1
|
Gomyo M, Tsuchiya K, Yokoyama K. Vessel Wall Imaging of Intracranial Arteries: Fundamentals and Clinical Applications. Magn Reson Med Sci 2023; 22:447-458. [PMID: 36328569 PMCID: PMC10552670 DOI: 10.2463/mrms.rev.2021-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/11/2022] [Indexed: 10/03/2023] Open
Abstract
With the increasing use of 3-tesla MRI scanners and the development of applicable sequences, it has become possible to achieve high-resolution, good contrast imaging, which has enabled the imaging of the walls of small-diameter intracranial arteries. In recent years, the usefulness of vessel wall imaging has been reported for numerous intracranial arterial diseases, such as for the detection of vulnerable plaque in atherosclerosis, diagnosis of cerebral arterial dissection, prediction of the rupture of cerebral aneurysms, and status of moyamoya disease and cerebral vasculitis. In this review, we introduce the histological characteristics of the intracranial artery, discuss intracranial vessel wall imaging methods, and review the findings of vessel wall imaging for various major intracranial arterial diseases.
Collapse
Affiliation(s)
- Miho Gomyo
- Department of Radiology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo, Japan
| | | | - Kenichi Yokoyama
- Department of Radiology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo, Japan
| |
Collapse
|
2
|
Why is middle cerebral artery plaque augmented by contrast media? A phantom study using middle cerebral artery stenotic silicon model. Neuroradiology 2019; 61:1173-1180. [DOI: 10.1007/s00234-019-02271-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/29/2019] [Indexed: 01/03/2023]
|
3
|
Mandell DM, Mossa-Basha M, Qiao Y, Hess CP, Hui F, Matouk C, Johnson MH, Daemen MJAP, Vossough A, Edjlali M, Saloner D, Ansari SA, Wasserman BA, Mikulis DJ. Intracranial Vessel Wall MRI: Principles and Expert Consensus Recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2016; 38:218-229. [PMID: 27469212 DOI: 10.3174/ajnr.a4893] [Citation(s) in RCA: 454] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intracranial vessel wall MR imaging is an adjunct to conventional angiographic imaging with CTA, MRA, or DSA. The technique has multiple potential uses in the context of ischemic stroke and intracranial hemorrhage. There remain gaps in our understanding of intracranial vessel wall MR imaging findings and research is ongoing, but the technique is already used on a clinical basis at many centers. This article, on behalf of the Vessel Wall Imaging Study Group of the American Society of Neuroradiology, provides expert consensus recommendations for current clinical practice.
Collapse
Affiliation(s)
- D M Mandell
- From the Division of Neuroradiology (D.M.M., D.J.M.), Department of Medical Imaging, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - M Mossa-Basha
- Department of Radiology (M.M.-B.), University of Washington, Seattle, Washington
| | - Y Qiao
- The Russell H. Morgan Department of Radiology and Radiological Sciences (Y.Q., F.H., B.A.W.), Johns Hopkins Hospital, Baltimore, Maryland
| | - C P Hess
- Department of Radiology and Biomedical Imaging (C.P.H., D.S.), University of California, San Francisco, San Francisco, California
| | - F Hui
- The Russell H. Morgan Department of Radiology and Radiological Sciences (Y.Q., F.H., B.A.W.), Johns Hopkins Hospital, Baltimore, Maryland
| | - C Matouk
- Departments of Neurosurgery (C.M., M.H.J.).,Radiology and Biomedical Imaging (C.M., M.H.J.)
| | - M H Johnson
- Departments of Neurosurgery (C.M., M.H.J.).,Radiology and Biomedical Imaging (C.M., M.H.J.).,Surgery (M.H.J.), Yale University School of Medicine, New Haven, Connecticut
| | - M J A P Daemen
- Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, the Netherlands
| | - A Vossough
- Departments of Surgery (A.V.).,Radiology (A.V.), Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Edjlali
- Department of Radiology (M.E.), Université Paris Descartes Sorbonne Paris Cité, Institut National de la Santé et de la Recherche Médicale S894, Centre Hospitalier Sainte-Anne, Paris, France
| | - D Saloner
- Department of Radiology and Biomedical Imaging (C.P.H., D.S.), University of California, San Francisco, San Francisco, California
| | - S A Ansari
- Departments of Radiology (S.A.A.).,Neurology (S.A.A.).,Neurological Surgery (S.A.A.), Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - B A Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Sciences (Y.Q., F.H., B.A.W.), Johns Hopkins Hospital, Baltimore, Maryland
| | - D J Mikulis
- From the Division of Neuroradiology (D.M.M., D.J.M.), Department of Medical Imaging, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
Phinikaridou A, Andia ME, Lacerda S, Lorrio S, Makowski MR, Botnar RM. Molecular MRI of atherosclerosis. Molecules 2013; 18:14042-69. [PMID: 24232739 PMCID: PMC6270261 DOI: 10.3390/molecules181114042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/22/2022] Open
Abstract
Despite advances in prevention, risk assessment and treatment, coronary artery disease (CAD) remains the leading cause of morbidity and mortality in Western countries. The lion's share is due to acute coronary syndromes (ACS), which are predominantly triggered by plaque rupture or erosion and subsequent coronary thrombosis. As the majority of vulnerable plaques does not cause a significant stenosis, due to expansive remodeling, and are rather defined by their composition and biological activity, detection of vulnerable plaques with x-ray angiography has shown little success. Non-invasive vulnerable plaque detection by identifying biological features that have been associated with plaque progression, destabilization and rupture may therefore be more appropriate and may allow earlier detection, more aggressive treatment and monitoring of treatment response. MR molecular imaging with target specific molecular probes has shown great promise for the noninvasive in vivo visualization of biological processes at the molecular and cellular level in animals and humans. Compared to other imaging modalities; MRI can provide excellent spatial resolution; high soft tissue contrast and has the ability to simultaneously image anatomy; function as well as biological tissue composition and activity.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK; E-Mails: (A.P.); (M.E.A.); (S.L.); (S.L.); (M.R.M.)
| | - Marcelo E. Andia
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK; E-Mails: (A.P.); (M.E.A.); (S.L.); (S.L.); (M.R.M.)
- Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8331150, Chile
| | - Sara Lacerda
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK; E-Mails: (A.P.); (M.E.A.); (S.L.); (S.L.); (M.R.M.)
| | - Silvia Lorrio
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK; E-Mails: (A.P.); (M.E.A.); (S.L.); (S.L.); (M.R.M.)
| | - Marcus R. Makowski
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK; E-Mails: (A.P.); (M.E.A.); (S.L.); (S.L.); (M.R.M.)
- Department of Radiology, Charite, Berlin 10117, Germany
| | - René M. Botnar
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK; E-Mails: (A.P.); (M.E.A.); (S.L.); (S.L.); (M.R.M.)
- Wellcome Trust and ESPRC Medical Engineering Center, King’s College London, London SE1 7EH, UK
- BHF Centre of Excellence, King’s College London, London SE1 7EH, UK
- NIHR Biomedical Research Centre, King’s College London, London SE1 7EH, UK
| |
Collapse
|
5
|
Abstract
Molecular imaging with targeted contrast agents by magnetic resonance imaging (MRI) allows for the noninvasive detection and characterization of biological changes on a molecular level. In this article, the principles of molecular MRI and its applications in cardiovascular diseases are reviewed. First, basic properties of positive and negative contrast agents are introduced and their effect on signal generation in a magnetic field is described. In the next part, different types of MRI scanners and the influence of field strength on signal properties of contrast agents for molecular imaging are discussed. Additionally, the assessment, analysis, and quantification of the changes in T1 and T2* relaxation time induced by the different molecular contrast agents are reviewed. Finally, the basic mechanisms of targeting of imaging probes on a molecular level and recent applications of molecular MRI in cardiovascular disease are reviewed.
Collapse
|
6
|
Bitar R, Moody AR, Symons S, Leung G, Crisp S, Kiss A, Nelson A, Maggisano R. Carotid atherosclerotic calcification does not result in high signal intensity in MR imaging of intraplaque hemorrhage. AJNR Am J Neuroradiol 2010; 31:1403-7. [PMID: 20466799 DOI: 10.3174/ajnr.a2126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Calcium can potentially shorten T1, generating high signal intensity in GREs. Because IPH appears as high signal intensity in MRIPH and the surface effects of calcium can potentially shorten T1 of surrounding water protons, the purpose of this study was to evaluate whether the high signal intensity seen on MRIPH could be attributed solely to IPH and not calcification. MATERIALS AND METHODS Eleven patients undergoing carotid endarterectomy were imaged by using MRIPH. Calcification was assessed by scanning respective endarterectomy specimens with a tabletop MicroCT. MRIPH/MicroCT correlation used an 8-segment template. Two readers evaluated images from both modalities. Agreement between MRIPH/MicroCT was measured by calculating Cohen κ. RESULTS High signal intensity was seen in 58.8% and 68.9% (readers 1 and 2, respectively) of MRIPH segments, whereas calcification was seen in 44.7% and 32.1% (readers 1 and 2, respectively) of MicroCT segments. High signal intensity seen by MRIPH showed very good but inverse agreement to calcification (κ = -0.90; P < .0001, 95% CI, -0.93 to -0.86, reader 1; and κ = -0.74; P < .0001; 95% CI, -0.81 to -0.69, reader 2). Most interesting, high signal intensity demonstrated excellent agreement with lack of calcification on MicroCT (κ = 0.92; P < .0001; 95% CI, 0.89-0.94, reader 1; and κ = 0.97; P < .0001; 95% CI, 0.96-0.99, reader 2). In a very small number of segments, high signal intensity was seen in MRIPH, and calcification was seen on MicroCT; however, these represented a very small proportion of segments with high signal intensity (5.9% and 1.6%, readers 1 and 2, respectively). CONCLUSIONS High signal intensity, therefore, reliably identified IPH, known to describe complicated plaque, rather than calcification, which is increasingly recognized as identifying more stable vascular disease.
Collapse
Affiliation(s)
- R Bitar
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Watanabe Y, Nagayama M. MR plaque imaging of the carotid artery. Neuroradiology 2010; 52:253-74. [PMID: 20155353 DOI: 10.1007/s00234-010-0663-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/13/2010] [Indexed: 02/08/2023]
Abstract
Atherosclerotic carotid plaque represents a major cause of cerebral ischemia. The detection of vulnerable plaque is important for preventing future cardiovascular events. The key factors in advanced plaque that are most likely to lead to patient complications are the condition of the fibrous cap, the size of the necrotic core and hemorrhage, and the extent of inflammatory activity within the plaque. Magnetic resonance (MR) imaging has excellent soft tissue contrast and can allow for a more accurate and objective estimation of carotid wall morphology and plaque composition. Recent advances in MR imaging techniques have permitted serial monitoring of atherosclerotic disease evolution and the identification of intraplaque risk factors for accelerated progression. The purpose of this review article is to review the current state of techniques of carotid wall MR imaging and the characterization of plaque components and surface morphology with MR imaging, and to describe the clinical practice of carotid wall MR imaging for the determination of treatment plan.
Collapse
Affiliation(s)
- Yuji Watanabe
- Department of Radiology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, 710-8602, Japan.
| | | |
Collapse
|
8
|
Atherosclerotic lesions rich in macrophages or smooth muscle cells discriminated in rabbit iliac arteries based on T1 relaxation time and lipid content. Acad Radiol 2010; 17:230-8. [PMID: 19910212 DOI: 10.1016/j.acra.2009.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES Atherothrombosis usually occurs on macrophage- and lipid-rich unstable plaque, but rarely on smooth muscle cell (SMC)-rich stable plaque. Magnetic resonance imaging (MRI) has been extensively applied for noninvasive vascular imaging. We therefore investigated whether MRI provides valuable information about the characteristics of atherosclerotic vessels using rabbit models of macrophage-rich or SMC-rich atherosclerotic arteries. MATERIALS AND METHODS Rabbits were fed with a conventional (CD group, n = 3) or 0.5% cholesterol (ChD group, n = 3) diet for 1 week before and 3 weeks after balloon injury of the left iliac arteries. Three weeks later, these arteries were investigates by 1.5 T MRI and by conventional angiographic imaging, followed by histological and immunohistochemical analyses. RESULTS Three weeks after balloon injury, injured iliac arteries of both groups formed neointima with luminal stenosis. Conventional and MRI angiographic findings of the luminal diameter significantly and positively correlated. T1 relaxation time was significantly shorter and the lipid content was much higher in injured arteries from the ChD than from the CD group. The injured arteries from the ChD also contained more macrophages and less SMCs that those from the CD group. The T1 relaxation time and lipid content in injured arteries negatively and positively correlated with the degree of macrophage accumulation, respectively. CONCLUSION These results showed that MRI could provide valuable information about luminal stenosis and the characteristics of atherosclerotic vessels in rabbits.
Collapse
|
9
|
Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 2009; 28:393-422. [PMID: 19698799 PMCID: PMC4319375 DOI: 10.1016/j.preteyeres.2009.08.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. A prominent age-related change in the human retina is the accumulation of histochemically detectable neutral lipid in normal Bruch's membrane (BrM) throughout adulthood. This change has the potential to have a major impact on physiology of the retinal pigment epithelium (RPE). It occurs in the same compartment as drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD. Here we present evidence from light microscopic histochemistry, ultrastructure, lipid profiling of tissues and isolated lipoproteins, and gene expression analysis that this deposition can be accounted for by esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles constitutively produced by the RPE. This work collectively allows ARMD lesion formation and its aftermath to be conceptualized as a response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (CAD) (Tabas et al., 2007). This approach provides a wide knowledge base and sophisticated clinical armamentarium that can be readily exploited for the development of new model systems and the future benefit of ARMD patients.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL 35294-0009, USA.
| | | | | | | |
Collapse
|
10
|
Li CM, Clark ME, Rudolf M, Curcio CA. Distribution and composition of esterified and unesterified cholesterol in extra-macular drusen. Exp Eye Res 2007; 85:192-201. [PMID: 17553492 DOI: 10.1016/j.exer.2007.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/27/2007] [Indexed: 11/19/2022]
Abstract
More details about the distribution of esterified and unesterified cholesterol (EC, UC), abundant druse components, would inform models of druse biogenesis and new technologies for ocular imaging. From donors with grossly normal maculas (n=10, 66-86years), whose eyes were preserved in paraformaldehyde within 6h of death, extra-macular drusen encased with retinal pigment epithelium (RPE) were isolated manually. Cryosections of pelleted drusen, stained with filipin for UC and EC, were used to investigate filipin staining patterns within single drusen (n=193) and to quantify fluorescence (n=146). From lipid extracts of other drusen/RPE and RPE samples, total cholesterol (TC) and UC were determined by enzymatic fluorimetry. Drusen contained cores, basally located regions that were intensely bright when stained for UC or deeply dark when stained for EC; many were surrounded by concentric lamellae. Within the same cores, the EC-poor regions were significantly smaller (13.0mum) than UC-rich regions (17.1mum). Drusen with highly fluorescent EC-rich shells lacked UC-rich shells. Small spots representing lakes were visible only in drusen stained for EC. Some drusen had small, refractive spherical inclusions lacking both UC and EC. Of drusen examined, 32% had a UC-rich core, 35% had an EC-poor core, 31% had an EC-rich shell, 25% had EC-rich lakes, and 4-5% had UC-, EC-poor inclusions. Shells and cores occurred in significantly non-overlapping druse populations. The percentage of TC that was esterified ranged from 32-66% for drusen/RPE and 5-21% for RPE. The disposition of cholesterol in cores may reflect the activity of invading cellular process. The greater size of UC-rich cores relative to EC-poor cores may reflect a declining gradient of enzymatic activity with increased radial distance from the putative invaders. The relative sizes of sub-domains defined by cholesterol composition are compared to sub-domains detected in drusen by in vivo imaging methods.
Collapse
Affiliation(s)
- Chuan-Ming Li
- Department of Ophthalmology, Callahan Eye Foundation Hospital, University of Alabama School of Medicine, 700 South 18th Street Room H020, Birmingham, AL 35294-0009, USA
| | | | | | | |
Collapse
|
11
|
Magnetic Resonance Angiography and Evaluation of Vulnerable Plaque. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Phan BAP, Chu B, Polissar N, Hatsukami TS, Yuan C, Zhao XQ. Association of high-density lipoprotein levels and carotid atherosclerotic plaque characteristics by magnetic resonance imaging. Int J Cardiovasc Imaging 2006; 23:337-42. [PMID: 17086362 DOI: 10.1007/s10554-006-9175-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 10/02/2006] [Indexed: 01/23/2023]
Abstract
A low level of high-density lipoprotein cholesterol (HDL-C) is a risk factor for atherosclerotic disease. Magnetic resonance imaging (MRI) can provide detailed information on carotid atherosclerotic plaque size and composition. The purpose of this study was to correlate HDL levels with carotid plaque burden and composition by MRI. Thirty-four patients with coronary artery disease (CAD) receiving simvastatin plus niacin or placebo for both drugs for three years were randomly selected to undergo MRI of carotid arteries. Atherosclerotic plaque wall volumes (WVs) and plaque components including lipid rich/necrotic core (LR/NC), calcium, fibrous tissue, and loose matrix were measured. Mean WV or atherosclerotic burden was significantly associated with total HDL-C levels (r = -0.39, P = 0.02), HDL(2) (r = -0.36, P = 0.03), HDL(3) (r = -0.34, P = 0.04), and LDL/HDL ratio (r = 0.42, P = 0.02). Plaque lipid composition or LR/NC was significantly associated with HDL(3) (r = -0.68, P = 0.02). Patients with low HDL levels (<or=35 mg/dL) had increased WV (97 +/- 23 vs. 81 +/- 19 mm(3), P = 0.05) compared with patients with HDL levels > 35 mg/dL. Among CAD patients, low HDL-C levels were significantly associated with increased carotid atherosclerotic plaque burden and lipid content by MRI.
Collapse
Affiliation(s)
- Binh An P Phan
- Division of Cardiology, Department of Medicine, University of Washington, 1914 N 34th Street, Suite 105, Seattle, WA, 98103-8771, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Pessanha BS, Potter K, Kolodgie FD, Farb A, Kutys R, Mont EK, Burke AP, O'leary TJ, Virmani R. Characterization of intimal changes in coronary artery specimens with MR microscopy. Radiology 2006; 241:107-15. [PMID: 16990674 DOI: 10.1148/radiol.2411042201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine if magnetic resonance (MR) microscopy can yield images sufficient for discriminating early progressive atherosclerotic lesions from nonprogressive atherosclerotic lesions in human coronary arteries. MATERIALS AND METHODS Institutional review board approval and informed consent were not required. Seventeen coronary artery segments (mean diameter, 2.8 mm +/- 1.0 [standard deviation]) were collected within 36 hours after death from 11 cadavers (six men, five women; age range at death, 33-65 years). Quantitative T1, T2, intensity-weighted (IW), and magnetization transfer (MT) maps were acquired with a 9.4-T vertical-bore magnet. Coronary artery lesions were classified as adaptive intimal thickening (AIT), pathologic intimal thickening (PIT), or intimal xanthoma (IXA). Internal anatomic fiducial landmarks and stains were applied to proximal and epicardial vessel surfaces and used to register histologic sections with MR images and thus enable comparison of MR images and Movat pentachrome-stained histologic specimens. Unique 0.0012-0.0287-cm(2) regions of interest were visually identified on quantitative T1, T2, MT, and IW maps of AIT, IXA, and PIT lesions. Distributions of T1, T2, MT, and IW values were compared with Student t and Wilcoxon two-sample tests. RESULTS MR microscopic images of nonprogressive AIT and IXA lesions revealed two intimal layers. The luminal intima had higher T1 and T2 values and lower MT values than did the medial intima; these findings were consistent with compositional differences observed in histologic sections. In the IXA lesion, T2 values of both intimal layers were markedly reduced when compared with T2 values of AIT lesions because of the accumulation of lipid-laden macrophages in both layers. Progressive PIT lesions had a typical multilayered appearance or foci with a short T2 relaxation time and low IW values; these features were not observed in AIT or IXA lesions. CONCLUSION MR microscopy enabled identification of morphologic arterial wall features that enable discrimination of progressive PIT lesions from nonprogressive AIT or IXA lesions.
Collapse
Affiliation(s)
- Breno S Pessanha
- Department of Cardiovascular Pathology and Magnetic Resonance Microscopy Facility, Armed Forces Institute of Pathology, Washington, DC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yuan C, Kerwin WS, Yarnykh VL, Cai J, Saam T, Chu B, Takaya N, Ferguson MS, Underhill H, Xu D, Liu F, Hatsukami TS. MRI of atherosclerosis in clinical trials. NMR IN BIOMEDICINE 2006; 19:636-54. [PMID: 16986119 DOI: 10.1002/nbm.1065] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Magnetic resonance imaging (MRI) of the arterial wall has emerged as a viable technology for characterizing atherosclerotic lesions in vivo, especially within carotid arteries and other large vessels. This capability has facilitated the use of carotid MRI in clinical trials to evaluate therapeutic effects on atherosclerotic lesions themselves. MRI is specifically able to characterize three important aspects of the lesion: size, composition and biological activity. Lesion size, expressed as a total wall volume, may be more sensitive than maximal vessel narrowing (stenosis) as a measure of therapeutic effects, as it reflects changes along the entire length of the lesion and accounts for vessel remodeling. Lesion composition (e.g. lipid, fibrous and calcified content) may reflect therapeutic effects that do not alter lesion size or stenosis, but cause a transition from a vulnerable plaque composition to a more stable one. Biological activity, most notably inflammation, is an emerging target for imaging that is thought to destabilize plaque and which may be a systemic marker of vulnerability. The ability of MRI to characterize each of these features in carotid atherosclerotic lesions gives it the potential, under certain circumstances, to replace traditional trials involving large numbers of subjects and hard end-points--heart attacks and strokes--with smaller, shorter trials involving imaging end-points. In this review, the state of the art in MRI of atherosclerosis is presented in terms of hardware, image acquisition protocols and post-processing. Also, the results of validation studies for measuring lesion size, composition and inflammation will be summarized. Finally, the status of several clinical trials involving MRI of atherosclerosis will be reviewed.
Collapse
Affiliation(s)
- Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Desai MY, Lima JAC. Imaging of atherosclerosis using magnetic resonance: state of the art and future directions. Curr Atheroscler Rep 2006; 8:131-9. [PMID: 16510047 DOI: 10.1007/s11883-006-0050-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Atherosclerosis is the leading cause of morbidity and mortality in industrialized societies, and its incidence is projected to increase in the future. Because the atherosclerotic process begins in the vessel wall, the focus of cardiovascular imaging is shifting from the arterial lumen to imaging of the vessel wall, with the goal of detecting preclinical atherosclerosis. MRI, because of its high resolution, three-dimensional capabilities, noninvasive nature, and capacity for soft tissue characterization, is emerging as an important modality to assess the atherosclerotic plaque burden in the arterial wall and can monitor atherosclerosis in different arterial beds, including the carotid arteries, aorta, and more recently, the coronary arteries. Furthermore, it has also been successfully utilized to monitor plaque regression following therapeutic interventions. Finally, the emergence of high-resolution MRI and development of sophisticated contrast agents offers tremendous promise for in vivo molecular imaging of the atherosclerotic plaque.
Collapse
Affiliation(s)
- Milind Y Desai
- Division of Cardiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | |
Collapse
|
16
|
Koops A, Ittrich H, Petri S, Priest A, Stork A, Lockemann U, Adam G, Weber C. Multicontrast-weighted magnetic resonance imaging of atherosclerotic plaques at 3.0 and 1.5 Tesla: ex-vivo comparison with histopathologic correlation. Eur Radiol 2006; 17:279-86. [PMID: 16642325 DOI: 10.1007/s00330-006-0265-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 03/01/2006] [Accepted: 03/24/2006] [Indexed: 11/26/2022]
Abstract
The purpose was to analyze magnetic resonance (MR) plaque imaging at 3.0 Tesla and 1.5 Tesla in correlation with histopathology. MR imaging (MRI) of the abdominal aorta and femoral artery was performed on seven corpses using T1-weighted, T2-weighted, and PD-weighted sequences at 3.0 and 1.5 Tesla. Cross-sectional images at the branching of the inferior mesenteric artery and the profunda femoris were rated with respect to image quality. Corresponding cross sections of the imaged vessels were obtained at autopsy. The atherosclerotic plaques in the histological slides and MR images were classified according to the American Heart Association (AHA) and analyzed for differences. MRI at 3.0 Tesla offered superior depiction of arterial wall composition in all contrast weightings, rated best for T2-weighted images. Comparing for field strength, the highest differences were observed in T1-weighted and T2-weighted techniques (both P< or =0.001), with still significant differences in PD-weighted sequence (P< or =0.005). The majority of plaques were histologically classified as calcified plaques. In up to 21% of the cases, MRI at both field strengths detected signal loss characteristic of calcification although calcified plaque was absent in histology. MRI at 3.0 Tesla offers superior plaque imaging quality compared with 1.5 Tesla, but further work is necessary to determine whether this translates in superior diagnostic accuracy.
Collapse
Affiliation(s)
- Andreas Koops
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The concept of vulnerable plaque is well established with increasing evidence from clinical and basic research. The paradigm has shifted from focusing exclusively on the hemodynamic effects of plaque (ie, resulting lumenal stenosis alone as a predictor of stroke risk) to assessment of the structure and composition of plaque (eg, denuded endothelium with inflammatory elements as a nidus for platelet-fibrin clumping). It is increasingly evident that methods to detect and characterize vulnerable plaque must be developed and optimized. Although MR imaging, CT, and ultrasound provide data regarding single lesions, future investigations relying heavily on nuclear medicine techniques may offer functional assessment of the entire cardiovascular system.
Collapse
Affiliation(s)
- John W Chen
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
18
|
Desai MY, Bluemke DA. Atherosclerosis imaging using MR imaging: current and emerging applications. Magn Reson Imaging Clin N Am 2005; 13:171-80, vii. [PMID: 15760763 DOI: 10.1016/j.mric.2004.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Milind Y Desai
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 6707 Democracy Boulevard, Bethesda, MD 20892-5477, USA
| | | |
Collapse
|
19
|
Kim WY, Spuentrup E, Buecker A, Manning WJ, Botnar RM. Cardiovascular magnetic resonance imaging of coronary atherothrombosis. J Nucl Cardiol 2005; 12:337-44. [PMID: 15944539 DOI: 10.1016/j.nuclcard.2005.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- W Yong Kim
- MR-Center, Institute of Clinical Medicine, Aarhus University Hospital, Skejby Sygehus, Denmark.
| | | | | | | | | |
Collapse
|
20
|
Leiner T, Gerretsen S, Botnar R, Lutgens E, Cappendijk V, Kooi E, van Engelshoven J. Magnetic resonance imaging of atherosclerosis. Eur Radiol 2005; 15:1087-99. [PMID: 15723215 DOI: 10.1007/s00330-005-2646-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 12/20/2004] [Accepted: 12/31/2004] [Indexed: 11/28/2022]
Abstract
Abundant data now link composition of the vascular wall, rather than the degree of luminal narrowing, with the risk for acute ischemic syndromes in the coronary, central nervous system, and peripheral arterial beds. Over the past few years, magnetic resonance angiography has evolved as a well-established method to determine the location and severity of advanced, lumen-encroaching atherosclerotic lesions. In addition, more recent studies have shown that high spatial resolution, multisequence MRI is also a promising tool for noninvasive, serial imaging of the aortic and carotid vessel wall, which potentially can be applied in the clinical setting. Because of the limited spatial resolution of current MRI techniques, characterization of coronary vessel wall atherosclerosis, however, is not yet possible and remains the holy grail of plaque imaging. Recent technical developments in MRI technology such as dedicated surface coils, the introduction of 3.0-T high-field systems and parallel imaging, as well as developments in the field of molecular imaging such as contrast agents targeted to specific plaque constituents, are likely to lead to the necessary improvements in signal to noise ratio, imaging speed, and specificity. These improvements will ultimately lead to more widespread application of this technology in clinical practice. In the present review, the current status and future role of MRI for plaque detection and characterization are summarized.
Collapse
Affiliation(s)
- T Leiner
- Department of Radiology, Maastricht University Hospital, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The emergence of high-resolution, rapid imaging methods has enabled MRI to noninvasively image the fine internal structure of atherosclerotic artery walls. This capability has, in turn, captured the interest of clinicians, who see it as an opportunity to assess disease severity based on the characteristics of atherosclerotic lesions themselves, rather than only their effects on the vessel lumen. MRI of atherosclerosis thus has the potential to be used in medical treatment decisions or to assess the effects of experimental treatment options. Given this potential, a number of research groups have been investigating MRI of atherosclerosis in an effort to establish the ability of MRI to determine atherosclerotic plaque burden, detect plaque composition, and ultimately identify vulnerable plaque before it leads to a clinical event. In this review, the current state of the art is summarized for the three primary vessel targets: the carotid artery, the aorta, and the coronary arteries.
Collapse
Affiliation(s)
- Chun Yuan
- Department of Radiology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
22
|
Chaabane L, Soulas EC, Contard F, Salah A, Guerrier D, Briguet A, Douek P. High-resolution magnetic resonance imaging at 2 Tesla: potential for atherosclerotic lesions exploration in the apolipoprotein E knockout mouse. Invest Radiol 2003; 38:532-8. [PMID: 12874520 DOI: 10.1097/01.rli.0000067491.31978.1c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The aim of the present study was to evaluate the potential of high-resolution MRI at 2 Tesla (T) for direct noninvasive imaging of the aortic wall in a mouse model of atherosclerosis. MATERIAL AND METHODS A specific mouse antenna was developed and sequence parameters were adjusted. T(1)- and T2-weighted images of abdominal aorta were obtained at 2 T with a spatial resolution of 86 x 86 x 800 microm3 in vivo. With a dedicated small coil, ex vivo MRI of the aorta was performed with a spatial resolution of 54 x 54 x 520 microm3. RESULTS In vivo, the aortic wall was clearly defined on T(2)-weighted images in 15 of 16 mice: along the aorta the lumen circumference ranged from 1.07 to 3.61 mm and mean wall thickness from 0.11 to 0.67 mm. In vivo measurements of plaque distribution were confirmed by ex vivo MR imaging and by histology, with a good correlation with histology regarding lumen circumference (r = 0.94) and wall thickness (r = 0.97). CONCLUSION Magnetic resonance imaging at 2 T to analyze in vivo atherosclerotic lesions in mice is possible with a spatial resolution of 86 x 86 x 800 microm3 and thus can be used for noninvasive follow-up in evaluation of new drugs.
Collapse
Affiliation(s)
- Linda Chaabane
- Laboratoire de RMN, UMR 5012 CNRS, UCB-CPE, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Quick HH, Kuehl H, Kaiser G, Bosk S, Debatin JF, Ladd ME. Inductively coupled stent antennas in MRI. Magn Reson Med 2002; 48:781-90. [PMID: 12417992 DOI: 10.1002/mrm.10269] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of intimal hyperplasia following stent deployment can lead to narrowing or even occlusion of the stent lumen. The underlying mechanisms leading to neointimal proliferation within stents remain largely unknown. Long-term evaluation of stent patency requires a noninvasive means for assessing the stent lumen. MR angiography (MRA) has shown potential to provide noninvasive assessment of the vascular system. However, a detailed assessment of the stent lumen with MRI is often hampered by material-dependent susceptibility artifacts, as well as by radiofrequency (RF) eddy currents generated inside the electrically conducting stent mesh. In this study, stent prototypes were designed to act as active resonant structures at the Larmor frequency of the MR system. Employing the principle of inductive coupling, the B(1) fields of the stents were coupled to that of an outside surface coil. The stents thus acted as local RF signal amplifiers. Various stent designs were investigated regarding their coupling to an external coil, signal homogeneity, and suitability for mechanical expansion for implantation purposes. The dependency of flip angle amplification on the quality factor Q of the stents was systematically investigated. Phantom experiments revealed signal amplification in all stent prototypes. Signal enhancement inside and close to the surface of the stents enabled their localization with high contrast in MR images. In vivo imaging experiments in the iliac, renal, and splenic arteries of two pigs confirmed the in vitro findings. Wireless active visualization of stents allows for detailed analysis of the stent lumen with high contrast and spatial resolution. The proposed method could thus provide a powerful diagnostic means for the noninvasive long-term follow-up of stent patency, thereby enhancing our understanding of the mechanisms of restenosis.
Collapse
Affiliation(s)
- Harald H Quick
- MR Center, Department of Diagnostic Radiology, University Hospital Essen, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Yuan C, Zhao XQ, Hatsukami TS. Quantitative evaluation of carotid atherosclerotic plaques by magnetic resonance imaging. Curr Atheroscler Rep 2002; 4:351-7. [PMID: 12162934 DOI: 10.1007/s11883-002-0072-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to study human atherosclerotic plaque burden and composition in vivo, an imaging technique is needed that can directly measure volume and characterize the cross-sectional morphologic components of the atherosclerotic arterial wall. High-resolution magnetic resonance imaging (MRI), which is noninvasive and nonirradiative, has been described as one promising modality to achieve these purposes. MRI allows direct visualization of the diseased vessel wall and is capable of characterizing the morphology of individual atherosclerotic carotid plaques.
Collapse
Affiliation(s)
- Chun Yuan
- Division of Cardiology, University of Washington, Box 358771, 1914 North 34th Street, Suite 105, Seattle, WA 98103, USA.
| | | | | |
Collapse
|
25
|
Abstract
Atherogenesis is an inflammatory process that begins in childhood. Early detection of atherosclerosis might allow for selection of subjects at risk for future cerebrovascular events at a time when dietary and lifestyle modification may have its greatest impact, and medical intervention may be useful for those who are refractory to such treatment or who are at greater risk for an event. Early detection relies on a knowledge of the distribution of atheroma formation, which can be predicted by understanding the hemodynamic patterns of blood flow. Early formation is accompanied by a vascular remodeling that normalizes the area of the vessel lumen, making early detection impossible by angiography. Elevated serologic markers of inflammation may be used as evidence of formation of atherosclerosis, but inflammatory markers lack sensitivity and specificity. Preliminary evidence supports the ability of MRI to detect early atheroma formation, possibly even before substantial wall thickening occurs. Once atheroma has formed with measurable stenosis, the goal of imaging studies is to predict stroke risk and determine the need for surgical intervention. Subjects with symptomatic high-grade carotid stenosis have been shown to benefit from surgery with a reduced stroke risk when compared with medical management alone, although controversy exists regarding the management of moderate symptomatic carotid stenosis or asymptomatic carotid disease. In these individuals, understanding atheroma morphology may prove to be of greater utility for assessing stroke risk and determining the appropriate management. Morphologic characterization may also be helpful in monitoring the effect of medical intervention. MRI has proven capable of characterizing the morphologic composition of carotid atheroma, although the clinical implications continue to be investigated.
Collapse
Affiliation(s)
- Bruce Alan Wasserman
- Department of Radiology, Division of Neuroradiology, Johns Hopkins University School of Medicine, Phipps B-100, 600 North Wolfe Street, Baltimore, MD 21287-2182, USA.
| |
Collapse
|
26
|
Schmitz SA, Taupitz M, Wagner S, Coupland SE, Gust R, Nikolova A, Wolf KJ. Iron-oxide-enhanced magnetic resonance imaging of atherosclerotic plaques: postmortem analysis of accuracy, inter-observer agreement, and pitfalls. Invest Radiol 2002; 37:405-11. [PMID: 12068163 DOI: 10.1097/00004424-200207000-00008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Contrast-enhanced magnetic resonance (MR) imaging using ultra small superparamagnetic iron oxide (USPIO) particles is a new noninvasive modality for imaging inflammatory atherosclerotic plaques. We determined the accuracy, interobserver agreement, and potential sources of error of this technique by means of postmortem MR imaging of aortic preparations. MATERIAL AND METHODS Anesthetized atherosclerotic Watanabe heritable hyperlipidemic (WHHL) rabbits were studied after administration of different dosages of intravenous USPIO (DDM 43/34, IDF Berlin, Germany) and different postcontrast time intervals. A (n = 5) received 0 micromol Fe/kg. B (n = 5) received 50 micromol Fe/kg, 8-hour postcontrast interval. C (n = 5) received 50 micromol, 24 hours. D received 200 micromol, 48 hours. The aortas were removed and 3-mm segments prepared for postmortem examination by MR imaging using a T2-weighted gradient-echo sequence (TR/TE/FA; 41 milliseconds/11 milliseconds/15 degrees ), radiography (mammography), and histology (iron staining). USPIO accumulation was defined as the presence of 20 iron-positive cells per microscopic view (x100 magnification). Two independent readers analyzed the MR images and rated their confidence level for a positive MRI finding, defined as a focal signal loss, on a 5-point scale. The results were evaluated by receiver-operator characteristic (ROC) analysis. RESULTS Of a total of 621 vessel segments technically acceptable for evaluation, 534 were histologically negative and 87 positive. Accuracy, expressed as the area under the ROC curve, was 0.85 for reader 1 and 0.88 for reader 2. Interobserver agreement was 0.67. False-positive findings were established by at least one reader for 121 of the 621 segments, false-negative findings for only 15 segments. Calcifications and mural thrombi were identified as potential sources of error of the method. CONCLUSION Postmortem USPIO-enhanced MR imaging of atherosclerotic plaques showed a high accuracy and good interobserver agreement in the animal model used here. Further optimization of the method should aim at reducing the rather high percentage of false-positive results.
Collapse
Affiliation(s)
- S A Schmitz
- Department of Radiology and Nuclear Medicine, Benjamin Franklin Medical School, Freie Universität Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wasserman BA, Smith WI, Trout HH, Cannon RO, Balaban RS, Arai AE. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 2002; 223:566-73. [PMID: 11997569 DOI: 10.1148/radiol.2232010659] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In nine subjects with carotid atherosclerosis, double-oblique, contrast material-enhanced, double inversion-recovery, fast spin-echo magnetic resonance (MR) images were acquired through atheroma in the proximal internal carotid artery. Fibrocellular tissue within atheroma selectively enhanced 29% after administration of gadolinium-based contrast agent. Contrast enhancement helped discriminate fibrous cap from lipid core with a contrast-to-noise ratio as good as or better than that with T2-weighted MR images but with approximately twice the signal-to-noise ratio (postcontrast images, 36.6 +/- 3.6; T2-weighted images, 17.5 +/- 2.1; P <.001).
Collapse
Affiliation(s)
- Bruce A Wasserman
- Department of Radiology, Neuroradiology Division, Johns Hopkins Hospital, 600 N Wolfe St, Phipps B-100, Baltimore, MD 21287-2182, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Ouhlous M, Lethimonnier F, Dippel DWJ, van Sambeek MRHM, van Heerebeek LCJ, Pattynama PMT, van Der Lugt A. Evaluation of a dedicated dual phased-array surface coil using a black-blood FSE sequence for high resolution MRI of the carotid vessel wall. J Magn Reson Imaging 2002; 15:344-51. [PMID: 11891981 DOI: 10.1002/jmri.10067] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate the ability of magnetic resonance imaging (MRI) to visualize the carotid vessel wall using a phased-array coil and a black-blood (BB) fast spin-echo (FSE) sequence. MATERIALS AND METHODS The phased-array coil was compared with a three-inch coil. Images from volunteers were evaluated for artifacts, wall layers, and wall signal intensity. Signal intensity and homogeneity of atherosclerosis were assessed. Lumen diameter and vessel area were measured. RESULTS Comparison between the phased-array coil and the three-inch coil showed a 100% increase in signal-to-noise ratio. BB-FSE imaging resulted in good delineation between blood and vessel wall. Most volunteers had a two-layered vessel wall with a hyperintense inner layer. MRI showed both homogeneous hyperintense and heterogeneous plaques, which consisted of a main hyperintense part with hypointense spots and/or intermediate regions. MRI lumen and area measurements were performed easily. CONCLUSION High resolution MRI of carotid atherosclerosis is feasible with a phased-array coil and a BB-FSE sequence.
Collapse
Affiliation(s)
- Mohamed Ouhlous
- Department of Radiology, University Hospital Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Yuan C, Hatsukami TS, Obrien KD. High-Resolution magnetic resonance imaging of normal and atherosclerotic human coronary arteries ex vivo: discrimination of plaque tissue components. J Investig Med 2001; 49:491-9. [PMID: 11730084 DOI: 10.2310/6650.2001.33625] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Noninvasive detection of plaque lipid and calcium in human atherosclerosis may have clinical utility, because the presence of each may be associated with increased risk of plaque disruption. Magnetic resonance imaging (MRI) has the potential to detect both plaque lipid and calcium. However, no previous studies have: 1) used an MR coil with sufficient resolution to image the components of human coronary arteries, 2) evaluated the utility of a combination of different MR contrast weightings in discriminating plaque components in human coronary arteries, or 3) used sensitive and specific histological stains for lipid and calcium to determine their MR image characteristics in human atherosclerosis. METHODS Using a custom-made surface coil on a whole-body, 1.5T MRI scanner, high resolution MR images were obtained from 22 nonatherosclerotic and atherosclerotic human coronary artery segments and then compared with histological sections stained for neutral lipid, calcium, and ribrous and cellular components. RESULTS With a multicontrast protocol using T1-, proton density-, and T2-weighted images, statistically significant differences were found among MR image contrast values for regions identified by histological stains as containing lipid only, calcium only, mixed lipid and calcium, or fibrous tissue. All four of these histologically defined region types could be differentiated from one another by a multicontrast MRI protocol. Of the 22 segments, 10 (45%) contained areas with combined plaque lipid and calcium; calcium would not have been recognized histologically in these regions without the use of a specific calcium stain. CONCLUSIONS These results demonstrate that multicontrast MRI can produce remarkably high-resolution images and can discriminate between clinically relevant components of the atherosclerotic vessel wall.
Collapse
Affiliation(s)
- C Yuan
- Department of Radiology University of Washington, Seattle 98195-6422, USA
| | | | | |
Collapse
|
30
|
Yuan C, Mitsumori LM, Beach KW, Maravilla KR. Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 2001; 221:285-99. [PMID: 11687667 DOI: 10.1148/radiol.2212001612] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Measurement of vessel stenosis by using ultrasonography or angiography remains the principal method for determining the severity of carotid atherosclerosis and the need for endarterectomy. The ipsilateral stroke rate, however--even in patients with severely stenotic vessels--is relatively low, which suggests that the amount of luminal narrowing may not represent the optimal means of assessing clinical risk. As a result, some patients may undergo unnecessary surgery. Improved imaging techniques are, therefore, needed to enable reliable identification of high-risk plaques that lead to cerebrovascular events. High-spatial-resolution magnetic resonance (MR) imaging has been described as one promising modality for this purpose, because the technique allows direct visualization of diseased vessel wall and can be used to characterize the morphology of individual atherosclerotic carotid plaques. The purpose of this report is to review the current state of carotid plaque MR imaging and the use of carotid MR to evaluate plaque morphology and composition.
Collapse
Affiliation(s)
- C Yuan
- Department of Radiology, University of Washington, Box 357115, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
31
|
Krinsky GA, Freedberg R, Lee VS, Rockman C, Tunick PA. Innominate artery atheroma: a lesion seen with gadolinium-enhanced MR angiography and often missed by transesophageal echocardiography. Clin Imaging 2001; 25:251-7. [PMID: 11566085 DOI: 10.1016/s0899-7071(01)00292-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transesophageal echocardiography (TEE) is the procedure of choice for identifying aortic atheromas, which may result in stroke, transient ischemic attack and peripheral embolization. However, because of anatomic constraints, the innominate artery may not be visualized. We investigated gadolinium-enhanced MR angiography (MRA) as an alternative technique for evaluation of suspected atheromas of the innominate artery. From a retrospective review of 520 examinations, we identified five patients who had innominate artery atheromas diagnosed prospectively with gadolinium-enhanced MRA who also underwent TEE within 1 month. A total of 10 innominate artery atheromas were demonstrated on MRA; none of these were visualized on TEE. One patient had three atheromas, two patients had two atheromas and three patients had one atheroma. They ranged in size from 3 mm to 1.5 cm (mean 6.5 mm). One atheroma was flat, two were filiform, and seven were protruding. Gadolinium-enhanced MRA is superior to TEE for the diagnosis of atheromas of the innominate artery. In the setting of right cerebral or right arm embolization, when no source is seen in the arch on TEE, gadolinium-enhanced MRA should be considered.
Collapse
Affiliation(s)
- G A Krinsky
- Department of Radiology/MRI, New York University Medical Center, 530 First Avenue, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
32
|
Shunk KA, Atalar E, Lima JA. Possibilities of transesophageal MRI for assessment of aortic disease: a review. Int J Cardiovasc Imaging 2001; 17:179-85. [PMID: 11587451 DOI: 10.1023/a:1010667617641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The thoracic aortic wall is a common site of atherosclerotic plaque in humans. Tools for serial, non-invasive assessment of these plaques are of value for addressing gaps in our basic understanding of the biology of plaque rupture and its relationship to atherosclerotic disease progression as well as for monitoring response to anti-atherosclerotic interventions in therapeutic clinical trials. Common approaches to assessment of the wall of the thoracic aorta in vivo are limited. Here we discuss some of the challenges and limitations encountered by conventional techniques and review a novel approach, transesophageal MRI (TEMRI). Initial experiences in applying the TEMRI approach to assessment of aortic morphology and pathology are discussed.
Collapse
Affiliation(s)
- K A Shunk
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | |
Collapse
|
33
|
Abstract
The study of atherosclerotic disease during its natural history and after therapeutic intervention may enhance our understanding of the progression and regression of this disease and will aid in selecting the appropriate medical treatments or surgical interventions. Several invasive and non-invasive imaging techniques are available to assess atherosclerotic disease vessels. Most of these techniques are strong in identifying the morphological features of the disease such as lumenal diameter and stenosis or wall thickness, and in some cases provide an assessment of the relative risk associated with the atherosclerotic disease. However, none of these techniques can fully characterize the composition of the atherosclerotic plaque in the vessel wall and therefore are incapable of identifying the vulnerable plaques. High-resolution, multi-contrast, magnetic resonance (MR) can non-invasively image vulnerable plaques and characterize plaques in terms of lipid and fibrous content and identify the presence of thrombus or calcium. Application of MR imaging opens up whole new areas for diagnosis, prevention, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Z A Fayad
- The Zena and Michael A. Wiener Cardiovascular Institute, and Department of Radiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
34
|
Worthley SG, Helft G, Fuster V, Fayad ZA, Fallon JT, Osende JI, Roqué M, Shinnar M, Zaman AG, Rodriguez OJ, Verhallen P, Badimon JJ. High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Atherosclerosis 2000; 150:321-9. [PMID: 10856524 DOI: 10.1016/s0021-9150(99)00386-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Atherosclerotic plaque composition is central to the pathogenesis of plaque disruption and acute thrombosis. Thus, there is a need for accurate imaging and characterization of atherosclerotic lesions. Even though there is no ideal animal model of atherosclerosis, the porcine model is considered to most closely resemble human atherosclerosis. We report the feasibility of MR imaging and characterizing of atherosclerotic lesions from in situ coronary arteries and aortas in an ex vivo setting and validate this with histopathology. Coronary and aortic atherosclerosis was induced in Yucatan mini-swine (n=4) by a combination of atherogenic diet (6 months) and balloon injury. All coronary arteries were imaged ex vivo on the intact heart, preserving the curvature of their course. The aorta also underwent MR imaging. The MR images were correlated with the matched histopathology sections for both the coronary arteries (n=54) and the aortas (n=43). MR imaging accurately characterized complex atherosclerotic lesions, including calcified, lipid rich, fibrocellular and hemorrhagic regions. Mean wall thickness for the coronary arteries (r=0.94, slope: 0.81) and aortas (r=0.94, slope: 0.81) as well as aortic plaque area (r=0.97, slope: 0.90) was accurately determined by MR imaging (P<0.0001). Coronary artery MR imaging is not limited by the curvature of the coronary arteries in the heart. MR imaging accurately quantifies and characterizes coronary and aortic atherosclerotic lesions, including the vessel wall, in this experimental porcine model of complex atherosclerosis. This model may be useful for future study of MR imaging of atherosclerosis in vivo.
Collapse
Affiliation(s)
- S G Worthley
- Cardiovascular Biology Research Laboratory, Zena and Michael A. Wiener Cardiovascular Institute, One Gustave L. Levy Place, P.O. Box 1030, 10029-6574, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The study of atherosclerotic disease during its natural history and after therapeutic intervention will enhance our understanding of the progression and regression of this disease and will aid in selecting the appropriate medical treatments or surgical interventions. Several invasive and noninvasive imaging techniques are available to assess atherosclerotic vessels. Most of these techniques are strong in identifying the morphological features of the disease, such as lumenal diameter and stenosis or wall thickness, and in some cases provide an assessment of the relative risk associated with the atherosclerosis. However, none of these techniques can fully characterize the composition of the atherosclerotic plaque in the vessel wall and, therefore, are incapable of identifying the vulnerable plaques. High-resolution, multi-contrast, magnetic resonance (MR) can non-invasively image vulnerable plaques, characterize plaques in terms of lipid and fibrous content, and identify the presence of thrombus or calcium. Application of MR imaging opens up whole new areas for diagnosis, prevention, and treatment (e.g., lipid-lowering drug regimens) of atherosclerosis.
Collapse
Affiliation(s)
- Z A Fayad
- Zena and Michael A. Wiener Cardiovascular Institute, New York, New York, USA.
| | | |
Collapse
|
36
|
Abstract
The purpose of this study was to develop a non-invasive method of imaging the thoracic aorta that would provide both morphological detail within the aortic wall and information about regional aortic wall motion. An esophageal probe is described that allows transesophageal MR imaging (TEMRI) of the thoracic aorta and has several potential advantages over the competing non-vasculoinvasive techniques of transesophageal echocardiography (TEE) or standard MRI. The probe consists of a loopless antenna housed inside a modified Levin gastric tube, with external matching and tuning circuitry. Using this probe, the thoracic aorta has been imaged in longitudinal and cross-sectional views. Details of the aortic wall were readily seen. Tissue tagging for measurement of focal stress/strain relationships was demonstrated to be feasible. TEMRI avoids the risks inherent in intravascular MRI yet provides comparable image quality. Potential applications of the device are discussed.
Collapse
Affiliation(s)
- K A Shunk
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-0845, USA
| | | | | | | |
Collapse
|