1
|
Li J, Lu Z, Xu L, Wang J, Qian S, Hu Q, Ge Y. Poly(ethylenimine)-Cyclodextrin-Based Cationic Polymer Mediated HIF-1α Gene Delivery for Hindlimb Ischemia Treatment. ACS APPLIED BIO MATERIALS 2024; 7:1081-1094. [PMID: 38294873 DOI: 10.1021/acsabm.3c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Hindlimb ischemia is a common disease worldwide featured by the sudden decrease in limb perfusion, which usually causes a potential threat to limb viability and even amputation or death. Revascularization has been defined as the gold-standard therapy for hindlimb ischemia. Considering that vascular injury recovery requires cellular adaptation to the hypoxia, hypoxia-inducible factor 1 α (HIF-1α) is a potential gene for tissue restoration and angiogenesis. In this manuscript, effective gene delivery vector PEI-β-CD (PC) was reported for the first application in the hindlimb ischemia treatment to deliver HIF-1α plasmid in vitro and in vivo. Our in vitro finding demonstrated that PC/HIF-1α-pDNA could be successfully entered into the cells and mediated efficient gene transfection with good biocompatibility. More importantly, under hypoxic conditions, PC/HIF-1α-pDNA could up-regulate the HUEVC cell viability. In addition, the mRNA levels of VEGF, Ang-1, and PDGF were upregulated, and transcriptome results also demonstrated that the cell-related function of response to hypoxia was enhanced. The therapeutic effect of PC/HIF-1α-pDNA was further estimated in a murine acute hindlimb ischemia model, which demonstrated that intramuscular injection of PC/HIF-1α-pDNA resulted in significantly increased blood perfusion and alleviation in tissue damage, such as tissue fibrosis and inflammation. The results provide a rationale that HIF-1α-mediated gene therapy might be a practical strategy for the treatment of limb ischemia.
Collapse
Affiliation(s)
- Jingyu Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuoting Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Wang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| | - Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yunfen Ge
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| |
Collapse
|
2
|
Takematsu E, Massidda M, Howe G, Goldman J, Felli P, Mei L, Callahan G, Sligar AD, Smalling R, Baker AB. Transmembrane stem factor nanodiscs enhanced revascularization in a hind limb ischemia model in diabetic, hyperlipidemic rabbits. Sci Rep 2024; 14:2352. [PMID: 38287067 PMCID: PMC10825164 DOI: 10.1038/s41598-024-52888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.
Collapse
Affiliation(s)
- Eri Takematsu
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
- School of Medicine, Surgery, Stanford University, Stanford, CA, USA
| | - Miles Massidda
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Gretchen Howe
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Julia Goldman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston, Houston, TX, USA
| | - Patricia Felli
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston, Houston, TX, USA
| | - Lei Mei
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Gregory Callahan
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Andrew D Sligar
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Richard Smalling
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Memorial Hermann Heart and Vascular Institute, Houston, TX, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Takematsu E, Massidda M, Howe G, Goldman J, Felli P, Mei L, Callahan G, Sligar A, Smalling R, Baker A. Transmembrane Stem Factor Nanodiscs Enhanced Revascularization in a Hind Limb Ischemia Model in Diabetic, Hyperlipidemic Rabbits. RESEARCH SQUARE 2023:rs.3.rs-2997323. [PMID: 37398327 PMCID: PMC10312936 DOI: 10.21203/rs.3.rs-2997323/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.
Collapse
Affiliation(s)
| | | | - Gretchen Howe
- The University of Texas Health Science Center at Houston
| | - Julia Goldman
- The University of Texas Health Science Center at Houston
| | - Patricia Felli
- The University of Texas Health Science Center at Houston
| | - Lei Mei
- The University of Texas at Austin
| | | | | | | | | |
Collapse
|
4
|
Sligar AD, Howe G, Goldman J, Felli P, Gómez-Hernández A, Takematsu E, Veith A, Desai S, Riley WJ, Singeetham R, Mei L, Callahan G, Ashirov D, Smalling R, Baker AB. Syndecan-4 Proteoliposomes Enhance Revascularization in a Rabbit Hind Limb Ischemia Model of Peripheral Ischemia. Acta Biomater 2023:S1742-7061(23)00331-8. [PMID: 37321528 DOI: 10.1016/j.actbio.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Regenerative therapeutics for treating peripheral arterial disease are an appealing strategy for creating more durable solutions for limb ischemia. In this work, we performed preclinical testing of an injectable formulation of syndecan-4 proteoliposomes combined with growth factors as treatment for peripheral ischemia delivered in an alginate hydrogel. We tested this therapy in an advanced model of hindlimb ischemia in rabbits with diabetes and hyperlipidemia. Our studies demonstrate enhancement in vascularity and new blood vessel growth with treatment with syndecan-4 proteoliposomes in combination with FGF-2 or FGF-2/PDGF-BB. The effects of the treatments were particularly effective in enhancing vascularity in the lower limb with a 2-4 increase in blood vessels in the treatment group in comparison to the control group. In addition, we demonstrate that the syndecan-4 proteoliposomes have stability for at least 28 days when stored at 4°C to allow transport and use in the hospital environment. In addition, we performed toxicity studies in the mice and found no toxic effects even when injected at high concentration. Overall, our studies support that syndecan-4 proteoliposomes markedly enhance the therapeutic potential of growth factors in the context of disease and may be promising therapeutics for inducing vascular regeneration in peripheral ischemia. STATEMENT OF SIGNIFICANCE: Peripheral ischemia is a common condition in which there is a lack of blood flow to the lower limbs. This condition can lead to pain while walking and, in severe cases, critical limb ischemia and limb loss. In this study, we demonstrate the safety and efficacy of a novel injectable therapy for enhancing revascularization in peripheral ischemia using an advanced large animal model of peripheral vascular disease using rabbits with hyperlipidemia and diabetes.
Collapse
Affiliation(s)
- Andrew D Sligar
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Gretchen Howe
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX
| | - Julia Goldman
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston
| | - Patricia Felli
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Austin Veith
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Shubh Desai
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - William J Riley
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Rohan Singeetham
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Lei Mei
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Gregory Callahan
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - David Ashirov
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Richard Smalling
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX; Memorial Hermann Heart and Vascular Institute, Houston, TX
| | - Aaron B Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX.
| |
Collapse
|
5
|
Takematsu E, Massidda M, Howe G, Goldman J, Felli P, Mei L, Callahan G, Sligar AD, Smalling R, Baker AB. Transmembrane Stem Factor Nanodiscs Enhanced Revascularization in a Hind Limb Ischemia Model in Diabetic, Hyperlipidemic Rabbits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533550. [PMID: 36993249 PMCID: PMC10055194 DOI: 10.1101/2023.03.20.533550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.
Collapse
|
6
|
Feehan J, Hariharan R, Buckenham T, Handley C, Bhatnagar A, Baba SP, de Courten B. Carnosine as a potential therapeutic for the management of peripheral vascular disease. Nutr Metab Cardiovasc Dis 2022; 32:2289-2296. [PMID: 35973888 DOI: 10.1016/j.numecd.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
AIMS To evaluate the potential role of carnosine in the management of peripheral vascular disease. DATA SYNTHESIS Peripheral vascular disease is growing in its burden and impact; however it is currently under researched, and there are a lack of strong, non-invasive therapeutic options for the clinicians. Carnosine is a dipeptide stored particularly in muscle and brain tissue, which exhibits a wide range of physiological activities, which may be beneficial as an adjunct treatment for peripheral vascular disease. Carnosine's strong anti-inflammatory, antioxidant and antiglycating actions may aid in the prevention of plaque formation, through protective actions on the vascular endothelium, and the inhibition of foam cells. Carnosine may also improve angiogenesis, exercise performance and vasodilatory response, while protecting from ischemic tissue injury. CONCLUSIONS Carnosine may have a role as an adjunct treatment for peripheral vascular disease alongside typical exercise and surgical interventions, and may be used in high risk individuals to aid in the prevention of atherogenesis. CLINICAL RECOMMENDATION This review identifies a beneficial role for carnosine supplementation in the management of patients with peripheral vascular disease, in conjunction with exercise and revascularization. Carnosine as a supplement is safe, and associated with a host of beneficial effects in peripheral vascular disease and its key risk factors.
Collapse
Affiliation(s)
- Jack Feehan
- Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Rohit Hariharan
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia
| | - Timothy Buckenham
- Christchurch Clinical School of Medicine University of Otago and Christchurch Hospital, Christchurch, New Zealand
| | - Charles Handley
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Christina Lee Brown Environment Institute, University of Louisville, Louisville, KY, USA
| | - Shahid Pervez Baba
- Diabetes and Obesity Center, Christina Lee Brown Environment Institute, University of Louisville, Louisville, KY, USA
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia; School of Health and Biomedical Sciences, RMIT, Bundoora.
| |
Collapse
|
7
|
Han J, Luo L, Marcelina O, Kasim V, Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics 2022; 12:5015-5033. [PMID: 35836800 PMCID: PMC9274744 DOI: 10.7150/thno.74785] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Peripheral artery disease (PAD) poses a great challenge to society, with a growing prevalence in the upcoming years. Patients in the severe stages of PAD are prone to amputation and death, leading to poor quality of life and a great socioeconomic burden. Furthermore, PAD is one of the major complications of diabetic patients, who have higher risk to develop critical limb ischemia, the most severe manifestation of PAD, and thus have a poor prognosis. Hence, there is an urgent need to develop an effective therapeutic strategy to treat this disease. Therapeutic angiogenesis has raised concerns for more than two decades as a potential strategy for treating PAD, especially in patients without option for surgery-based therapies. Since the discovery of gene-based therapy for therapeutic angiogenesis, several approaches have been developed, including cell-, protein-, and small molecule drug-based therapeutic strategies, some of which have progressed into the clinical trial phase. Despite its promising potential, efforts are still needed to improve the efficacy of this strategy, reduce its cost, and promote its worldwide application. In this review, we highlight the current progress of therapeutic angiogenesis and the issues that need to be overcome prior to its clinical application.
Collapse
Affiliation(s)
- Jingxuan Han
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Lailiu Luo
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Olivia Marcelina
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| |
Collapse
|
8
|
You X, Guo B, Wang Z, Ma H, Zhang X. Label-free quantitative proteomic analysis of serum exosomes from patients of renal anemia: The Good and the Bad of Roxadustat. Clin Proteomics 2022; 19:21. [PMID: 35690731 PMCID: PMC9187900 DOI: 10.1186/s12014-022-09358-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Roxadustat is a new oral anti-renal anemia medication that works by stabilizing hypoxia-inducible factor (HIF) which can activate the expression of more than 100 genes in addition to genes related to anemia. However, the more potential molecular targets of roxadustat are not completely clear. Therefore, it is essential to further reveal its molecular targets to guide its clinical applications. METHODS We performed label-free quantification and LC-MS/MS to study the proteomic alterations in serum exosome of renal anemia patients before and after roxadustat therapy. Results were validated by PRM. RESULTS A total of 30 proteins were significantly changed after treatment with roxadustat. Among these proteins, 18 proteins were up-regulated (and 12 were down-regulated). The results are statistically significant (P < 0.05). Then, we validated the result by PRM, the results confirmed that TFRC, HSPA8, ITGB3, COL1A2, and YWHAZ were markedly upregulated, while ITIH2 and CFH were significantly downregulated upon treatment with roxadustat. CONCLUSIONS TFRC and HSPA8 could be an important target of the action of roxadustat, and roxadustat may increase cardiovascular risk through its influence on platelet activation. Our results provide a theoretical basis for its wider clinical application and preventing expected side effects.
Collapse
Affiliation(s)
- Xiaoe You
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Baochun Guo
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China.,Department of Nephrology, Shenzhen Peoples Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.,Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Zhen Wang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China.,Department of Nephrology, Shenzhen Peoples Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.,Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Hualin Ma
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China.,Department of Nephrology, Shenzhen Peoples Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.,Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xinzhou Zhang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China. .,Department of Nephrology, Shenzhen Peoples Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China. .,Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
9
|
Tarantul VZ, Gavrilenko AV. Gene therapy for critical limb ischemia: Per aspera ad astra. Curr Gene Ther 2021; 22:214-227. [PMID: 34254916 DOI: 10.2174/1566523221666210712185742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
Peripheral artery diseases remain a serious public health problem. Although there are many traditional methods for their treatment using conservative therapeutic techniques and surgery, gene therapy is an alternative and potentially more effective treatment option especially for "no option" patients. This review treats the results of many years of research and application of gene therapy as an example of treatment of patients with critical limb ischemia. Data on successful and unsuccessful attempts to use this technology for treating this disease are presented. Trends in changing the paradigm of approaches to therapeutic angiogenesis are noted: from viral vectors to non-viral vectors, from gene transfer to the whole organism to targeted transfer to cells and tissues, from single gene use to combination of genes; from DNA therapy to RNA therapy, from in vivo therapy to ex vivo therapy.
Collapse
Affiliation(s)
- Vyacheslav Z Tarantul
- National Research Center "Kurchatov Institute", Institute of Molecular Genetics, Moscow 123182, Russian Federation
| | - Alexander V Gavrilenko
- A.V.¬ Petrovsky Russian Scientific Center for Surgery, Moscow 119991, Russian Federation
| |
Collapse
|
10
|
Long G, Chen H, Wu M, Li Y, Gao L, Huang S, Zhang Y, Jia Z, Xia W. Antianemia Drug Roxadustat (FG-4592) Protects Against Doxorubicin-Induced Cardiotoxicity by Targeting Antiapoptotic and Antioxidative Pathways. Front Pharmacol 2020; 11:1191. [PMID: 32848792 PMCID: PMC7419679 DOI: 10.3389/fphar.2020.01191] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin (DOX) is broadly used in treating various malignant tumors. However, its cardiotoxicity limits its clinical use. Roxadustat (FG-4592) is a new hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor and has been approved for treating anemia in chronic kidney diseases (CKD) patients. However, the role of FG-4592 in DOX-induced cardiotoxicity remains unknown. In this study, mouse cardiac function was evaluated by echocardiography, plasma LDH/CK-MB, and heart HE staining. Cell viability, apoptosis, oxidative stress, inflammation, and HIF-target genes were evaluated in mouse cardiac tissue and cardiac cells exposed to DOX with FG-4592 pretreatment. DOX-sensitive HepG2 and MCF-7 cell lines were used to evaluate FG-4592 effect on the anticancer activity of DOX. We found that FG-4592 alleviated DOX-induced cardiotoxicity shown by the protection against cardiac dysfunction, cardiac apoptosis, and oxidative stress without the effect on inflammatory response. FG-4592 alone did not change the cardiac function, cardiomyocyte morphology, oxidative stress, and inflammation in vivo. FG-4592 could protect cardiomyocytes against DOX-induced apoptosis and ROS production in line with the upregulation of HIF-1α and its target genes of Bcl-2 and SOD2. Importantly, FG-4592 displayed anticancer property in cancer cells treated with or without DOX. These findings highlighted the protective effect of FG-4592 on DOX-induced cardiotoxicity possibly through upregulating HIF-1α and its target genes antagonizing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Guangfeng Long
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mengying Wu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Ling Gao
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Chamorro-Jorganes A, Anwar M, Emanueli C. Changes in high-density lipoprotein microRNA might create a lasting memory of high-fat diet. Cardiovasc Res 2020; 116:1237-1239. [PMID: 31873719 DOI: 10.1093/cvr/cvz334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Aránzazu Chamorro-Jorganes
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
12
|
Kwon YJ, Seo EB, Kwon SH, Lee SH, Kim SK, Park SK, Kim K, Park S, Park IC, Park JW, Ye SK. Extracellular Acidosis Promotes Metastatic Potency via Decrease of the BMAL1 Circadian Clock Gene in Breast Cancer. Cells 2020; 9:E989. [PMID: 32316196 PMCID: PMC7226966 DOI: 10.3390/cells9040989] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Circadian oscillation is an essential process that influences many physiological and biological mechanisms and a decrease of circadian genes is associated with many diseases such as cancer. Despite many efforts to identify the detailed mechanism for decreasing circadian genes and recovering reduced circadian genes in cancer, it is still largely unknown. We found that BMAL1 was reduced in tumor hypoxia-induced acidosis, and recovered by selectively targeting acidic pH in breast cancer cell lines. Surprisingly, BMAL1 was reduced by decrease of protein stability as well as inhibition of transcription under acidosis. In addition, melatonin significantly prevented acidosis-mediated decrease of BMAL1 by inhibiting lactate dehydrogenase-A during hypoxia. Remarkably, acidosis-mediated metastasis was significantly alleviated by BMAL1 overexpression in breast cancer cells. We therefore suggest that tumor hypoxia-induced acidosis promotes metastatic potency by decreasing BMAL1, and that tumor acidosis could be a target for preventing breast cancer metastasis by sustaining BMAL1.
Collapse
Affiliation(s)
- Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-J.K.); (E.-B.S.); (S.-H.K.); (S.-H.L.); (S.-K.K.); (J.-W.P.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-J.K.); (E.-B.S.); (S.-H.K.); (S.-H.L.); (S.-K.K.); (J.-W.P.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sun-Ho Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-J.K.); (E.-B.S.); (S.-H.K.); (S.-H.L.); (S.-K.K.); (J.-W.P.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Song-Hee Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-J.K.); (E.-B.S.); (S.-H.K.); (S.-H.L.); (S.-K.K.); (J.-W.P.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-J.K.); (E.-B.S.); (S.-H.K.); (S.-H.L.); (S.-K.K.); (J.-W.P.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| | - SaeGwang Park
- Department of Microbiology and Immunology, INJE University College of Medicine, 633-165 GaegumDong, Busanjin Gu, Busan 614-735, Korea;
| | - In-Chul Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 01812, Korea;
| | - Jong-Wan Park
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-J.K.); (E.-B.S.); (S.-H.K.); (S.-H.L.); (S.-K.K.); (J.-W.P.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-J.K.); (E.-B.S.); (S.-H.K.); (S.-H.L.); (S.-K.K.); (J.-W.P.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
13
|
Regulatory expression of bone morphogenetic protein 6 by 2,2'-dipyridyl. Biochim Biophys Acta Gen Subj 2020; 1864:129610. [PMID: 32251709 DOI: 10.1016/j.bbagen.2020.129610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Expression of hepcidin, a hormone produced by hepatocytes which negatively regulates the circulating iron levels, is known to be positively regulated by BMP6, a member of transforming growth factor (TGF)-β family. Previous studies have shown that iron status is sensed by sinusoidal endothelial cells of hepatic lamina, leading to the modulation of BMP6 expression. METHODS ISOS-1, HUVEC, F-2, and SK-HEP1 endothelial cells were treated with either iron or 2,2'-dipyridyl (2DP), a cell-permeable iron-chelator, and expression level of Bmp6 was examined. To identify factors affecting Bmp6 transcription, stimulus screening for regulator of transcription (SSRT) was developed. RESULTS Treatment with iron slightly increased the expression levels of Bmp6, while 2DP unexpectedly increased Bmp6 expression in a dose-dependent manner. 2DP-induced Bmp6 expression was resistant to co-treatment with iron. 2DP-induced Bmp6 expression was also detected in HUVEC, F-2 cells, and SK-HEP1 cells. Luciferase-based reporter assays indicated that forced expression of JunB increased the transcription of Bmp6. 2DP induced phosphorylation of JunB; co-treatment with SP600125 blocked the 2DP-induced Bmp6 expression partially. JunB-induced Bmp6 transcription was not affected by mutations of putative JunB-responsive elements. Some endoplasmic reticulum stress inducers increased the expression of Bmp6. SSRT revealed pathways regulating Bmp6 transcription positively and negatively. Hepa1-6 liver cells and C2C12 myogenic cells were prone to 2DP induced Bmp6 expression. CONCLUSIONS The present study reveals non‑iron-regulated Bmp6 expression in endothelial cells. GENERAL SIGNIFICANCE Regulatory expression of Bmp6 may be important as a key step for fine tuning of BMP activity.
Collapse
|
14
|
Boakye AA, Zhang D, Guo L, Zheng Y, Hoetker D, Zhao J, Posa DK, Ng CK, Zheng H, Kumar A, Kumar V, Wempe MF, Bhatnagar A, Conklin DJ, Baba SP. Carnosine Supplementation Enhances Post Ischemic Hind Limb Revascularization. Front Physiol 2019; 10:751. [PMID: 31312142 PMCID: PMC6614208 DOI: 10.3389/fphys.2019.00751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/31/2019] [Indexed: 01/12/2023] Open
Abstract
High (millimolar) concentrations of the histidine containing dipeptide - carnosine (β-alanine-L-histidine) are present in the skeletal muscle. The dipeptide has been shown to buffer intracellular pH, chelate transition metals, and scavenge lipid peroxidation products; however, its role in protecting against tissue injury remains unclear. In this study, we tested the hypothesis that carnosine protects against post ischemia by augmenting HIF-1α angiogenic signaling by Fe2+ chelation. We found that wild type (WT) C57BL/6 mice, subjected to hind limb ischemia (HLI) and supplemented with carnosine (1g/L) in drinking water, had improved blood flow recovery and limb function, enhanced revascularization and regeneration of myocytes compared with HLI mice placed on water alone. Carnosine supplementation enhanced the bioavailability of carnosine in the ischemic limb, which was accompanied by increased expression of proton-coupled oligopeptide transporters. Consistent with our hypothesis, carnosine supplementation augmented HIF-1α and VEGF expression in the ischemic limb and the mobilization of proangiogenic Flk-1+/Sca-1+ cells into circulation. Pretreatment of murine myoblast (C2C12) cells with octyl-D-carnosine or carnosine enhanced HIF-1α protein expression, VEGF mRNA levels and VEGF release under hypoxic conditions. Similarly pretreatment of WT C57/Bl6 mice with carnosine showed enhanced blood flow in the ischemic limb following HLI surgery. In contrast, pretreatment of hypoxic C2C12 cells with methylcarcinine, a carnosine analog, lacking Fe2+ chelating capacity, had no effect on HIF-1α levels and VEGF release. Collectively, these data suggest that carnosine promotes post ischemic revascularization via augmentation of pro-angiogenic HIF-1α/VEGF signaling, possibly by Fe2+ chelation.
Collapse
Affiliation(s)
- Adjoa A. Boakye
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Deqing Zhang
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Luping Guo
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Yuting Zheng
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Jingjing Zhao
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Chin K. Ng
- Department of Radiology, University of Louisville, Louisville, KY, United States
| | - Huaiyu Zheng
- Department of Radiology, University of Louisville, Louisville, KY, United States
| | - Amit Kumar
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Daniel J. Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Shahid P. Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| |
Collapse
|
15
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
16
|
Zeriouh M, Sabashnikov A, Tenbrock A, Neef K, Merkle J, Eghbalzadeh K, Weber C, Liakopoulos OJ, Deppe AC, Stamm C, Cowan DB, Wahlers T, Choi YH. Dysregulation of proangiogeneic factors in pressure-overload left-ventricular hypertrophy results in inadequate capillary growth. Ther Adv Cardiovasc Dis 2019; 13:1753944719841795. [PMID: 31088231 PMCID: PMC6535753 DOI: 10.1177/1753944719841795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Pressure-overload left-ventricular hypertrophy (LVH) is an increasingly prevalent pathological condition of the myocardial muscle and an independent risk factor for a variety of cardiac diseases. We investigated changes in expression levels of proangiogeneic genes in a small animal model of LVH. Methods: Myocardial hypertrophy was induced by transaortic constriction (TAC) in C57BL/6 mice and compared with sham-operated controls. The myocardial expression levels of vascular endothelial growth factor (VEGF), its receptors (KDR and FLT-1), stromal-cell-derived factor 1 (SDF1) and the transcription factors hypoxia-inducible factor-1 and 2 (HIF1 and HIF2) were analyzed by quantitative polymerase chain reaction over the course of 25 weeks. Histological sections were stained for caveolin-1 to visualize endothelial cells and determine the capillary density. The left-ventricular morphology and function were assessed weekly by electrocardiogram-gated magnetic resonance imaging. Results: The heart weight of TAC animals increased significantly from week 4 to 25 (p = 0.005) compared with sham-treated animals. At 1 day after TAC, the expression of VEGF and SDF1 also increased, but was downregulated again after 1 week. The expression of HIF2 was significantly downregulated after 1 week and remained at a lower level in the subsequent weeks. The expression level of FLT-1 was also significantly decreased 1 week after TAC. HIF-1 and KDR showed similar changes compared with sham-operated animals. However, the expression levels of HIF1 after 4 and 8 weeks were significantly decreased compared with day 1. KDR changes were significantly decreased after 1, 2, 4, 8 and 25 weeks compared with week 3. After 4 weeks post-TAC, the size of the capillary vessels increased (p = 0.005) while the capillary density itself decreased (TAC: 2143 ± 293 /mm2versus sham: 2531 ± 321 /mm2; p = 0.021). Starting from week 4, the left-ventricular ejection fraction decreased compared with controls (p = 0.049). Conclusions: The decrease in capillary density in the hypertrophic myocardium appears to be linked to the dysregulation in the expression of proangiogeneic factors. The results suggest that overcoming this dysregulation may lead to reconstitution of capillary density in the hypertrophic heart, and thus be beneficial for cardiac function and survival.
Collapse
Affiliation(s)
- Mohamed Zeriouh
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | - Anton Sabashnikov
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | - Arne Tenbrock
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | - Klaus Neef
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | - Julia Merkle
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | - Kaveh Eghbalzadeh
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | - Carolyn Weber
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | | | | | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Douglas B Cowan
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Yeong-Hoon Choi
- Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Wada T, Wallerich S, Becskei A. Synthetic Transcription Factors Switch from Local to Long-Range Control during Cell Differentiation. ACS Synth Biol 2019; 8:223-231. [PMID: 30624895 DOI: 10.1021/acssynbio.8b00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genes, including promoters and enhancers, are regulated by short- and long-range interactions in higher eukaryotes. It is unclear how mammalian gene expression subject to such a combinatorial regulation can be controlled by synthetic transcription factors (TF). Here, we studied how synthetic TALE transcriptional activators and repressors affect the expression of genes in a gene array during cellular differentiation. The protocadherin gene array is silent in mouse embryonic stem (ES) and neuronal progenitor cells. The TALE transcriptional activator recruited to a promoter activates specifically the target gene in ES cells. Upon differentiation into neuronal progenitors, the transcriptional regulatory logic changes: the same activator behaves like an enhancer, activating distant genes in a correlated, stochastic fashion. The long-range effect is reflected by the alterations in CpG methylation. Our findings reveal the limits of precision and the opportunities in the control of gene expression for TF-based therapies in cells of various differentiation stages.
Collapse
Affiliation(s)
- Takeo Wada
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sandrine Wallerich
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
18
|
Jain T, Nikolopoulou EA, Xu Q, Qu A. Hypoxia inducible factor as a therapeutic target for atherosclerosis. Pharmacol Ther 2018; 183:22-33. [DOI: 10.1016/j.pharmthera.2017.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
20
|
Immune dysregulation in patients with carpal tunnel syndrome. Sci Rep 2017; 7:8218. [PMID: 28811623 PMCID: PMC5557984 DOI: 10.1038/s41598-017-08123-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/04/2017] [Indexed: 11/25/2022] Open
Abstract
Peripheral immunity plays a key role in maintaining homeostasis and conferring crucial neuroprotective effects on the injured nervous system, while at the same time may contribute to increased vulnerability to neuropathic pain. Little is known about the reciprocal relationship between entrapment neuropathy and peripheral immunity. This study investigated immune profile in patients with carpal tunnel syndrome (CTS), the most prevalent entrapment neuropathy. All patients exhibited neurophysiological abnormalities in the median nerve, with the majority reporting neuropathic pain symptoms. We found a significant increase in serum CCL5, CXCL8, CXCL10 and VEGF, and in CD4+ central and effector memory T cells in CTS patients, as compared to healthy controls. CCL5 and VEGF were identified as having the highest power to discriminate between patients and controls. Interestingly, and contrary to the prevailing view of CCL5 as a pro-nociceptive factor, the level of circulating CCL5 was inversely correlated with neuropathic pain intensity and median nerve motor latency. In contrast, the level of central memory T cells was positively associated with abnormal neurophysiological findings. These results suggest that entrapment neuropathy is associated with adaptive changes in the homeostasis of memory T cells and an increase in systemic inflammatory modulating cytokines/chemokines, which potentially regulate neuropathic symptoms.
Collapse
|
21
|
Kitrou P, Karnabatidis D, Brountzos E, Katsanos K, Reppas L, Spiliopoulos S. Gene-based therapies in patients with critical limb ischemia. Expert Opin Biol Ther 2017; 17:449-456. [PMID: 28133976 DOI: 10.1080/14712598.2017.1289170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Critical limb ischemia (CLI) constitutes a life-limiting and life-threatening disease. Revascularization, either endovascular or surgical, remains the best treatment option accompanied by medication and risk factor modification. Patients unable to undergo revascularization, referred as 'no-option patients', have been the center of interest the last few years, subjected to treatment therapies based on proteins (mainly growth factors) involved in angiogenesis via gene delivery to the ischemic tissue. Areas covered: This review focuses on these growth factors, gives an update of the studies available, discusses the possible problems that influence outcomes and describes future perspectives including possible new technologies that will improve them. Additionally, the authors attempt to place therapeutic angiogenesis to the bigger frame of tailored therapy in CLI. Expert opinion: Although encouraging in the beginning, growth factor therapy results have been equivocal and inconclusive. And while it would be misleading to approach gene therapy as panacea, its effect on the micro-circulatory level activating angiogenesis and arteriogenesis could act as an important adjunct in personalized treatment.
Collapse
Affiliation(s)
- Panagiotis Kitrou
- a Department of Interventional Radiology , Patras University Hospital , Rio , Greece
| | - Dimitris Karnabatidis
- a Department of Interventional Radiology , Patras University Hospital , Rio , Greece
| | - Elias Brountzos
- b 2nd Department of Radiology, Division of Interventional Radiology , Attikon University General Hospital , Athens , Greece
| | - Konstantinos Katsanos
- a Department of Interventional Radiology , Patras University Hospital , Rio , Greece
| | - Lazaros Reppas
- b 2nd Department of Radiology, Division of Interventional Radiology , Attikon University General Hospital , Athens , Greece
| | - Stavros Spiliopoulos
- b 2nd Department of Radiology, Division of Interventional Radiology , Attikon University General Hospital , Athens , Greece
| |
Collapse
|
22
|
Hypoxia inducible factor stabilization improves defective ischemia-induced angiogenesis in a rodent model of chronic kidney disease. Kidney Int 2016; 91:616-627. [PMID: 27927598 DOI: 10.1016/j.kint.2016.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/24/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
Abstract
Chronic kidney disease (CKD) is associated with increased risk and worse prognosis of cardiovascular disease, including peripheral artery disease. An impaired angiogenic response to ischemia may contribute to poor outcomes of peripheral artery disease in patients with CKD. Hypoxia inducible factors (HIF) are master regulators of angiogenesis and therefore represent a promising target for therapeutic intervention. To test this we induced hind-limb ischemia in rats with CKD caused by 5/6 nephrectomy and administered two different treatments known to stabilize HIF protein in vivo: carbon monoxide and a pharmacological inhibitor of prolyl hydroxylation 2-(1-chloro-4- hydroxyisoquinoline-3-carboxamido) acetate (ICA). Expression levels of pro-angiogenic HIF target genes (Vegf, Vegf-r1, Vegf-r2, Ho-1) were measured by qRT-PCR. Capillary density was measured by CD31 immunofluorescence staining and HIF expression was evaluated by immunohistochemistry. Capillary density in ischemic skeletal muscle was significantly lower in CKD animals compared to sham controls. Rats with CKD showed significantly lower expression of HIF and all measured pro-angiogenic HIF target genes, including VEGF. Both HIF stabilizing treatments rescued HIF target gene expression in animals with CKD and led to significantly higher ischemia-induced capillary sprouting compared to untreated controls. ICA was effective regardless of whether it was administered before or after induction of ischemia and led to a HIF expression in skeletal muscle. Thus, impaired ischemia-induced angiogenesis in rats with CKD can be improved by HIF stabilization, even if started after onset of ischemia.
Collapse
|
23
|
Chhokar V, Tucker AL. Angiogenesis: Basic Mechanisms and Clinical Applications. Semin Cardiothorac Vasc Anesth 2016. [DOI: 10.1177/108925320300700304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The development and maintenance of an adequate vascular supply is critical for the viability of normal and neoplastic tissues. Angiogenesis, the development of new blood vessels from preexisting capillary networks, plays an important role in a number of physiologic and pathologic processes, including reproduction, wound repair, inflammatory diseases, and tumor growth. Angiogenesis involves sequential steps that are triggered in response to angiogenic growth factors released by inflammatory, mesenchymal, or tumor cells that act as ligands for endothelial cell receptor tyrosine kinases. Stimulated endothelial cells detach from neighboring cells and migrate, proliferate, and form tubes. The immature tubes are subsequently invested and stabilized by pericytes or smooth muscle cells. Angiogenesis depends upon complex interactions among various classes of molecules, including adhesion molecules, proteases, structural proteins, cell surface receptors, and growth factors. The therapeutic manipulation of angiogenesis targeted against ischemic and neoplastic diseases has been investigated in preclinical animal models and in clinical trials. Proangiogenic trials that have stimulated vessel growth in ischemic coronary or peripheral tissues through expression, delivery, or stimulated release of growth factors have shown efficacy in animal models and mixed results in human clinical trials. Antiangiogenic trials have used strategies to block the function of molecules critical for new vessel growth or maturation in the treatment of a variety of malignancies, mostly with results less encouraging than those seen in preclinical models. Pro-and antiangiogenic clinical trials demonstrate that strategies for optimal drug delivery, dosing schedules, patient selection, and endpoint measurements need further investigation and refinement before the therapeutic manipulation of angiogenesis will realize its full clinical potential.
Collapse
Affiliation(s)
- Vikram Chhokar
- Department of Internal Medicine, Salem VA Health System, Roanoke, Virginia
| | - Amy L. Tucker
- Department of Internal Medicine, Cardiovascular Division; Cardiovascular Research Center; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
24
|
Yue X, Lin X, Yang T, Yang X, Yi X, Jiang X, Li X, Li T, Guo J, Dai Y, Shi J, Wei L, Youker KA, Torre-Amione G, Yu Y, Andrade KC, Chang J. Rnd3/RhoE Modulates Hypoxia-Inducible Factor 1α/Vascular Endothelial Growth Factor Signaling by Stabilizing Hypoxia-Inducible Factor 1α and Regulates Responsive Cardiac Angiogenesis. Hypertension 2016; 67:597-605. [PMID: 26781283 DOI: 10.1161/hypertensionaha.115.06412] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022]
Abstract
The insufficiency of compensatory angiogenesis in the heart of patients with hypertension contributes to heart failure transition. The hypoxia-inducible factor 1α-vascular endothelial growth factor (HIF1α-VEGF) signaling cascade controls responsive angiogenesis. One of the challenges in reprograming the insufficient angiogenesis is to achieve a sustainable tissue exposure to the proangiogenic factors, such as HIF1α stabilization. In this study, we identified Rnd3, a small Rho GTPase, as a proangiogenic factor participating in the regulation of the HIF1α-VEGF signaling cascade. Rnd3 physically interacted with and stabilized HIF1α, and consequently promoted VEGFA expression and endothelial cell tube formation. To demonstrate this proangiogenic role of Rnd3 in vivo, we generated Rnd3 knockout mice. Rnd3 haploinsufficient (Rnd3(+/-)) mice were viable, yet developed dilated cardiomyopathy with heart failure after transverse aortic constriction stress. The poststress Rnd3(+/-) hearts showed significantly impaired angiogenesis and decreased HIF1α and VEGFA expression. The angiogenesis defect and heart failure phenotype were partially rescued by cobalt chloride treatment, a HIF1α stabilizer, confirming a critical role of Rnd3 in stress-responsive angiogenesis. Furthermore, we generated Rnd3 transgenic mice and demonstrated that Rnd3 overexpression in heart had a cardioprotective effect through reserved cardiac function and preserved responsive angiogenesis after pressure overload. Finally, we assessed the expression levels of Rnd3 in the human heart and detected significant downregulation of Rnd3 in patients with end-stage heart failure. We concluded that Rnd3 acted as a novel proangiogenic factor involved in cardiac responsive angiogenesis through HIF1α-VEGFA signaling promotion. Rnd3 downregulation observed in patients with heart failure may explain the insufficient compensatory angiogenesis involved in the transition to heart failure.
Collapse
Affiliation(s)
- Xiaojing Yue
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xi Lin
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Tingli Yang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xiangsheng Yang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xin Yi
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xuejun Jiang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xiaoyan Li
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Tianfa Li
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Junli Guo
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Yuan Dai
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Jianjian Shi
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Lei Wei
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Keith A Youker
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Guillermo Torre-Amione
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Yanhong Yu
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Kelsey C Andrade
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Jiang Chang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.).
| |
Collapse
|
25
|
Abstract
Hypoxia stimulates a variety of adaptive responses, many mediated via the hypoxia inducible factors (HIF) family of transcriptional complexes. The balance of HIF-1, -2 and -3 controls a variety of genes, directly up-regulating transcription of genes involved in erythropoiesis, angiogenesis, vasomotor tone, metabolic pathways and processes related to cell multiplication and survival, and indirectly reducing the transcription of genes with other effects. HIF transcription factors are heterodimers consisting of an oxygen-regulated alpha chain bound to the constitutive aryl hydrocarbon receptor nuclear translocator. Under circumstances where oxygen is abundant the activity of the alpha chain is blocked by the actions of members of a family of oxygen-, iron- and oxoglutarate-dependent dioxygenase enzymes. Hydroxylation of two critical prolyl residues by the HIF prolyl hydroxylases (PHD1-3) leads to recognition by the von Hippel-Lindau E3 ubiquitin ligase complex, polyubiquitylation of the alpha chain and its consequent destruction by the proteasome. Hydroxylation of an asparaginyl residue by Factor Inhibiting HIF prevents any surviving HIF alpha chains from recruiting p300-CBP proteins, important for maximal transcriptional activation. Under conditions of acute hypoxia enzyme activity is suppressed, the HIF alpha chains are allowed to exist in their active form and target gene transcription is enhanced. In sustained hypoxia, adaptive responses mediated by the HIF pathway reduce oxygen demand and increase oxygen supply and thus ultimately down-regulate the pathway. However, a number of other processes also modulate HIF signalling and the balance between HIF-1 and HIF-2 actions. These include the generation of antisense HIF-1 and micro RNAs, up-regulation of HIF-3 alpha, antagonism of the HIF-p300 interaction by CITED2, increased PHD2 and PHD3 levels and effects on the pool of ankyrins within the cell which compete with HIF for the action of FIH. Additionally, effects on intermediary metabolism, reactive oxygen species, iron availability, nitric oxide levels and redox status within the cell may modulate HIF activity. Together, these effects lead to a reduction in the magnitude of the HIF response even if oxygenation is not restored and are predicted to alter the responsiveness of the system when oxygenation is restored.
Collapse
|
26
|
Spiliopoulos S, Kitrou P, Katsanos K, Karnabatidis D. Current Phase II drugs under investigation for the treatment of limb ischemia. Expert Opin Investig Drugs 2015; 24:1447-1458. [PMID: 26296189 DOI: 10.1517/13543784.2015.1081894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION More than 20 million people in Europe suffer from peripheral arterial disease and nearly 3% develop critical limb ischemia (CLI). Without any medical treatment, CLI has poor prognosis, resulting in limb loss and high mortality rate. Until today, no systemic drug is available for the treatment of CLI and the gold standard method of treatment includes risk factor modification and open surgical or endovascular revascularization. Endovascular local drug delivery devices and novel antithrombotic agents, currently under investigation, aim to improve outcomes of revascularization procedures. The pioneering concept of therapeutic angiogenesis induced by gene and stem cell therapy has been proposed, in an attempt to increase ischemic tissue perfusion. AREAS COVERED This review summarizes local and systemic pharmacological treatment of CLI using endovascular or pharmaco-biological therapy and focuses on Phase II trials available for these drugs. EXPERT OPINION Novel endovascular technologies combining angioplasty and local drug-delivery continuously improve and will come to be standard of practice for the management of limb ischemia, while new antithrombotic agents will further improve outcomes. Therapeutic angiogenesis represents a safe and promising treatment option. The combination of revascularization with microcirculation improvement induced by gene or stem cell therapy could enhance limb salvage.
Collapse
Affiliation(s)
- Stavros Spiliopoulos
- a 1 Patras University Hospital, Department of Interventional Radiology , Patras 26504, Greece +30 2613 603 219;
| | - Panagiotis Kitrou
- a 1 Patras University Hospital, Department of Interventional Radiology , Patras 26504, Greece +30 2613 603 219;
| | - Konstantinos Katsanos
- b 2 Guy's and St Thomas' Hospitals, NHS Foundation Trust, Department of Interventional Radiology , London, UK
| | - Dimitris Karnabatidis
- a 1 Patras University Hospital, Department of Interventional Radiology , Patras 26504, Greece +30 2613 603 219;
| |
Collapse
|
27
|
Yin T, He S, Su C, Chen X, Zhang D, Wan Y, Ye T, Shen G, Wang Y, Shi H, Yang L, Wei Y. Genetically modified human placenta‑derived mesenchymal stem cells with FGF‑2 and PDGF‑BB enhance neovascularization in a model of hindlimb ischemia. Mol Med Rep 2015; 12:5093-9. [PMID: 26239842 PMCID: PMC4581748 DOI: 10.3892/mmr.2015.4089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 06/26/2015] [Indexed: 02/05/2023] Open
Abstract
Ischemic diseases represent a challenging worldwide health burden. The current study investigated the therapeutic potential of genetically modified human placenta‑derived mesenchymal stem cells (hPDMSCs) with basic fibroblast growth factor (FGF2) and platelet‑derived growth factor‑BB (PDGF‑BB) genes in hindlimb ischemia. Mesenchymal stem cells obtained from human term placenta were transfected ex vivo with adenoviral bicistronic vectors carrying the FGF2 and PDGF‑BB genes (Ad‑F‑P). Unilateral hindlimb ischemia was surgically induced by excision of the right femoral artery in New Zealand White rabbits. Ad‑F‑P genetically modified hPDMSCs, Ad‑null (control vector)‑modified hPDMSCs, unmodified hPDMSCs or media were intramuscularly implanted into the ischemic limbs 7 days subsequent to the induction of ischemia. Four weeks after cell therapy, angiographic analysis revealed significantly increased collateral vessel formation in the Ad‑F‑P‑hPDMSC group compared with the control group. Histological examination revealed markedly increased capillary and arteriole density in the Ad‑F‑P‑hPDMSC group. The xenografted hPDMSCs survived in the ischemic tissue for at least 4 weeks subsequent to cell therapy. The current study demonstrated that the combination of hPDMSC therapy with FGF2 and PDGF‑BB gene therapy effectively induced collateral vessel formation and angiogenesis, suggesting a novel strategy for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Tao Yin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Sisi He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Chao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Xiancheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Dongmei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yongsheng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Huashan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
28
|
Kabadi AM, Thakore PI, Vockley CM, Ousterout DG, Gibson TM, Guilak F, Reddy TE, Gersbach CA. Enhanced MyoD-induced transdifferentiation to a myogenic lineage by fusion to a potent transactivation domain. ACS Synth Biol 2015; 4:689-99. [PMID: 25494287 PMCID: PMC4475448 DOI: 10.1021/sb500322u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic reprogramming holds great potential for disease modeling, drug screening, and regenerative medicine. Genetic reprogramming of mammalian cells is typically achieved by forced expression of natural transcription factors that control master gene networks and cell lineage specification. However, in many instances, the natural transcription factors do not induce a sufficiently robust response to completely reprogram cell phenotype. In this study, we demonstrate that protein engineering of the master transcription factor MyoD can enhance the conversion of human dermal fibroblasts and adult stem cells to a skeletal myocyte phenotype. Fusion of potent transcriptional activation domains to MyoD led to increased myogenic gene expression, myofiber formation, cell fusion, and global reprogramming of the myogenic gene network. This work supports a general strategy for synthetically enhancing the direct conversion between cell types that can be applied in both synthetic biology and regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | | | - Charles A. Gersbach
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
29
|
Polhemus DJ, Bradley JM, Islam KN, Brewster LP, Calvert JW, Tao YX, Chang CC, Pipinos II, Goodchild TT, Lefer DJ. Therapeutic potential of sustained-release sodium nitrite for critical limb ischemia in the setting of metabolic syndrome. Am J Physiol Heart Circ Physiol 2015; 309:H82-92. [PMID: 25910804 DOI: 10.1152/ajpheart.00115.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023]
Abstract
Nitrite is a storage reservoir of nitric oxide that is readily reduced to nitric oxide under pathological conditions. Previous studies have demonstrated that nitrite levels are significantly reduced in cardiovascular disease states, including peripheral vascular disease. We investigated the cytoprotective and proangiogenic actions of a novel, sustained-release formulation of nitrite (SR-nitrite) in a clinically relevant in vivo swine model of critical limb ischemia (CLI) involving central obesity and metabolic syndrome. CLI was induced in obese Ossabaw swine (n = 18) by unilateral external iliac artery deployment of a full cross-sectional vessel occlusion device positioned within an endovascular expanded polytetrafluoroethylene-lined nitinol stent-graft. At post-CLI day 14, pigs were randomized to placebo (n = 9) or SR-nitrite (80 mg, n = 9) twice daily by mouth for 21 days. SR-nitrite therapy increased nitrite, nitrate, and S-nitrosothiol in plasma and ischemic skeletal muscle. Oxidative stress was reduced in ischemic limb tissue of SR-nitrite- compared with placebo-treated pigs. Ischemic limb tissue levels of proangiogenic growth factors were increased following SR-nitrite therapy compared with placebo. Despite the increases in cytoprotective and angiogenic signals with SR-nitrite therapy, new arterial vessel formation and enhancement of blood flow to the ischemic limb were not different from placebo. Our data clearly demonstrate cytoprotective and proangiogenic signaling in ischemic tissues following SR-nitrite therapy in a very severe model of CLI. Further studies evaluating longer-duration nitrite therapy and/or additional nitrite dosing strategies are warranted to more fully evaluate the therapeutic potential of nitrite therapy in peripheral vascular disease.
Collapse
Affiliation(s)
- David J Polhemus
- Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Sciences Center, New Orleans, Louisiana
| | - Jessica M Bradley
- Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Sciences Center, New Orleans, Louisiana
| | - Kazi N Islam
- Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Sciences Center, New Orleans, Louisiana
| | - Luke P Brewster
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia; Surgery and Research Services, Atlanta Veterans Affairs Medical Center, Decatur, Georgia; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - John W Calvert
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, Alabama
| | | | - Iraklis I Pipinos
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Traci T Goodchild
- Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Sciences Center, New Orleans, Louisiana
| | - David J Lefer
- Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Sciences Center, New Orleans, Louisiana;
| |
Collapse
|
30
|
Ozbek E, Adas G, Otunctemur A, Duruksu G, Koc B, Polat EC, Kemik Sarvan A, Okcu A, Kamali G, Subasi C, Karaoz E. Role of Mesenchymal Stem Cells Transfected With Vascular Endothelial Growth Factor in Maintaining Renal Structure and Function in Rats with Unilateral Ureteral Obstruction. EXP CLIN TRANSPLANT 2014; 13:262-72. [PMID: 25542189 DOI: 10.6002/ect.2014.0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Mesenchymal stem cells hold promise for renal disease treatment. Vascular endothelial growth factor may heal tubule-interstitial fibrosis in unilateral ureteral obstruction by inhibiting epithelial-mesenchymal transition. We investigated the protective effect of vascular endothelial growth factor in transfected mesenchymal stem cells in unilateral ureteral obstruction-induced renal injury in rats. MATERIALS AND METHODS Male Wistar Albino rats (32 rats; weight, 250-300 g) were divided into 4 equal groups: group 1, control; group 2, unilateral ureteral obstruction; group 3, unilateral ureteral obstruction and mesenchymal stem cells; and group 4, unilateral ureteral obstruction and vascular endothelial growth factor-transfected mesenchymal stem cells. Vascular endothelial growth factor-transfected mesenchymal stem cells were administered intravenously before onset of unilateral ureteral obstruction. On day 14, the rats were killed and kidneys were retrieved. Tubular necrosis, mononuclear cell infiltration, and interstitial fibrosis were evaluated in paraffin blocks. We evaluated green fluorescent protein-positive and vascular endothelial growth factor-positive cells; anti-inflammatory (Prostaglandin E2 receptor) and interleukin 1 receptor antagonist), proinflammatory/anti-inflammatory (interleukin 6), and proinflammatory (MPO) cytokine expression levels; and levels of nitric oxide; transforming growth factor β1, E-cadherin, and hydroxyproline. RESULTS Green fluorescent protein-positive cells were negative in the renal parenchyma in groups 1 and 2 and positive in groups 3 and 4. Vascular endothelial growth factor levels were significantly higher in group 4. Transforming growth factor β1, nitric oxide, and E-cadherin levels were significantly higher in the unilateral ureteral obstruction than control group; however, in the study groups, these values were not significantly different from the unilateral ureteral obstruction group. In stem cell-transplanted tissue samples, EP3, interleukin 1 receptor antagonist, and interleukin 6 levels were elevated, but MPO expression levels were low. Although there were significant differences for tubular necrosis and fibrosis in group 2, there were significant reductions in tubular injury and fibrosis in groups 3 and 4. CONCLUSIONS Systemic stem cells transplanted into the kidney protected against unilateral ureteral obstruction-induced renal epithelial-mesenchymal transition and renal fibrosis.
Collapse
Affiliation(s)
- Emin Ozbek
- From the Okmeydani Training and Research Hospital, Department of Urology, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The key impediment to the successful application of gene therapy in clinics is not the paucity of therapeutic genes. It is rather the lack of nontoxic and efficient strategies to transfer therapeutic genes into target cells. Over the past few decades, considerable progress has been made in gene transfer technologies, and thus far, three different delivery systems have been developed with merits and demerits characterizing each system. Viral and chemical methods of gene transfer utilize specialized carrier to overcome membrane barrier and facilitate gene transfer into cells. Physical methods, on the other hand, utilize various forms of mechanical forces to enforce gene entry into cells. Starting in 1980s, physical methods have been introduced as alternatives to viral and chemical methods to overcome various extra- and intracellular barriers that limit the amount of DNA reaching the intended cells. Accumulating evidence suggests that it is quite feasible to directly translocate genes into cytoplasm or even nuclei of target cells by means of mechanical force, bypassing endocytosis, a common pathway for viral and nonviral vectors. Indeed, several methods have been developed, and the majority of them share the same underlying mechanism of gene transfer, i.e., physically created transient pores in cell membrane through which genes get into cells. Here, we provide an overview of the current status and future research directions in the field of physical methods of gene transfer.
Collapse
|
32
|
Olson E, Demopoulos L, Haws TF, Hu E, Fang Z, Mahar KM, Qin P, Lepore J, Bauer TA, Hiatt WR. Short-term treatment with a novel HIF-prolyl hydroxylase inhibitor (GSK1278863) failed to improve measures of performance in subjects with claudication-limited peripheral artery disease. Vasc Med 2014; 19:473-82. [DOI: 10.1177/1358863x14557151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypoxia inducible factor (HIF) stabilization by HIF-prolyl hydroxylase (PHD) inhibitors may improve ischemic conditions such as peripheral artery disease (PAD). This multicenter, randomized, placebo-controlled study evaluated the safety and efficacy of GSK1278863 (an oral PHD inhibitor) in subjects with PAD. The study assessed two active treatment paradigms: single dosing and subchronic daily dosing (300 mg single dose and 15 mg daily for 14 days, respectively). Neither regimen improved exercise performance compared with placebo (change from baseline in the 6-minute walk test (6MWT; feet), (GSK1278863, placebo): single dose (–46, –44), p=0.96; repeat dose (9, 8), p=0.99; change in number of contractions to onset of claudication (goniometry): single dose (4, –1), p=0.053; repeat dose (–2, 1), p=0.08). A calf-muscle biopsy substudy showed no increases in mRNA or protein levels of HIF target genes. More subjects receiving GSK1278863 than placebo experienced adverse events, particularly following the 300 mg single dose. Thus, assessing the safety of GSK1278863 in this setting would require a larger population exposed to the agent for a longer duration. These data do not support a benefit of GSK1278863 in PAD using the regimens tested. ClinicalTrials.gov Identifier: NCT01673555
Collapse
Affiliation(s)
- Eric Olson
- GlaxoSmithKline, King of Prussia, PA, USA
| | | | | | - Erding Hu
- GlaxoSmithKline, King of Prussia, PA, USA
| | | | | | - Pu Qin
- GlaxoSmithKline, King of Prussia, PA, USA
| | | | - Timothy A Bauer
- Division of General Internal Medicine and CPC Clinical Research, University of Colorado School of Medicine, Aurora, CO, USA
| | - William R Hiatt
- Division of Cardiology and CPC Clinical Research, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
33
|
Feng Q, Tan HH, Ge ZZ, Gao YJ, Chen HM, Xiao SD. Thalidomide-induced angiopoietin 2, Notch1 and Dll4 downregulation under hypoxic condition in tissues with gastrointestinal vascular malformation and human umbilical vein endothelial cells. J Dig Dis 2014; 15:85-95. [PMID: 24219762 DOI: 10.1111/1751-2980.12114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the pathogenesis of gastrointestinal vascular malformation (GIVM) and the mechanism of thalidomide in treating GIVM by evaluating the expression of angiopoietin 2 (Ang2), Notch1, delta-like ligand 4 (Dll4) and hypoxia inducible factor 1α (Hif-1α). METHODS Data of 10 patients with histology-confirmed GIVM were reviewed. Immunohistochemistry of surgically resected GIVM tissues and the adjacent mucosa of the patients and normal tissues from those who had undergone colonoscopy for health examination was performed to examine the expressions of Ang2, Notch1, Dll4 and Hif-1α. In addition, in vitro effect of thalidomide on Ang2, Notch1 and Dll4 in human umbilical vein endothelial cells (HUVEC) and on HUVEC proliferation was also investigated during normoxic and hypoxic conditions. RESULTS GIVM lesions presented as tortuous, dilated arterioles, venules and capillaries. Ang2, Notch1 and Dll4 showed strong immunoreactivity in the cytoplasm and nuclei of GIVM lesions but negative or weak positivity in the intestinal mucosa of the adjacent tissues and normal mucosa. Under hypoxic condition the expressions of Hif-1α, Ang2, Notch1 and Dll4 were upregulated and the tube formation was more abundant with a greater diameter of tubes. Moreover, thalidomide downregulated their expression in HUVEC and HUVEC proliferation decreased in a concentration-dependent manner under both hypoxic and normoxic conditions. CONCLUSION Ang2, Notch1, Dll4 and Hif-1α may play an important role in the pathogenesis of GIVM and may be potential targets of thalidomide in the treatment of the disease.
Collapse
Affiliation(s)
- Qian Feng
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao Tong University), Shanghai, China
| | | | | | | | | | | |
Collapse
|
34
|
Silvestre JS, Smadja DM, Lévy BI. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 2013; 93:1743-802. [PMID: 24137021 DOI: 10.1152/physrev.00006.2013] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.
Collapse
|
35
|
Ye Z, Ye W, Deng Y, Wang J, Zhou G, Zhang X. HIF-1-modified BMSCs improve migration and reduce neuronal apoptosis after stroke in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5936-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Hadjipanayi E, Schilling AF. Hypoxia-based strategies for angiogenic induction: the dawn of a new era for ischemia therapy and tissue regeneration. Organogenesis 2013; 9:261-72. [PMID: 23974216 PMCID: PMC3903695 DOI: 10.4161/org.25970] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Therapeutic angiogenesis promises to aid the healing and regeneration of tissues suffering from a compromised vascular supply. Ischaemia therapy has so far primarily focused on delivering isolated angiogenic growth factors. The limited success of these strategies in clinical trials, however, is increasingly forcing researchers to recognize the difficulties associated with trying to mimic the angiogenic process, due to its natural complexity. Instead, a new school of thought is gradually emerging, focusing on how to induce angiogenesis at its onset, by utilizing hypoxia, the primary angiogenic stimulus in physiological, as well pathological states. This shift in therapeutic approach is underlined by the realization of the importance of depressed HIF-1 α-mediated gene programming in non-healing ischemic tissues, which could explain their apparent habituation to chronic hypoxic stress and the limited capacity to generate adaptive angiogenesis. Hypoxia-based strategies, then effectively aim to override the habituated angiogenic cellular response, re-start the regenerative process and drive it to completion. Here we make a distinction between those strategies that utilize hypoxia in vitro as a preconditioning tool to optimize the angiogenic potential of tissue/cells before transplantation, vs. strategies that aim to induce hypoxia-induced signaling in vivo, directly, through pharmacological means or gene transfer. We then discuss possible future directions for the field, as it moves into the phase of clinical trials.
Collapse
Affiliation(s)
- Ektoras Hadjipanayi
- Experimental Plastic Surgery; Clinic for Plastic and Hand Surgery; Klinikum Rechts der Isar; Technische Universität München; Munich, Germany; Department of Plastic, Reconstructive, Hand and Burn Surgery; Bogenhausen Hospital; Munich, Germany
| | - Arndt F Schilling
- Experimental Plastic Surgery; Clinic for Plastic and Hand Surgery; Klinikum Rechts der Isar; Technische Universität München; Munich, Germany; Center for Applied New Technologies in Engineering for Regenerative Medicine (Canter); Munich, Germany
| |
Collapse
|
37
|
Matsuda T, Abe T, Wu JL, Fujiki M, Kobayashi H. Hypoxia-inducible factor-1αDNA induced angiogenesis in a rat cerebral ischemia model. Neurol Res 2013; 27:503-8. [PMID: 15978176 DOI: 10.1179/016164105x25144] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that regulates the adaptive response to hypoxia in mammalian cells. It consists of a regulatory subunit HIF-1alpha, which accumulates under hypoxic conditions, and a constitutively expressed subunit, HIF-1beta. In this study, we investigated HIF-1alpha naked DNA-induced angiogenesis in a cerebral ischemic model in vivo. METHODS We utilized a rat encephalo-myo-synangiosis (EMS) model and inoculated HIF-1alpha DNA into the brain surface or the temporal muscle. We analysed whether HIF-1alpha induced angiogenic factors and collateral circulation. RESULTS A histological section treated with HIF-1alpha DNA showed an increased expression of HIF1 a and VEGF with collateral circulation, in comparison with control DNA (p < 0.01). The HIF-1alpha transcription factor is able to promote significant angiogenesis development. CONCLUSION These results suggest the feasibility of a novel approach for therapeutic collateral circulation of cerebral ischemia in which neovascularization may be achieved indirectly using a transcriptional regulatory strategy.
Collapse
Affiliation(s)
- Takeshi Matsuda
- Department of Neurosurgery, Oita University School of Medicine, Idaigaoka 1-1, Oita, 879-5593, Japan
| | | | | | | | | |
Collapse
|
38
|
Bartel RL, Booth E, Cramer C, Ledford K, Watling S, Zeigler F. From bench to bedside: review of gene and cell-based therapies and the slow advancement into phase 3 clinical trials, with a focus on Aastrom's Ixmyelocel-T. Stem Cell Rev Rep 2013; 9:373-83. [PMID: 23456574 PMCID: PMC3680652 DOI: 10.1007/s12015-013-9431-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is a large body of preclinical research demonstrating the efficacy of gene and cellular therapy for the potential treatment of severe (limb-threatening) peripheral arterial disease (PAD), including evidence for growth and transcription factors, monocytes, and mesenchymal stem cells. While preclinical research has advanced into early phase clinical trials in patients, few late-phase clinical trials have been conducted. The reasons for the slow progression of these therapies from bench to bedside are as complicated as the fields of gene and cellular therapies. The variety of tissue sources of stem cells (embryonic, adult bone marrow, umbilical cord, placenta, adipose tissue, etc.); autologous versus allogeneic donation; types of cells (hematopoietic, mesenchymal stromal, progenitor, and mixed populations); confusion and stigmatism by the public and patients regarding gene, protein, and stem cell therapy; scaling of manufacturing; and the changing regulatory environment all contribute to the small number of late phase (Phase 3) clinical trials and the lack of Food and Drug Administration (FDA) approvals. This review article provides an overview of the progression of research from gene therapy to the cellular therapy field as it applies to peripheral arterial disease, as well as the position of Aastrom's cellular therapy, ixmyelocel-T, within this field.
Collapse
|
39
|
Therapeutic angiogenesis for revascularization in peripheral artery disease. Gene 2013; 525:220-8. [PMID: 23566831 DOI: 10.1016/j.gene.2013.03.097] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 01/15/2023]
Abstract
Therapeutic angiogenesis for peripheral artery disease (PAD), achieved by gene and cell therapy, has recently raised a great deal of hope for patients who cannot undergo standard revascularizing treatment. Although pre-clinical studies gave very promising data, still clinical trials of gene therapy have not provided satisfactory results. On the other hand, cell therapy approach, despite several limitations, demonstrated more beneficial effects but initial clinical studies must be constantly validated by larger randomized, multi-center, double-blinded, placebo-controlled trials. This review focuses on previous and recent gene and cell therapy studies for limb ischemia, including both experimental and clinical research, and summarizes some important papers published in this field. Moreover, it provides a short comment on combined gene and cell therapy approach on the example of heme oxygenase-1 overexpressing cells with therapeutic properties.
Collapse
|
40
|
Chade AR, Stewart N. Angiogenic cytokines in renovascular disease: do they have potential for therapeutic use? JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2013; 7:180-90. [PMID: 23428409 PMCID: PMC3605220 DOI: 10.1016/j.jash.2013.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Experimental and clinical studies suggest that the damage of the renal microvascular function and architecture may participate in the early steps of renal injury in chronic renal disease, irrespective of the cause. This supporting evidence has provided the impetus to targeting the renal microvasculature as an attempt to interfere with the progressive nature of the disease process. Chronic renovascular disease is often associated with renal microvascular dysfunction, damage, loss, and defective renal angiogenesis associated with progressive renal dysfunction and damage. It is possible that damage of the renal microvasculature in renovascular disease constitutes an initiating event for renal injury and contributes towards progressive and later on irreversible renal injury. Recent studies have suggested that protection of the renal microcirculation can slow or halt the progression of renal injury in this disease. This brief review will focus on the therapeutic potential and feasibility of using angiogenic cytokines to protect the kidney microvasculature in chronic renovascular disease. There is limited but provocative evidence showing that stimulation of vascular proliferation and repair using vascular endothelial growth factor or hepatocyte growth factor can slow the progression of renal damage, stabilize renal function, and protect the renal parenchyma. Such interventions may potentially constitute a sole strategy to preserve renal function and/or a co-adjuvant tool to improve the success of current therapeutic approaches in renovascular disease.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
41
|
Vrachnis N, Kalampokas E, Sifakis S, Vitoratos N, Kalampokas T, Botsis D, Iliodromiti Z. Placental growth factor (PlGF): a key to optimizing fetal growth. J Matern Fetal Neonatal Med 2013; 26:995-1002. [PMID: 23330778 DOI: 10.3109/14767058.2013.766694] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The needs of the uterus and the fetus for the provision of nutrients and oxygen, supplied by the blood flow, are understandably extremely high, with the circulatory system playing the most important role in this action. Abnormal vascular growth and transformation that create a high vessel resistance network have been associated with various pregnancy pathologies, including miscarriage, small for gestational age (SGA) fetuses with or without preeclampsia and intrauterine growth restriction (IUGR). Placental growth factor (PlGF) has a major role in vasculogenesis and angiogenesis in human placenta. Low concentrations of PlGF and high concentrations of its inhibitor-soluble Fms-like tyrosine kinase-1 (sFlt-1) are linked with impaired angiogenesis and placental development, leading to the above pregnancy complications. The activity of vascular endothelial growth factor (VEGF), which is the most potent of all angiogenic mediators, is partly modulated by PlGF. Although the mechanisms via which PlGF exerts its various effects are still under investigation, we herein discuss the known actions exerted by this major mediator together with its results on fetal growth.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- 2nd Department of Obstetrics and Gynecology, University of Athens Medical School, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
42
|
Effect of ischemia post-conditioning on skeletal muscle oxidative injury, mTOR, Bax, Bcl-2 proteins expression, and HIF-1α/β-actin mRNA, IL-6/β-actin mRNA and caveolin-3/β-actin mRNA expression in ischemia-reperfusion rabbits. Mol Biol Rep 2012; 40:507-14. [PMID: 23108993 DOI: 10.1007/s11033-012-2087-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/03/2012] [Indexed: 01/21/2023]
Abstract
This study is designed to investigate the effect of ischemia post-conditioning on IR-induced skeletal muscle injury in limbs of experimental rabbits. Rabbits are randomized to one of the following three groups: sham control, ischemic reperfusion, ischemic postconditioning. The lipid peroxidation level, antioxidant enzymes activities, skeletal muscle mammalian target of rapamycin (mTOR), Bax, Bcl-2 proteins expression and Bcl-2/Bax, and HIF-1α/β-actin mRNA, interleukin-6 (IL-6)/β-actin mRNA and caveolin-3/β-actin mRNA expression were tested in the current study. The results suggested that ischemic postconditioning might decrease lipid peroxidation level, lactic dehydrogenase (LDH), creatine kinase (CK) activities, Bcl-2 proteins expression and Bcl-2/Bax, HIF-1α/β-actin mRNA expression and increase skeletal muscle antioxidant enzymes activities, Bax protein expression and IL-6/β-actin mRNA and caveolin-3/β-actin mRNA expression. These indicated that protective effect of ischemic postconditioning against IR-induced skeletal muscle injury involve into a complex molecular mechanism. Our research results may offer a theoretical guidance for therapy of related clinical diseases.
Collapse
|
43
|
Kim H, Kim JJ, Yoon YS. Emerging therapy for diabetic neuropathy: cell therapy targeting vessels and nerves. Endocr Metab Immune Disord Drug Targets 2012; 12:168-78. [PMID: 22236028 DOI: 10.2174/187153012800493486] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/27/2011] [Indexed: 01/19/2023]
Abstract
Diabetic neuropathy (DN), the most common complication of diabetes, frequently leads to foot ulcers and may progress to limb amputations. Despite continuous increase in incidence, there is no clinical therapy to effectively treat DN. Pathogenetically, DN is characterized by reduced vascularity in peripheral nerves and deficiency in angiogenic and neurotrophic factors. We will briefly review the pathogenetic mechanism of DN and address the effects and the mechanisms of cell therapies for DN. To reverse the changes of DN, studies have attempted to deliver neurotrophic or angiogenic factors for treatment in the form of protein or gene therapy; however, the effects turned out to be very modest if not ineffective. Recent studies have demonstrated that bone marrow (BM)-derived cells such as mononuclear cells or endothelial progenitor cells (EPCs) can effectively treat various cardiovascular diseases through their paracrine effects. As BM-derived cells include multiple angiogenic and neurotrophic cytokines, these cells were used for treating experimental DN and found to reverse manifestations of DN. Particularly, EPCs were shown to exert favorable therapeutic effects through enhanced neural neovascularization and neuro-protective effects. These findings clearly indicate that DN is a complex disorder with pathogenetic involvement of both vascular and neural components. Studies have shown that cell therapies targeting both vascular and neural elements are shown to be advantageous in treating DN.
Collapse
Affiliation(s)
- Hyongbum Kim
- Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Seoul, Korea
| | | | | |
Collapse
|
44
|
Sefcik LS, Petrie Aronin CE, Botchwey EA. Engineering vascularized tissues using natural and synthetic small molecules. Organogenesis 2012; 4:215-27. [PMID: 19337401 DOI: 10.4161/org.4.4.6963] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 12/21/2022] Open
Abstract
Vascular growth and remodeling are complex processes that depend on the proper spatial and temporal regulation of many different signaling molecules to form functional vascular networks. The ability to understand and regulate these signals is an important clinical need with the potential to treat a wide variety of disease pathologies. Current approaches have focused largely on the delivery of proteins to promote neovascularization of ischemic tissues, most notably VEGF and FGF. Although great progress has been made in this area, results from clinical trials are disappointing and safer and more effective approaches are required. To this end, biological agents used for therapeutic neovascularization must be explored beyond the current well-investigated classes. This review focuses on potential pathways for novel drug discovery, utilizing small molecule approaches to induce and enhance neovascularization. Specifically, four classes of new and existing molecules are discussed, including transcriptional activators, receptor selective agonists and antagonists, natural product-derived small molecules, and novel synthetic small molecules.
Collapse
Affiliation(s)
- Lauren S Sefcik
- Department of Biomedical Engineering; and Department of Orthopaedic Surgery; University of Virginia; Charlottesville, Virginia USA; Center for Immunity, Inflammation and Regenerative Medicine (CIIR); University of Virginia; Charlottesville, Virginia USA
| | | | | |
Collapse
|
45
|
Abstract
The vascular network delivers oxygen (O(2)) and nutrients to all cells within the body. It is therefore not surprising that O(2) availability serves as a primary regulator of this complex organ. Most transcriptional responses to low O(2) are mediated by hypoxia-inducible factors (HIFs), highly conserved transcription factors that control the expression of numerous angiogenic, metabolic, and cell cycle genes. Accordingly, the HIF pathway is currently viewed as a master regulator of angiogenesis. HIF modulation could provide therapeutic benefit for a wide array of pathologies, including cancer, ischemic heart disease, peripheral artery disease, wound healing, and neovascular eye diseases. Hypoxia promotes vessel growth by upregulating multiple pro-angiogenic pathways that mediate key aspects of endothelial, stromal, and vascular support cell biology. Interestingly, recent studies show that hypoxia influences additional aspects of angiogenesis, including vessel patterning, maturation, and function. Through extensive research, the integral role of hypoxia and HIF signaling in human disease is becoming increasingly clear. Consequently, a thorough understanding of how hypoxia regulates angiogenesis through an ever-expanding number of pathways in multiple cell types will be essential for the identification of new therapeutic targets and modalities.
Collapse
Affiliation(s)
- Bryan L Krock
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
46
|
Singh N, Sharma G, Mishra V, Raghubir R. Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol 2012; 32:491-507. [PMID: 22297543 PMCID: PMC11498632 DOI: 10.1007/s10571-012-9803-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/13/2012] [Indexed: 12/16/2022]
Abstract
A divergence in the supply and consumption of oxygen in brain tissue initiates complex cycle of biochemical and molecular events resulting in neuronal death. To overcome such adverse situation, the tissue has to adopt some cellular mechanisms such as induction of various transcription factors, such as hypoxia inducible factor (HIF). It is a transcriptional regulator of oxygen homeostasis and key factor to generate the adaptive responses through upregulation of various target genes involved in the erythropoiesis, angiogenesis as well as glucose metabolism and transport. On the other hand, some studies do suggest that HIF also plays a detrimental role in ischemic reperfusion injury by inducing the pro apoptotic molecules, cytokines such as Nix, BNip3, and IL-20 which cause mitochondrial dysfunction leading to cell death. Hence, modulation of HIF-1 activity seems to provide an innovative therapeutic target to reduce the cellular damage, which arises from ischemic injury. Apart from traditional oxygen dependent HIF regulation, the focus has now shifted toward oxygen independent regulation in cell specific manner through reactive oxygen species involving hypoxia-associated factor, and heat shock protein 90, etc. Therefore, future development of such small molecule regulators for HIF-1 stability and signaling may prove useful to therapeutically target for enhancing recovery and repair in I/R injury.
Collapse
Affiliation(s)
- Neetu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Gaurav Sharma
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Vikas Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Ram Raghubir
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| |
Collapse
|
47
|
Lim JH, Shin HJ, Park KS, Lee CH, Jung CR, Im DS. Adenovirus-mediated E2-EPF UCP gene transfer prevents autoamputation in a mouse model of hindlimb ischemia. Mol Ther 2012; 20:778-87. [PMID: 22294149 PMCID: PMC3321605 DOI: 10.1038/mt.2011.302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/18/2011] [Indexed: 12/13/2022] Open
Abstract
E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Jung Hwa Lim
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea
| | - Hyo Jung Shin
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea
| | - Kyeong-Su Park
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea
- University of Science and Technology, Daejeon, Republic of Korea
| | - Chan Hee Lee
- Department of Microbiology, Chungbuk National University, Chungbuk, Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea
- University of Science and Technology, Daejeon, Republic of Korea
| | - Dong-Soo Im
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea
| |
Collapse
|
48
|
Non-invasive bioluminescence imaging of myoblast-mediated hypoxia-inducible factor-1 alpha gene transfer. Mol Imaging Biol 2012; 13:1124-32. [PMID: 21267661 DOI: 10.1007/s11307-011-0471-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE We tested a novel imaging strategy, in which both the survival of transplanted myoblasts and their therapeutic transgene expression, a recombinant hypoxia-inducible factor-1α (HIF-1α-VP2), can be monitored using firefly luciferase (fluc) and Renilla luciferase (hrl) bioluminescence reporter genes, respectively. PROCEDURES The plasmid pUbi-hrl-pUbi-HIF-1α-VP2, which expresses both hrl and HIF-1α-VP2 using two ubiquitin promoters, was characterized in vitro. C2c12 myoblasts stably expressing fluc and transiently transfected with pUbi-hrl-pUbi-HIF-1α-VP2 were injected into the mouse hindlimb. Both hrl and fluc expression were monitored using bioluminescence imaging (BLI). RESULTS Strong correlations existed between the expression of hRL and each of HIF-1α-VP2, VEGF, and PlGF (r(2) > 0.83, r(2) > 0.82, and r(2) > 0.97, respectively). In vivo, both transplanted cells and HIF-1α-VP2 transgene expression were successfully imaged using BLI. CONCLUSIONS An objective evaluation of myoblast-mediated gene transfer in living mice can be performed by monitoring both the survival and the transgene expression of transplanted myoblasts using the techniques developed herein.
Collapse
|
49
|
Liu F, Lou YL, Wu J, Ruan QF, Xie A, Guo F, Cui SP, Deng ZF, Wang Y. Upregulation of microRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press Res 2011; 35:182-91. [PMID: 22123256 DOI: 10.1159/000331054] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/24/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs that regulate gene expression and function, but little is known about regulation of miRNAs in the kidneys under normal or pathologic conditions. Here, we sought to investigate the potential involvement of miRNAs in renal ischemia/reperfusion (I/R) injury and angiogenesis and to define some of the miRNAs possibly associated with renal angiogenesis. METHODS AND RESULTS Male Balb/c mice were subjected to a standard renal I/R. CD31 immunostaining indicated a significant increase of microvessels in the ischemic region. VEGF and VEGFR2 expression were increased in renal I/R at both the mRNA and protein levels which were detected by qRT-PCR and Western blot, respectively. More importantly, 76 microRNAs exhibited more than 2-fold changes using Agilent microRNA microarray, which contains downregulation of 40 miRNAs and upregulation of 36 miRNAs. Upregulation of miR-210 was confirmed by qRT-PCR with prominent changes at 4 and 24 h after reperfusion. Furthermore, overexpression of miR-210 in HUVEC-12 cells enhances VEGF and VEGFR2 expression and promotes angiogenesis on Matrigel in vitro. CONCLUSION These findings suggest miR-210 may be involved in targeting the VEGF signaling pathway to regulate angiogenesis after renal I/R injury, which provides novel insights into the angiogenesis mechanism of renal I/R injury.
Collapse
Affiliation(s)
- Fen Liu
- Institute of Urology, Nanchang University, Nanchang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Huang M, Nguyen P, Jia F, Hu S, Gong Y, de Almeida PE, Wang L, Nag D, Kay MA, Giaccia AJ, Robbins RC, Wu JC. Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation 2011; 124:S46-54. [PMID: 21911818 DOI: 10.1161/circulationaha.110.014019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Under normoxic conditions, hypoxia-inducible factor (HIF)-1α is rapidly degraded by 2 hydroxylases: prolyl hydroxylase (PHD) and factor-inhibiting HIF-1 (FIH). Because HIF-1α mediates the cardioprotective response to ischemic injury, its upregulation may be an effective therapeutic option for ischemic heart failure. METHODS AND RESULTS PHD and FIH were cloned from mouse embryonic stem cells. The best candidate short hairpin (sh) sequences for inhibiting PHD isoenzyme 2 and FIH were inserted into novel, nonviral, minicircle vectors. In vitro studies after cell transfection of mouse C2C12 myoblasts, HL-1 atrial myocytes, and c-kit(+) cardiac progenitor cells demonstrated higher expression of angiogenesis factors in the double-knockdown group compared with the single-knockdown and short hairpin scramble control groups. To confirm in vitro data, shRNA minicircle vectors were injected intramyocardially after left anterior descending coronary artery ligation in adult FVB mice (n=60). Functional studies using MRI, echocardiography, and pressure-volume loops showed greater improvement in cardiac function in the double-knockdown group. To assess mechanisms of this functional recovery, we performed a cell trafficking experiment, which demonstrated significantly greater recruitment of bone marrow cells to the ischemic myocardium in the double-knockdown group. Fluorescence-activated cell sorting showed significantly higher activation of endogenous c-kit(+) cardiac progenitor cells. Immunostaining showed increased neovascularization and decreased apoptosis in areas of injured myocardium. Finally, western blots and laser-capture microdissection analysis confirmed upregulation of HIF-1α protein and angiogenesis genes, respectively. CONCLUSIONS We demonstrated that HIF-1α upregulation by double knockdown of PHD and FIH synergistically increases stem cell mobilization and myocardial angiogenesis, leading to improved cardiac function.
Collapse
Affiliation(s)
- Mei Huang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|