1
|
Chen L, Ye X, Li Y, Ran X. Systematic identification of therapeutic targets for coronary artery calcification: an integrated transcriptomic and proteomic Mendelian randomization. Front Cardiovasc Med 2024; 11:1419440. [PMID: 39526184 PMCID: PMC11543530 DOI: 10.3389/fcvm.2024.1419440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Background Coronary artery calcification (CAC) is associated with an increased risk of mortality and cardiovascular events. However, none therapeutic drugs have been proven effective for CAC treatment. The objective of this study was to identify potential therapeutic targets for CAC through the utilization of Mendelian randomization (MR) and colocalization analysis. Methods The expression quantitative trait loci (eQTLs) of 16,943 genes from the eQTLGen consortium and protein quantitative trait loci (pQTLs) of 4,412 proteins from a plasma proteome were utilized as genetic instruments. Genetic associations with CAC were derived from a GWAS meta-analysis of 26,909 individuals. The MR and colocalization analysis were utilized to identify potential target genes. Results A total of 671 genes were found to be significantly associated with the risk of CAC based on transcriptomic MR analysis at a false discovery rate <0.05, while proteomic MR analysis identified 15 genes with significant associations with CAC at the same threshold. With robust evidence from colocalization analysis, we observed positive associations between CWF19L2, JARID2, and MANBA and the risk of CAC, while KLB exhibited an inverse association. In summary, our study identified 23 potential therapeutic targets for CAC. Further downstream analysis revealed IGFBP3, ABCC6, ULK3, DOT1L, KLB and AMH as promising candidates for repurposing in the treatment of CAC. Conclusion The integrated MR analysis of transcriptomic and proteomic data identified multiple potential drug targets for the treatment of CAC. ULK3, DOT1L, and AMH were recognized as novel targets for drug repurposing for CAC and deserve further investigation.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqi Ye
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Li
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingwu Ran
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Kavousi M, Bos MM, Barnes HJ, Lino Cardenas CL, Wong D, Lu H, Hodonsky CJ, Landsmeer LPL, Turner AW, Kho M, Hasbani NR, de Vries PS, Bowden DW, Chopade S, Deelen J, Benavente ED, Guo X, Hofer E, Hwang SJ, Lutz SM, Lyytikäinen LP, Slenders L, Smith AV, Stanislawski MA, van Setten J, Wong Q, Yanek LR, Becker DM, Beekman M, Budoff MJ, Feitosa MF, Finan C, Hilliard AT, Kardia SLR, Kovacic JC, Kral BG, Langefeld CD, Launer LJ, Malik S, Hoesein FAAM, Mokry M, Schmidt R, Smith JA, Taylor KD, Terry JG, van der Grond J, van Meurs J, Vliegenthart R, Xu J, Young KA, Zilhão NR, Zweiker R, Assimes TL, Becker LC, Bos D, Carr JJ, Cupples LA, de Kleijn DPV, de Winther M, den Ruijter HM, Fornage M, Freedman BI, Gudnason V, Hingorani AD, Hokanson JE, Ikram MA, Išgum I, Jacobs DR, Kähönen M, Lange LA, Lehtimäki T, Pasterkamp G, Raitakari OT, Schmidt H, Slagboom PE, Uitterlinden AG, Vernooij MW, Bis JC, Franceschini N, Psaty BM, Post WS, Rotter JI, Björkegren JLM, O'Donnell CJ, Bielak LF, Peyser PA, Malhotra R, van der Laan SW, Miller CL. Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification. Nat Genet 2023; 55:1651-1664. [PMID: 37770635 PMCID: PMC10601987 DOI: 10.1038/s41588-023-01518-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.
Collapse
Affiliation(s)
- Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Maxime M Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanna J Barnes
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Haojie Lu
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lennart P L Landsmeer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Natalie R Hasbani
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - Joris Deelen
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | | | - Sharon M Lutz
- Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lotte Slenders
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kopavogur, Iceland
| | - Maggie A Stanislawski
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica van Setten
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marian Beekman
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthew J Budoff
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences and Data Science, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, Department of Medicine, University of California Irvine, Irvine, CA, USA
| | | | - Michal Mokry
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce van Meurs
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jianzhao Xu
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Denver, CO, USA
| | | | - Robert Zweiker
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Themistocles L Assimes
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Jeffrey Carr
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischemic syndromes, Amsterdam Infection and Immunity: Inflammatory diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, School of Public Health, University of Iceland, Reykjavik, Iceland
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - John E Hokanson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ivana Išgum
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Helena Schmidt
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - P Eline Slagboom
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Christopher J O'Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Section, Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Sukhanov S, Higashi Y, Yoshida T, Danchuk S, Alfortish M, Goodchild T, Scarborough A, Sharp T, Jenkins JS, Garcia D, Ivey J, Tharp DL, Schumacher J, Rozenbaum Z, Kolls JK, Bowles D, Lefer D, Delafontaine P. Insulin-like growth factor 1 reduces coronary atherosclerosis in pigs with familial hypercholesterolemia. JCI Insight 2023; 8:e165713. [PMID: 36602878 PMCID: PMC9990768 DOI: 10.1172/jci.insight.165713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Although murine models of coronary atherosclerotic disease have been used extensively to determine mechanisms, limited new therapeutic options have emerged. Pigs with familial hypercholesterolemia (FH pigs) develop complex coronary atheromas that are almost identical to human lesions. We reported previously that insulin-like growth factor 1 (IGF-1) reduced aortic atherosclerosis and promoted features of stable plaque in a murine model. We administered human recombinant IGF-1 or saline (control) in atherosclerotic FH pigs for 6 months. IGF-1 decreased relative coronary atheroma in vivo (intravascular ultrasound) and reduced lesion cross-sectional area (postmortem histology). IGF-1 increased plaque's fibrous cap thickness, and reduced necrotic core, macrophage content, and cell apoptosis, consistent with promotion of a stable plaque phenotype. IGF-1 reduced circulating triglycerides, markers of systemic oxidative stress, and CXCL12 chemokine levels. We used spatial transcriptomics (ST) to identify global transcriptome changes in advanced plaque compartments and to obtain mechanistic insights into IGF-1 effects. ST analysis showed that IGF-1 suppressed FOS/FOSB factors and gene expression of MMP9 and CXCL14 in plaque macrophages, suggesting possible involvement of these molecules in IGF-1's effect on atherosclerosis. Thus, IGF-1 reduced coronary plaque burden and promoted features of stable plaque in a pig model, providing support for consideration of clinical trials.
Collapse
Affiliation(s)
- Sergiy Sukhanov
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yusuke Higashi
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tadashi Yoshida
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Svitlana Danchuk
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Mitzi Alfortish
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Traci Goodchild
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University, New Orleans, Louisiana, USA
| | - Amy Scarborough
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University, New Orleans, Louisiana, USA
| | - Thomas Sharp
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University, New Orleans, Louisiana, USA
| | | | | | - Jan Ivey
- Ochsner Medical Center, New Orleans, Louisiana, USA
| | - Darla L. Tharp
- Department of Biomedical Sciences, University of Missouri-Columbia, Missouri, USA
| | - Jeffrey Schumacher
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University, New Orleans, Louisiana, USA
| | - Zach Rozenbaum
- Tulane University School of Medicine, New Orleans, Louisiana, USA
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jay K. Kolls
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Douglas Bowles
- Department of Biomedical Sciences, University of Missouri-Columbia, Missouri, USA
| | - David Lefer
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University, New Orleans, Louisiana, USA
| | | |
Collapse
|
4
|
Ma S, Zheng J, Xu Y, Yang Z, Zhu Y, Su X, Mo X. Identified plasma proteins related to vascular structure are associated with coarctation of the aorta in children. Ital J Pediatr 2020; 46:63. [PMID: 32430056 PMCID: PMC7236479 DOI: 10.1186/s13052-020-00830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coarctation of the aorta (CoA), presenting with local stenosis of the aorta is involved in many cardiovascular processes. However, there has been little research on the mechanism of coarctation of the aorta. METHODS Altered proteins were identified by isobaric tag for relative and absolute quantitation (iTRAQ) technology in 8 participants, and further analysed by heatmap, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) and Search Tool for the Retrieval of Interacting Gene (STRING). Of these, two vascular structure-related proteins were further validated by using enzyme-linked immunosorbent assay (ELISA) in a new cohort of CoA patients. RESULTS 39 differentially expressed plasma proteins were first identified in patients with coarctation of the aorta by iTRAQ. Of these, fibulin-1 (FBLN1) and insulin-like growth factor-binding protein complex acid labile subunit (ALS) were considered candidates and further validation also showed that the level of FBLN1 in the CoA group (8.92 ± 2.36 μg/ml) was significantly higher compared with control group (6.13 ± 1.94 μg/ml), and the level of ALS in CoA children (348.08 ± 216.74 ng/ml) was significantly lower than the level in normal children (619.46 ± 274.08 ng/ml). CONCLUSIONS The differentially expressed proteins identified in the plasma from CoA patients indicated that they may play critical roles in CoA and that they could potentially be utilized as biomarkers for diagnosis. Altered vascular related proteins were associated with COA. These results provide a foundation for further understanding and studying the aetiology and pathogenesis of coarctation of the aorta.
Collapse
Affiliation(s)
- Siyu Ma
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Junqiang Zheng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yu Zhu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xiaoqi Su
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
5
|
Steffensen LB, Conover CA, Oxvig C. PAPP-A and the IGF system in atherosclerosis: what's up, what's down? Am J Physiol Heart Circ Physiol 2019; 317:H1039-H1049. [PMID: 31518159 PMCID: PMC6879922 DOI: 10.1152/ajpheart.00395.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022]
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) is a metalloproteinase with a well-established role in releasing bioactive insulin-like growth factor-1 (IGF-1) from IGF-binding protein-2, -4, and -5 by proteolytic processing of these. The IGF system has repeatedly been suggested to be involved in the pathology of atherosclerosis, and both PAPP-A and IGF-1 are proposed biomarkers and therapeutic targets for this disease. Several experimental approaches based on atherosclerosis mouse models have been undertaken to obtain causative and mechanistic insight to the role of these molecules in atherogenesis. However, reports seem conflicting. The literature suggests that PAPP-A is detrimental, while IGF-1 is beneficial. This raises important questions that need to be addressed. Here we summarize the various studies and discuss potential underlying explanations for this seemingly inconsistency with the objective of better understanding complexities and limitations when manipulating the IGF system in mouse models of atherosclerosis. A debate clarifying what's up and what's down is highly warranted going forward with the ultimate goal of improving atherosclerosis therapy by targeting the IGF system.
Collapse
Affiliation(s)
- Lasse B Steffensen
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
| | | | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Narasimhulu CA, Selvarajan K, Burge KY, Litvinov D, Sengupta B, Parthasarathy S. Water-Soluble Components of Sesame Oil Reduce Inflammation and Atherosclerosis. J Med Food 2016; 19:629-37. [PMID: 27348418 DOI: 10.1089/jmf.2015.0154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Atherosclerosis, a major form of cardiovascular disease, is now recognized as a chronic inflammatory disease. Nonpharmacological means of treating chronic diseases have gained attention recently. We previously reported that sesame oil aqueous extract (SOAE) has anti-inflammatory properties, both in vitro and in vivo. In this study, we have investigated the antiatherosclerotic properties of SOAE, and the mechanisms, through genes and inflammatory markers, by which SOAE might modulate atherosclerosis. Low-density lipoprotein receptor (LDL-R) knockout female mice were fed with either a high-fat (HF) diet or an HF diet supplemented with SOAE. Plasma lipids and atherosclerotic lesions were quantified after 3 months of feeding. Plasma samples were used for global cytokine array. RNA was extracted from both liver tissue and the aorta, and used for gene analysis. The high-fat diet supplemented with SOAE significantly reduced atherosclerotic lesions, plasma cholesterol, and LDL cholesterol levels in LDL-R(-/-) mice. Plasma inflammatory cytokines were reduced in the SOAE diet-fed animals, but not significantly, demonstrating potential anti-inflammatory properties of SOAE. Gene analysis showed the HF diet supplemented with SOAE reduced gene expression involved in inflammation and induced genes involved in cholesterol metabolism and reverse cholesterol transport, an anti-inflammatory process. Our studies suggest that a SOAE-enriched diet could be an effective nonpharmacological treatment for atherosclerosis by controlling inflammation and regulating lipid metabolism.
Collapse
Affiliation(s)
| | - Krithika Selvarajan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Kathryn Young Burge
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Dmitry Litvinov
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Bhaswati Sengupta
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| |
Collapse
|
7
|
Córdova C, Boullosa DA, Custódio MR, Quaglia LA, Santos SN, Freitas WM, Sposito AC, Nóbrega OT. Atheroprotective Properties of Serum IGF-1 in the Carotid and Coronary Territories and Beneficial Role on the Physical Fitness of the Oldest Old. J Gerontol A Biol Sci Med Sci 2015; 71:1281-8. [DOI: 10.1093/gerona/glv216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
|
8
|
Lee DH, Kim JE, Kang YJ. Insulin Like Growth Factor Binding Protein-5 Regulates Excessive Vascular Smooth Muscle Cell Proliferation in Spontaneously Hypertensive Rats via ERK 1/2 Phosphorylation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:157-62. [PMID: 23626478 PMCID: PMC3634093 DOI: 10.4196/kjpp.2013.17.2.157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/23/2013] [Accepted: 02/04/2013] [Indexed: 11/15/2022]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are important components of insulin growth factor (IGF) signaling pathways. One of the binding proteins, IGFBP-5, enhances the actions of IGF-1, which include the enhanced proliferation of smooth muscle cells. In the present study, we examined the expression and the biological effects of IGFBP-5 in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). The levels of IGFBP-5 mRNA and protein were found to be higher in the VSMC from SHR than in those from WKY. Treatment with recombinant IGFBP-5-stimulated VSMC proliferation in WKY to the levels observed in SHR. In the VSMCs of WKY, incubation with angiotensin (Ang) II or IGF-1 dose dependently increased IGFBP-5 protein levels. Transfection with IGFBP-5 siRNA reduced VSMC proliferation in SHR to the levels exhibited in WKY. In addition, recombinant IGFBP-5 significantly up-regulated ERK1/2 phosphorylation in the VSMCs of WKY as much as those of SHR. Concurrent treatment with the MEK1/2 inhibitors, PD98059 or U0126 completely inhibited recombinant IGFBP-5-induced VSMC proliferation in WKY, while concurrent treatment with the phosphatidylinositol-3 kinase inhibitor, LY294002, had no effect. Furthermore, knockdown with IGFBP-5 siRNA inhibited ERK1/2 phosphorylation in VSMC of SHR. These results suggest that IGFBP-5 plays a role in the regulation of VSMC proliferation via ERK1/2 MAPK signaling in hypertensive rats.
Collapse
Affiliation(s)
- Dong Hyup Lee
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Yeungnam University, Daegu 705-717, Korea. ; Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Korea
| | | | | |
Collapse
|
9
|
Lin HL, Ueng KC, Wang HL, Chen TP, Yang SF, Chu SC, Hsieh YS. The impact of IGF-I gene polymorphisms on coronary artery disease susceptibility. J Clin Lab Anal 2013; 27:162-9. [PMID: 23423640 DOI: 10.1002/jcla.21581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/07/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Coronary artery disease (CAD) was the second leading cause of death for the past 3 years in Taiwan. The insulin-like growth factor (IGF) system is considered a new risk factor of CAD because investigations show that the levels and bioactivity of IGF-I and IGFBP-3 (where IGFBP is insulin-like growth factor-binding protein) may be involved in elevating the risk of CAD. This study investigated the relationships among IGF-I +1770, IGF-I +6093, and IGFBP-3 -202 genetic polymorphisms and CAD in the Taiwanese population. METHODS A total of 581 subjects, including 390 non-CAD controls and 191 patients with CAD, were recruited and the isolated DNA was subjected to real-time polymerase chain to evaluate the effects of these three polymorphic variants on CAD. RESULTS Our results showed a significant association between the IGF-I +1770 gene polymorphism and increased risk of CAD. Furthermore, CAD patients with a minimum of one mutant C allele, T/C or C/C, in IGF-I +1770 gene polymorphism had significantly high blood pressure including systolic blood pressure (SBP; P = 0.025) and diastolic blood pressure (DBP; P = 0.004), compared to CAD patients with T/T homozygotes. Moreover, CAD patients with a minimum of one mutant A allele, G/A or A/A, in the IGF-I +6093 gene polymorphism had a 1.695-fold elevated risk of congestive heart failure (CHF), compared to CAD patients with the G/G homozygote. CONCLUSIONS Polymorphism of IGF-I +1770 was associated with increased CAD risk. In CAD patients, the contributions of IGF-I +1770 and +6093 could be through the effect on blood pressure in CAD patients.
Collapse
Affiliation(s)
- Hsiu-Ling Lin
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
10
|
Mohanraj L, Kim HS, Li W, Cai Q, Kim KE, Shin HJ, Lee YJ, Lee WJ, Kim JH, Oh Y. IGFBP-3 inhibits cytokine-induced insulin resistance and early manifestations of atherosclerosis. PLoS One 2013; 8:e55084. [PMID: 23383064 PMCID: PMC3557269 DOI: 10.1371/journal.pone.0055084] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/17/2012] [Indexed: 12/26/2022] Open
Abstract
Metabolic syndrome is associated with visceral obesity, insulin resistance and an increased risk of cardiovascular diseases. Visceral fat tissue primarily consists of adipocytes that secrete cytokines leading to a state of systemic inflammation in obese conditions. One of the IGF-independent functions of IGFBP-3 is its role as an anti-inflammatory molecule. Our study in obese adolescents show a decrease in total IGFBP-3 levels and increase in proteolyzed IGFBP-3 in circulation when compared to their normal counterparts and establishes a positive correlation between IGFBP-3 proteolysis and adiposity parameters as well as insulin resistance. In human adipocytes, we show that IGFBP-3 inhibits TNF-α-induced NF-κB activity in an IGF-independent manner, thereby restoring the deregulated insulin signaling and negating TNF-α-induced inhibition of glucose uptake. IGFBP-3 further inhibits TNF-α, CRP and high glucose-induced NF-κB activity in human aortic endothelial cells (HAECs) and subsequently suppresses monocyte adhesion to HAEC through the IGFBP-3 receptor. In conclusion, these findings suggest that reduced levels of IGFBP-3 in circulation and reduced expression of IGFBP-3 in macrophages in obesity may result in suppression of its anti-inflammatory functions and therefore IGFBP-3 may present itself as a therapeutic for obesity-induced insulin resistance and for events occurring in the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ho-Seong Kim
- Department of Pediatrics, Institute of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Wei Li
- Biocure Pharma LLC, Richmond, Virginia, United States of America
| | - Qing Cai
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ki Eun Kim
- Department of Pediatrics, CHA University College of Medicine, Seoul, Korea
| | - Hye-Jung Shin
- Department of Pediatrics, National Medical Center, Seoul, Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Jung Lee
- Department of Pediatrics, Institute of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hyun Kim
- Department of Pediatrics, Institute of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Youngman Oh
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Biocure Pharma LLC, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Iso H, Maruyama K, Ikehara S, Yamagishi K, Tamakoshi A. Cellular growth factors in relation to mortality from cardiovascular disease in middle-aged Japanese: the JACC study. Atherosclerosis 2012; 224:154-60. [PMID: 22858286 DOI: 10.1016/j.atherosclerosis.2012.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/18/2012] [Accepted: 05/19/2012] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Limited evidence has been available on the relationships of cellular growth factors with cardiovascular disease in population-based samples. METHODS We conducted a nested case-control study under a large prospective cohort study (JACC study) where a total of 39,242 subjects aged 40-79 years provided serum sample. We measured cellular growth factors [insulin-like growth factors I, II and binding protein-3 (IGF-I, IGF-II and IGFBP-3) and transforming growth factor (TGF-β1)] among cases and controls, matched for sex, age, area of residence and year of serum storage. RESULTS AND CONCLUSIONS During the follow-up for 9 years, there were 233 deaths from total stroke (49 subarachnoid hemorrhages, 55 intraparenchymal hemorrhages, 71 ischemic strokes), and 97 deaths from coronary heart disease. The multivariable odds ratio (95%CI) of intraparenchymal hemorrhage associated with a 1-SD increment of IGF-I (men:4 8 ng/ml, women: 61 ng/ml) was 0.31 (0.14-0.71). That of ischemic stroke associated with a 1-SD increment of TGF-β1 (men: 8.0 ng/ml, women: 10.9 ng/ml) was 0.58 (0.34-0.98). Serum IGF-II and IGFBP-3 were not associated with mortality from any outcomes. In conclusion, IGF-I was inversely associated with mortality from intraparenchymal hemorrhage while TGF-β1 was so with ischemic stroke, suggesting potential roles of cellular proliferation in the development or prognosis of stroke.
Collapse
Affiliation(s)
- Hiroyasu Iso
- Public Health, Department of Social and Environmental Medicine, Osaka University Graduate School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
12
|
Higashi Y, Sukhanov S, Anwar A, Shai SY, Delafontaine P. Aging, atherosclerosis, and IGF-1. J Gerontol A Biol Sci Med Sci 2012; 67:626-39. [PMID: 22491965 PMCID: PMC3348497 DOI: 10.1093/gerona/gls102] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/01/2012] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, and tissue repair. Recent evidence indicates that IGF-1 reduces atherosclerosis burden and improves features of atherosclerotic plaque stability in animal models. Potential mechanisms for this atheroprotective effect include IGF-1-induced reduction in oxidative stress, cell apoptosis, proinflammatory signaling, and endothelial dysfunction. Aging is associated with increased vascular oxidative stress and vascular disease, suggesting that IGF-1 may exert salutary effects on vascular aging processes. In this review, we will provide a comprehensive update on IGF-1's ability to modulate vascular oxidative stress and to limit atherogenesis and the vascular complications of aging.
Collapse
Affiliation(s)
- Yusuke Higashi
- Tulane University Heart & Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
13
|
Kong APS, Choi KC, Wong GWK, Ko GTC, Ho CS, Chan MHM, Ozaki R, Ma RCW, Lau JTF, Chan JCN. Serum concentrations of insulin-like growth factor-I, insulin-like growth factor binding protein-3 and cardiovascular risk factors in adolescents. Ann Clin Biochem 2011; 48:263-9. [PMID: 21478207 DOI: 10.1258/acb.2011.010267] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The risk association between the insulin like growth factor-I (IGF-I) system and cardiovascular risk is inconclusive in adults and under-explored in adolescents. We aimed to investigate the associations between serum concentrations of IGF-I and IGF binding protein-3 (IGFBP-3) and cardiovascular risk factors in adolescents. METHODS This was a cross-sectional, population-based, observational study in a school setting with 2102 Hong Kong Chinese adolescents aged 12-19 years. Serum IGF-I and IGFBP-3 concentrations were measured by chemiluminescence immunoassays. Anthropometric indices and traditional cardiovascular risk factors were assessed. RESULTS After excluding participants with abnormal thyroid and liver test results, 765 boys and 877 girls, mean (±SD) age of 15.3 (±2.0) and 15.7 (±2.0) years, respectively, were included in the analysis. Multivariable regression analyses revealed that both IGF-I and IGFBP-3 concentrations were independently associated with waist circumference, fasting insulin and haemoglobin concentrations in boys (all P < 0.05), systolic blood pressure, serum creatinine, fasting insulin and haemoglobin concentrations in girls (all P < 0.05). In girls, IGF-I was also associated with C-reactive protein concentration (P < 0.001) and IGFBP-3 was associated with fasting triglyceride concentration (P < 0.001). Compared with adolescents with the lowest tertile, the top tertile of both IGF-I and IGFBP-3 concentrations were associated with increased odds of having overweight/obesity, top tertiles of insulin and haemoglobin in both boys and girls (P for trend, all <0.05). CONCLUSIONS The associations between serum IGF-I, IGFBP-3, obesity, cardiovascular risk factors, insulin and haemoglobin suggest that dysregulation of the IGF system may play a linking role for the clustering of cardiovascular risk factors.
Collapse
Affiliation(s)
- Alice P S Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Higashi Y, Sukhanov S, Anwar A, Shai SY, Delafontaine P. IGF-1, oxidative stress and atheroprotection. Trends Endocrinol Metab 2010; 21:245-54. [PMID: 20071192 PMCID: PMC2848911 DOI: 10.1016/j.tem.2009.12.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 01/30/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a crucial role not only in initial lesion formation but also in lesion progression and destabilization. Although most growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that insulin-like growth factor (IGF)-1 exerts both pleiotropic anti-oxidant effects and anti-inflammatory effects, which together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in models of vascular injury and atherosclerosis, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1.
Collapse
Affiliation(s)
- Yusuke Higashi
- Tulane University School of Medicine, 1430 Tulane Avenue, SL 48, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
15
|
Litvinov D, Selvarajan K, Garelnabi M, Brophy L, Parthasarathy S. Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice. Atherosclerosis 2009; 209:449-54. [PMID: 19880116 DOI: 10.1016/j.atherosclerosis.2009.09.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/15/2009] [Accepted: 09/29/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr(-/-)) mice. METHODS AND RESULTS LDLr(-/-) mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After 4 months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (p<0.001) less as compared to WD group. The athero-protective effect of AzA was not related to changes in plasma lipid content. AzA supplementation decreased the level of CD68 macrophage marker by 34% (p<0.05). CONCLUSIONS The finding that AzA exhibits an anti-atherogenic effect suggests that oxidation of lipid peroxidation-derived aldehydes into carboxylic acids could be an important step in the body's defense against oxidative damage.
Collapse
Affiliation(s)
- Dmitry Litvinov
- Division of Cardiothoracic Surgery, Ohio State University Medical Center, Columbus, OH 43210-1292, USA
| | | | | | | | | |
Collapse
|
16
|
Brevetti G, Colao A, Schiano V, Pivonello R, Laurenzano E, Di Somma C, Lombardi G, Chiariello M. IGF system and peripheral arterial disease: relationship with disease severity and inflammatory status of the affected limb. Clin Endocrinol (Oxf) 2008; 69:894-900. [PMID: 18410545 DOI: 10.1111/j.1365-2265.2008.03269.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES IGF-1 and its binding proteins are involved in the pathogenesis of atherosclerosis. We designed this study to unravel the relationship of the IGF system with peripheral arterial disease (PAD). DESIGN Case-control, cross-sectional study. MEASUREMENTS Serum levels of IGF-1, IGFBP-3 and acid labile subunit (ALS) were measured in 96 PAD patients and 89 controls. In 28 patients who underwent peripheral angiography, C-reactive protein (CRP), IGF-1, IGFBP-3 and ALS were measured in blood from femoral vein of the affected limb and aorta. RESULTS Compared to controls, PAD patients showed lower levels of IGFBP-3 (3569 +/- 115 vs. 3106 +/- 107 microg/l, P < 0.01), and ALS (12.2 +/- 0.5 vs. 8.3 +/- 0.5 mg/l, P < 0.01). In PAD, concentrations of IGFBP-3 and ALS were significantly lower in patients with ankle/brachial index less than median than in those with a less severe PAD. In the affected limb, CRP venous-arterial difference correlated negatively with that of IGF-1 (rho = -0.57, P < 0.01), and positively with that of IGFBP-3 (rho = 0.63, P < 0.01). At multivariate analysis, a high transfemoral gradient of CRP was independently associated with a low transfemoral gradient of IGF-1 (beta coefficient = -0.48, P < 0.01), and a high transfemoral gradient of IGFBP-3 (beta coefficient = 0.22, P < 0.05). CONCLUSIONS This study is the first to demonstrate that the systemic levels of IGF axis components are associated with the presence and severity of PAD, and that the inflammatory status of the ischaemic limb affects the transfemoral concentrations of IGF-1 and IGFBP-3. Due to the importance of IGF axis in modulating atherosclerotic plaque progression, our data may contribute to a better understanding of PAD pathophysiology.
Collapse
Affiliation(s)
- Gregorio Brevetti
- Department of Clinical Medicine and Cardiovascular and Immunological Sciences, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Boquist S, Ruotolo G, Skoglund-Andersson C, Tang R, Björkegren J, Bond MG, de Faire U, Brismar K, Hamsten A. Correlation of serum IGF-I and IGFBP-1 and -3 to cardiovascular risk indicators and early carotid atherosclerosis in healthy middle-aged men. Clin Endocrinol (Oxf) 2008; 68:51-8. [PMID: 17803702 DOI: 10.1111/j.1365-2265.2007.02998.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES IGF-I, IGFBP-1 and IGFBP-3 are putative mediators in cardiovascular disease. The present study examined (i) the correlations of circulating IGF-I, IGFBP-1 and IGFBP-3 to established cardiovascular risk factors and signs of early atherosclerosis as reflected by ultrasound measurement of common carotid intima-media thickness (IMT), and (ii) whether serum concentrations of these analytes are modulated during alimentary lipaemia. DESIGN Cross-sectional clinical study. PATIENTS A biobank and clinical database based on 96 healthy Caucasian men, aged 50 years, with an apolipoprotein (apo) E3/E3 genotype, who had originally undergone investigations of postprandial lipoprotein metabolism was used for the study. MEASUREMENTS Total IGF-I, IGFBP-1 and IGFBP-3 were determined in serum by radioimmunoassay (RIA). Free IGF-I was measured by a commercial two-site immunoradiometric assay (IRMA). RESULTS In multivariate analyses, fasting serum free IGF-I correlated inversely with IMT and accounted for 5% of the variation in multiple R(2). When fasting serum IGFBP-1 was entered in the models instead of IGF-I, IGFBP-1 correlated positively with IMT and accounted for 6% of the variation in IMT. IGFBP-3 and total IGF-I were unrelated to IMT. There were no associations between free IGF-I and cardiovascular risk factors, whereas IGFBP-1 behaved like a component of the insulin resistance syndrome. Serum free IGF-I increased and IGFBP-1 decreased postprandially. CONCLUSION The data indicate that serum free IGF-I and IGFBP-1 are implicated in early atherosclerosis.
Collapse
Affiliation(s)
- S Boquist
- Atherosclerosis Research Unit, King Gustaf V Research Institute, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim KS, Seu YB, Baek SH, Kim MJ, Kim KJ, Kim JH, Kim JR. Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell 2007; 18:4543-52. [PMID: 17804819 PMCID: PMC2043568 DOI: 10.1091/mbc.e07-03-0280] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway plays a crucial role in the regulation of cell growth, differentiation, apoptosis, and aging. IGF-binding proteins (IGFBPs) are important members of the IGF axis. IGFBP-5 is up-regulated during cellular senescence in human dermal fibroblasts and endothelial cells, but the function of IGFBP-5 in cellular senescence is unknown. Here we show that IGFBP-5 plays important roles in the regulation of cellular senescence. Knockdown of IGFBP-5 in old human umbilical endothelial cells (HUVECs) with IGFBP-5 micro-RNA lentivirus caused partial reduction of a variety of senescent phenotypes, such as changes in cell morphology, increases in cell proliferation, and decreases in senescence-associated beta-galactosidase (SA-beta-gal) staining. In addition, treatment with IGFBP-5 protein or up-regulation of IGFBP-5 in young cells accelerates cellular senescence, as confirmed by cell proliferation and SA-beta-gal staining. Premature senescence induced by IGFBP-5 up-regulation in young cells was rescued by knockdown of p53, but not by knockdown of p16. Furthermore, atherosclerotic arteries exhibited strong IGFBP-5-positive staining along intimal plaques. These results suggest that IGFBP-5 plays a role in the regulation of cellular senescence via a p53-dependent pathway and in aging-associated vascular diseases.
Collapse
Affiliation(s)
- Kwang Seok Kim
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
- Department of Microbiology, College of Natural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Young Bae Seu
- Department of Microbiology, College of Natural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Suk-Hwan Baek
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
| | - Mi Jin Kim
- Aging-associated Vascular Disease Research Center, and
- Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea; and
| | - Keuk Jun Kim
- Aging-associated Vascular Disease Research Center, and
- Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea; and
| | - Jung Hye Kim
- *Department of Biochemistry and Molecular Biology
| | - Jae-Ryong Kim
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
| |
Collapse
|
19
|
Kaplan RC, McGinn AP, Pollak MN, Kuller LH, Strickler HD, Rohan TE, Cappola AR, Xue X, Psaty BM. Association of total insulin-like growth factor-I, insulin-like growth factor binding protein-1 (IGFBP-1), and IGFBP-3 levels with incident coronary events and ischemic stroke. J Clin Endocrinol Metab 2007; 92:1319-25. [PMID: 17264182 DOI: 10.1210/jc.2006-1631] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Prior observational studies have demonstrated that the GH/IGF axis is associated with cardiovascular disease. However, this association has not been extensively studied among older adults. OBJECTIVE The objective of this study was to assess the association between levels of total IGF-I and IGF binding proteins (IGFBP-1, IGFBP-3) and risk of incident coronary events and ischemic stroke. DESIGN AND PARTICIPANTS A case-cohort analysis was conducted among adults 65 yr and older in the Cardiovascular Health Study. MAIN OUTCOME MEASURES A total of 534 coronary events [316 nonfatal myocardial infarctions (MIs), 48 fatal MIs, and 170 fatal coronary heart disease events] and 370 ischemic strokes were identified on follow-up. Comparison subjects were 1122 randomly selected participants from the Cardiovascular Health Study. RESULTS Mean follow-up time was 6.7 yr for coronary events, 5.6 yr for strokes, and 9.3 yr for comparison subjects. Hazard ratios (95% confidence intervals) associated with baseline levels of total IGF-I and IGFBPs were estimated using multivariate adjusted Cox proportional hazards models. Neither IGF-I nor IGFBP-1 levels predicted risk of incident coronary events or stroke. IGFBP-3 had an inverse association with risk of coronary events [adjusted hazard ratio per sd=0.88 (0.78-1.00), P=0.05] but was not associated with stroke. Exploratory analyses suggested that low IGF-I and low IGFBP-3 levels were significantly associated with higher risk of nonfatal MI (P<0.05) but not with risk of fatal MI or fatal coronary heart disease. CONCLUSION Circulating levels of total IGF-I or IGFBP-1 were not associated with risk of total coronary events or ischemic stroke among older adults, whereas low IGFBP-3 level was associated with increased risk of incident coronary events.
Collapse
Affiliation(s)
- Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York 10461, USA, and Department of Medicine, Lady Davis Research Institute of Jewish General Hospital, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wallander M, Brismar K, Ohrvik J, Rydén L, Norhammar A. Insulin-like growth factor I: a predictor of long-term glucose abnormalities in patients with acute myocardial infarction. Diabetologia 2006; 49:2247-55. [PMID: 16955207 DOI: 10.1007/s00125-006-0386-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS Low levels of IGF-I are associated with increased risk of cardiovascular disease and type 2 diabetes. The aim of this study was to investigate the IGF-I system in patients with acute myocardial infarction (AMI) without previously known diabetes. MATERIALS AND METHODS One hundred and sixty-eight AMI patients were classified before hospital discharge by means of an OGTT as having NGT, IGT or newly detected type 2 diabetes. Age- and sex-matched subjects from the background population (n=185) served as the control group. The associations between fasting levels of IGF-I and IGF binding proteins 1 and 3 (IGFBP-1, IGFBP-3) and glucose metabolism during a follow-up period of 12 months were studied. RESULTS At hospital discharge, age-adjusted IGF-I (IGF-I SD) was significantly lower in patients with abnormal glucose tolerance (AGT=IGT or type 2 diabetes) compared with patients with NGT (p=0.014) and control subjects (p<0.001). IGF-I was strongly correlated with IGFBP-3 (r=0.730, p<0.001), which was significantly lower in patients with AGT compared with patients with NGT (p=0.009) and control subjects (p<0.001). Fasting levels of IGFBP-1 did not differ significantly between patients with NGT and AGT or between patients and control subjects. In a multiple logistic regression analysis in patients, IGF-I at hospital discharge was a significant predictor of AGT at discharge and after 12 months (adjusted odds ratio 0.29, p=0.022, and adjusted odds ratio 0.29, p=0.034, respectively). CONCLUSIONS/INTERPRETATION Low levels of IGF-I may be a useful predictor of abnormal glucose metabolism in patients with AMI.
Collapse
Affiliation(s)
- M Wallander
- Cardiology Unit N5:00, Department of Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
21
|
Jones RD, Nettleship JE, Kapoor D, Jones HT, Channer KS. Testosterone and atherosclerosis in aging men: purported association and clinical implications. Am J Cardiovasc Drugs 2006; 5:141-54. [PMID: 15901202 DOI: 10.2165/00129784-200505030-00001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Two of the strongest independent risk factors for coronary heart disease (CHD) are increasing age and male sex. Despite a wide variance in CHD mortality between countries, men are consistently twice as likely to die from CHD than their female counterparts. This sex difference has been attributed to a protective effect of female sex hormones, and a deleterious effect of male sex hormones, upon the cardiovascular system. However, little evidence suggests that testosterone exerts cardiovascular harm. In fact, serum levels of testosterone decline with age, and low testosterone is positively associated with other cardiovascular risk factors. Furthermore, testosterone exhibits a number of potential cardioprotective actions. For example, testosterone treatment is reported to reduce serum levels of the pro-inflammatory cytokines interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha, and to increase levels of the anti-inflammatory cytokine IL-10; to reduce vascular cell adhesion molecule (VCAM)-1 expression in aortic endothelial cells; to promote vascular smooth muscle and endothelial cell proliferation; to induce vasodilatation and to improve vascular reactivity, to reduce serum levels of the pro-thrombotic factors plasminogen activator inhibitor (PAI)-1 and fibrinogen; to reduce low-density lipoprotein-cholesterol (LDL-C); to improve insulin sensitivity; and to reduce body mass index and visceral fat mass. These actions of testosterone may confer cardiovascular benefit since testosterone therapy reduces atheroma formation in cholesterol-fed animal models, and reduces myocardial ischemia in men with CHD. Consequently, an alternative hypothesis is that an age-related decline in testosterone contributes to the atherosclerotic process. This is supported by recent findings, which suggest that as many as one in four men with CHD have serum levels of testosterone within the clinically hypogonadal range. Consequently, restoration of serum levels of testosterone via testosterone replacement therapy could offer cardiovascular, as well as other, clinical advantages to these individuals.
Collapse
Affiliation(s)
- Richard D Jones
- Academic Unit of Endocrinology, Division of Genomic Medicine, Hormone & Vascular Biology Group, The University of Sheffield, Sheffield, UK.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Insulin-like growth factor-1 (IGF-I), the primary mediator of growth hormone (GH) effects, is an important regulator of cell growth, differentiation, and apoptosis. GH and IGF-I deficiency is known to be associated with premature atherosclerosis and elevated cardiovascular disease mortality. Recent evidence suggests that cardiovascular disease risk may also be elevated among apparently healthy individuals who have serum IGF-I levels in the low-normal range. In this review, we appraise the epidemiologic and clinical studies implicating low IGF-I level as a risk factor for incident myocardial infarction and other manifestations of coronary heart disease. Potential mechanisms that may underlie this association include beneficial effects of IGF-I on myocyte survival after ischemia, stability of atherosclerotic lesions, and endothelial function. We conclude that additional confirmatory data from prospective studies are needed to confirm low IGF-I level as an independent cardiovascular risk factor. However, if this finding is confirmed, this would support the rationale for intervention trials aimed at reducing cardiovascular disease morbidity and mortality among older adults by targeting the GH/IGF-I pathway.
Collapse
Affiliation(s)
- Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
23
|
Fischer F, Schulte H, Mohan S, Tataru MC, Köhler E, Assmann G, von Eckardstein A. Associations of insulin-like growth factors, insulin-like growth factor binding proteins and acid-labile subunit with coronary heart disease. Clin Endocrinol (Oxf) 2004; 61:595-602. [PMID: 15521962 DOI: 10.1111/j.1365-2265.2004.02136.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE IGFs and their binding proteins (IGFBPs) are produced both systemically and locally by cells of the cardiovascular system. As growth promoters, they may play a role in atherosclerosis. DESIGN Case-control, cross-sectional. PATIENTS A total of 95 nondiabetic male patients with coronary heart disease (CHD) and 92 probands from the Prospective Cardiovascular Munster (PROCAM) who were below the age of 60 years and matched by age, body mass index (BMI) and smoking habits. MEASUREMENTS We analysed the strength and independence of associations of angiographically assessed presence of CHD with BMI, systolic and diastolic blood pressure, total, high-density lipoprotein (HDL) and LDL cholesterol, triglycerides, lipoprotein(a), apolipoproteins A-I and B, total and free IGF-I, IGF-II, IGFBP-1, IGFBP-3, IGFBP-5, acid-labile subunit (ALS), insulin, C-peptide, testosterone, DHEAS and sex hormone binding globulin. RESULTS Using multivariate statistical analysis, the presence of CHD had significant positive associations with total IGF-I, IGFBP-5, ALS and IGFBP-3. These associations were independent of each other as well as of traditional risk factors, insulin and sex hormones. CONCLUSION These observations may indicate a pathogenetic role of the GH/IGF axis in coronary atherosclerosis.
Collapse
Affiliation(s)
- Frank Fischer
- Institut für Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Anders Juul
- Department of Growth and Reproduction, University of Copenhagen, Blegdamsvej 9 Rigshopitalet, Section 5064, Copenhagen 2100, Denmark.
| |
Collapse
|
25
|
Abstract
A significant and independent association between endogenous testosterone (T) levels and coronary events in men and women has not been confirmed in large prospective studies, although cross-sectional data have suggested coronary heart disease can be associated with low T in men. Hypoandrogenemia in men and hyperandrogenemia in women are associated with visceral obesity; insulin resistance; low high-density lipoprotein (HDL) cholesterol (HDL-C); and elevated triglycerides, low-density lipoprotein cholesterol, and plasminogen activator type 1. These gender differences and confounders render the precise role of endogenous T in atherosclerosis unclear. Observational studies do not support the hypothesis that dehydroepiandrosterone sulfate deficiency is a risk factor for coronary artery disease. The effects of exogenous T on cardiovascular mortality or morbidity have not been extensively investigated in prospective controlled studies; preliminary data suggest there may be short-term improvements in electrocardiographic changes in men with coronary artery disease. In the majority of animal experiments, exogenous T exerts either neutral or beneficial effects on the development of atherosclerosis. Exogenous androgens induce both apparently beneficial and deleterious effects on cardiovascular risk factors by decreasing serum levels of HDL-C, plasminogen activator type 1 (apparently deleterious), lipoprotein (a), fibrinogen, insulin, leptin, and visceral fat mass (apparently beneficial) in men as well as women. However, androgen-induced declines in circulating HDL-C should not automatically be assumed to be proatherogenic, because these declines may instead reflect accelerated reverse cholesterol transport. Supraphysiological concentrations of T stimulate vasorelaxation; but at physiological concentrations, beneficial, neutral, and detrimental effects on vascular reactivity have been observed. T exerts proatherogenic effects on macrophage function by facilitating the uptake of modified lipoproteins and an antiatherogenic effect by stimulating efflux of cellular cholesterol to HDL. In conclusion, the inconsistent data, which can only be partly explained by differences in dose and source of androgens, militate against a meaningful assessment of the net effect of T on atherosclerosis. Based on current evidence, the therapeutic use of T in men need not be restricted by concerns regarding cardiovascular side effects. Available data also do not justify the uncontrolled use of T or dehydroepiandrosterone for the prevention or treatment of coronary heart disease.
Collapse
Affiliation(s)
- Fredrick C W Wu
- Department of Endocrinology, Manchester Royal Infirmary, University of Manchester, Manchester M13 9WL, United Kingdom.
| | | |
Collapse
|
26
|
von Eckardstein A, Fischer F, Schulte H, Tataru M, Köhler E, Assmann G. Association of serum apolipoprotein A-I (but not high-density lipoprotein cholesterol) with healed myocardial infarction in men independent of serum insulin and C-peptide. Am J Cardiol 2001; 88:723-6. [PMID: 11589836 DOI: 10.1016/s0002-9149(01)01840-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Low serum levels of high-density lipoprotein (HDL) cholesterol or apolipoprotein A-I and high serum levels of insulin increase the risk of coronary heart disease (CHD) and can indicate insulin resistance. We tested the strength, independence, and interactions of associations between HDL cholesterol (or apolipoprotein A-I), insulin (or C-peptide), glucose, and CHD in 95 male nondiabetic patients with CHD who were <60 years old, in 92 probands from the PROCAM study, and in 61 non-cardiologic patients; all subjects were matched by age, body mass index, and smoking habits. Systemic hypertension (odds radio [OR] 2.8, 95% confidence intervals [CI] 1.6 to 4.8), high serum levels of glucose (OR 2.3, 95% CI 1.6 to 4.8), insulin (OR 2.1, 95% CI 1.3 to 3.6), and C-peptide (OR 4.1, 95% CI 2.2 to 7.5) as well as low serum levels of HDL cholesterol (OR 2.0, 95% CI 1.1 to 3.5) or apolipoprotein A-I (OR 3.9, 95% CI 2.1 to 7.1) had significant associations with CHD. At multivariate analysis, systolic blood pressure, glucose, apolipoprotein A-I, and C-peptide, but not HDL cholesterol and insulin, had consistent independent associations with CHD. Thus, the combined measurement of apolipoprotein A-I and C-peptide may improve the identification of nondiabetic patients at increased risk for CHD.
Collapse
Affiliation(s)
- A von Eckardstein
- Institut für Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | | | | | | | | | | |
Collapse
|