1
|
Liu J, Yang F, Shang L, Cai S, Wu Y, Liu Y, Zhang L, Fei C, Wang M, Gu F. Recapitulating familial hypercholesterolemia in a mouse model by knock-in patient-specific LDLR mutation. FASEB J 2024; 38:e23573. [PMID: 38526846 DOI: 10.1096/fj.202301216rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Familial hypercholesterolemia (FH) is one of the most prevalent monogenetic disorders leading to cardiovascular disease (CVD) worldwide. Mutations in Ldlr, encoding a membrane-spanning protein, account for the majority of FH cases. No effective and safe clinical treatments are available for FH. Adenine base editor (ABE)-mediated molecular therapy is a promising therapeutic strategy to treat genetic diseases caused by point mutations, with evidence of successful treatment in mouse disease models. However, due to the differences in the genomes between mice and humans, ABE with specific sgRNA, a key gene correction component, cannot be directly used to treat FH patients. Thus, we generated a knock-in mouse model harboring the partial patient-specific fragment and including the Ldlr W490X mutation. LdlrW490X/W490X mice recapitulated cholesterol metabolic disorder and clinical manifestations of atherosclerosis associated with FH patients, including high plasma low-density lipoprotein cholesterol levels and lipid deposition in aortic vessels. Additionally, we showed that the mutant Ldlr gene could be repaired using ABE with the cellular model. Taken together, these results pave the way for ABE-mediated molecular therapy for FH.
Collapse
Affiliation(s)
- Jing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Fayu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Shuo Cai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yuting Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
2
|
Zhang Q, Zhang W, Liu J, Yang H, Hu Y, Zhang M, Bai T, Chang F. Lysophosphatidylcholine promotes intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells via an orphan G protein receptor 2-mediated signaling pathway. Bioengineered 2021; 12:4520-4535. [PMID: 34346841 PMCID: PMC8806654 DOI: 10.1080/21655979.2021.1956671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The oxLDL-based bioactive lipid lysophosphatidylcholine (LPC) is a key regulator of physiological processes including endothelial cell adhesion marker expression. This study explored the relationship between LPC and the human umbilical vein endothelial cell expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) with a particular focus on the regulation of the LPC-G2A-ICAM-1/VCAM-1 pathway in this context. We explored the LPC-inducible role of orphan G protein receptor 2 (G2A) in associated regulatory processes by using human kidney epithelial (HEK293) cells that had been transfected with pET-G2A, human umbilical vein endothelial cells (HUVECs) in which an shRNA was used to knock down G2A, and western blotting and qPCR assays that were used to confirm changes in gene expression. For in vivo studies, a rabbit model of atherosclerosis was established, with serum biochemistry and histological staining approaches being used to assess pathological outcomes in these animals. The treatment of both HEK293 cells and HUVECs with LPC promoted ICAM-1 and VCAM-1 upregulation, while incubation at a pH of 6.8 suppressed such LPC-induced adhesion marker expression. Knocking down G2A by shRNA and inhibiting NF-κB activity yielded opposite outcomes. The application of a Gi protein inhibitor had no impact on LPC-induced ICAM-1/VCAM-1 expression. Atherosclerotic model exhibited high circulating LDL and LPC levels as well as high aortic wall ICAM-1/VCAM-1 expression. Overall, these results suggested that the LPC-G2A-ICAM-1/VCAM-1 pathway may contribute to the atherogenic activity of oxLDL, with NF-κB antagonists representing potentially viable therapeutic tools for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Qian Zhang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Wei Zhang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Liu
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Haisen Yang
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Yuxia Hu
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Mengdi Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Tuya Bai
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Fuhou Chang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Cui X, Xing R, Tian Y, Wang M, Sun Y, Xu Y, Yang Y, Zhao Y, Xie L, Xiao Y, Li D, Zheng B, Liu M, Chen H. The G2A Receptor Deficiency Aggravates Atherosclerosis in Rats by Regulating Macrophages and Lipid Metabolism. Front Physiol 2021; 12:659211. [PMID: 34381373 PMCID: PMC8351205 DOI: 10.3389/fphys.2021.659211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The orphan G protein-coupled receptor G2A has been linked to atherosclerosis development. However, available data from mouse models are controversial. Rat G2A receptor bears more similarities with its human homolog. We proposed that the atherosclerosis model established from Ldlr–/– rat, which has been reported to share more similar phenotypes with the human disease, may help to further understand this lipid receptor. G2A deletion was found markedly aggravated in the lipid disorder in the rat model, which has not been reported in mouse studies. Examination of aortas revealed exacerbated atherosclerotic plaques in G2A deficient rats, together with increased oxidative stress and macrophage accumulation. In addition, consistently promoted migration and apoptosis were noticed in G2A deficient macrophages, even in macrophages from G2A single knockout rats. Further analysis found significantly declined phosphorylation of PI3 kinase (PI3K) and AKT, together with reduced downstream genes Bcl2 and Bcl-xl, suggesting possible involvement of PI3K/AKT pathway in G2A regulation to macrophage apoptosis. These data indicate that G2A modulates atherosclerosis by regulating lipid metabolism and macrophage migration and apoptosis. Our study provides a new understanding of the role of G2A in atherosclerosis, supporting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Xueqin Cui
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Roumei Xing
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yue Tian
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Man Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yue Sun
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yongqian Xu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yiqing Yang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yongliang Zhao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Ling Xie
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yufang Xiao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Biao Zheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Huaqing Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
4
|
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and the predominant cause of heart attack and ischemic stroke. Despite the well-known sexual dimorphism in the incidence and complications of atherosclerosis, there are relatively limited data in the clinical and preclinical literature to rigorously address mechanisms underlying sex as a biological variable in atherosclerosis. In multiple histological and imaging studies, overall plaque burden and markers of inflammation appear to be greater in men than women and are predictive of cardiovascular events. However, while younger women are relatively protected from cardiovascular disease, by the seventh decade, the incidence of myocardial infarction in women ultimately surpasses that of men, suggesting an interaction between sex and age. Most preclinical studies in animal atherosclerosis models do not examine both sexes, and even in those that do, well-powered direct statistical comparisons for sex as an independent variable remain rare. This article reviews the available data. Overall, male animals appear to have more inflamed yet smaller plaques compared to female animals. Plaque inflammation is often used as a surrogate end point for plaque vulnerability in animals. The available data support the notion that rather than plaque size, plaque inflammation may be more relevant in assessing sex-specific mechanisms since the findings correlate with the sex difference in ischemic events and mortality and thus may be more reflective of the human condition. Overall, the number of preclinical studies directly comparing plaque inflammation between the sexes is extremely limited relative to the vast literature exploring atherosclerosis mechanisms. Failure to include both sexes and to address age in mechanistic atherosclerosis studies are missed opportunities to uncover underlying sex-specific mechanisms. Understanding the mechanisms driving sex as a biological variable in atherosclerotic disease is critical to future precision medicine strategies to mitigate what is still the leading cause of death of men and women worldwide.
Collapse
Affiliation(s)
- Joshua J. Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Joshua A. Beckman
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
5
|
Corrêa R, Silva LFF, Ribeiro DJS, Almeida RDN, Santos IDO, Corrêa LH, de Sant'Ana LP, Assunção LS, Bozza PT, Magalhães KG. Lysophosphatidylcholine Induces NLRP3 Inflammasome-Mediated Foam Cell Formation and Pyroptosis in Human Monocytes and Endothelial Cells. Front Immunol 2020; 10:2927. [PMID: 31998284 PMCID: PMC6962110 DOI: 10.3389/fimmu.2019.02927] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/28/2019] [Indexed: 12/04/2022] Open
Abstract
Foam cells are specialized lipid-loaded macrophages derived from monocytes and are a key pathological feature of atherosclerotic lesions. Lysophosphatidylcholine (LPC) is a major lipid component of the plasma membrane with a broad spectrum of proinflammatory activities and plays a key role in atherosclerosis. However, the role of LPC in lipid droplet (LD) biogenesis and the modulation of inflammasome activation is still poorly understood. In the present study, we investigated whether LPC can induce foam cell formation through an analysis of LD biogenesis and determined whether the cell signaling involved in this process is mediated by the inflammasome activation pathway in human endothelial cells and monocytes. Our results showed that LPC induced foam cell formation in both types of cells by increasing LD biogenesis via a NLRP3 inflammasome-dependent pathway. Furthermore, LPC induced pyroptosis in both cells and the activation of the inflammasome with IL-1β secretion, which was dependent on potassium efflux and lysosomal damage in human monocytes. The present study described the IL-1β secretion and foam cell formation triggered by LPC via an inflammasome-mediated pathway in human monocytes and endothelial cells. Our results will help improve our understanding of the relationships among LPC, LD biogenesis, and NLRP3 inflammasome activation in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Rafael Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - Luís Felipe Fonseca Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | | | - Raquel das Neves Almeida
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - Luís Henrique Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - Lívia Pimentel de Sant'Ana
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | | | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Institute of Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasília, Brasilia, Brazil
| |
Collapse
|
6
|
Li HM, Jang JH, Jung JS, Shin J, Park CO, Kim YJ, Ahn WG, Nam JS, Hong CW, Lee J, Jung YJ, Chen JF, Ravid K, Lee HT, Huh WK, Kabarowski JH, Song DK. G2A Protects Mice against Sepsis by Modulating Kupffer Cell Activation: Cooperativity with Adenosine Receptor 2b. THE JOURNAL OF IMMUNOLOGY 2018; 202:527-538. [PMID: 30530591 DOI: 10.4049/jimmunol.1700783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/04/2018] [Indexed: 01/01/2023]
Abstract
G2A is a GPCR abundantly expressed in immune cells. G2A-/- mice showed higher lethality, higher plasma cytokines, and an impaired bacterial clearance in response to a murine model of sepsis (cecal ligation and puncture), which were blocked by GdCl3, an inhibitor of Kupffer cells. Anti-IL-10 Ab reversed the impaired bacterial clearance in G2A-/- mice. Indomethacin effectively blocked both the increased i.p. IL-10 levels and the impaired bacterial clearance, indicating that disturbed PG system is the proximal cause of these phenomena. Stimulation with LPS/C5a induced an increase in Escherichia coli phagocytosis and intracellular cAMP levels in G2A+/+ peritoneal macrophages but not G2A-/- cells, which showed more PGE2/nitrite release and intracellular reactive oxygen species levels. Heterologous coexpression of G2A and adenosine receptor type 2b (A2bAR) induced a synergistic increase in cAMP signaling in a ligand-independent manner, with the evidence of physical interaction of G2A with A2bAR. BAY 60-6583, a specific agonist for A2bAR, increased intracellular cAMP levels in Kupffer cells from G2A+/+ but not from G2A-/- mice. Both G2A and A2bAR were required for antiseptic action of lysophosphatidylcholine. These results show inappropriate activation of G2A-/- Kupffer cells to septic insults due to an impaired cAMP signaling possibly by lack of interaction with A2bAR.
Collapse
Affiliation(s)
- Hong-Mei Li
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ji Hye Jang
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jun-Sub Jung
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jiseon Shin
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Chul O Park
- Department of Biological Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yeon-Ja Kim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Won-Gyun Ahn
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ju-Suk Nam
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Chang-Won Hong
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jongho Lee
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
| | - Katya Ravid
- Departments of Medicine and Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032; and
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Janusz H Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Dong-Keun Song
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea;
| |
Collapse
|
7
|
Shao Y, Nanayakkara G, Cheng J, Cueto R, Yang WY, Park JY, Wang H, Yang X. Lysophospholipids and Their Receptors Serve as Conditional DAMPs and DAMP Receptors in Tissue Oxidative and Inflammatory Injury. Antioxid Redox Signal 2018; 28:973-986. [PMID: 28325059 PMCID: PMC5849278 DOI: 10.1089/ars.2017.7069] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: We proposed lysophospholipids (LPLs) and LPL-G-protein-coupled receptors (GPCRs) as conditional danger-associated molecular patterns (DAMPs) and conditional DAMP receptors as a paradigm shift to the widely accepted classical DAMP and DAMP receptor model. Recent Advances: The aberrant levels of LPLs and GPCRs activate pro-inflammatory signal transduction pathways, trigger innate immune response, and lead to tissue oxidative and inflammatory injury. Critical Issues: Classical DAMP model specifies only the endogenous metabolites that are released from damaged/dying cells as DAMPs, but fails to identify elevated endogenous metabolites secreted from viable/live cells during pathologies as DAMPs. The current classification of DAMPs also fails to clarify the following concerns: (i) Are molecules, which bind to pattern recognition receptors (PRRs), the only DAMPs contributing to inflammation and tissue injury? (ii) Are all DAMPs acting only via classical PRRs during cellular stress? To answer these questions, we reviewed the molecular characteristics and signaling mechanisms of LPLs, a group of endogenous metabolites and their specific receptors and analyzed the significant progress achieved in characterizing oxidative stress mechanisms of LPL mediated tissue injury. Future Directions: Further LPLs and LPL-GPCRs may serve as potential therapeutic targets for the treatment of pathologies induced by sterile inflammation. Antioxid. Redox Signal. 28, 973-986.
Collapse
Affiliation(s)
- Ying Shao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Gayani Nanayakkara
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jiali Cheng
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Joon-Young Park
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Ichijo Y, Mochimaru Y, Azuma M, Satou K, Negishi J, Nakakura T, Oshima N, Mogi C, Sato K, Matsuda K, Okajima F, Tomura H. Two zebrafish G2A homologs activate multiple intracellular signaling pathways in acidic environment. Biochem Biophys Res Commun 2015; 469:81-86. [PMID: 26614909 DOI: 10.1016/j.bbrc.2015.11.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/17/2015] [Indexed: 01/01/2023]
Abstract
Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the Gs-protein/cAMP/CRE, G12/13-protein/Rho/SRE, and Gq-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174(th) position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A.
Collapse
Affiliation(s)
- Yuta Ichijo
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Yuta Mochimaru
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Morio Azuma
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Kazuhiro Satou
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Jun Negishi
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Takashi Nakakura
- Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Itabashi-Ku, Tokyo 173-8605, Japan
| | - Natsuki Oshima
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Chihiro Mogi
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan.
| |
Collapse
|
9
|
RETRACTED: Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol 2015; 184:436-445. [DOI: 10.1016/j.ijcard.2015.03.055] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/07/2015] [Accepted: 03/03/2015] [Indexed: 01/28/2023]
|
10
|
Karasawa K. Naturally Occurring Missense Mutation in Plasma PAF-AH Among the Japanese Population. Enzymes 2015; 38:117-43. [PMID: 26612650 DOI: 10.1016/bs.enz.2015.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A single nucleotide polymorphism in the plasma PAF-AH enzyme, i.e., G994T, which causes the substitution of Val at amino acid 279 with Phe (V279F), has been found in the Japanese population. This enzyme preferentially degrades oxidatively modulated or truncated phospholipids; therefore, it has been suggested that this enzyme may prevent the accumulation of proinflammatory and proatherogenic oxidized phospholipids. This hypothesis is supported by the higher prevalence of the V279F mutation in patients with asthmatic and atherosclerotic diseases, as compared with healthy controls. This mutation is rare in the Caucasian population. The plasma PAF-AH mass and enzyme activity are distributed over a wide range in the plasma and they are positively correlated with low-density lipoprotein (LDL) cholesterol. However, several clinical studies in the Caucasian population have suggested that this enzyme has the opposite role. This enzyme plays an active role in the development and progression of atherosclerosis via proinflammatory and proatherogenic lysophosphatidylcholine and oxidized fatty acids produced through the oxidation of LDL by this enzyme. Thus, plasma PAF-AH is a unique enzyme with dual roles in human inflammatory diseases. In this chapter, on the basis of recent findings we describe the association between a naturally occurring missense mutation in plasma PAF-AH and human diseases especially including atherosclerosis and asthma.
Collapse
Affiliation(s)
- Ken Karasawa
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.
| |
Collapse
|
11
|
Shehata MA, Belcik Christensen H, Isberg V, Sejer Pedersen D, Bender A, Bräuner-Osborne H, Gloriam DE. Identification of the first surrogate agonists for the G protein-coupled receptor GPR132. RSC Adv 2015. [DOI: 10.1039/c5ra04804d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the first pharmacological tool agonist for in vitro characterization of the orphan receptor GPR132, preliminary structure–activity relationships based on 32 analogs and a suggested binding mode from docking.
Collapse
Affiliation(s)
- Mohamed A. Shehata
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Hanna Belcik Christensen
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Vignir Isberg
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Andreas Bender
- Centre for Molecular Informatics
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - David E. Gloriam
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| |
Collapse
|
12
|
Hydroxyoctadecadienoic Acids Regulate Apoptosis in Human THP-1 Cells in a PPARγ-Dependent Manner. Lipids 2014; 49:1181-92. [DOI: 10.1007/s11745-014-3954-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
|
13
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
14
|
Parks BW, Black LL, Zimmerman KA, Metz AE, Steele C, Murphy-Ullrich JE, Kabarowski JH. CD36, but not G2A, modulates efferocytosis, inflammation, and fibrosis following bleomycin-induced lung injury. J Lipid Res 2013; 54:1114-23. [PMID: 23393303 DOI: 10.1194/jlr.m035352] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macrophage G2A and CD36 lipid receptors are thought to mediate efferocytosis following tissue injury and thereby prevent excessive inflammation that could compromise tissue repair. To test this, we subjected mice lacking G2A or CD36 receptor to bleomycin-induced lung injury and measured efferocytosis, inflammation, and fibrosis. Loss of CD36 (but not G2A) delayed clearance of apoptotic alveolar cells (mean 78% increase in apoptotic cells 7 days postinjury), potentiated inflammation (mean 56% increase in lung neutrophils and 75% increase in lung KC levels 7 days postinjury, 51% increase in lung macrophages 14 days postinjury), and reduced lung fibrosis (mean 41% and 29% reduction 14 and 21 days postinjury, respectively). Reduced fibrosis in CD36(-/-) mice was associated with lower levels of profibrotic TH2 cytokines (IL-9, IL-13, IL-4), decreased expression of the M2 macrophage marker Arginase-1, and reduced interstitial myofibroblasts. G2A, on the other hand, was required for optimal clearance of apoptotic neutrophils during zymosan-induced peritoneal inflammation (50.3% increase in apoptotic neutrophils and 30.6% increase in total neutrophils 24 h following zymosan administration in G2A(-/-) mice). Thus, CD36 is required for timely removal of apoptotic cells in the context of lung injury and modulates subsequent inflammatory and fibrotic processes relevant to fibrotic lung disease.
Collapse
Affiliation(s)
- Brian W Parks
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Rolin J, Al-Jaderi Z, Maghazachi AA. Oxidized lipids and lysophosphatidylcholine induce the chemotaxis and intracellular calcium influx in natural killer cells. Immunobiology 2012. [PMID: 23200035 DOI: 10.1016/j.imbio.2012.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously reported that human NK cells express G2A and they respond to LPC. Here, we report that oxidized lipids such as 9-R-HODE, 9-S-HODE and 13-R-HODE, as well as LPC induced the in vitro chemotaxis of human NK cells, although with variable efficacies. The chemotactic effects of these lipids were inhibited by prior treatment of NK cells with pertussis toxin (PTX). 9-S-HODE, 9-R-HODE and LPC optimally induced the influx of intracellular Ca(2+) in NK cells. Addition of 9-S-HODE prior to the addition of LPC inhibited more than 50% of the effect of LPC, whereas addition of LPC prior to the addition of 9-S-HODE completely inhibited the effect of the latter lipid. Also, there was a complete reciprocal desensitization among 9-R-HODE and LPC on the influx of intracellular Ca(2+). Further analysis showed that the four lipids did not affect NK cell lysis of tumor target cells. 9-R-HODE but not any other lipid increased the percentages of NK cells producing IFN-γ and is the only lipid that enhanced the release of this cytokine by these cells. In conclusion, we provide novel evidence showing that oxidized lipids and LPC exert important functions for cells of innate immune system.
Collapse
Affiliation(s)
- Johannes Rolin
- Department of Physiology, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo, Norway
| | | | | |
Collapse
|
16
|
Zhang H, Zhang J, Shen D, Zhang L, He F, Dang Y, Li L. Regression of atherosclerosis in apolipoprotein E-deficient mice by lentivirus-mediated gene silencing of lipoprotein-associated phospholipase A2. Biochem Biophys Res Commun 2012; 427:557-62. [PMID: 23022183 DOI: 10.1016/j.bbrc.2012.09.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 09/18/2012] [Indexed: 11/17/2022]
Abstract
Overexpression of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is implicated in atherosclerosis. We tested the hypothesis that lentivirus-mediated Lp-PLA(2) silencing could inhibit atherosclerosis in apolipoprotein E-deficient mice. Sixty eight apolipoprotein E-deficient mice were fed a high-fat diet and a constrictive collar was placed around the left carotid artery to induce plaque formation. The mice were randomly divided into control, negative control (NC) and RNA interference (RNAi) groups. Lp-PLA(2) RNAi or scrambled NC lentivirus viral suspensions were constructed and transfected into the carotid plaques 8 weeks after surgery; the control group was administered saline. The carotid plaques were assessed 7 weeks later using hematoxylin and eosin, Masson's trichrome and oil red O staining; plasma and lesion inflammatory gene expression were examined using ELISAs and real-time PCR. Seven weeks after transfection, the serum concentration and plaque mRNA expression of Lp-PLA(2) was significantly lower in the RNAi group, and lead to reduced local and systemic inflammatory gene expression. Lp-PLA(2) RNAi also ameliorated plaque progression, reduced the plaque lipid content and increased the plaque collagen content. The effects of Lp-PLA(2) RNAi were independent of serum lipoprotein levels, as the triglyceride and total cholesterol levels of the control, NC and RNAi groups were not significantly different. These findings support the hypothesis that lentivirus-mediated Lp-PLA(2) gene silencing has therapeutic potential to inhibit atherosclerosis and increase plaque stability, without altering the plasma lipoprotein profile.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, The First Affliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Bennett BJ, Orozco L, Kostem E, Erbilgin A, Dallinga M, Neuhaus I, Guan B, Wang X, Eskin E, Lusis AJ. High-resolution association mapping of atherosclerosis loci in mice. Arterioscler Thromb Vasc Biol 2012; 32:1790-8. [PMID: 22723443 DOI: 10.1161/atvbaha.112.253864] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The purpose of this study was to fine map previously identified quantitative trait loci affecting atherosclerosis in mice using association analysis. METHODS AND RESULTS We recently showed that high-resolution association analysis using common inbred strains of mice is feasible if corrected for population structure. To use this approach for atherosclerosis, which requires a sensitizing mutation, we bred human apolipoprotein B-100 transgenic mice with 22 different inbred strains to produce F1 heterozygotes. Mice carrying the dominant transgene were tested for association with high-density single nucleotide polymorphism maps. Here, we focus on high-resolution mapping of the previously described atherosclerosis 30 locus on chromosome 1. Compared with the previous linkage analysis, association improved the resolution of the atherosclerosis 30 locus by more than an order of magnitude. Using expression quantitative trait locus analysis, we identified one of the genes in the region, desmin, as a strong candidate. CONCLUSIONS Our high-resolution mapping approach accurately identifies and fine maps known atherosclerosis quantitative trait loci. These results suggest that high-resolution genome-wide association analysis for atherosclerosis is feasible in mice.
Collapse
Affiliation(s)
- Brian J Bennett
- Department of Genetics, University of North Carolina, Chapel Hill, NC 28081, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stylianou IM, Bauer RC, Reilly MP, Rader DJ. Genetic basis of atherosclerosis: insights from mice and humans. Circ Res 2012; 110:337-55. [PMID: 22267839 DOI: 10.1161/circresaha.110.230854] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a complex and heritable disease involving multiple cell types and the interactions of many different molecular pathways. The genetic and molecular mechanisms of atherosclerosis have, in part, been elucidated by mouse models; at least 100 different genes have been shown to influence atherosclerosis in mice. Importantly, unbiased genome-wide association studies have recently identified a number of novel loci robustly associated with atherosclerotic coronary artery disease. Here, we review the genetic data elucidated from mouse models of atherosclerosis, as well as significant associations for human coronary artery disease. Furthermore, we discuss in greater detail some of these novel human coronary artery disease loci. The combination of mouse and human genetics has the potential to identify and validate novel genes that influence atherosclerosis, some of which may be candidates for new therapeutic approaches.
Collapse
Affiliation(s)
- Ioannis M Stylianou
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, 654 BRBII/III Labs, 421 Curie Boulevard, Philadelphia, Pennsylvania, 19104-6160, USA
| | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The accumulation of macrophages in the vascular wall is a hallmark of atherosclerosis. The biological properties of atherosclerotic plaque macrophages determine lesion size, composition, and stability. In atherosclerotic plaques, macrophages encounter a microenvironment that comprises a variety of lipid oxidation products, each of which has diverse biological effects. In this review, we summarize recent advances in our understanding of the effects of plaque lipids on macrophage phenotypic polarization. RECENT FINDINGS Atherosclerotic lesions in mice and in humans contain various macrophage phenotypes, which play different roles in mediating inflammation, the clearance of dead cells, and possibly resolution. Macrophages alter their phenotype and biological function in response to plaque lipids through the upregulation of specific sets of genes. Interaction of oxidized lipids with pattern recognition receptors and activation of the inflammasome by cholesterol crystals drive macrophages toward an inflammatory M1 phenotype. A new phenotype, Mox, develops when oxidized phospholipids activate stress response genes via Nrf2. Other lipid mediators such as nitrosylated-fatty acids and omega-3 fatty acid-derived products polarize plaque macrophages toward anti-inflammatory and proresolving phenotypes. SUMMARY A deeper understanding of how lipids that accumulate in atherosclerotic plaques affect macrophage phenotype and function and thus atherosclerotic lesion development and stability will help to devise novel strategies for intervention.
Collapse
Affiliation(s)
| | - Norbert Leitinger
- Corresponding author: University of Virginia, Department of Pharmacology; 1340 Jefferson Park Avenue, Jordan Hall, 5th Floor, Rm 5036/5039, P.O. Box 800735, Charlottesville, VA 22908; Tel: 434-243-6363, Fax: 434-924-0149;
| |
Collapse
|
20
|
Yu T, Parks BW, Yu S, Srivastava R, Gupta K, Wu X, Khaled S, Chang PY, Kabarowski JH, Kucik DF. Iron-ion radiation accelerates atherosclerosis in apolipoprotein E-deficient mice. Radiat Res 2011; 175:766-73. [PMID: 21466380 DOI: 10.1667/rr2482.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiation exposure from a number of terrestrial sources is associated with an increased risk for atherosclerosis. Recently, concern over whether exposure to cosmic radiation might pose a similar risk for astronauts has increased. To address this question, we examined the effect of 2 to 5 Gy iron ions ((56)Fe), a particularly damaging component of cosmic radiation, targeted to specific arterial sites in male apolipoprotein E-deficient (apoE(-/-)) mice. Radiation accelerated the development of atherosclerosis in irradiated portions of the aorta independent of any systemic effects on plasma lipid profiles or circulating leukocytes. Further, radiation exposure resulted in a more rapid progression of advanced aortic root lesions, characterized by larger necrotic cores associated with greater numbers of apoptotic macrophages and reduced lesional collagen compared to sham-treated mice. Intima media thickening of the carotid arteries was also exacerbated. Exposure to (56)Fe ions can therefore accelerate the development of atherosclerotic lesions and promote their progression to an advanced stage characterized by compositional changes indicative of increased thrombogenicity and instability. We conclude that the potential consequences of radiation exposure for astronauts on prolonged deep-space missions are a major concern. Knowledge gained from further studies with animal models should lead to a better understanding of the pathophysiological effects of accelerated ion radiation to better estimate atherogenic risk and develop appropriate countermeasures to mitigate its damaging effects.
Collapse
Affiliation(s)
- Tao Yu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Srivastava R, Yu S, Parks BW, Black LL, Kabarowski JH. Autoimmune-mediated reduction of high-density lipoprotein-cholesterol and paraoxonase 1 activity in systemic lupus erythematosus-prone gld mice. ACTA ACUST UNITED AC 2011; 63:201-11. [PMID: 20882670 DOI: 10.1002/art.27764] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To characterize modifications of high-density lipoprotein (HDL) in autoimmune gld mice that may be relevant to premature atherosclerosis in systemic lupus erythematosus, and to assess their relationship to specific aspects of autoimmune disease. METHODS HDL cholesterol (HDL-C), apolipoprotein A-I (Apo A-I), paraoxonase 1 (PON1) activity, hepatic gene expression, and HDL biogenesis were measured in aging female gld and wild-type congenic mice. Autoantibodies, lymphoid organs, and cytokines were analyzed by enzyme-linked immunosorbent assay, flow cytometry, and multiplex assay, respectively. RESULTS Plasma HDL-C, HDL Apo A-I, and HDL-associated PON1 activity were reduced in aging gld mice in association with the development of autoimmunity, independent of changes in hepatic Apo A-I and PON1 expression or HDL biogenesis. Hepatic induction of the acute-phase reactant serum amyloid A1 resulted in its incorporation into HDL in gld mice. Deletion of the lipid-sensitive receptor G2A in gld mice (G2A-/- gld) attenuated reductions in HDL-C and PON1 activity without altering hepatic Apo A-I and PON1 expression, HDL biogenesis, or levels of acute-phase proinflammatory cytokines. Plasma anti-Apo A-I autoantibodies were elevated in aging gld mice commensurate with detectable increases in Apo A-I immune complexes. Autoantibody levels were lower in aging G2A-/- gld mice compared with gld mice, and anti-Apo A-I autoantibody levels were significantly related to HDL-C concentrations (r=-0.645, P<0.00004) and PON1 activity (r=-0.555, P<0.0007) among autoimmune gld and G2A-/- gld mice. CONCLUSION Autoantibodies against Apo A-I contribute to reducing HDL-C and PON1 activity in autoimmune gld mice independently of hepatic HDL biogenesis, suggesting that functional impairment and premature clearance of HDL immune complexes may be principal mechanisms involved.
Collapse
Affiliation(s)
- Roshni Srivastava
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | | | | | |
Collapse
|
22
|
Suckling K. Phospholipase A2s: Developing drug targets for atherosclerosis. Atherosclerosis 2010; 212:357-66. [DOI: 10.1016/j.atherosclerosis.2010.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 12/24/2022]
|
23
|
Suckling KE. Phospholipase A2 inhibitors in the treatment of atherosclerosis: a new approach moves forward in the clinic. Expert Opin Investig Drugs 2009; 18:1425-30. [PMID: 19691442 DOI: 10.1517/13543780903184583] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Phase II results of the trials of two phospholipase A2 inhibitors which may be of value in the treatment of atherosclerosis and cardiovascular disease have been reported in the past year. Darapladib (GlaxoSmithKline) is an inhibitor of lipoprotein-associated phospholipase A2 and varespladib (Anthera) inhibits several forms of the secreted phospholipase A2s. Despite the apparent similarity of mechanism, which is also built into the compounds' names, the role of the two types of phospholipase in atherogenesis is very different. Evidence for this comes from a range of preclinical studies and from epidemiological data which are summarised here. These data provide a basis for the Phase II studies and support decisions to move into Phase III, a decision which in the case of darapladib has been made and studies commenced (STABILITY trial). For varespladib the FRANCIS-ACS trial in acute coronary syndrome patients is in progress.
Collapse
|
24
|
Murakami N, Hashidate T, Harayama T, Yokomizo T, Shimizu T, Nakamura M. Transcriptional regulation of human G2A in monocytes/ macrophages: involvement of c/EBPs, Runx and Pu.1. Genes Cells 2009; 14:1441-55. [DOI: 10.1111/j.1365-2443.2009.01360.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
|
26
|
Frostegård J. Low level natural antibodies against phosphorylcholine: a novel risk marker and potential mechanism in atherosclerosis and cardiovascular disease. Clin Immunol 2009; 134:47-54. [PMID: 19748321 DOI: 10.1016/j.clim.2009.08.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 01/26/2023]
Abstract
Atherosclerosis is an inflammatory condition characterised by an abundance of activated immunocompetent cells in plaques which cause cardiovascular disease (CVD) when they rupture. Oxidized forms of low density lipoprotein (OxLDL) are a major constituent of atherosclerotic plaques and have proinflammatory effects, making oxLDL a candidate factor promoting atherosclerosis. In previous studies we and others demonstrated that platelet-activating factor (PAF)-like lipids in oxLDL may cause oxLDL-induced immune-stimulatory effects. A common denominator is phosphorylcholine (PC), a hapten-like epitope which is exposed on OxLDL and some microorganisms. We recently demonstrated that anti-PC has anti-inflammatory properties and that low levels of anti-PC predict the development of stroke and myocardial infarction. We hypothesize that low anti-PC represents a novel paradigm as a cause of chronic inflammatory diseases such as atherosclerosis where oxidized and/or inflammatory phospholipids play a role. It is possible that anti-PC can be used as a novel diagnostic tool and therapy in atherosclerotic disease.
Collapse
Affiliation(s)
- Johan Frostegård
- Department of Medicine, Karolinska University Hospital, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
27
|
G2A as a receptor for oxidized free fatty acids. Prostaglandins Other Lipid Mediat 2009; 89:66-72. [DOI: 10.1016/j.prostaglandins.2008.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 10/29/2008] [Accepted: 11/12/2008] [Indexed: 01/04/2023]
|
28
|
Bercher M, Hanson B, van Staden C, Wu K, Ng GY, Lee PH. Agonists of the orphan human G2A receptor identified from inducible G2A expression and beta-lactamase reporter screen. Assay Drug Dev Technol 2009; 7:133-42. [PMID: 19505230 DOI: 10.1089/adt.2008.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The G protein-coupled receptor (GPCR) G2A (for G2 accumulation) was identified as a stress-inducible antiproliferative cell cycle regulator. Targeted G2A gene deletion in mice resulted in systemic lupus erythematosus-like and atherosclerotic lesion phenotypes. These findings suggested that G2A may be a therapeutic target for cancers and autoimmune and cardiovascular diseases. The G2A receptor is cytotoxic upon ectopic expression, and its cognate ligand has not been identified, making it difficult to generate a cell line for screening using a conventional approach. The function of human G2A remains obscure. Here we show that by using an inducible T-REx (Invitrogen, Carlsbad, CA) expression system an inducible G2A functional cell-based beta-lactamase reporter assay could be developed using the constitutive activity of the receptor. Furthermore, G2A expression levels can be controlled under this inducible system to avoid the expression artifacts of conventional approaches using constitutive expression vectors. This stable cell line expressing the human G2A receptor was screened against a chemical library containing 740,000 compounds, and small molecules showing selective agonistic activity on G2A were identified. We believe the strategy employed here for G2A should be applicable to other "intractable" GPCRs where target gene expression results in cytotoxic and/or high constitutive activities.
Collapse
Affiliation(s)
- Mark Bercher
- Invitrogen Discovery Sciences, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kabarowski JH. G2A and LPC: regulatory functions in immunity. Prostaglandins Other Lipid Mediat 2009; 89:73-81. [PMID: 19383550 DOI: 10.1016/j.prostaglandins.2009.04.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/10/2009] [Accepted: 04/13/2009] [Indexed: 02/07/2023]
Abstract
The G2A receptor was originally identified by virtue of its transcriptional induction in murine B lymphoid cells in response to oncogenic transformation and treatment with various DNA-damaging agents. While preliminary characterization of cellular responses to G2A overexpression in fibroblastic cell lines suggested that this receptor may negatively regulate cell growth under conditions of proliferative and genotoxic stress, subsequent studies driven by the discovery of lysophosphatidylcholine (LPC) as a regulator of G2A signaling in immunoregulatory cells point to an important role for this receptor in innate and adaptive immunity.
Collapse
Affiliation(s)
- Janusz H Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
30
|
Parks BW, Srivastava R, Yu S, Kabarowski JHS. ApoE-dependent modulation of HDL and atherosclerosis by G2A in LDL receptor-deficient mice independent of bone marrow-derived cells. Arterioscler Thromb Vasc Biol 2009; 29:539-47. [PMID: 19164809 DOI: 10.1161/atvbaha.108.179937] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Deletion of the lysophospholipid-sensitive receptor, G2A, in low-density lipoprotein receptor knockout (LDLR(-/-)) mice elevates plasma high-density lipoprotein (HDL) cholesterol and suppresses atherosclerosis. However, chemotactic action of G2A in monocytes/macrophages, in addition to its modulatory effect on HDL, may contribute to the proatherogenic action of G2A. METHODS AND RESULTS We determined that deletion of G2A in LDLR(-/-) mice increases the ApoA1, ApoE, and cholesterol content of plasma HDL fractions. Hepatocytes were shown to express G2A and hepatocytes from G2A-deficient LDLR(-/-) mice secreted more ApoA1 and ApoE in HDL fractions compared to their G2A-sufficient counterparts. The atheroprotective and HDL modulatory effects of G2A deficiency were dependent on the presence of ApoE, as deletion of G2A in ApoE(-/-) and ApoE(-/-)LDLR(-/-) mice failed to raise HDL and did not suppress atherosclerosis. G2A deficiency in bone marrow-derived cells of LDLR(-/-) mice had no effect on atherosclerosis or HDL, whereas G2A deficiency in resident tissues was sufficient to raise HDL and suppress atherosclerosis. CONCLUSIONS These data demonstrate that the chemotactic function of G2A in bone marrow-derived monocytes does not modulate atherosclerosis in LDLR(-/-) mice and suggest an ApoE-dependent function for G2A in the control of hepatic HDL metabolism that might contribute to its proatherogenic action.
Collapse
Affiliation(s)
- Brian W Parks
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35294-2170, USA
| | | | | | | |
Collapse
|
31
|
Osmers I, Smith SS, Parks BW, Yu S, Srivastava R, Wohler JE, Barnum SR, Kabarowski JHS. Deletion of the G2A receptor fails to attenuate experimental autoimmune encephalomyelitis. J Neuroimmunol 2009; 207:18-23. [PMID: 19135725 DOI: 10.1016/j.jneuroim.2008.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/24/2008] [Indexed: 11/19/2022]
Abstract
Lysophosphatidylcholine (LPC) is a chemotactic lysolipid produced during inflammation by the hydrolytic action of phospholipase A(2) enzymes. LPC stimulates chemotaxis of T cells in vitro through activation of the G protein-coupled receptor, G2A. This has led to the proposition that G2A contributes to the recruitment of T cells to sites of inflammation and thus promotes chronic inflammatory autoimmune diseases associated with the generation and subsequent tissue infiltration of auto-antigen-specific effector T cells. However, one study suggests that G2A may negatively regulate T cell proliferative responses to antigen receptor engagement and thereby attenuates autoimmunity by reducing the generation of autoreactive T cells. To address the relative contribution of these G2A-mediated effects to the pathophysiology of T cell-mediated autoimmune disease, we examined the impact of G2A inactivation on the onset and severity of murine experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). Wild type (G2A(+/+)) and G2A-deficient (G2A(-/-)) C57BL/6J mice exhibited a similar incidence and onset of disease following immunization with MOG(35-55) peptide. Disease severity was only moderately reduced in G2A(-/-) mice. Similar numbers of MOG(35-55) specific T cells were generated in secondary lymphoid organs of MOG(35-55)-immunized G2A(+/+) and G2A(-/-) mice. Comparable numbers of T cells were detected in spinal cords of G2A(+/+) and G2A(-/-) mice. We conclude that the proposed anti-proliferative and chemotactic functions of G2A are not manifested in vivo and therefore therapeutic targeting of G2A is unlikely to be beneficial in the treatment of MS.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cell Proliferation/drug effects
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Flow Cytometry/methods
- Gene Deletion
- Glycoproteins/adverse effects
- Interferon-gamma/metabolism
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/adverse effects
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Spleen/cytology
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes/immunology
- Time Factors
Collapse
Affiliation(s)
- Inga Osmers
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bolick DT, Skaflen MD, Johnson LE, Kwon SC, Howatt D, Daugherty A, Ravichandran KS, Hedrick CC. G2A deficiency in mice promotes macrophage activation and atherosclerosis. Circ Res 2008; 104:318-27. [PMID: 19106413 DOI: 10.1161/circresaha.108.181131] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G2A is a stress-inducible G protein-coupled receptor that is expressed on several cell types within atherosclerotic lesions. We demonstrated previously that G2A deficiency in mice increased aortic monocyte recruitment and increased monocyte:endothelial interactions. To investigate the impact of G2A deficiency in macrophages, we isolated peritoneal macrophages from G2A(+/+)ApoE(-/-) and G2A(-/-)ApoE(-/-) mice. G2A(-/-)ApoE(-/-) macrophages had significantly lower apoptosis than control macrophages. The prosurvival genes BCL-2, BCL-xL, and cFLIP were increased in G2A(-/-)ApoE(-/-) macrophages. Macrophages from G2A(-/-)ApoE(-/-) mice also had increased proinflammatory status that was indicative of a M1 macrophage phenotype. This was indicated by significantly increased nuclear translocation of nuclear factor kappaB, as well as production of interleukin-12p40, tumor necrosis factor alpha, and interleukin-6, and reduced expression of arginase-I. Moreover, G2A(-/-)ApoE(-/-) macrophages had reduced ability to engulf apoptotic cells in vitro. We examined atherosclerosis in mice fed a Western diet for 10 weeks and found that G2A deficiency increased lesion size in the aortic root by 50%. Plasma lipid levels were not changed in G2A(-/-)ApoE(-/-) mice. However, we found that absence of G2A increased the number of aortic macrophages and attenuated apoptosis in this cell type. Moreover, bone marrow transplantation studies indicated that deficiency of G2A in marrow-derived cells significantly contributed to atherosclerosis development. In the absence of G2A, increased macrophage activation and decreased apoptosis is associated with accumulation of macrophages in the aorta and increased atherosclerosis.
Collapse
Affiliation(s)
- David T Bolick
- Cardiovascular Research Center, University of Charlottesville, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Johnson LE, Elias MS, Bolick DT, Skaflen MD, Green RM, Hedrick CC. The G protein-coupled receptor G2A: involvement in hepatic lipid metabolism and gallstone formation in mice. Hepatology 2008; 48:1138-48. [PMID: 18821587 PMCID: PMC2892979 DOI: 10.1002/hep.22433] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED The G2A receptor is a member of the ovarian cancer G protein-coupled receptor 1 family of stress-inducible G protein-coupled receptors. In this study, we examined the hepatobiliary effects of loss of function of G2A in mice fed either a chow or lithogenic diet. G2A-deficient (G2A(-/-)) mice fed chow had a 25% reduction in biliary phosphatidylcholine content, reduced hepatic gene expression of the phosphatidylcholine transporter adenosine triphosphate-binding cassette B4, and an 8-fold increase in expression of the nuclear receptor liver X receptor (LXR). Despite the increased expression of LXR, transcription of several LXR target genes was reduced. G2A(-/-) mice fed a lithogenic diet had rapid gallstone formation, an increased cholesterol saturation index, a 2.5-fold increase in farnesoid X receptor expression, a 5-fold increase in LXR expression, and a 90% reduction in cholesterol 7alpha-hydroxylase expression in comparison with wild-type mice. There were no changes in gallbladder volume. CONCLUSION These data demonstrate that the G2A receptor is important for hepatobiliary bile salt, cholesterol, and phospholipid homeostasis and for the pathogenesis of cholesterol gallstone formation.
Collapse
Affiliation(s)
- Laura E. Johnson
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| | - Marc S. Elias
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David T. Bolick
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| | - Marcus D. Skaflen
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| | - Richard M. Green
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | |
Collapse
|
34
|
Ye X. Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Update 2008; 14:519-36. [PMID: 18562325 DOI: 10.1093/humupd/dmn023] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two prominent signaling lysophospholipids (LPs) exerting their functions through a group of G protein-coupled receptors (GPCRs). This review covers current knowledge of the LP signaling in the function and pathology of the reproductive system. METHODS PubMed was searched up to May 2008 for papers on lysophospholipids/LPA/S1P/LPC/SPC in combination with each part of the reproductive system, such as testis/ovary/uterus. RESULTS LPA and SIP are found in significant amounts in serum and other biological fluids. To date, 10 LP receptors have been identified, including LPA(1-5) and S1P(1-5). In vitro and in vivo studies from the past three decades have demonstrated or suggested the physiological functions of LP signaling in reproduction, such as spermatogenesis, male sexual function, ovarian function, fertilization, early embryo development, embryo spacing, implantation, decidualization, pregnancy maintenance and parturition, as well as pathological roles in ovary, cervix, mammary gland and prostate cancers. CONCLUSIONS Receptor knock-out and other studies indicate tissue-specific and receptor-specific functions of LP signaling in reproduction. More comprehensive studies are required to define mechanisms of LP signaling and explore the potential use as a therapeutic target.
Collapse
Affiliation(s)
- Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
35
|
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. ACTA ACUST UNITED AC 2007; 204:2449-60. [PMID: 17875676 PMCID: PMC2118469 DOI: 10.1084/jem.20070657] [Citation(s) in RCA: 1367] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypertension promotes atherosclerosis and is a major source of morbidity and mortality. We show that mice lacking T and B cells (RAG-1−/− mice) have blunted hypertension and do not develop abnormalities of vascular function during angiotensin II infusion or desoxycorticosterone acetate (DOCA)–salt. Adoptive transfer of T, but not B, cells restored these abnormalities. Angiotensin II is known to stimulate reactive oxygen species production via the nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase in several cells, including some immune cells. Accordingly, adoptive transfer of T cells lacking the angiotensin type I receptor or a functional NADPH oxidase resulted in blunted angiotensin II–dependent hypertension and decreased aortic superoxide production. Angiotensin II increased T cell markers of activation and tissue homing in wild-type, but not NADPH oxidase–deficient, mice. Angiotensin II markedly increased T cells in the perivascular adipose tissue (periadventitial fat) and, to a lesser extent the adventitia. These cells expressed high levels of CC chemokine receptor 5 and were commonly double negative (CD3+CD4−CD8−). This infiltration was associated with an increase in intercellular adhesion molecule-1 and RANTES in the aorta. Hypertension also increased T lymphocyte production of tumor necrosis factor (TNF) α, and treatment with the TNFα antagonist etanercept prevented the hypertension and increase in vascular superoxide caused by angiotensin II. These studies identify a previously undefined role for T cells in the genesis of hypertension and support a role of inflammation in the basis of this prevalent disease. T cells might represent a novel therapeutic target for the treatment of high blood pressure.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Irani K. G protein-coupled receptor G2A: friend or foe of the vasculature? Circ Res 2007; 100:450-1. [PMID: 17332435 DOI: 10.1161/01.res.0000260274.62236.8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|