1
|
Liao L, Deng M, Gao Q, Zhang Q, Bian Y, Wang Z, Li J, Xu W, Li C, Wang K, Zheng Z, Zhou X, Hou G. Predictive and therapeutic value of lipoprotein-associated phospholipaseA2 in sarcopenia in chronic obstructive pulmonary disease. Int J Biol Macromol 2024; 275:133741. [PMID: 38986985 DOI: 10.1016/j.ijbiomac.2024.133741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Sarcopenia, characterized by progressive muscle dysfunction, is a common complication of chronic obstructive pulmonary disease (COPD). Our previous study revealed serum Lipoprotein-associated phospholipaseA2 (Lp-PLA2) level significantly increased in COPD and associated with exercise tolerance. This study further investigated the functions and target potential of Lp-PLA2 for sarcopenia in COPD. METHODS The circulating Lp-PLA2 level/enzyme activity in COPD patients and age-matched healthy volunteers were measured. Clinical parameters on skeletal muscle were measured and their correlations with Lp-PLA2 were analyzed. We explored the involvement of Lp-PLA2 in vivo and treatment effectiveness of darapladib (a specific Lp-PLA2 inhibitor) in CS-induced muscle dysfunction models. RESULTS Circulating Lp-PLA2 level/enzyme activity was elevated in COPD patients compared with healthy controls, negatively associated with skeletal muscle mass and function. In CS-induced muscle dysfunction murine models, up-regulated serum Lp-PLA2 level/enzyme activity was verified again. In CS-exposed mouse models, darapladib treatment reversed muscle mass loss and muscle dysfunction, meanwhile rescued upregulation of MuRF1 and atrogin-1, and activation of inflammatory factors, oxidant enzymes and NF-κB signaling. CONCLUSIONS Lp-PLA2 could be a potential indicator for sarcopenia in COPD. Darapladib, a Lp-PLA2 inhibitor, can alleviate CS-induced skeletal muscle dysfunction and represents a potential therapeutic for sarcopenia in COPD.
Collapse
Affiliation(s)
- Liwei Liao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mingming Deng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qian Gao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qin Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yiding Bian
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zilin Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiaye Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Weidong Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chang Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Kai Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ziwen Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Gang Hou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
2
|
Law HG, Stanhope KL, Zhang W, Myagmarsuren M, Jamshed ZM, Khan MA, Bang H, Havel PJ, Berglund L, Enkhmaa B. Lipoprotein(a) and diet: consuming sugar-sweetened beverages lowers lipoprotein(a) levels in obese and overweight adults. J Lipid Res 2024; 65:100588. [PMID: 38969065 PMCID: PMC11345294 DOI: 10.1016/j.jlr.2024.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
Lipoprotein(a) [Lp(a)] contributes to cardiovascular disease risk. A genetically determined size polymorphism in apolipoprotein(a) [apo(a)], determined by the number of Kringle (K) repeats, inversely regulates Lp(a) levels. Nongenetic factors including dietary saturated fat influence Lp(a) levels. However, less is known about the effects of carbohydrates including dietary sugars. In this double-blind, parallel arm study among 32 overweight/obese adults, we investigated the effect of consuming glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks on Lp(a) level and assessed the role of the apo(a) size polymorphism. The mean (±SD) age of participants was 54 ± 8 years, 50% were women, and 75% were of European descent. Following the 10-week intervention, Lp(a) level was reduced by an average (±SEM) of -13.2% ± 4.3% in all participants (P = 0.005); -15.3% ± 7.8% in the 15 participants who consumed glucose (P = 0.07); and -11.3% ± 4.5% in the 17 participants who consumed fructose (P = 0.02), without any significant difference in the effect between the two sugar groups. Relative changes in Lp(a) levels were similar across subgroups of lower versus higher baseline Lp(a) level or carrier versus noncarrier of an atherogenic small (≤22K) apo(a) size. In contrast, LDL-C increased. In conclusion, in older, overweight/obese adults, consuming sugar-sweetened beverages reduced Lp(a) levels by ∼13% independently of apo(a) size variability and the type of sugar consumed. The Lp(a) response was opposite to that of LDL-C and triglyceride concentrations. These findings suggest that metabolic pathways might impact Lp(a) levels.
Collapse
Affiliation(s)
- Hayley G Law
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Wei Zhang
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | | | - Zahraa M Jamshed
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Muhammad A Khan
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Heejung Bang
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Lars Berglund
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Byambaa Enkhmaa
- Department of Internal Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
3
|
Chong S, Mu G, Cen X, Xiang Q, Cui Y. Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). Int J Mol Med 2024; 53:57. [PMID: 38757360 PMCID: PMC11093556 DOI: 10.3892/ijmm.2024.5381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.
Collapse
Affiliation(s)
- Shan Chong
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Guangyan Mu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
4
|
Bhatia HS, Becker RC, Leibundgut G, Patel M, Lacaze P, Tonkin A, Narula J, Tsimikas S. Lipoprotein(a), platelet function and cardiovascular disease. Nat Rev Cardiol 2024; 21:299-311. [PMID: 37938756 PMCID: PMC11216952 DOI: 10.1038/s41569-023-00947-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Lipoprotein(a) (Lp(a)) is associated with atherothrombosis through several mechanisms, including putative antifibrinolytic properties. However, genetic association studies have not demonstrated an association between high plasma levels of Lp(a) and the risk of venous thromboembolism, and studies in patients with highly elevated Lp(a) levels have shown that Lp(a) lowering does not modify the clotting properties of plasma ex vivo. Lp(a) can interact with several platelet receptors, providing biological plausibility for a pro-aggregatory effect. Observational clinical studies suggest that elevated plasma Lp(a) concentrations are associated with worse long-term outcomes in patients undergoing revascularization. Furthermore, in these patients, those with elevated plasma Lp(a) levels derive more benefit from prolonged dual antiplatelet therapy than those with normal Lp(a) levels. The ASPREE trial in healthy older individuals treated with aspirin showed a reduction in ischaemic events in those who had a single-nucleotide polymorphism in LPA that is associated with elevated Lp(a) levels in plasma, without an increase in bleeding events. In this Review, we re-examine the role of Lp(a) in the regulation of platelet function and suggest areas of research to define further the clinical relevance to cardiovascular disease of the observed associations between Lp(a) and platelet function.
Collapse
Affiliation(s)
- Harpreet S Bhatia
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregor Leibundgut
- Division of Cardiology, University Hospital of Basel, Basel, Switzerland
| | - Mitul Patel
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Andrew Tonkin
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Abstract
Prolonged or excessive exposure to oxidized phospholipids (OxPLs) generates chronic inflammation. OxPLs are present in atherosclerotic lesions and can be detected in plasma on apolipoprotein B (apoB)-containing lipoproteins. When initially conceptualized, OxPL-apoB measurement in plasma was expected to reflect the concentration of minimally oxidized LDL, but, surprisingly, it correlated more strongly with plasma lipoprotein(a) (Lp(a)) levels. Indeed, experimental and clinical studies show that Lp(a) particles carry the largest fraction of OxPLs among apoB-containing lipoproteins. Plasma OxPL-apoB levels provide diagnostic information on the presence and extent of atherosclerosis and improve the prognostication of peripheral artery disease and first and recurrent myocardial infarction and stroke. The addition of OxPL-apoB measurements to traditional cardiovascular risk factors improves risk reclassification, particularly in patients in intermediate risk categories, for whom improving decision-making is most impactful. Moreover, plasma OxPL-apoB levels predict cardiovascular events with similar or greater accuracy than plasma Lp(a) levels, probably because this measurement reflects both the genetics of elevated Lp(a) levels and the generalized or localized oxidation that modifies apoB-containing lipoproteins and leads to inflammation. Plasma OxPL-apoB levels are reduced by Lp(a)-lowering therapy with antisense oligonucleotides and by lipoprotein apheresis, niacin therapy and bariatric surgery. In this Review, we discuss the role of role OxPLs in the pathophysiology of atherosclerosis and Lp(a) atherogenicity, and the use of OxPL-apoB measurement for improving prognosis, risk reclassification and therapeutic interventions.
Collapse
Affiliation(s)
- Sotirios Tsimikas
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Dzobo KE, Cupido AJ, Mol BM, Stiekema LC, Versloot M, Winkelmeijer M, Peter J, Pennekamp AM, Havik SR, Vaz FM, van Weeghel M, Prange KH, Levels JH, de Winther MP, Tsimikas S, Groen AK, Stroes ES, de Kleijn DP, Kroon J. Diacylglycerols and Lysophosphatidic Acid, Enriched on Lipoprotein(a), Contribute to Monocyte Inflammation. Arterioscler Thromb Vasc Biol 2024; 44:720-740. [PMID: 38269588 PMCID: PMC10880937 DOI: 10.1161/atvbaha.123.319937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Oxidized phospholipids play a key role in the atherogenic potential of lipoprotein(a) (Lp[a]); however, Lp(a) is a complex particle that warrants research into additional proinflammatory mediators. We hypothesized that additional Lp(a)-associated lipids contribute to the atherogenicity of Lp(a). METHODS Untargeted lipidomics was performed on plasma and isolated lipoprotein fractions. The atherogenicity of the observed Lp(a)-associated lipids was tested ex vivo in primary human monocytes by RNA sequencing, ELISA, Western blot, and transendothelial migratory assays. Using immunofluorescence staining and single-cell RNA sequencing, the phenotype of macrophages was investigated in human atherosclerotic lesions. RESULTS Compared with healthy individuals with low/normal Lp(a) levels (median, 7 mg/dL [18 nmol/L]; n=13), individuals with elevated Lp(a) levels (median, 87 mg/dL [218 nmol/L]; n=12) demonstrated an increase in lipid species, particularly diacylglycerols (DGs) and lysophosphatidic acid (LPA). DG and the LPA precursor lysophosphatidylcholine were enriched in the Lp(a) fraction. Ex vivo stimulation with DG(40:6) demonstrated a significant upregulation in proinflammatory pathways related to leukocyte migration, chemotaxis, NF-κB (nuclear factor kappa B) signaling, and cytokine production. Functional assessment showed a dose-dependent increase in the secretion of IL (interleukin)-6, IL-8, and IL-1β after DG(40:6) and DG(38:4) stimulation, which was, in part, mediated via the NLRP3 (NOD [nucleotide-binding oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome. Conversely, LPA-stimulated monocytes did not exhibit an inflammatory phenotype. Furthermore, activation of monocytes by DGs and LPA increased their transendothelial migratory capacity. Human atherosclerotic plaques from patients with high Lp(a) levels demonstrated colocalization of Lp(a) with M1 macrophages, and an enrichment of CD68+IL-18+TLR4+ (toll-like receptor) TREM2+ (triggering receptor expressed on myeloid cells) resident macrophages and CD68+CASP1+ (caspase) IL-1B+SELL+ (selectin L) inflammatory macrophages compared with patients with low Lp(a). Finally, potent Lp(a)-lowering treatment (pelacarsen) resulted in a reduction in specific circulating DG lipid subspecies in patients with cardiovascular disease with elevated Lp(a) levels (median, 82 mg/dL [205 nmol/L]). CONCLUSIONS Lp(a)-associated DGs and LPA have a potential role in Lp(a)-induced monocyte inflammation by increasing cytokine secretion and monocyte transendothelial migration. This DG-induced inflammation is, in part, NLRP3 inflammasome dependent.
Collapse
Affiliation(s)
- Kim E. Dzobo
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
| | - Arjen J. Cupido
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Barend M. Mol
- Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands (B.M.M., D.P.V.d.K.)
| | - Lotte C.A. Stiekema
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Miranda Versloot
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
| | - Maaike Winkelmeijer
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Jorge Peter
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Anne-Marije Pennekamp
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Stefan R. Havik
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Frédéric M. Vaz
- Core Facility Metabolomics (F.M.V., M.v.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Michel van Weeghel
- Core Facility Metabolomics (F.M.V., M.v.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Koen H.M. Prange
- Department of Medical Biochemistry, Amsterdam Infection and Immunity (K.H.M.P., M.P.J.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Johannes H.M. Levels
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam Infection and Immunity (K.H.M.P., M.P.J.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla (S.T.)
| | - Albert K. Groen
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Erik S.G. Stroes
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Dominique P.V. de Kleijn
- Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands (B.M.M., D.P.V.d.K.)
| | - Jeffrey Kroon
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
- Laboratory of Angiogenesis and Vascular Metabolism, Flanders Institute for Biotechnology (VIB)-KU Leuven Center for Cancer Biology, VIB, Belgium (J.K.)
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute, Belgium (J.K.)
| |
Collapse
|
7
|
Hua M, Chen WY, Wang LH, Zou XH, Mao LL. The value of serum Lp-PLA2 combined with MPO in the diagnosis of cerebral infarction caused by large artery atherosclerosis. Clin Neurol Neurosurg 2023; 232:107899. [PMID: 37467579 DOI: 10.1016/j.clineuro.2023.107899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE To explore the value of serum lipoprotein-associated phospholipase A2(Lp-PLA2)combined with myeloperoxidase(MPO)for the diagnosis of large artery atherosclerosis(LAA) cerebral infarction. METHODS Baseline data were collected from patients with first-ever acute cerebral infarction, serum Lp-PLA2 and MPO levels were measured. The etiology of cerebral infarction was classified according to the Chinese Ischemic Stroke Subtype Classification Standard. The risk factors associated with LAA cerebral infarction were identified by univariate and multivariate regression analysis. The diagnostic value of serum Lp-PLA2 and MPO for LAA cerebral infarction was assessed by the area under the receiver-operating characteristic (ROC) curve. RESULTS Overall 368 patients were involved, 148 patients (40.22 %) were LAA. The serum La-PLA2 and MPO levels were higher in the LAA group than those in non-LAA group (23.06 ± 3.39 ng/mL versus 17.48 ± 3.26 ng/mL; 93.60 ± 9.58 ng/mL versus 75.98 ± 15.53 ng/mL; P < 0.001 for both). Multivariate analysis showed that elevated levels of serum Lp-PLA2 (OR 1.742, 95 %CI 1.499-2.025; P < 0.001) and MPO (OR 1.060, 95 % CI 1.026-1.096; P = 0.001) were the independent risk factors of LAA cerebral infarction. The area under curve of the serum Lp-PLA2 combined with MPO for the diagnosis of LAA cerebral infarction was 0.896 [0.866 ∼ 0.927] (P < 0.001). CONCLUSION Serum Lp-PLA2 combined with MPO could be valued as a predictor of acute cerebral infarction caused by large artery atherosclerosis.
Collapse
Affiliation(s)
- Min Hua
- Department of Neurology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu Province, China
| | - Wen-Ya Chen
- Department of Neurology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu Province, China
| | - Li-Hui Wang
- Department of Neurology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu Province, China
| | - Xiao-Hua Zou
- Department of Neurology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu Province, China
| | - Lun-Lin Mao
- Department of Neurology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, Jiangsu Province, China.
| |
Collapse
|
8
|
Likozar AR, Šebeštjen M. Predictors of functional and morphological arterial wall properties in coronary artery disease patients with increased lipoprotein (a) levels before and after treatment with proprotein convertase subtilisin-kexin type 9 inhibitors. Cardiovasc Ultrasound 2023; 21:15. [PMID: 37580777 PMCID: PMC10424345 DOI: 10.1186/s12947-023-00313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND In addition to proatherogenic properties, lipoprotein (a) (Lp(a)) has also pro-inflammatory, antifibrinolytic and prothrombogenic features. The aim of the current study was to identify the predictors of functional and morphological properties of the arterial wall in patients after myocardial infarction and increased Lp(a) levels at the beginning and after treatment with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors. METHODS Seventy-six post-myocardial infarction patients with high Lp(a) levels were included in the study. Ultrasound measurements of flow-mediated dilation of brachial artery (FMD), carotid intima-media thickness (c-IMT) and pulse wave velocity (PWV) were performed initially and after 6 months of treatment. At the same time points lipids, Lp(a), inflammatory and hemostasis markers were measured in blood samples. RESULTS In linear regression model FMD significantly correlated with age at first myocardial infarction (β = 0.689; p = 0.022), high-sensitivity C-reactive protein (β = -1.200; p = 0.009), vascular cell adhesion protein 1 (VCAM-1) (β = -0.992; p = 0.006), overall coagulation potential (β = 1.428; p = 0.014) and overall hemostasis potential (β = -1.473; p = 0.008). c-IMT significantly correlated with age at first myocardial infarction (β = 0.574; p = 0.033) and Lp(a) (β = 0.524; p = 0.040). PWV significantly correlated with systolic blood pressure (β = 0.332; p = 0.002), tumor necrosis factor alpha (β = 0.406; p = 0.002), interleukin-8 (β = -0.315; p = 0.015) and plasminogen activator inhibitor 1 (β = 0.229; p = 0.031). After treatment FMD reached statistical significance only in univariant analysis with systolic blood pressure (r = -0.286; p = 0.004) and VCAM-1 (r = -0.229; p = 0.024). PWV and c-IMT correlated with age (r = 0.334; p = 0.001 and r = 0.486; p < 0.0001, respectively) and systolic blood pressure (r = 0.556; p < 0.0001 and r = 0.233; p = 0.021, respectively). CONCLUSIONS Our results suggest that age, systolic blood pressure, Lp(a) levels and other biochemical markers associated with Lp(a) are predictors of functional and morphological properties of the arterial vessel wall in post-myocardial patients with high Lp(a) levels initially. However, after 6 months of treatment with PCSK9 inhibitors only age and systolic blood pressure seem to be predictors of these properties. TRIAL REGISTRATION The protocol for this study was registered with clinicaltrials.gov on November, 3 2020 under registration number NCT04613167.
Collapse
Affiliation(s)
| | - Miran Šebeštjen
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- Department of Cardiology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Lampsas S, Xenou M, Oikonomou E, Pantelidis P, Lysandrou A, Sarantos S, Goliopoulou A, Kalogeras K, Tsigkou V, Kalpis A, Paschou SA, Theofilis P, Vavuranakis M, Tousoulis D, Siasos G. Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules 2023; 28:969. [PMID: 36770634 PMCID: PMC9918959 DOI: 10.3390/molecules28030969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) cholesterol-like particle bound to apolipoprotein(a). Increased Lp(a) levels are an independent, heritable causal risk factor for atherosclerotic cardiovascular disease (ASCVD) as they are largely determined by variations in the Lp(a) gene (LPA) locus encoding apo(a). Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), and its role adversely affects vascular inflammation, atherosclerotic lesions, endothelial function and thrombogenicity, which pathophysiologically leads to cardiovascular (CV) events. Despite this crucial role of Lp(a), its measurement lacks a globally unified method, and, between different laboratories, results need standardization. Standard antilipidemic therapies, such as statins, fibrates and ezetimibe, have a mediocre effect on Lp(a) levels, although it is not yet clear whether such treatments can affect CV events and prognosis. This narrative review aims to summarize knowledge regarding the mechanisms mediating the effect of Lp(a) on inflammation, atherosclerosis and thrombosis and discuss current diagnostic and therapeutic potentials.
Collapse
Affiliation(s)
- Stamatios Lampsas
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Xenou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Panteleimon Pantelidis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Antonios Lysandrou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Savvas Sarantos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Tsigkou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Athanasios Kalpis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stavroula A. Paschou
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, 11527 Athens, Greece
| | - Panagiotis Theofilis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Wang H, Xia H, Wang D, Guo Y, Wang X, Yu Y, Zhang C, Liu, Z. Serum lipoprotein phospholipase A2 level has diagnostic value for cognitive impairment in type II diabetes patients with white matter hyperintensity. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Haipeng Wang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Haimiao Xia
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Dongxia Wang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Yu Guo
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Xiaoyu Wang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Yue Yu
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Chengshi Zhang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Zhongjin Liu,
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| |
Collapse
|
11
|
English CJ, Lohning AE, Mayr HL, Jones M, Reidlinger DP. Interrelationships among platelet-activating factor and lipoprotein-associated phospholipase A 2 activity and traditional cardiovascular risk factors. Biofactors 2022; 49:457-471. [PMID: 36538603 DOI: 10.1002/biof.1928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Traditionally cardiovascular disease (CVD) risk has been assessed through blood lipids and inflammatory marker C-reactive protein (hsCRP). Recent clinical interest in novel pro-inflammatory markers platelet-activating factor (PAF) and lipoprotein-associated phospholipase A2 (Lp-PLA2 ) recognizes that vascular damage can exist in the absence of traditional risk factors. This cross-sectional study investigated the potential relationship between circulating PAF, Lp-PLA2 , hsCRP, and traditional risk factors for CVD. One hundred adults (49 ± 13 years, 31% male) with variable CVD risk were recruited. Fasting inflammatory markers PAF, Lp-PLA2 and hsCRP and total, high-density lipoprotein (HDL), low-density lipoprotein (LDL) cholesterol, and triglycerides were measured. Blood pressure, body mass index, and waist circumference were measured. Medical and physical activity data were self-reported. Linear and multiple regressions were performed. PAF, Lp-PLA2 , and hsCRP independently correlated with several CVD risk factors. PAF was correlated significantly with risk factors in an unexpected way; there was a medium positive correlation between PAF and HDL cholesterol (r = 0.394, p < 0.001) and medium negative correlations with Total:HDL cholesterol; (r = -0.436, p < 0.001) systolic blood pressure; (r = -0.307, p = 0.001); BMI (r = -0.381, p < 0.001); and waist circumference (r = -0.404, p < 0.001). There were large positive correlations between Lp-PLA2 and LDL (r = 0.525, p < 0.001) and non-HDL cholesterol (r = 0.508, p < 0.001). There were large positive correlations between hsCRP and Total:HDL cholesterol (r = 0.524, p < 0.001); BMI (r = 0.668, p < 0.001); and waist circumference (r = 0.676, p < 0.001). PAF, Lp-PLA2 , and hsCRP are implicated in the pathophysiology of inflammation in CVD; however, the relationships between each marker and traditional risk factors were different suggesting they may be involved in different atherogenic pathways.
Collapse
Affiliation(s)
- Carolyn J English
- Bond University, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Anna E Lohning
- Bond University, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Hannah L Mayr
- Bond University, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Centre for Functioning and Health Research, Metro South Hospital and Health Service, Brisbane, Queensland, Australia
| | - Mark Jones
- Institute of Evidence-Based Healthcare, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Dianne P Reidlinger
- Bond University, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| |
Collapse
|
12
|
Pantazi D, Tellis C, Tselepis AD. Oxidized phospholipids and lipoprotein-associated phospholipase A 2 (Lp-PLA 2 ) in atherosclerotic cardiovascular disease: An update. Biofactors 2022; 48:1257-1270. [PMID: 36192834 DOI: 10.1002/biof.1890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
Inflammation and oxidative stress conditions lead to a variety of oxidative modifications of lipoprotein phospholipids implicated in the occurrence and development of atherosclerotic lesions. Lipoprotein-associated phospholipase A2 (Lp-PLA2 ) is established as an independent risk biomarker of atherosclerosis-related cardiovascular disease (ASCVD) and mediates vascular inflammation through the regulation of lipid metabolism in the blood and in atherosclerotic lesions. Lp-PLA2 is associated with low- and high-density lipoproteins and Lipoprotein (a) in human plasma and specifically hydrolyzes oxidized phospholipids involved in oxidative stress modification. Several oxidized phospholipids (OxPLs) subspecies can be detoxified through enzymatic degradation by Lp-PLA2 activation, forming lysophospholipids and oxidized non-esterified fatty acids (OxNEFAs). Lysophospholipids promote the expression of adhesion molecules, stimulate cytokines production (TNF-α, IL-6), and attract macrophages to the arterial intima. The present review article discusses new data on the functional roles of OxPLs and Lp-PLA2 associated with lipoproteins.
Collapse
Affiliation(s)
- Despoina Pantazi
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Constantinos Tellis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
13
|
Liu H, Fu D, Luo Y, Peng D. Independent association of Lp(a) with platelet reactivity in subjects without statins or antiplatelet agents. Sci Rep 2022; 12:16609. [PMID: 36198899 PMCID: PMC9534895 DOI: 10.1038/s41598-022-21121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
The physiological effect of Lp(a) on platelet activity is unclear. Previous studies explored the relationship between Lp(a) and platelet aggregation in patients taking statins and antiplatelet agents, but few was conducted in individuals without the bias of those drugs that either influence Lp(a) or platelet activity. The aim of this study was to assess the relationship between Lp(a) levels and platelet aggregation in subjects not taking statins or antiplatelet drugs. A hospital-based cross-sectional study was conducted to investigate the independent contribution of Lp(a) to platelet activity by controlling the effects of potential confounding factors including lipoprotein-associated phospholipase A2 [Lp-PLA2]. Blood samples were collected from 92 subjects without statins or antiplatelet agents from the Second Xiangya Hospital. The univariate correlation analysis showed a significant correlation between AA-induced average aggregation rate [AAR] and ApoB (r = 0.324, P = 0.002), ApoA1 (r = 0.252, P = 0.015), Lp(a) (r = 0.370, P < 0.001), Lp-PLA2 (r = 0.233, P = 0.025) and platelet counts [PLT] (r = 0.389, P < 0.001). Multivariate regression analysis suggested that Lp(a) contributed independently to AA-induced average aggregation rate (β = 0.023, P = 0.027) after controlling for the effects of ApoB, Lp-PLA2 and platelet counts. Lp(a) is positively associated with platelet aggregation independent of Lp-PLA2, which may partly account for the atherothrombotic effect of Lp(a).
Collapse
Affiliation(s)
- Huixing Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Di Fu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yonghong Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
14
|
Koschinsky ML, Boffa MB. Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry and pathophysiology. Atherosclerosis 2022; 349:92-100. [DOI: 10.1016/j.atherosclerosis.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023]
|
15
|
Nakamura H, Kataoka Y, Nicholls SJ, Puri R, Kitahara S, Murai K, Sawada K, Matama H, Iwai T, Honda S, Fujino M, Takagi K, Yoneda S, Otsuka F, Nishihira K, Asaumi Y, Tsujita K, Noguchi T. Elevated Lipoprotein(a) as a potential residual risk factor associated with lipid-rich coronary atheroma in patients with type 2 diabetes and coronary artery disease on statin treatment: Insights from the REASSURE-NIRS registry. Atherosclerosis 2022; 349:183-189. [DOI: 10.1016/j.atherosclerosis.2022.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
|
16
|
Jiang X, Xu J, Hao X, Xue J, Li K, Jin A, Lin J, Meng X, Zheng L, Wang Y. Elevated lipoprotein(a) and lipoprotein-associated phospholipase A 2 are associated with unfavorable functional outcomes in patients with ischemic stroke. J Neuroinflammation 2021; 18:307. [PMID: 34963487 PMCID: PMC8715597 DOI: 10.1186/s12974-021-02359-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Background The association of lipoprotein(a) [Lp(a)] and stroke functional outcomes was conflicting. The aim of the study was to clarify whether high Lp(a) is associated with unfavorable functional outcomes in patients with ischemic stroke. Methods A total of 9709 individuals from the third China National Stroke Registry cohort were recruited. Plasma level of Lp(a) at admission was measured with enzyme-linked immunosorbent assay. The cut-off was set at the median for Lp(a). Functional outcome was assessed using the modified Rankin scale (mRS) at 3 months and 1 year after ischemic stroke. The association between Lp(a) and functional outcomes was evaluated using a logistic regression model. Results The median age was 63.0 years, and 31.1% participants were women. Patients in higher Lp(a) group had higher incidences of unfavorable functional outcomes at 3 months. In logistic regression model, elevated Lp(a) levels were associated with unfavorable functional outcomes at 3 months (Q4 vs. Q1: odds ratio 1.33, 95% confidence interval 1.11–1.61). Subgroup analysis showed that in the lower Lp-PLA2 group, Lp(a) level was not associated with functional outcomes, but in the higher Lp-PLA2 group, Lp(a) level was significantly associated with functional outcomes. After grouped by different levels of Lp(a) and Lp-PLA2, the Lp(a) high/ Lp-PLA2 high group showed the highest incidence of unfavorable functional outcomes at 3 months and 1 year. Conclusions Elevated Lp(a) level is associated with unfavorable functional outcomes in patients with ischemic stroke. The increment in both Lp(a) and Lp-PLA2 are associated with unfavorable functional outcomes at 3 months and 1 year after ischemic stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02359-w.
Collapse
Affiliation(s)
- Xue Jiang
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jie Xu
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiwa Hao
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Department of Neurology, Baotou Center Hospital, Inner Mongolia, China
| | - Jing Xue
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ke Li
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Aoming Jin
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jinxi Lin
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xia Meng
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lemin Zheng
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China. .,The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100871, China.
| | - Yongjun Wang
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Ugovšek S, Šebeštjen M. Lipoprotein(a)—The Crossroads of Atherosclerosis, Atherothrombosis and Inflammation. Biomolecules 2021; 12:biom12010026. [PMID: 35053174 PMCID: PMC8773759 DOI: 10.3390/biom12010026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Increased lipoprotein(a) (Lp(a)) levels are an independent predictor of coronary artery disease (CAD), degenerative aortic stenosis (DAS), and heart failure independent of CAD and DAS. Lp(a) levels are genetically determinated in an autosomal dominant mode, with great intra- and inter-ethnic diversity. Most variations in Lp(a) levels arise from genetic variations of the gene that encodes the apolipoprotein(a) component of Lp(a), the LPA gene. LPA is located on the long arm of chromosome 6, within region 6q2.6–2.7. Lp(a) levels increase cardiovascular risk through several unrelated mechanisms. Lp(a) quantitatively carries all of the atherogenic risk of low-density lipoprotein cholesterol, although it is even more prone to oxidation and penetration through endothelia to promote the production of foam cells. The thrombogenic properties of Lp(a) result from the homology between apolipoprotein(a) and plasminogen, which compete for the same binding sites on endothelial cells to inhibit fibrinolysis and promote intravascular thrombosis. LPA has up to 70% homology with the human plasminogen gene. Oxidized phospholipids promote differentiation of pro-inflammatory macrophages that secrete pro-inflammatory cytokines (e. g., interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α). The aim of this review is to define which of these mechanisms of Lp(a) is predominant in different groups of patients.
Collapse
Affiliation(s)
- Sabina Ugovšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Miran Šebeštjen
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
18
|
Lv SL, Zeng ZF, Gan WQ, Wang WQ, Li TG, Hou YF, Yan Z, Zhang RX, Yang M. Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation. Acta Pharmacol Sin 2021; 42:2016-2032. [PMID: 34226664 PMCID: PMC8632984 DOI: 10.1038/s41401-021-00703-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022]
Abstract
Macrophage-mediated inflammation plays an important role in hypertensive cardiac remodeling, whereas effective pharmacological treatments targeting cardiac inflammation remain unclear. Lipoprotein-associated phospholipase A2 (Lp-PLA2) contributes to vascular inflammation-related diseases by mediating macrophage migration and activation. Darapladib, the most advanced Lp-PLA2 inhibitor, has been evaluated in phase III trials in atherosclerosis patients. However, the role of darapladib in inhibiting hypertensive cardiac fibrosis remains unknown. Using a murine angiotensin II (Ang II) infusion-induced hypertension model, we found that Pla2g7 (the gene of Lp-PLA2) was the only upregulated PLA2 gene detected in hypertensive cardiac tissue, and it was primarily localized in heart-infiltrating macrophages. As expected, darapladib significantly prevented Ang II-induced cardiac fibrosis, ventricular hypertrophy, and cardiac dysfunction, with potent abatement of macrophage infiltration and inflammatory response. RNA sequencing revealed that darapladib strongly downregulated the expression of genes and signaling pathways related to inflammation, extracellular matrix, and proliferation. Moreover, darapladib substantially reduced the Ang II infusion-induced expression of nucleotide-binding oligomerization domain-like receptor with pyrin domain 3 (NLRP3) and interleukin (IL)-1β and markedly attenuated caspase-1 activation in cardiac tissues. Furthermore, darapladib ameliorated Ang II-stimulated macrophage migration and IL-1β secretion in macrophages by blocking NLRP3 inflammasome activation. Darapladib also effectively blocked macrophage-mediated transformation of fibroblasts into myofibroblasts by inhibiting the activation of the NLRP3 inflammasome in macrophages. Overall, our study identifies a novel anti-inflammatory and anti-cardiac fibrosis role of darapladib in Lp-PLA2 inhibition, elucidating the protective effects of suppressing NLRP3 inflammasome activation. Lp-PLA2 inhibition by darapladib represents a novel therapeutic strategy for hypertensive cardiac damage treatment.
Collapse
Affiliation(s)
- Si-Lin Lv
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zi-Fan Zeng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Qiang Gan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wei-Qi Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tie-Gang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu-Fang Hou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zheng Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ri-Xin Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
19
|
Sheng G, Zhou J, Zhang C, Wu C, Huang K, Qin X, Wu J. Relationship between Lp-PLA2 and in-stent restenosis after coronary stenting: a 3-year follow-up study. Scott Med J 2021; 66:178-185. [PMID: 34315293 DOI: 10.1177/00369330211034809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Coronary in-stent restenosis (ISR) is an important complication of percutaneous coronary intervention (PCI). However, the relationship between lipoprotein associated phospholipase A2 (Lp-PLA2) level and ISR after PCI is rarely reported. This study aims to explore the relationship between Lp-PLA2 and the occurrence of ISR at post-PCI and its predictive value for ISR. METHODS AND RESULTS Plasma Lp-PLA2 mass were measured in 847 patients planting 1262 stents and evaluated along with known risk indicators. One-year angiographic follow-up showed that baseline elevated Lp-PLA2 mass was strongly associated with early restenosis (95% CI = 1.062-3.050, P < 0.05). Beyond the first year, the occurrence of late restenosis (95% CI = 1.043-3.214, P < 0.05) was significantly larger in the elevated Lp-PLA2 group. Kaplan-Meier analysis after three-year clinical follow up suggested that Lp-PLA2 mass did add the positive effect on the occurrence of major adverse cardiovascular events (MACEs). CONCLUSION In conclusion, increased baseline plasma Lp-PLA2 predicts increased risks of re-stenosis and MACEs, which may be a novel biomarker for predicting ISR and MACEs.
Collapse
Affiliation(s)
- Guohua Sheng
- Deputy Chief Physician, Department of Cardiology, Haimen Hospital of Nantong University, China
| | - Juan Zhou
- Deputy Chief Physician, Department of Medical Imaging, Radiology Center, Haimen Hospital of Nantong University, China
| | - Chi Zhang
- Attending physician, Department of Cardiology, First Affiliated Hospital of Soochow University, China
| | - Caijuan Wu
- Chief Physician, Department of Cardiology, Haimen Hospital of Nantong University, China
| | - Kairong Huang
- Attending physician, Department of Cardiology, Haimen Hospital of Nantong University, China
| | - Xiaotong Qin
- Chief Physician, Department of Cardiology, Affiliated Hospital of Nantong University, China
| | - Jie Wu
- Chief Physician, Department of Cardiology, Haimen Hospital of Nantong University, China
| |
Collapse
|
20
|
Wang X, Li J, Ju J, Fan Y, Xu H. Effect of different types and dosages of statins on plasma lipoprotein(a) levels: A network meta-analysis. Pharmacol Res 2021; 163:105275. [PMID: 33166736 DOI: 10.1016/j.phrs.2020.105275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM Studies differ with respect to the effects of statins and their on lipoprotein(a)[Lp(a)] levels. The aim of the present study was to resolve these differences by determining the effect of various types and dosages of statins on Lp(a) levels. METHODS We searched PubMed, Embase and the Cochrane library for randomized controlled trials (RCTs) investigating the efficacy of statins on plasma Lp(a) levels. Study selection, data extraction and risk of bias assessment were conducted independently by four authors. We conducted pairwise meta-analysis and network meta-analysis (NMA). Consistency models were applied to NMA and the ranking probabilities for each treatment's efficacy were calculated. Node-splitting analysis was used to test inconsistency. This study was registered with PROSPERO, number CRD42020167612. RESULTS Twenty RCTs with 23,605 participants were included, involving 11 interventions. Most of the included studies presented some risks of bias, especially risks of performance and detection bias. In the pairwise meta-analysis, pooled results showed a small but statistically significant difference between high-intensity rosuvastatin and placebo on Lp(a) levels (MD = 1.81, 95 % CI [0.43, 3.19], P = 0.01). In the NMA, different types and dosages of statins showed no significant effect on the level of Lp(a), and there was no obvious difference between them. Subgroup analysis based on different populations and treatment durations did not provide any statistically significant findings about different statins on Lp(a) levels. Node-splitting analysis showed that no significant inconsistency existed (P > 0.05). CONCLUSIONS Statins have no clinically significant effect on Lp(a) levels, and there is no significant difference in the effect on Lp(a) levels between different types and dosages of statins. Moderate-intensity pitavastatin tended to have the best effect on reducing Lp(a) levels; nevertheless, it was insignificant. Our findings highlight the necessity for further study of the effect of statins on Lp(a) levels in future studies.
Collapse
Affiliation(s)
- Xinyi Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jingen Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yixuan Fan
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
21
|
Targeted anti-inflammatory therapy is a new insight for reducing cardiovascular events: A review from physiology to the clinic. Life Sci 2020; 253:117720. [PMID: 32360620 DOI: 10.1016/j.lfs.2020.117720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
Despite considerable progressions, cardiovascular disease (CVD) is still one of the major causes of mortality around the world, indicates an important and unmet clinical need. Recently, extensive studies have been performed on the role of inflammatory factors as either a major or surrogate factor in the pathophysiology of CVD. Epidemiological observations suggest the theory of the role of inflammatory mediators in the development of cardiovascular events. This may support the idea that targeted anti-inflammatory therapies, on the background of traditional validated medical therapies, can play a significant role in prevention and even reduction of cardiovascular disorders. Many randomized controlled trials have shown that drugs commonly useful for primary and secondary prevention of CVD have an anti-inflammatory mechanism. Further, many anti-inflammatory drugs are being examined because of their potential to reduce the risk of cardiovascular problems. In this study, we review the process of inflammation in the development of cardiovascular events, both in vivo and clinical evidence in immunotherapy for CVD.
Collapse
|
22
|
Dhindsa DS, Sandesara PB, Shapiro MD, Wong ND. The Evolving Understanding and Approach to Residual Cardiovascular Risk Management. Front Cardiovasc Med 2020; 7:88. [PMID: 32478100 PMCID: PMC7237700 DOI: 10.3389/fcvm.2020.00088] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Despite unprecedented advances in treatment of atherosclerotic cardiovascular disease, it remains the leading cause of death and disability worldwide. Treatment of major traditional risk factors, including low-density lipoprotein-cholesterol, serves as the foundation of atherosclerotic risk reduction. However, there remains a significant residual risk of cardiovascular events despite optimal risk factor management. Beyond traditional risk factors, other drivers of residual risk have come to the forefront, including inflammatory, pro-thrombotic, and metabolic pathways that contribute to recurrent events and are often unrecognized and not addressed in clinical practice. This review will explore the evidence linking these pathways to atherosclerotic cardiovascular disease and potential future therapeutic options to attenuate residual cardiovascular risk conferred by these pathways.
Collapse
Affiliation(s)
- Devinder S. Dhindsa
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Atlanta, GA, United States
| | - Pratik B. Sandesara
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Atlanta, GA, United States
| | - Michael D. Shapiro
- Section on Cardiovascular Medicine, Center for the Prevention of Cardiovascular Disease, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Nathan D. Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
23
|
Apolipoprotein(a), an enigmatic anti-angiogenic glycoprotein in human plasma: A curse or cure? Pharmacol Res 2020; 158:104858. [PMID: 32430285 DOI: 10.1016/j.phrs.2020.104858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is a finely co-ordinated, multi-step developmental process of the new vascular structure. Even though angiogenesis is regularly occurring in physiological events such as embryogenesis, in adults, it is restricted to specific tissue sites where rapid cell-turnover and membrane synthesis occurs. Both excessive and insufficient angiogenesis lead to vascular disorders such as cancer, ocular diseases, diabetic retinopathy, atherosclerosis, intra-uterine growth restriction, ischemic heart disease, stroke etc. Occurrence of altered lipid profile and vascular lipid deposition along with vascular disorders is a hallmark of impaired angiogenesis. Among lipoproteins, lipoprotein(a) needs special attention due to the presence of a multi-kringle protein subunit, apolipoprotein(a) [apo(a)], which is structurally homologous to many naturally occurring anti-angiogenic proteins such as plasminogen and angiostatin. Researchers have constructed different recombinant forms of apo(a) (rhLK68, rhLK8, RHACK2, KV-11, and AU-6) and successfully exploited its potential to inhibit unwanted angiogenesis during tumor metastasis and retinal neovascularization. Similar to naturally occurring anti-angiogenic proteins, apo(a) can directly interfere with angiogenic signaling pathways. Besides this, apo(a) can also exert its anti-angiogenic effect indirectly by inducing endothelial cell apoptosis, by inhibiting endothelial progenitor cell functions or by upregulating nuclear factors in endothelial cells via apo(a)-bound oxPLs. However, the impact of the anti-angiogenic potential of native apo(a) during physiological angiogenesis in embryos and wounded tissues is not yet explored. In this context, we review the studies so far done to demonstrate the anti-angiogenic activity of apo(a) and the recent developments in using apo(a) as a therapeutic agent to treat impaired angiogenesis during vascular disorders, with emphasis on the gaps in the literature.
Collapse
|
24
|
Inflammatory Biomarkers for Cardiovascular Risk Stratification in Familial Hypercholesterolemia. Rev Physiol Biochem Pharmacol 2020; 177:25-52. [PMID: 32691159 DOI: 10.1007/112_2020_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Familial hypercholesterolemia (FH) is a frequent autosomal genetic disease characterized by elevated concentrations of low-density lipoprotein cholesterol (LDL) from birth with increased risk of premature atherosclerotic complications. Accumulating evidence has shown enhanced inflammation in patients with FH. In vessels, the deposition of modified cholesterol lipoproteins triggers local inflammation. Then, inflammation facilitates fatty streak formation by activating the endothelium to produce chemokines and adhesion molecules. This process eventually results in the uptake of vascular oxidized LDL (OxLDL) by scavenger receptors in monocyte-derived macrophages and formation of foam cells. Further leukocyte recruitment into the sub-endothelial space leads to plaque progression and activation of smooth muscle cells proliferation. Several inflammatory biomarkers have been reported in this setting which can be directly synthetized by activated inflammatory/vascular cells or can be indirectly produced by organs other than vessels, e.g., liver. Of note, inflammation is boosted in FH patients. Inflammatory biomarkers might improve the risk stratification for coronary heart disease and predict atherosclerotic events in FH patients. This review aims at summarizing the current knowledge about the role of inflammation in FH and the potential application of inflammatory biomarkers for cardiovascular risk estimation in these patients.
Collapse
|
25
|
Fatahi S, Kord-Varkaneh H, Talaei S, Mardali F, Rahmani J, Ghaedi E, Tan SC, Shidfar F. Impact of phytosterol supplementation on plasma lipoprotein(a) and free fatty acid (FFA) concentrations: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2019; 29:1168-1175. [PMID: 31582198 DOI: 10.1016/j.numecd.2019.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Although some earlier studies have indicated the effect of phytosterol (PS) supplementation on serum lipoprotein(a) (Lp(a)) and free fatty acid (FFA) concentration, findings are still conflicting. We aimed to assess the impact of PS supplementation on serum Lp(a) and FFA concentration through a systematic review and meta-analysis of available RCTs. METHODS AND RESULTS We performed a systematic search of all available RCTs conducted up to 21 February 2019 in the following databases: PubMed, Scopus, and Cochrane. The choice of fixed- or random-effect model for analysis was determined according to the I2 statistic. Effect sizes were expressed as weighted mean difference (WMD) and 95% confidence interval (CI). Pooling of 12 effect sizes from seven articles revealed a significant reduction of Lp(a) levels following PS supplementation (MD: -0.025 mg/dl, 95% CI: -0.045, -0.004, p = 0.017) without significant heterogeneity among the studies (I2 = 0.0%, p = 0.599). Also, PS supplementation significantly lowered FFA (MD: -0.138 mg/dl, 95% CI: -0.195, -0.081, p = 0.000) without significant heterogeneity among the studies (I2 = 0.0%, p = 0.911). The results for meta-regression and sensitivity analysis were not significant. CONCLUSION The meta-analysis suggests that oral PS supplementation could cause a significant reduction in serum Lp(a) and FFA.
Collapse
Affiliation(s)
- Somaye Fatahi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Kord-Varkaneh
- Student Research Committee, Department Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzane Mardali
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Student Research Committee, Department Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ghaedi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shing C Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Lipoprotein(a) concentration is associated with plasma arachidonic acid in subjects with familial hypercholesterolaemia. Br J Nutr 2019; 122:790-799. [PMID: 31262370 DOI: 10.1017/s0007114519001600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Elevated lipoprotein(a) (Lp(a)) is associated with CVD and is mainly genetically determined. Studies suggest a role of dietary fatty acids (FA) in the regulation of Lp(a); however, no studies have investigated the association between plasma Lp(a) concentration and n-6 FA. We aimed to investigate whether plasma Lp(a) concentration was associated with dietary n-6 FA intake and plasma levels of arachidonic acid (AA) in subjects with familial hypercholesterolaemia (FH). We included FH subjects with (n 68) and without (n 77) elevated Lp(a) defined as ≥75 nmol/l and healthy subjects (n 14). Total FA profile was analysed by GC-flame ionisation detector analysis, and the daily intake of macronutrients (including the sum of n-6 FA: 18 : 2n-6, 20 : 2n-6, 20 : 3n-6 and 20 : 4n-6) were computed from completed FFQ. FH subjects with elevated Lp(a) had higher plasma levels of AA compared with FH subjects without elevated Lp(a) (P = 0·03). Furthermore, both FH subjects with and without elevated Lp(a) had higher plasma levels of AA compared with controls (P < 0·001). The multivariable analyses showed associations between dietary n-6 FA intake and plasma levels of AA (P = 0·02) and between plasma levels of Lp(a) and AA (P = 0·006). Our data suggest a novel link between plasma Lp(a) concentration, dietary n-6 FA and plasma AA concentration, which may explain the small diet-induced increase in Lp(a) levels associated with lifestyle changes. Although the increase may not be clinically relevant, this association may be mechanistically interesting in understanding more of the role and regulation of Lp(a).
Collapse
|
27
|
Boffa MB, Koschinsky ML. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat Rev Cardiol 2019; 16:305-318. [DOI: 10.1038/s41569-018-0153-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Durgarao Y, Manjrekar PA, Adhikari P, Chakrapani M, Rukmini MS. Comprehensive Review on Diabetes Associated Cardiovascular Complications - The Vitamin D Perspective. Cardiovasc Hematol Disord Drug Targets 2019; 19:139-153. [PMID: 30648528 DOI: 10.2174/1871529x19666190114155302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
Abstract
Vitamin D, a steroid hormone is primarily known for its role in calcium and bone mineral homeostasis. Over the years, vitamin D has been implicated in various non-skeletal diseases. The extraskeletal phenomenon can be attributed to the presence of vitamin D receptors (VDRs) in almost all cells and identification of 1-α hydroxylase in extrarenal tissues. The vitamin D deficiency (VDD) pandemic was globally reported with increasing evidence and paralleled the prevalence of diabetes, obesity and cardiovascular diseases (CVDs). A dependent link was proposed between hypovitaminosis D glycemic status, insulin resistance and also the other major factors associated with type 2 diabetes leading to CVDs. Insulin resistance plays a central role in both type 2 diabetes and insulin resistance syndrome. These 2 disorders are associated with distinct etiologies including hypertension, atherogenic dyslipidemia, and significant vascular abnormalities that could lead to endothelial dysfunction. Evidence from randomised clinical trials and meta-analysis, however, yielded conflicting results. This review summarizes the role of vitamin D in the regulation of glucose homeostasis with an emphasis on insulin resistance, blood pressure, dyslipidaemia, endothelial dysfunction and related cardiovascular diseases and also underline the plausible mechanisms for all the documented effects.
Collapse
Affiliation(s)
- Y Durgarao
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Poornima A Manjrekar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Prabha Adhikari
- Department of Internal Medicine, Yenepoya University, Mangalore, Karnataka, India
| | - M Chakrapani
- Department of Internal Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - M S Rukmini
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
29
|
Momtazi-Borojeni AA, Katsiki N, Pirro M, Banach M, Rasadi KA, Sahebkar A. Dietary natural products as emerging lipoprotein(a)-lowering agents. J Cell Physiol 2019; 234:12581-12594. [PMID: 30637725 DOI: 10.1002/jcp.28134] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Elevated plasma lipoprotein(a) (Lp(a)) levels are associated with an increased risk of cardiovascular disease (CVD). Hitherto, niacin has been the drug of choice to reduce elevated Lp(a) levels in hyperlipidemic patients but its efficacy in reducing CVD outcomes has been seriously questioned by recent clinical trials. Additional drugs may reduce to some extent plasma Lp(a) levels but the lack of a specific therapeutic indication for Lp(a)-lowering limits profoundly reduce their use. An attractive therapeutic option is natural products. In several preclinical and clinical studies as well as meta-analyses, natural products, including l-carnitine, coenzyme Q 10 , and xuezhikang were shown to significantly decrease Lp(a) levels in patients with Lp(a) hyperlipoproteinemia. Other natural products, such as pectin, Ginkgo biloba, flaxseed, red wine, resveratrol and curcuminoids can also reduce elevated Lp(a) concentrations but to a lesser degree. In conclusion, aforementioned natural products may represent promising therapeutic agents for Lp(a) lowering.
Collapse
Affiliation(s)
- Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Nanotechnology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Khalid Al Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Relationship between atherosclerosis risks and lipoprotein-dependent phospholipase a2 activity in type 2 diabetic patients. JOURNAL OF SURGERY AND MEDICINE 2018. [DOI: 10.28982/josam.440016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Gurung AB, Bhattacharjee A. Impact of a non-synonymous Q281R polymorphism on structure of human Lipoprotein-Associated Phospholipase A 2 (Lp-PLA 2 ). J Cell Biochem 2018; 119:7009-7021. [PMID: 29737567 DOI: 10.1002/jcb.26909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/28/2018] [Indexed: 01/27/2023]
Abstract
Non-synonymous single nucleotide polymorphisms (nsSNPs) are genetic variations at single base resulting in an amino acid change which have been associated with various complex human diseases. The human Lipoprotein-associated phospholipase A2 (Lp-PLA2 ) gene harbours a rare Q281R polymorphism which was previously reported to cause loss of enzymatic function. Lp-PLA2 is an important enzyme which catalyzes the hydrolysis of polar phospholipids releasing pro-atherogenic and pro-inflammatory mediators involved in the pathogenesis of atherosclerosis. Our current study is aimed at elucidating the structural and functional consequences of Q281R polymorphism on Lp-PLA2 . The Q281R mutation is classified as deleterious and causes protein instability as deduced from evolutionary, folding free energy changes and Support vector machine (SVM)-based methods. A Q281R mutant structure was deciphered using homology modelling approach and was validated using phi and psi dihedral angles distribution, ERRAT, Verify_3D scores, Protein Structure Analysis (ProSA) energ,y and Z-score. A decreased hydrophobic interactions and weaker substrate binding affinity was observed in the mutant compared to the wild- type (WT) using molecular docking. Further, the mutant displayed enhanced structural flexibility particularly in the low density lipoprotein (LDL) binding domain, decreased solvent accessibility of catalytic residues-Phe274 and Ser273 and increased Cɑ distance between Phe274 and Leu153 and large conformational entropy change as inferred from all-atom molecular dynamics (MD) simulation and essential dynamics (ED) studies. Our results corroborate well with previous experimental studies and thus these aberrations in the Q281R mutant structure may help explain the molecular basis of loss of enzyme activity.
Collapse
Affiliation(s)
- Arun B Gurung
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Atanu Bhattacharjee
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India.,Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
32
|
Ames PRJ, Lopez LL, Merashli M, Matsuura E. Platelet-activating factor acetylhydrolase in primary antiphospholipid syndrome. AUTOIMMUNITY HIGHLIGHTS 2018; 9:2. [PMID: 29429123 PMCID: PMC5812120 DOI: 10.1007/s13317-018-0103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Paul R J Ames
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| | - Luis L Lopez
- Corgenix, Inc. Medical Department, Broomfield, CO, USA
| | - Mira Merashli
- Department of Rheumatology, American University of Beirut, Beirut, Lebanon
| | - Eiji Matsuura
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Neutron Therapy Research Center and Collaborative Research Center for OMIC, Okayama University, Okayama, Japan
| |
Collapse
|
33
|
Tselepis AD. Oxidized phospholipids and lipoprotein-associated phospholipase A 2 as important determinants of Lp(a) functionality and pathophysiological role. J Biomed Res 2018; 31. [PMID: 27346583 PMCID: PMC5956253 DOI: 10.7555/jbr.31.20160009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022] Open
Abstract
Lipoprotein(a) [Lp(a)] is composed of a low density lipoprotein (LDL)-like particle to which apolipoprotein (a) [apo(a)] is linked by a single disulfide bridge. Lp(a) is considered a causal risk factor for ischemic cardiovascular disease (CVD) and calcific aortic valve stenosis (CAVS). The evidence for a causal role of Lp(a) in CVD and CAVS is based on data from large epidemiological databases, mendelian randomization studies, and genome-wide association studies. Despite the well-established role of Lp(a) as a causal risk factor for CVD and CAVS, the underlying mechanisms are not well understood. A key role in the Lp(a) functionality may be played by its oxidized phospholipids (OxPL) content. Importantly, most of circulating OxPL are associated with Lp(a); however, the underlying mechanisms leading to this preferential sequestration of OxPL on Lp(a) over the other lipoproteins, are mostly unknown. Several studies support the hypothesis that the risk of Lp(a) is primarily driven by its OxPL content. An important role in Lp(a) functionality may be played by the lipoprotein-associated phospholipase A2 (Lp-PLA2), an enzyme that catalyzes the degradation of OxPL and is bound to plasma lipoproteins including Lp(a). The present review article discusses new data on the pathophysiological role of Lp(a) and particularly focuses on the functional role of OxPL and Lp-PLA2 associated with Lp(a).
Collapse
Affiliation(s)
- Alexandros D Tselepis
- Atherothrombosis Research Centre / Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
34
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
35
|
Scipione CA, Koschinsky ML, Boffa MB. Lipoprotein(a) in clinical practice: New perspectives from basic and translational science. Crit Rev Clin Lab Sci 2017; 55:33-54. [PMID: 29262744 DOI: 10.1080/10408363.2017.1415866] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a causal risk factor for coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). Genetic, epidemiological and in vitro data provide strong evidence for a pathogenic role for Lp(a) in the progression of atherothrombotic disease. Despite these advancements and a race to develop new Lp(a) lowering therapies, there are still many unanswered and emerging questions about the metabolism and pathophysiology of Lp(a). New studies have drawn attention to Lp(a) as a contributor to novel pathogenic processes, yet the mechanisms underlying the contribution of Lp(a) to CVD remain enigmatic. New therapeutics show promise in lowering plasma Lp(a) levels, although the complete mechanisms of Lp(a) lowering are not fully understood. Specific agents targeted to apolipoprotein(a) (apo(a)), namely antisense oligonucleotide therapy, demonstrate potential to decrease Lp(a) to levels below the 30-50 mg/dL (75-150 nmol/L) CVD risk threshold. This therapeutic approach should aid in assessing the benefit of lowering Lp(a) in a clinical setting.
Collapse
Affiliation(s)
- Corey A Scipione
- a Department of Advanced Diagnostics , Toronto General Hospital Research Institute, UHN , Toronto , Canada
| | - Marlys L Koschinsky
- b Robarts Research Institute , Western University , London , Canada.,c Department of Physiology & Pharmacology , Schulich School of Medicine & Dentistry, Western University , London , Canada
| | - Michael B Boffa
- d Department of Biochemistry , Western University , London , Canada
| |
Collapse
|
36
|
Ellis KL, Boffa MB, Sahebkar A, Koschinsky ML, Watts GF. The renaissance of lipoprotein(a): Brave new world for preventive cardiology? Prog Lipid Res 2017; 68:57-82. [DOI: 10.1016/j.plipres.2017.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
|
37
|
Ferretti G, Bacchetti T, Johnston TP, Banach M, Pirro M, Sahebkar A. Lipoprotein(a): A missing culprit in the management of athero-thrombosis? J Cell Physiol 2017; 233:2966-2981. [DOI: 10.1002/jcp.26050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Gianna Ferretti
- Department of Clinical Sciences (DISCO); Polytechnic University of Marche; Marche Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences (DISVA); Polytechnic University of Marche; Marche Italy
| | - Thomas P. Johnston
- Division of Pharmaceutical Sciences; School of Pharmacy; University of Missouri-Kansas City; Kansas City Missouri
| | - Maciej Banach
- Department of Hypertension; WAM University Hospital in Lodz; Medical University of Lodz; Lodz Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI); Lodz Poland
| | - Matteo Pirro
- Unit of Internal Medicine; Angiology and Arteriosclerosis Diseases; Department of Medicine; University of Perugia; Perugia Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Neurogenic Inflammation Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
38
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
39
|
Xie H, Chen L, Liu H, Cui Y, Zhang Z, Cui L. Long-Term Prognostic Value of Lipoprotein(a) in Symptomatic Patients With Nonobstructive Coronary Artery Disease. Am J Cardiol 2017; 119:945-950. [PMID: 28139221 DOI: 10.1016/j.amjcard.2016.11.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 11/17/2022]
Abstract
Our study aimed to evaluate the association of lipoprotein(a) [Lp(a)] and prognosis in patients with nonobstructive coronary artery disease (CAD). A total of 4,254 symptomatic patients with suspected CAD referred for coronary angiography were analyzed and 451 patients (250 women, average age 58 ± 9 years) with nonobstructive CAD (defined as no angiographic stenosis ≥50% in any major epicardial artery) were finally included in our cohort. Subjects were categorized into tertile groups according to Lp(a) levels on admission. The primary end point was major adverse cardiovascular events (MACEs), defined as cardiac death and incident acute coronary syndrome. Over a mean follow-up of 32 ± 22 months, 37 (8%) MACE (15 cases of cardiac death and 22 cases of acute coronary syndrome) occurred. Kaplan-Meier analysis revealed that elevated Lp(a) level was associated with worse prognosis (p = 0.001). After Cox multivariate adjustment for other clinical confounders, an elevated Lp(a) level remained an independent predictor of MACE either as a continuous variable (hazard ratio 1.031, 95% confidence interval 1.019 to 1.043, p <0.001) or as a categorical variable (hazard ratio 3.155, 95% confidence interval 1.599 to 6.229, p = 0.001). Furthermore, addition of Lp(a) to established coronary risk factors significantly improved the predictive value of reference models for MACE. In conclusion, an elevated Lp(a) level is independently associated with worse prognosis and may provide useful risk stratification in symptomatic patients with nonobstructive CAD.
Collapse
Affiliation(s)
- Hao Xie
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Liming Chen
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Hang Liu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yuqi Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhun Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
40
|
Palur Ramakrishnan AVK, Varghese TP, Vanapalli S, Nair NK, Mingate MD. Platelet activating factor: A potential biomarker in acute coronary syndrome? Cardiovasc Ther 2016; 35:64-70. [DOI: 10.1111/1755-5922.12233] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Treesa P. Varghese
- Department of Pharmacy Practice; JSS College of Pharmacy (Jagadguru Sri Shivarathreeswara University, Mysore); Udhagamandalam Tamil Nadu India
| | - Sreedevi Vanapalli
- Department of Pharmacy Practice; JSS College of Pharmacy (Jagadguru Sri Shivarathreeswara University, Mysore); Udhagamandalam Tamil Nadu India
| | - Narayanan K. Nair
- Department of Pharmacy Practice; JSS College of Pharmacy (Jagadguru Sri Shivarathreeswara University, Mysore); Udhagamandalam Tamil Nadu India
| | - Menge Denis Mingate
- Department of Pharmacy Practice; JSS College of Pharmacy (Jagadguru Sri Shivarathreeswara University, Mysore); Udhagamandalam Tamil Nadu India
| |
Collapse
|
41
|
Val279Phe variant of Lp-PLA2 is a risk factor for a subpopulation of Indonesia patients with acute myocardial infarction. Genes Dis 2016; 3:289-293. [PMID: 30258899 PMCID: PMC6147166 DOI: 10.1016/j.gendis.2016.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/29/2016] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein-associated phospholipase A2 (Lp-PLA2), a member of the phospholipase A2 superfamily, is an enzyme that hydrolyses phospholipids, is found in blood circulation as a sign of inflammation, and takes a role in atherogenesis. There is an epidemiologic relation between increased Lp-PLA2 levels and coronary heart disease. Lp-PLA2 is an enzyme that is produced by macrophages and takes a role as an independent predictor of a coronary event. A genetic variant of Val279Phe on the Lp-PLA2 gene has been reported with various results in Japan, China, Korea, and Caucasian populations. This study aims to analyse the influence of the Val279Phe genetic variant on acute myocardial infarction (AMI) at Saiful Anwar Hospital, Indonesia. This study was conducted on 151 patients (111 AMI patients and 40 non-AMI patients). The genetic variant of Val279Phe was identified through a genotyping method. There were no significant differences in age, total cholesterol level, LDL-C (low-density lipoprotein cholesterol) level, and family history data between AMI and non-AMI patients. However, AMI patients had low HDL-C (high-density lipoprotein cholesterol), triglyceride levels, dyslipidaemia, and hypertension risk factors compared to non-AMI patients. The frequency of the GG genotype (279Val) was dominant in both AMI and non-AMI groups. Further analysis suggested that the GG genotype has a 2.9 times greater risk of AMI compared to the GT/TT genotype (279Phe). This study concluded that the Val279Phe genetic variant undoubtedly influenced AMI risk, which is a warrant for further development of early detection and improving strategy to prevent AMI in patients.
Collapse
|
42
|
Hypertrophic Mesenteric Adipose Tissue May Play a Role in Atherogenesis in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2016; 22:2206-12. [PMID: 27508511 DOI: 10.1097/mib.0000000000000873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Adipokines released by the adipose tissue are known to play a role in atherogenesis. The hypertrophic mesenteric fat in patients with inflammatory bowel diseases (IBD) also produces adipokines that are considered to play a role in intestinal inflammation. Whether they also contribute to accelerated atherosclerosis in IBD is unknown. The aim of this study was to assess the role of 2 adipokines, resistin and adiponectin, in IBD. METHODS We previously published data on 3 markers of cardiovascular risk, carotid intima-media thickness, carotid-femoral pulse wave velocity, and lipoprotein-associated phospholipase A2, in 44 patients with IBD and 44 controls matched for established cardiovascular risk factors. In this study, we measured resistin and adiponectin levels, and assessed their correlations with carotid intima-media thickness, pulse wave velocity, and lipoprotein-associated phospholipase A2. RESULTS Resistin levels were significantly higher in patients with IBD (13.7 versus 10 ng/mL; P = 0.022), but there was no difference in adiponectin levels. Resistin levels were significantly higher in patients with active disease compared with those in remission (18.9 versus 11.3 ng/mL; P = 0.014). Adiponectin levels were significantly lower in Crohn's disease compared with ulcerative colitis (6736.3 ± 3105 versus 10,476.1 ± 5575.7 ng/mL; P = 0.026). Adiponectin correlated inversely with pulse wave velocity (rho = -0.434; P < 0.0005) and carotid intima-media thickness (rho = -0.255; P = 0.021). CONCLUSIONS This is the first study to suggest that adipokines produced by the hypertrophic mesenteric fat in IBD may play a role not only in intestinal inflammation but also in atherogenesis. Resistin has mainly pro-inflammatory properties, whereas adiponectin likely exerts an angioprotective effect.
Collapse
|
43
|
Lipoprotein (a) is related to coronary atherosclerotic burden and a vulnerable plaque phenotype in angiographically obstructive coronary artery disease. Atherosclerosis 2016; 246:214-20. [PMID: 26803430 DOI: 10.1016/j.atherosclerosis.2016.01.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Lipoprotein Lp(a) has been shown to be an independent risk factor for coronary artery disease (CAD). However, its association with CAD burden in patients with ACS is largely unknown, as well as the association of Lp(a) with lipid rich plaques prone to rupture. AIM We aim at assessing CAD burden by coronary angiography and plaque features including thin cap fibroatheroma (TCFA) by optical coherence tomography (OCT) in consecutive patients presenting with acute coronary syndrome (ACS) and obstructive CAD along with serum Lp(a) levels. METHODS This study comprises an angiographic and an OCT cohort. A total of 500 ACS patients (370 men, average age 66 ± 11) were enrolled for the angiographic cohort and 51 ACS patients (29 males, average age 65 ± 11) were enrolled for the OCT cohort. Angiographic CAD severity was assessed by Sullivan score and by Bogaty score including stenosis score and extent index. OCT plaque features were evaluated at the site of the minimal lumen area and along the culprit segment. RESULTS In the angiographic cohort, at multivariate analysis, Lp(a) was a weak independent predictor of Sullivan score (p < 0.0001), stenosis score (p < 0.0001) and extent index (p < 0.0001). In the OCT cohort, patients with higher Lp(a) levels (≥ 30 md/dl) compared to patients with lower Lp(a) levels (<30 md/dl) exhibited a higher prevalence of lipidic plaque at the site of the culprit stenosis (67% vs. 27%; P = 0.02), a wider lipid arc (135 ± 114 vs 59 ± 111; P = 0.03) and a higher prevalence of TCFA (38% vs. 10%; P = 0.04). CONCLUSIONS Among patients with ACS, raised Lp(a) levels are associated with an increased atherosclerotic burden and it identifies a subset of patients with features of high risk coronary atherosclerosis.
Collapse
|
44
|
Serban MC, Sahebkar A, Mikhailidis DP, Toth PP, Jones SR, Muntner P, Blaha MJ, Andrica F, Martin SS, Borza C, Lip GYH, Ray KK, Rysz J, Hazen SL, Banach M. Impact of L-carnitine on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of randomized controlled trials. Sci Rep 2016; 6:19188. [PMID: 26754058 PMCID: PMC4709689 DOI: 10.1038/srep19188] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
We aimed to assess the impact of L-carnitine on plasma Lp(a) concentrations through systematic review and meta-analysis of available RCTs. The literature search included selected databases up to 31st January 2015. Meta-analysis was performed using fixed-effects or random-effect model according to I2 statistic. Effect sizes were expressed as weighted mean difference (WMD) and 95% confidence interval (CI). The meta-analysis showed a significant reduction of Lp(a) levels following L-carnitine supplementation (WMD: −8.82 mg/dL, 95% CI: −10.09, −7.55, p < 0.001). When the studies were categorized according to the route of administration, a significant reduction in plasma Lp(a) concentration was observed with oral (WMD: −9.00 mg/dL, 95% CI: −10.29, −7.72, p < 0.001) but not intravenous L-carnitine (WMD: −2.91 mg/dL, 95% CI: −10.22, 4.41, p = 0.436). The results of the meta-regression analysis showed that the pooled estimate is independent of L-carnitine dose (slope: −0.30; 95% CI: −4.19, 3.59; p = 0.878) and duration of therapy (slope: 0.18; 95% CI: −0.22, 0.59; p = 0.374). In conclusion, the meta-analysis suggests a significant Lp(a) lowering by oral L-carnitine supplementation. Taking into account the limited number of available Lp(a)-targeted drugs, L-carnitine might be an effective alternative to effectively reduce Lp(a). Prospective outcome trials will be required to fully elucidate the clinical value and safety of oral L-carnitine supplementation.
Collapse
Affiliation(s)
- Maria-Corina Serban
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- Preventive Cardiology, CGH Medical Center, Sterling, Illinois, USA.,The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Steven R Jones
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J Blaha
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Florina Andrica
- Faculty of Pharmacy, Discipline of Pharmaceutical Chemistry "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Seth S Martin
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Claudia Borza
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Kausik K Ray
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, UK
| | - Jacek Rysz
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| | - Stanley L Hazen
- Department for Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| |
Collapse
|
45
|
Smani T, Domínguez-Rodriguez A, Callejo-García P, Rosado JA, Avila-Medina J. Phospholipase A2 as a Molecular Determinant of Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:111-31. [PMID: 27161227 DOI: 10.1007/978-3-319-26974-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of phospholipases A2 (PLA2) leads to the generation of biologically active lipid products that can affect numerous cellular events. Ca(2+)-independent PLA2 (iPLA2), also called group VI phospholipase A2, is one of the main types forming the superfamily of PLA2. Beside of its role in phospholipid remodeling, iPLA2 has been involved in intracellular Ca(2+) homeostasis regulation. Several studies proposed iPLA2 as an essential molecular player of store operated Ca(2+) entry (SOCE) in a large number of excitable and non-excitable cells. iPLA2 activation releases lysophosphatidyl products, which were suggested as agonists of store operated calcium channels (SOCC) and other TRP channels. Herein, we will review the important role of iPLA2 on the intracellular Ca(2+) handling focusing on its role in SOCE regulation and its implication in physiological and/or pathological processes.
Collapse
Affiliation(s)
- Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain.
| | - Alejandro Domínguez-Rodriguez
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Paula Callejo-García
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| | - Javier Avila-Medina
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| |
Collapse
|
46
|
Chan DC, Pang J, Hooper AJ, Burnett JR, Bell DA, Bates TR, van Bockxmeer FM, Watts GF. Elevated lipoprotein(a), hypertension and renal insufficiency as predictors of coronary artery disease in patients with genetically confirmed heterozygous familial hypercholesterolemia. Int J Cardiol 2015; 201:633-8. [DOI: 10.1016/j.ijcard.2015.08.146] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/22/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|
47
|
Talmud PJ, Holmes MV. Deciphering the Causal Role of sPLA2s and Lp-PLA2 in Coronary Heart Disease. Arterioscler Thromb Vasc Biol 2015; 35:2281-9. [PMID: 26338298 DOI: 10.1161/atvbaha.115.305234] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/19/2015] [Indexed: 11/16/2022]
Abstract
Over the last 10 to 15 years, animal and human observational studies have identified elevated levels of both proinflammatory secretory phospholipase A2-IIA and lipoprotein-associated phospholipase A2 as potential risk factors for coronary heart disease. However, Mendelian randomization, a genetic tool to test causality of a biomarker, and phase III randomized controlled trials of inhibitors of theses enzymes (varespladib and darapladib) converged to indicate that elevated levels are unlikely to be themselves causal of coronary heart disease and that inhibition had little or no clinical utility. The concordance of findings from Mendelian randomization and clinical trials suggests that for these 2 drugs, and for other novel biomarkers in future, validation of potential therapeutic targets by genetic studies (such as Mendelian randomization) before embarking on costly phase III randomized controlled trials could increase efficiency and offset the high risk of drug development, thereby facilitating discovery of new therapeutics and mitigating against the exuberant costs of drug development.
Collapse
Affiliation(s)
- Philippa J Talmud
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK (P.J.T.); and Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK (M.V.H.).
| | - Michael V Holmes
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK (P.J.T.); and Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK (M.V.H.)
| |
Collapse
|
48
|
He S, Chousterman BG, Fenn A, Anzai A, Nairz M, Brandt M, Hilgendorf I, Sun Y, Ye YX, Iwamoto Y, Tricot B, Weissleder R, Macphee C, Libby P, Nahrendorf M, Swirski FK. Lp-PLA2 Antagonizes Left Ventricular Healing After Myocardial Infarction by Impairing the Appearance of Reparative Macrophages. Circ Heart Fail 2015; 8:980-7. [PMID: 26232205 PMCID: PMC4568849 DOI: 10.1161/circheartfailure.115.002334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/27/2015] [Indexed: 12/03/2022]
Abstract
Supplemental Digital Content is available in the text. Healing after myocardial infarction (MI) involves the biphasic accumulation of inflammatory Ly-6Chigh and reparative Ly-6Clow monocytes/macrophages. Excessive inflammation disrupts the balance between the 2 phases, impairs infarct healing, and contributes to left ventricle remodeling and heart failure. Lipoprotein-associated phospholipase A2 (Lp-PLA2), a member of the phospholipase A2 family of enzymes, produced predominantly by leukocytes, participates in host defenses and disease. Elevated Lp-PLA2 levels associate with increased risk of cardiovascular events across diverse patient populations, but the mechanisms by which the enzyme elicits its effects remain unclear. This study tested the role of Lp-PLA2 in healing after MI.
Collapse
Affiliation(s)
- Shun He
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Benjamin G Chousterman
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Ashley Fenn
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Atsushi Anzai
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Manfred Nairz
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Martin Brandt
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Ingo Hilgendorf
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Yuan Sun
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Yu-Xiang Ye
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Yoshiko Iwamoto
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Benoit Tricot
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Ralph Weissleder
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Colin Macphee
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Peter Libby
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital, Boston (S.H., B.G.C., A.F., A.A., M.N., I.H., Y.S., Y.-X.Y., Y.I., B.T., R.W., M.N., F.K.S.); Biological Sciences, GlaxoSmithKline, Collegeville, PA (M.B.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); GlaxoSmithKline, King of Prussia, PA (C.M.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L.).
| |
Collapse
|
49
|
Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin Chem Lab Med 2015; 52:1695-727. [PMID: 23940067 DOI: 10.1515/cclm-2013-0358] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 01/21/2023]
Abstract
Research into lipoprotein metabolism has developed because understanding lipoprotein metabolism has important clinical indications. Lipoproteins are risk factors for cardiovascular disease. Recent advances include the identification of factors in the synthesis and secretion of triglyceride rich lipoproteins, chylomicrons (CM) and very low density lipoproteins (VLDL). These included the identification of microsomal transfer protein, the cotranslational targeting of apoproteinB (apoB) for degradation regulated by the availability of lipids, and the characterization of transport vesicles transporting primordial apoB containing particles to the Golgi. The lipase maturation factor 1, glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 and an angiopoietin-like protein play a role in lipoprotein lipase (LPL)-mediated hydrolysis of secreted CMs and VLDL so that the right amount of fatty acid is delivered to the right tissue at the right time. Expression of the low density lipoprotein (LDL) receptor is regulated at both transcriptional and post-transcriptional level. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has a pivotal role in the degradation of LDL receptor. Plasma remnant lipoproteins bind to specific receptors in the liver, the LDL receptor, VLDL receptor and LDL receptor-like proteins prior to removal from the plasma. Reverse cholesterol transport occurs when lipid free apoAI recruits cholesterol and phospholipid to assemble high density lipoprotein (HDL) particles. The discovery of ABC transporters (ABCA1 and ABCG1) and scavenger receptor class B type I (SR-BI) provided further information on the biogenesis of HDL. In humans HDL-cholesterol can be returned to the liver either by direct uptake by SR-BI or through cholesteryl ester transfer protein exchange of cholesteryl ester for triglycerides in apoB lipoproteins, followed by hepatic uptake of apoB containing particles. Cholesterol content in cells is regulated by several transcription factors, including the liver X receptor and sterol regulatory element binding protein. This review summarizes recent advances in knowledge of the molecular mechanisms regulating lipoprotein metabolism.
Collapse
|
50
|
Guijas C, Rodríguez JP, Rubio JM, Balboa MA, Balsinde J. Phospholipase A2 regulation of lipid droplet formation. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1661-71. [PMID: 25450448 DOI: 10.1016/j.bbalip.2014.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
Abstract
The classical regard of lipid droplets as mere static energy-storage organelles has evolved dramatically. Nowadays these organelles are known to participate in key processes of cell homeostasis, and their abnormal regulation is linked to several disorders including metabolic diseases (diabetes, obesity, atherosclerosis or hepatic steatosis), inflammatory responses in leukocytes, cancer development and neurodegenerative diseases. Hence, the importance of unraveling the cell mechanisms controlling lipid droplet biosynthesis, homeostasis and degradation seems evident Phospholipase A2s, a family of enzymes whose common feature is to hydrolyze the fatty acid present at the sn-2 position of phospholipids, play pivotal roles in cell signaling and inflammation. These enzymes have recently emerged as key regulators of lipid droplet homeostasis, regulating their formation at different levels. This review summarizes recent results on the roles that various phospholipase A2 forms play in the regulation of lipid droplet biogenesis under different conditions. These roles expand the already wide range of functions that these enzymes play in cell physiology and pathophysiology.
Collapse
|