenchymal Stromal Cells. Sci Rep 2019; 9:20071. [PMID: 31882658 PMCID: PMC6934532 DOI: 10.1038/s41598-019-56237-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Vascular regeneration depends on intact function of progenitors of vascular smooth muscle cells such as pericytes and their circulating counterparts, mesenchymal stromal cells (MSC). Deregulated MSC differentiation and maladaptive cell fate programs associated with age and metabolic diseases may exacerbate arteriosclerosis due to excessive transformation to osteoblast-like calcifying cells. Targeting mTOR, a central controller of differentiation and cell fates, could offer novel therapeutic perspectives. In a cell culture model for osteoblastic differentiation of pluripotent human MSC we found distinct roles for mTORC1 and mTORC2 in the regulation of differentiation towards calcifying osteoblasts via cell fate programs in a temporally-controlled sequence. Activation of mTORC1 with induction of cellular senescence and apoptosis were hallmarks of transition to a calcifying phenotype. Inhibition of mTORC1 with Rapamycin elicited reciprocal activation of mTORC2, enhanced autophagy and recruited anti-apoptotic signals, conferring protection from calcification. Pharmacologic and genetic negative interference with mTORC2 function or autophagy both abolished regenerative programs but induced cellular senescence, apoptosis, and calcification. Overexpression of the mTORC2 constituent rictor revealed that enhanced mTORC2 signaling without altered mTORC1 function was sufficient to inhibit calcification. Studies in mice reproduced the in vitro effects of mTOR modulation with Rapamycin on cell fates in vascular cells in vivo. Amplification of mTORC2 signaling promotes protective cell fates including autophagy to counteract osteoblast differentiation and calcification of MSC, representing a novel mTORC2 function. Regenerative approaches aimed at modulating mTOR network activation patterns hold promise for delaying age-related vascular diseases and treatment of accelerated arteriosclerosis in chronic metabolic conditions.
Collapse
Affiliation(s)
- Theres Schaub
- Clinic for Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dennis Gürgen
- Clinic for Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité University Hospital, Berlin, Germany
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Deborah Maus
- Clinic for Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Junior Research Group 2: Metabolism of Microbial Pathogens, Robert Koch Institute, Berlin, Germany
| | - Claudia Lange
- Clinic for Stem Cell Transplantation, Department of Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Duska Dragun
- Clinic for Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Center for Cardiovascular Research (CCR), Charité University Hospital, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| | - Björn Hegner
- Clinic for Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité University Hospital, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
- Vivantes Ida Wolff Hospital for Geriatric Medicine, Berlin, Germany
| |
Collapse
|
5
|
Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 2019; 26:e12520. [PMID: 30548558 PMCID: PMC6561846 DOI: 10.1111/micc.12520] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Microvascular networks play key roles in oxygen transport and nutrient delivery to meet the varied and dynamic metabolic needs of different tissues throughout the body, and their spatial architectures of interconnected blood vessel segments are highly complex. Moreover, functional adaptations of the microcirculation enabled by structural adaptations in microvascular network architecture are required for development, wound healing, and often invoked in disease conditions, including the top eight causes of death in the Unites States. Effective characterization of microvascular network architectures is not only limited by the available techniques to visualize microvessels but also reliant on the available quantitative metrics that accurately delineate between spatial patterns in altered networks. In this review, we survey models used for studying the microvasculature, methods to label and image microvessels, and the metrics and software packages used to quantify microvascular networks. These programs have provided researchers with invaluable tools, yet we estimate that they have collectively attained low adoption rates, possibly due to limitations with basic validation, segmentation performance, and nonstandard sets of quantification metrics. To address these existing constraints, we discuss opportunities to improve effectiveness, rigor, and reproducibility of microvascular network quantification to better serve the current and future needs of microvascular research.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Corbin Mathews
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Richard Doty
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Gustavo Rohde
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Shayn M. Peirce
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| |
Collapse
|
6
|
Roostalu U, Wong JK. Arterial smooth muscle dynamics in development and repair. Dev Biol 2018; 435:109-121. [PMID: 29397877 DOI: 10.1016/j.ydbio.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Arterial vasculature distributes blood from early embryonic development and provides a nutrient highway to maintain tissue viability. Atherosclerosis, peripheral artery diseases, stroke and aortic aneurysm represent the most frequent causes of death and are all directly related to abnormalities in the function of arteries. Vascular intervention techniques have been established for the treatment of all of these pathologies, yet arterial surgery can itself lead to biological changes in which uncontrolled arterial wall cell proliferation leads to restricted blood flow. In this review we describe the intricate cellular composition of arteries, demonstrating how a variety of distinct cell types in the vascular walls regulate the function of arteries. We provide an overview of the developmental origin of arteries and perivascular cells and focus on cellular dynamics in arterial repair. We summarize the current knowledge of the molecular signaling pathways that regulate vascular smooth muscle differentiation in the embryo and in arterial injury response. Our review aims to highlight the similarities as well as differences between cellular and molecular mechanisms that control arterial development and repair.
Collapse
Affiliation(s)
- Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.
| | - Jason Kf Wong
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK; Department of Plastic Surgery, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK.
| |
Collapse
|
7
|
Buettner F, Pratanwanich N, McCarthy DJ, Marioni JC, Stegle O. f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol 2017; 18:212. [PMID: 29115968 PMCID: PMC5674756 DOI: 10.1186/s13059-017-1334-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/29/2017] [Indexed: 11/10/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) allows studying heterogeneity in gene expression in large cell populations. Such heterogeneity can arise due to technical or biological factors, making decomposing sources of variation difficult. We here describe f-scLVM (factorial single-cell latent variable model), a method based on factor analysis that uses pathway annotations to guide the inference of interpretable factors underpinning the heterogeneity. Our model jointly estimates the relevance of individual factors, refines gene set annotations, and infers factors without annotation. In applications to multiple scRNA-seq datasets, we find that f-scLVM robustly decomposes scRNA-seq datasets into interpretable components, thereby facilitating the identification of novel subpopulations.
Collapse
Affiliation(s)
- Florian Buettner
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Current address: Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.
| | - Naruemon Pratanwanich
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Davis J McCarthy
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria, 3065, Australia
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Cancer Research UK Cambridge Institute, Cambridge, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
8
|
Xu J, Gong T, Heng BC, Zhang CF. A systematic review: differentiation of stem cells into functional pericytes. FASEB J 2017; 31:1775-1786. [PMID: 28119398 DOI: 10.1096/fj.201600951rrr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
Pericytes are an integral cellular component of vascular structures. Numerous studies have investigated various stem cell types as potential sources of pericytes for application in cell-based therapy. The diverse stem cell types and variable experimental protocols of these studies make it imperative to evaluate the relevant scientific literature on the basis of a unified standard. The purpose of this systematic review is to rigorously evaluate the relevant scientific literature for conclusive evidence that stem cells can differentiate into functional pericytes. An online literature search was conducted up to July 2016. Eligible papers were evaluated on 4 pertinent criteria: 1) appropriate controls, 2) markers to confirm pericyte phenotype, 3) techniques for assessing pericyte functionality, and 4) differentiation efficiency of the protocol. Our search yielded 20 eligible studies (from 2006 to 2016), 12 of which were published in the past 5 yr. Of these 20 articles, only 1 had positive control, and 5 papers evaluated differentiation efficiency. The most commonly used pericyte markers were neuron-glial antigen 2, platelet-derived growth factor receptor-β, and α-smooth muscle actin. Three articles were associated with adipose stem cells, 4 with mesenchymal stem cells, and 7 with pluripotent stem cells, whereas the remaining 6 articles were based on other miscellaneous stem cell types. Stem cells can serve as a potential source of pericytes, but there should be standardized guidelines in future studies for assessing pericyte differentiation.-Xu, J., Gong, T., Heng, B. C., Zhang, C. F. A systematic review: differentiation of stem cells into functional pericytes.
Collapse
Affiliation(s)
- Jianguang Xu
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Ting Gong
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Boon Chin Heng
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Cheng Fei Zhang
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and .,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Pearce WJ, Doan C, Carreon D, Kim D, Durrant LM, Manaenko A, McCoy L, Obenaus A, Zhang JH, Tang J. Imatinib attenuates cerebrovascular injury and phenotypic transformation after intracerebral hemorrhage in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1093-R1104. [PMID: 27707720 DOI: 10.1152/ajpregu.00240.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/27/2022]
Abstract
This study explored the hypothesis that intracerebral hemorrhage (ICH) promotes release of diffusible factors that can significantly influence the structure and function of cerebral arteries remote from the site of injury, through action on platelet-derived growth factor (PDGF) receptors. Four groups of adult male Sprague-Dawley rats were studied (n = 8 each): 1) sham; 2) sham + 60 mg/kg ip imatinib; 3) ICH (collagenase method); and 4) ICH + 60 mg/kg ip imatinib given 60 min after injury. At 24 h after injury, sham artery passive diameters (+3 mM EGTA) averaged 244 ± 7 µm (at 60 mmHg). ICH significantly increased passive diameters up to 6.4% and decreased compliance up to 42.5%. For both pressure- and potassium-induced contractions, ICH decreased calcium mobilization up to 26.2% and increased myofilament calcium sensitivity up to 48.4%. ICH reduced confocal colocalization of smooth muscle α-actin (αActin) with nonmuscle myosin heavy chain (MHC) and increased its colocalization with smooth muscle MHC, suggesting that ICH promoted contractile differentiation. ICH also enhanced colocalization of myosin light chain kinase (MLCK) with both αActin and regulatory 20-kDa myosin light chain. All effects of ICH on passive diameter, compliance, contractility, and contractile protein colocalization were significantly reduced or absent in arteries from animals treated with imatinib. These findings support the hypothesis that ICH promotes release into the cerebrospinal fluid of vasoactive factors that can diffuse to and promote activation of cerebrovascular PDGF receptors, thereby altering the structure, contractile protein organization, contractility, and smooth muscle phenotype of cerebral arteries remote from the site of hemorrhage.
Collapse
Affiliation(s)
- William J Pearce
- Department of Physiology and Department of Pharmacology, Loma Linda University School of Medicine, Loma Linda, California; .,Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Coleen Doan
- Department of Physiology and Department of Pharmacology, Loma Linda University School of Medicine, Loma Linda, California.,Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Desirelys Carreon
- Department of Physiology and Department of Pharmacology, Loma Linda University School of Medicine, Loma Linda, California.,Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Dahlim Kim
- Department of Physiology and Department of Pharmacology, Loma Linda University School of Medicine, Loma Linda, California.,Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Lara M Durrant
- Department of Physiology and Department of Pharmacology, Loma Linda University School of Medicine, Loma Linda, California.,Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Anatol Manaenko
- Department of Physiology and Department of Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| | - Lauren McCoy
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California; and
| | - John H Zhang
- Department of Physiology and Department of Pharmacology, Loma Linda University School of Medicine, Loma Linda, California.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California
| | - Jiping Tang
- Department of Physiology and Department of Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
10
|
Chen X, Kong X, Liu D, Gao P, Zhang Y, Li P, Liu M. In vitro differentiation of endometrial regenerative cells into smooth muscle cells: Α potential approach for the management of pelvic organ prolapse. Int J Mol Med 2016; 38:95-104. [PMID: 27221348 PMCID: PMC4899030 DOI: 10.3892/ijmm.2016.2593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/05/2016] [Indexed: 12/21/2022] Open
Abstract
Pelvic organ prolapse (POP), is a common condition in parous women. Synthetic mesh was once considered to be the standard of care; however, the use of synthetic mesh is limited by severe complications, thus creating a need for novel approaches. The application of cell-based therapy with stem cells may be an ideal alternative, and specifically for vaginal prolapse. Abnormalities in vaginal smooth muscle (SM) play a role in the pathogenesis of POP, indicating that smooth muscle cells (SMCs) may be a potential therapeutic target. Endometrial regenerative cells (ERCs) are an easily accessible, readily available source of adult stem cells. In the present study, ERCs were obtained from human menstrual blood, and phase contrast microscopy and flow cytometry were performed to characterize the morphology and phenotype of the ERCs. SMC differentiation was induced by a transforming growth factor β1-based medium, and the induction conditions were optimized. We defined the SMC characteristics of the induced cells with regard to morphology and marker expression using transmission electron microscopy, western blot analysis, immunocytofluorescence and RT-PCR. Examining the expression of the components of the Smad pathway and phosphorylated Smad2 and Smad3 by western blot analysis, RT-PCR and quantitative PCR demonstrated that the 'TGFBR2/ALK5/Smad2 and Smad3' pathway is involved, and both Smad2 and Smad3 participated in SMC differentiation. Taken together, these findings indicate that ERCs may be a promising cell source for cellular therapy aimed at modulating SM function in the vagina wall and pelvic floor in order to treat POP.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dongzhe Liu
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Peng Gao
- Department of Surgery, Harbin Children's Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Yanhua Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Peiling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Meimei Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
11
|
Peters EB, Christoforou N, Moore E, West JL, Truskey GA. CD45+ Cells Present Within Mesenchymal Stem Cell Populations Affect Network Formation of Blood-Derived Endothelial Outgrowth Cells. Biores Open Access 2015; 4:75-88. [PMID: 26309784 PMCID: PMC4497669 DOI: 10.1089/biores.2014.0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) represent promising cell sources for angiogenic therapies. There are, however, conflicting reports regarding the ability of MSCs to support network formation of endothelial cells. The goal of this study was to assess the ability of human bone marrow-derived MSCs to support network formation of endothelial outgrowth cells (EOCs) derived from umbilical cord blood EPCs. We hypothesized that upon in vitro coculture, MSCs and EOCs promote a microenvironment conducive for EOC network formation without the addition of angiogenic growth supplements. EOC networks formed by coculture with MSCs underwent regression and cell loss by day 10 with a near 4-fold and 2-fold reduction in branch points and mean segment length, respectively, in comparison with networks formed by coculture vascular smooth muscle cell (SMC) cocultures. EOC network regression in MSC cocultures was not caused by lack of vascular endothelial growth factor (VEGF)-A or changes in TGF-β1 or Ang-2 supernatant concentrations in comparison with SMC cocultures. Removal of CD45+ cells from MSCs improved EOC network formation through a 2-fold increase in total segment length and number of branch points in comparison to unsorted MSCs by day 6. These improvements, however, were not sustained by day 10. CD45 expression in MSC cocultures correlated with EOC network regression with a 5-fold increase between day 6 and day 10 of culture. The addition of supplemental growth factors VEGF, fibroblastic growth factor-2, EGF, hydrocortisone, insulin growth factor-1, ascorbic acid, and heparin to MSC cocultures promoted stable EOC network formation over 2 weeks in vitro, without affecting CD45 expression, as evidenced by a lack of significant differences in total segment length (p=0.96). These findings demonstrate the ability of MSCs to support EOC network formation correlates with removal of CD45+ cells and improves upon the addition of soluble growth factors.
Collapse
Affiliation(s)
- Erica B. Peters
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Nicolas Christoforou
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Erika Moore
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
- Department of Cell Biology, Duke University, Durham, North Carolina
- Department of Chemistry, Duke University, Durham, North Carolina
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| |
Collapse
|
12
|
Cortez E, Roswall P, Pietras K. Functional subsets of mesenchymal cell types in the tumor microenvironment. Semin Cancer Biol 2014; 25:3-9. [PMID: 24412106 DOI: 10.1016/j.semcancer.2013.12.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 11/26/2022]
Abstract
In the field of tumor biology, increasing attention is now focused on the complex interactions between various constituent cell types within the tumor microenvironment as being functionally important for the etiology of the disease. The detailed description of tumor-promoting properties of cancer-associated fibroblasts, endothelial cells, pericytes, and immune cells, introduces novel potential drug targets for improved cancer treatments, as well as a rationale for exploring the tumor stroma as a previously unchartered source for prognostic or predictive biomarkers. However, recent work highlights the fact that cellular identity is perhaps too broadly defined and that subdivision of each cell type may reveal functionally distinct subsets of cells. Here, we will review our current understanding of the diversity of different subsets of mesenchymal cells, i.e., cancer-associated fibroblasts and pericytes, residing within the tumor parenchyma.
Collapse
Affiliation(s)
- Eliane Cortez
- Lund University, Department of Laboratory Medicine Lund, Division of Translational Cancer Research, Medicon Village, Building 404:A3, SE-223 81 Lund, Sweden
| | - Pernilla Roswall
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Scheeles Väg 2, SE-171 77 Stockholm, Sweden
| | - Kristian Pietras
- Lund University, Department of Laboratory Medicine Lund, Division of Translational Cancer Research, Medicon Village, Building 404:A3, SE-223 81 Lund, Sweden; Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Scheeles Väg 2, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
13
|
Stefanska M, Costa G, Lie-A-Ling M, Kouskoff V, Lacaud G. Smooth muscle cells largely develop independently of functional hemogenic endothelium. Stem Cell Res 2014; 12:222-32. [PMID: 24270161 DOI: 10.1016/j.scr.2013.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022] Open
Abstract
Vascular smooth muscle cells represent a major component of the cardiovascular system. In vitro studies have shown that FLK1(+) cells derived from embryonic stem (ES) cells can differentiate into both endothelial and smooth muscle cells. These FLK1(+) cells also contain a mesodermal precursor, the hemangioblast, able to produce endothelial, blood and smooth muscle cells. The generation of blood precursors from the hemangioblast was recently shown to occur through a transient cell population of specialised endothelium, a hemogenic endothelium. To date, the lineage relationship between this cell population and smooth muscle cell progenitors has not been investigated. In this study, we generated a reporter ES cell line in which expression of the fluorescent protein H2B-VENUS is driven by the α-smooth muscle actin (α-SMA) regulatory sequences. We demonstrated that this reporter cell line efficiently trace smooth muscle development during ES cell differentiation. Although some smooth muscle cells are associated with broad endothelial development, we established that smooth muscle cells are mostly generated independently from a specialised functional hemogenic endothelium. This study provides new and important insights into hematopoietic and vascular development, which may help in driving further progress towards the development of bioengineered vascular grafts for regenerative medicine.
Collapse
Affiliation(s)
- Monika Stefanska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Guilherme Costa
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
| |
Collapse
|
14
|
Descamps B, Emanueli C. Vascular differentiation from embryonic stem cells: Novel technologies and therapeutic promises. Vascul Pharmacol 2012; 56:267-79. [DOI: 10.1016/j.vph.2012.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/04/2011] [Indexed: 01/25/2023]
|
15
|
Pedersen TO, Blois AL, Xue Y, Xing Z, Cottler-Fox M, Fristad I, Leknes KN, Lorens JB, Mustafa K. Osteogenic stimulatory conditions enhance growth and maturation of endothelial cell microvascular networks in culture with mesenchymal stem cells. J Tissue Eng 2012; 3:2041731412443236. [PMID: 22511994 PMCID: PMC3324846 DOI: 10.1177/2041731412443236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To optimize culture conditions for in vitro prevascularization of tissue-engineered bone constructs, the development of organotypic blood vessels under osteogenic stimulatory conditions (OM) was investigated. Coculture of endothelial cells and mesenchymal stem cells was used to assess proangiogenic effects of mesenchymal stem cells on endothelial cells. Four different culture conditions were evaluated for their effect on development of microvascular endothelial cell networks. Mineralization, deposition of extracellular matrix, and perivascular gene expression were studied in OM. After 3 days, endothelial cells established elongated capillary-like networks, and upregulated expression of vascular markers was seen. After 15 days, all parameters evaluated were significantly increased for cultures in OM. Mature networks developed in OM presented lumens enveloped by basement membrane-like collagen IV, with obvious mineralization and upregulated perivascular gene expression from mesenchymal stem cells. Our results suggest osteogenic stimulatory conditions to be appropriate for in vitro development of vascularized bone implants for tissue engineering.
Collapse
Affiliation(s)
- Torbjorn O Pedersen
- Department of Clinical Dentistry-Center for Clinical Dental Research, University of Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang C, Ji L, Yue W, Shi SS, Wang RY, Li YH, Xie XY, Xi JF, He LJ, Nan X, Pei XT. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells. Cell Reprogram 2012; 14:88-97. [PMID: 22313114 DOI: 10.1089/cell.2011.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cheung C, Sinha S. Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. J Mol Cell Cardiol 2011; 51:651-64. [PMID: 21816157 DOI: 10.1016/j.yjmcc.2011.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/30/2011] [Accepted: 07/18/2011] [Indexed: 11/18/2022]
Abstract
Ischemic diseases remain one of the major causes of morbidity and mortality throughout the world. In recent clinical trials on cell-based therapies, the use of adult stem and progenitor cells only elicited marginal benefits. Therapeutic neovascularisation is the Holy Grail for ischemic tissue recovery. There is compelling evidence from animal transplantation studies that the inclusion of mural cells in addition to endothelial cells (ECs) can enhance the formation of functional blood vessels. Vascular smooth muscle cells (SMCs) and pericytes are essential for the stabilisation of nascent immature endothelial tubes. Despite the intense interest in the utility of human embryonic stem cells (ESCs) for vascular regenerative medicine, ESC-derived vascular SMCs have received much less attention than ECs. This review begins with developmental insights into a range of smooth muscle progenitors from studies on embryos and ESC differentiation systems. We then summarise the methods of derivation of smooth muscle progenitors and cells from human ESCs. The primary emphasis is on the inherent heterogeneity of smooth muscle progenitors and cells and the limitations of current in vitro characterisation. Essential transplantation issues such as the type and source of therapeutic cells, mode of cell delivery, measures to enhance cell viability, putative mechanisms of benefit and long-term tracking of cell fate are also discussed. Finally, we highlight the challenges of clinical compatibility and scaling up for medical use in order to eventually realise the goal of human ESC-based vascular regenerative medicine.
Collapse
Affiliation(s)
- Christine Cheung
- The Anne McLaren Laboratory for Regenerative Medicine, West Forvie Building, Forvie Site, University of Cambridge, Robinson Way, Cambridge CB2 0SZ, UK
| | | |
Collapse
|
18
|
Kamouchi M, Ago T, Kitazono T. Brain pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol 2011; 31:175-93. [PMID: 21061157 PMCID: PMC11498428 DOI: 10.1007/s10571-010-9605-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/22/2010] [Indexed: 11/30/2022]
Abstract
Brain pericytes are an important constituent of neurovascular unit. They encircle endothelial cells and contribute to the maturation and stabilization of the capillaries in the brain. Recent studies have revealed that brain pericytes play pivotal roles in a variety of brain functions, such as regulation of capillary flow, angiogenesis, blood brain barrier, immune responses, and hemostasis. In addition, brain pericytes are pluripotent and can differentiate into different lineages similar to mesenchymal stem cells. The brain pericytes are revisited as a key player to maintain brain function and repair brain damage.
Collapse
Affiliation(s)
- Masahiro Kamouchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
19
|
Vo E, Hanjaya-Putra D, Zha Y, Kusuma S, Gerecht S. Smooth-Muscle-Like Cells Derived from Human Embryonic Stem Cells Support and Augment Cord-Like Structures In Vitro. Stem Cell Rev Rep 2010; 6:237-47. [DOI: 10.1007/s12015-010-9144-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Lindsley RC, Gill JG, Murphy TL, Langer EM, Cai M, Mashayekhi M, Wang W, Niwa N, Nerbonne JM, Kyba M, Murphy KM. Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 2008; 3:55-68. [PMID: 18593559 PMCID: PMC2497439 DOI: 10.1016/j.stem.2008.04.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 03/14/2008] [Accepted: 04/14/2008] [Indexed: 11/29/2022]
Abstract
Wnt signaling is required for development of mesoderm-derived lineages and expression of transcription factors associated with the primitive streak. In a functional screen, we examined the mesoderm-inducing capacity of transcription factors whose expression was Wnt-dependent in differentiating ESCs. In contrast to many inactive factors, we found that mesoderm posterior 1 (Mesp1) promoted mesoderm development independently of Wnt signaling. Transient Mesp1 expression in ESCs promotes changes associated with epithelial-mesenchymal transition (EMT) and induction of Snai1, consistent with a role in gastrulation. Mesp1 expression also restricted the potential fates derived from ESCs, generating mesoderm progenitors with cardiovascular, but not hematopoietic, potential. Thus, in addition to its effects on EMT, Mesp1 may be capable of generating the recently identified multipotent cardiovascular progenitor from ESCs in vitro.
Collapse
Affiliation(s)
- R Coleman Lindsley
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|