1
|
Maruyama S, Segawa Y, Harui A, Yamamoto K, Hashimoto H, Osera T, Kurihara N. Influence of Intestinal Barrier on Alleviating an Increase in Blood Pressure by Sodium Alginate Intake in 2-Kidney, 1-Clip Renovascular Hypertensive Rats. Mar Drugs 2023; 21:324. [PMID: 37367649 DOI: 10.3390/md21060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Sodium alginate (SALG) is a substance derived from brown seaweed that has been shown to reduce blood pressure (BP). However, its effects on renovascular hypertension caused by 2-kidney, 1-clip (2K1C) are not yet clear. Previous research suggests that hypertensive rats have increased intestinal permeability, and that SALG improves the gut barrier in inflammatory bowel disease mouse models. Therefore, the goal of this study was to determine whether the antihypertensive effects of SALG involve the intestinal barrier in 2K1C rats. Rats were fed either a 1.0% SALG diet or a control diet for six weeks after being subjected to 2K1C surgery or a sham operation. The systolic BP was measured weekly, and the mean arterial BP was measured at the end of the study. Intestinal samples were taken for analysis, and plasma lipopolysaccharide (LPS) levels were measured. The results showed that BP in 2K1C rats was significantly higher than in SHAM rats when fed CTL, but not when fed SALG. The gut barrier in 2K1C rats was improved by SALG intake. Plasma LPS levels also differed depending on the animal model and diet. In conclusion, dietary SALG may alleviate 2K1C renovascular hypertension by altering the gut barrier.
Collapse
Affiliation(s)
- Saki Maruyama
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
| | - Yukiko Segawa
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
- Faculty of Cookery and Confectionery, Osaka Seikei College, 10-62 Aikawa, Higashiyodogawa, Osaka 533-0007, Japan
| | - Ayaka Harui
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
| | - Kanae Yamamoto
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
| | - Hiroko Hashimoto
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
- Faculty of Nutrition, Osaka Seikei College, 10-62 Aikawa, Higashiyodogawa, Osaka 533-0007, Japan
| | - Tomoko Osera
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
- Department of Nutrition and Health Sciences, Toyo University, 1-1-1 Izumino, Ora-gun, Itakura-machi 374-0193, Gunma, Japan
| | - Nobutaka Kurihara
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
| |
Collapse
|
2
|
Suhail H, Peng H, Xu J, Sabbah HN, Matrougui K, Liao TD, Ortiz PA, Bernstein KE, Rhaleb NE. Knockout of ACE-N facilitates improved cardiac function after myocardial infarction. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 3:100024. [PMID: 36778784 PMCID: PMC9910327 DOI: 10.1016/j.jmccpl.2022.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Angiotensin-converting enzyme (ACE) hydrolyzes N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) into inactive fragments through its N-terminal site (ACE-N). We previously showed that Ac-SDKP mediates ACE inhibitors' cardiac effects. Whether increased bioavailability of endogenous Ac-SDKP caused by knocking out ACE-N also improves cardiac function in myocardial infarction (MI)-induced heart failure (HF) is unknown. Wild-type (WT) and ACE-N knockout (ACE-NKO) mice were subjected to MI by ligating the left anterior descending artery and treated with vehicle or Ac-SDKP (1.6 mg/kg/day, s.c.) for 5 weeks, after which echocardiography was performed and left ventricles (LV) were harvested for histology and molecular biology studies. ACE-NKO mice showed increased plasma Ac-SDKP concentrations in both sham and MI group compared to WT. Exogenous Ac-SDKP further increased its circulating concentrations in WT and ACE-NKO. Shortening (SF) and ejection (EF) fractions were significantly decreased in both WT and ACE-NKO mice post-MI, but ACE-NKO mice exhibited significantly lesser decrease. Exogenous Ac-SDKP ameliorated cardiac function post-MI only in WT but failed to show any additive improvement in ACE-NKO mice. Sarcoendoplasmic reticulum calcium transport ATPase (SERCA2), a marker of cardiac function and calcium homeostasis, was significantly decreased in WT post-MI but rescued with Ac-SDKP, whereas ACE-NKO mice displayed less loss of SERCA2 expression. Our study demonstrates that gene deletion of ACE-N resulted in improved LV cardiac function in mice post-MI, which is likely mediated by increased circulating Ac-SDKP and minimally reduced expression of SERCA2. Thus, future development of specific and selective inhibitors for ACE-N could represent a novel approach to increase endogenous Ac-SDKP toward protecting the heart from post-MI remodeling.
Collapse
Affiliation(s)
- Hamid Suhail
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Hongmei Peng
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Jiang Xu
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Hani N. Sabbah
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Khalid Matrougui
- Department of Physiology Sciences, Eastern Virginia
Medical School, Norfolk, VA 23501, USA
| | - Tang-Dong Liao
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Pablo A. Ortiz
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - Nour-Eddine Rhaleb
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| |
Collapse
|
3
|
Ramasamy V, Ntsekhe M, Sturrock E. Investigating the antifibrotic potential of N-acetyl seryl-aspartyl-lysyl-proline sequence peptides. Clin Exp Pharmacol Physiol 2021; 48:1558-1565. [PMID: 34347311 DOI: 10.1111/1440-1681.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/01/2022]
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a physiological antifibrotic peptide that is hydrolysed by angiotensin I-converting enzyme (ACE). The beneficial antifibrotic effects of ACE inhibitors have been attributed, in part, to its inhibition of Ac-SDKP cleavage. There is indirect evidence that the SDK fragment of Ac-SDKP is the main component required for its antiproliferative action. However, the exact component of the physiological peptide that is responsible for its antifibrotic effect has yet to be determined. Ac-SDKP-derived analogues that are resistant to ACE degradation may provide a new avenue for fibrosis therapy. We tested the antifibrotic potential of various Ac-SDKP peptide sequences and an analogue resistant to ACE degradation in lung fibroblasts. We investigated the contribution and molecular mechanism of action of the amino acid residues in the Ac-SDKP sequence to its antifibrotic effects, and the effects of Ac-SDKP peptides in the prevention of collagen deposition in cells. The Ac-DKP fragment moderately inhibited endothelin-1 (ET-1) mediated transforming growth factor-β (TGF- β) expression, and could be slowly cleaved by ACE, revealing a different sequence requirement for the antifibrotic action of Ac-SDKP. The Ac-SDψKP analogue (where the peptide bond between the aspartate and lysine is reduced) inhibited TGF-β/small mother against decapentaplegic (Smad)-3 signalling and collagen deposition. The Ac-SDKP peptide, in combination with ACEi, demonstrated a greater inhibition of hydroxyproline as compared to Ac-SDKP alone.
Collapse
Affiliation(s)
- Vinasha Ramasamy
- Institute of Infectious Disease & Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Mpiko Ntsekhe
- Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Edward Sturrock
- Institute of Infectious Disease & Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Drugs Interfering with Insulin Resistance and Their Influence on the Associated Hypermetabolic State in Severe Burns: A Narrative Review. Int J Mol Sci 2021; 22:ijms22189782. [PMID: 34575946 PMCID: PMC8466307 DOI: 10.3390/ijms22189782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
It has become widely accepted that insulin resistance and glucose hypermetabolism can be linked to acute pathologies, such as burn injury, severe trauma, or sepsis. Severe burns can determine a significant increase in catabolism, having an important effect on glucose metabolism and on muscle protein metabolism. It is imperative to acknowledge that these alterations can lead to increased mortality through organ failure, even when the patients survive the initial trauma caused by the burn. By limiting the peripheral use of glucose with consequent hyperglycemia, insulin resistance determines compensatory increased levels of insulin in plasma. However, the significant alterations in cellular metabolism lead to a lack of response to insulin's anabolic functions, as well as to a decrease in its cytoprotective role. In the end, via pathological insulin signaling associated with increased liver gluconeogenesis, elevated levels of glucose are detected in the blood. Several cellular mechanisms have been incriminated in the development of insulin resistance in burns. In this context, the main aim of this review article is to summarize some of the drugs that might interfere with insulin resistance in burns, taking into consideration that such an approach can significantly improve the prognosis of the burned patient.
Collapse
|
5
|
Cantero-Navarro E, Fernández-Fernández B, Ramos AM, Rayego-Mateos S, Rodrigues-Diez RR, Sánchez-Niño MD, Sanz AB, Ruiz-Ortega M, Ortiz A. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol 2021; 529:111254. [PMID: 33798633 DOI: 10.1016/j.mce.2021.111254] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Adrian M Ramos
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - María Dolores Sánchez-Niño
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain.
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
6
|
C-type natriuretic peptide-induced relaxation through cGMP-dependent protein kinase and SERCA activation is impaired in two kidney-one clip rat aorta. Life Sci 2021; 272:119223. [PMID: 33610574 DOI: 10.1016/j.lfs.2021.119223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
AIMS Hypertension underlies endothelial dysfunction, and activation of vasorelaxation signaling with low dependence on nitric oxide (NO) represents a good alternative for vascular modulation. C-type natriuretic peptide (CNP) causes relaxation by increasing cyclic guanosine 3',5'-monophosphate (cGMP) or Gi-protein activation through its natriuretic peptide receptor-B or -C, respectively. We have hypothesized that CNP could exerts its effects and could overcome endothelial dysfunction in two kidney-one clip (2K-1C) hypertensive rat aorta. Here, we investigate the intracellular signaling involved in CNP effects in hypertension. MATERIALS AND METHODS The 2K-1C hypertension was induced in male Wistar rats (200 g). CNP-induced vascular relaxation and cGMP production were investigated in rat thoracic aortas. The natriuretic peptide receptor-B and -C localization was evaluated by immunofluorescence. Calcium mobilization was assessed in endothelial cells from rat aortas. KEY FINDINGS CNP induced similar relaxation in normotensive and 2K-1C hypertensive rat aortas, which increased after endothelium removal. CNP-induced relaxation involved natriuretic peptide receptor-B and -C activation in 2K-1C rats. Nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) counter-regulated CNP-particulate GC (pGC) activation in aortas. CNP reduced endothelial calcium and increased cGMP production, which was lower in 2K-1C. CNP-induced cGMP-dependent protein kinase (PKG) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) activation was impaired in 2K-1C rat aorta. SIGNIFICANCE Our results indicated CNP triggered relaxation through its natriuretic peptide receptor-B and -C in 2K-1C rat aortas, and that CNP-induced relaxation overcomes endothelial dysfunction in hypertension. In addition, NOS and sGC activities counter-regulate CNP-pGC activation to induce vascular relaxation.
Collapse
|
7
|
Hamid S, Rhaleb IA, Kassem KM, Rhaleb NE. Role of Kinins in Hypertension and Heart Failure. Pharmaceuticals (Basel) 2020; 13:E347. [PMID: 33126450 PMCID: PMC7692223 DOI: 10.3390/ph13110347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
The kallikrein-kinin system (KKS) is proposed to act as a counter regulatory system against the vasopressor hormonal systems such as the renin-angiotensin system (RAS), aldosterone, and catecholamines. Evidence exists that supports the idea that the KKS is not only critical to blood pressure but may also oppose target organ damage. Kinins are generated from kininogens by tissue and plasma kallikreins. The putative role of kinins in the pathogenesis of hypertension is discussed based on human mutation cases on the KKS or rats with spontaneous mutation in the kininogen gene sequence and mouse models in which the gene expressing only one of the components of the KKS has been deleted or over-expressed. Some of the effects of kinins are mediated via activation of the B2 and/or B1 receptor and downstream signaling such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF) and/or tissue plasminogen activator (T-PA). The role of kinins in blood pressure regulation at normal or under hypertension conditions remains debatable due to contradictory reports from various laboratories. Nevertheless, published reports are consistent on the protective and mediating roles of kinins against ischemia and cardiac preconditioning; reports also demonstrate the roles of kinins in the cardiovascular protective effects of the angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARBs).
Collapse
Affiliation(s)
- Suhail Hamid
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Imane A. Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Kamal M. Kassem
- Division of Cardiology, Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY 40202, USA;
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Inflammatory processes play a critical role in the pathogenesis of hypertension. Innate and adaptive immune responses participate in blood pressure (BP) elevation and end-organ damage. In this review, we discuss recent studies illustrating mechanisms through which immune cells and cytokines regulate BP via their actions in the kidney. RECENT FINDINGS Cells of the innate immune system, including monocytes, neutrophils, and dendritic cells, can all promote BP elevation via effects on kidney function. These innate immune cells can directly impact oxidative stress and cytokine generation in the kidney and/or present antigens to lymphocytes for the engagement of the adaptive immune system. Once activated by dendritic cells, effector memory T cells accumulate in the hypertensive kidney and facilitate renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha (TNF-α), interleukin-17a (IL-17a), and interferon-gamma (IFN-γ), each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. B cells, regulate blood pressure via vasopressin receptor 2 (V2R)-dependent effects on fluid transport in the kidney. SUMMARY Immune cells of the innate and adaptive immune systems drive sodium retention and blood pressure elevation in part by altering renal solute transport.
Collapse
|
9
|
Segawa Y, Hashimoto H, Maruyama S, Shintani M, Ohno H, Nakai Y, Osera T, Kurihara N. Dietary capsaicin-mediated attenuation of hypertension in a rat model of renovascular hypertension. Clin Exp Hypertens 2019; 42:352-359. [PMID: 31518162 DOI: 10.1080/10641963.2019.1665676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Capsaicin, a pungent component of chili pepper, has been reported to decrease blood pressure (BP) and to cause vasorelaxation via nitric oxide (NO) production. However, it is still unclear how dietary capsaicin effects on renovascular hypertension. To examine this, we observed the effects of dietary capsaicin on BP in 2-kidney, 1-clip renovascular hypertension (2K1C) rats, and investigated the participation of NO in the mechanism.Methods: Rats with 2K1C or sham-operated rats (SHAM) were treated with 0.006% capsaicin diet (CAP) or control diet (CTL) for 6 weeks. Systolic BP (SBP) was measured by tail-cuff method once a week. In the end, mean arterial BP (MAP) was measured in the rats under anesthesia. These observations were performed also in the rats taking a NO synthase (NOS) inhibitor (LN). After rats were euthanized, thoracic aortas were collected and used for western blot analyses to evaluate the phosphorylated ratio of endothelial NOS (eNOS), protein kinase A (PKA) and B (Akt), in order to explore a mechanism of the effects on BP by dietary capsaicin.Results: SBP and MAP in 2K1C rats were significantly higher than in SHAM rats when fed CTL, but not when fed CAP. Those in 2K1C-CAP rats were significantly lower than in 2K1C-CTL rats. LN suppressed the effect of dietary capsaicin. The ratios of phosphorylated (p-) eNOS/eNOS and p-Akt/Akt, but not p-PKA/PKA, were significantly increased in rats fed CAP compared with rats fed CTL.Conclusion: Dietary capsaicin may alleviate 2K1C renovascular hypertension, probably via enhancing phosphorylation of Akt and eNOS.Abbreviations: 2K1C: 2-kidney, 1-clip hypertension model; Akt: protein kinase B; Ang II: angiotensin II; ANOVA: measures analysis of variance; BP: blood pressure; EC: endothelial cell; eNOS: endothelial nitric oxide synthase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; L-NAME, LN: Nω-Nitro-L-arginine methyl ester hydrochloride; MA: mesenteric arteries; MAP: mean arterial blood pressure; NO: nitric oxide; PKA: protein kinase A; PVDF: polyvinylidene difluoride; SBP: Systolic blood pressure; SHR: spontaneously hypertensive rats; SN: sympathetic nervous; TRPV1: transient receptor potential vanilloid type 1; WKY: Wistar Kyoto rats.
Collapse
Affiliation(s)
- Yukiko Segawa
- Hygiene and Preventive Medicine, Kobe Women's University, Kobe, Japan
| | - Hiroko Hashimoto
- Hygiene and Preventive Medicine, Kobe Women's University, Kobe, Japan.,Nutrition, Osaka Seikei College, Osaka, Japan
| | - Saki Maruyama
- Hygiene and Preventive Medicine, Kobe Women's University, Kobe, Japan
| | - Miki Shintani
- Hygiene and Preventive Medicine, Kobe Women's University, Kobe, Japan
| | - Hitomi Ohno
- Hygiene and Preventive Medicine, Kobe Women's University, Kobe, Japan
| | - Yuko Nakai
- Hygiene and Preventive Medicine, Kobe Women's University, Kobe, Japan
| | - Tomoko Osera
- Hygiene and Preventive Medicine, Kobe Women's University, Kobe, Japan.,Nutrition and Health Sciences, Toyo University, Gunma, Japan
| | - Nobutaka Kurihara
- Hygiene and Preventive Medicine, Kobe Women's University, Kobe, Japan
| |
Collapse
|
10
|
Peng H, Xu J, Yang XP, Kassem KM, Rhaleb IA, Peterson E, Rhaleb NE. N-acetyl-seryl-aspartyl-lysyl-proline treatment protects heart against excessive myocardial injury and heart failure in mice. Can J Physiol Pharmacol 2019; 97:753-765. [PMID: 30998852 PMCID: PMC6824427 DOI: 10.1139/cjpp-2019-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) in mice results in cardiac rupture at 4-7 days after MI, whereas cardiac fibrosis and dysfunction occur later. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory, anti-fibrotic, and pro-angiogenic properties. We hypothesized that Ac-SDKP reduces cardiac rupture and adverse cardiac remodeling, and improves function by promoting angiogenesis and inhibiting detrimental reactive fibrosis and inflammation after MI. C57BL/6J mice were subjected to MI and treated with Ac-SDKP (1.6 mg/kg per day) for 1 or 5 weeks. We analyzed (1) intercellular adhesion molecule-1 (ICAM-1) expression; (2) inflammatory cell infiltration and angiogenesis; (3) gelatinolytic activity; (4) incidence of cardiac rupture; (5) p53, the endoplasmic reticulum stress marker CCAAT/enhancer binding protein homology protein (CHOP), and cardiomyocyte apoptosis; (6) sarcoplasmic reticulum Ca2+ ATPase (SERCA2) expression; (7) interstitial collagen fraction and capillary density; and (8) cardiac remodeling and function. Acutely, Ac-SDKP reduced cardiac rupture, decreased ICAM-1 expression and the number of infiltrating macrophages, decreased gelatinolytic activity, p53 expression, and myocyte apoptosis, but increased capillary density in the infarction border. Chronically, Ac-SDKP improved cardiac structures and function, reduced CHOP expression and interstitial collagen fraction, and preserved myocardium SERCA2 expression. Thus, Ac-SDKP decreased cardiac rupture, ameliorated adverse cardiac remodeling, and improved cardiac function after MI, likely through preserved SERCA2 expression and inhibition of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Jiang Xu
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Xiao-Ping Yang
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Kamal M Kassem
- b Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Imane A Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Ed Peterson
- c Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Kassem KM, Vaid S, Peng H, Sarkar S, Rhaleb NE. Tβ4-Ac-SDKP pathway: Any relevance for the cardiovascular system? Can J Physiol Pharmacol 2019; 97:589-599. [PMID: 30854877 PMCID: PMC6824425 DOI: 10.1139/cjpp-2018-0570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The last 20 years witnessed the emergence of the thymosin β4 (Tβ4)-N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) pathway as a new source of future therapeutic tools to treat cardiovascular and renal diseases. In this review article, we attempted to shed light on the numerous experimental findings pertaining to the many promising cardiovascular therapeutic avenues for Tβ4 and (or) its N-terminal derivative, Ac-SDKP. Specifically, Ac-SDKP is endogenously produced from the 43-amino acid Tβ4 by 2 successive enzymes, meprin α and prolyl oligopeptidase. We also discussed the possible mechanisms involved in the Tβ4-Ac-SDKP-associated cardiovascular biological effects. In infarcted myocardium, Tβ4 and Ac-SDKP facilitate cardiac repair after infarction by promoting endothelial cell migration and myocyte survival. Additionally, Tβ4 and Ac-SDKP have antifibrotic and anti-inflammatory properties in the arteries, heart, lungs, and kidneys, and stimulate both in vitro and in vivo angiogenesis. The effects of Tβ4 can be mediated directly through a putative receptor (Ku80) or via its enzymatically released N-terminal derivative Ac-SDKP. Despite the localization and characterization of Ac-SDKP binding sites in myocardium, more studies are needed to fully identify and clone Ac-SDKP receptors. It remains promising that Ac-SDKP or its degradation-resistant analogs could serve as new therapeutic tools to treat cardiac, vascular, and renal injury and dysfunction to be used alone or in combination with the already established pharmacotherapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Kamal M Kassem
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- b Internal Medicine Department, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Sonal Vaid
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- c Internal Medicine Department, St. Vincent Indianapolis Hospital, Indianapolis, IN 46260, USA
| | - Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Sarah Sarkar
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
12
|
The anti-inflammatory peptide Ac-SDKP: Synthesis, role in ACE inhibition, and its therapeutic potential in hypertension and cardiovascular diseases. Pharmacol Res 2018; 134:268-279. [DOI: 10.1016/j.phrs.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/12/2018] [Accepted: 07/07/2018] [Indexed: 01/27/2023]
|
13
|
Yoo SY, Jeong SN, Kang JI, Lee SW. Chimeric Adeno-Associated Virus-Mediated Cardiovascular Reprogramming for Ischemic Heart Disease. ACS OMEGA 2018; 3:5918-5925. [PMID: 30023931 PMCID: PMC6044635 DOI: 10.1021/acsomega.8b00904] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/22/2018] [Indexed: 05/28/2023]
Abstract
Here, we demonstrated chimeric adeno-associated virus (chimeric AAV), AAV-DJ-mediated cardiovascular reprogramming strategy to generate new cardiomyocytes and limit collagen deposition in cardiac fibroblasts by inducing synergism of chimeric AAV-expressing Gata4, Mef2c, Tbx5 (AAV-GMT)-mediated heart reprogramming and chimeric AAV-expressing thymosin β4 (AAV-Tβ4)-mediated heart regeneration. AAV-GMT promoted a gradual increase in expression of cardiac-specific genes, including Actc1, Gja1, Myh6, Ryr2, and cTnT, with a gradual decrease in expression of a fibrosis-specific gene, procollagen type I and here AAV-Tβ4 help to induce GMT expression, providing a chimeric AAV-mediated therapeutic cell reprogramming strategy for ischemic heart diseases.
Collapse
Affiliation(s)
- So Young Yoo
- BIO-IT
Foundry Technology Institute, Pusan National
University, Busan 46241, Republic of Korea
- Research
Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Su-Nam Jeong
- BIO-IT
Foundry Technology Institute, Pusan National
University, Busan 46241, Republic of Korea
| | - Jeong-In Kang
- Research
Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Control
and Instrumentation Engineering, Korea Maritime
and Ocean University, Busan 49112, Republic of Korea
| | - Seung-Wuk Lee
- Bioengineering,
University of California, Berkeley, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Yoo SY, Shrestha KR, Jeong SN, Kang JI, Lee SW. Engineered phage nanofibers induce angiogenesis. NANOSCALE 2017; 9:17109-17117. [PMID: 29087420 DOI: 10.1039/c7nr03332j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Herein, we exploited a bioinspired M13 bacteriophage as an angiogenic nanofiber for soft tissue engineering applications. We demonstrated that engineered phage nanofibers induce angiogenesis with specific biochemical and topological cues. Specifically, nanofibrous phage structures provided a novel therapeutic platform for stem cell technologies in ischemic diseases.
Collapse
Affiliation(s)
- So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea.
| | | | | | | | | |
Collapse
|
15
|
Nakagawa P, Masjoan-Juncos JX, Basha H, Janic B, Worou ME, Liao TD, Romero CA, Peterson EL, Carretero OA. Effects of N-acetyl-seryl-asparyl-lysyl-proline on blood pressure, renal damage, and mortality in systemic lupus erythematosus. Physiol Rep 2017; 5:5/2/e13084. [PMID: 28126732 PMCID: PMC5269407 DOI: 10.14814/phy2.13084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/15/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with a high prevalence of hypertension. NZBWF1 (SLE‐Hyp) mice develop hypertension that can be prevented by modulating T cells. The peptide N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (Ac‐SDKP) decreases renal damage and improves renal function in a model of SLE without hypertension (MRL/lpr). However, it is not known whether Ac‐SDKP prevents hypertension in NZBWF1 mice. We hypothesized that in SLE‐Hyp, Ac‐SDKP prevents hypertension and renal damage by modulating T cells. Animals were divided into four groups: (1) control + vehicle, (2) control + Ac‐SDKP, (3) SLE + vehicle, and (4) SLE + Ac‐SDKP. Systolic blood pressure (SBP), albuminuria, renal fibrosis, and T‐cell phenotype were analyzed. SBP was higher in SLE compared to control mice and was not decreased by Ac‐SDKP treatment. Half of SLE mice developed an acute and severe form of hypertension accompanied by albuminuria followed by death. Ac‐SDKP delayed development of severe hypertension, albuminuria, and early mortality, but this delay did not reach statistical significance. Ac‐SDKP prevented glomerulosclerosis, but not interstitial fibrosis in SLE‐Hyp mice. SLE‐Hyp mice showed a decrease in helper and cytotoxic T cells as well as an increase in double negative lymphocytes and T helper 17 cells, but these cells were unaffected by Ac‐SDKP. In conclusion, Ac‐SDKP prevents kidney damage, without affecting blood pressure in an SLE animal model. However, during the acute relapse of SLE, Ac‐SDKP might also delay the manifestation of an acute and severe form of hypertension leading to early mortality. Ac‐SDKP is a potential tool to treat renal damage in SLE‐Hyp mice.
Collapse
Affiliation(s)
- Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Juan X Masjoan-Juncos
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Heba Basha
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Branislava Janic
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Morel E Worou
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Tang-Dong Liao
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
16
|
Khater NA, Selim SA, Abd El-Baset SA, Abd El Hameed SH. Therapeutic effect of mesenchymal stem cells on experimentally induced hypertensive cardiomyopathy in adult albino rats. Ultrastruct Pathol 2016; 41:36-50. [PMID: 28029272 DOI: 10.1080/01913123.2016.1260080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hypertensive heart diseases affect millions of people worldwide. We aimed to investigate the hypertensive left ventricular histological changes and assess the effectiveness of bone marrow derived mesenchymal stem cells (MSCs) therapy in the treatment of hypertensive cardiomyopathy. Adult male albino rats were assigned into two groups: group I (control), group II (Experimental) subdivided into subgroup IIa (hypertensive) and subgroup IIb (stem cell therapy). Left ventricles (LVs) were processed for light and electron microscope. Mallory's trichrome and immunostaining for caspase-3 and desmin were carried out. Hypertension caused left ventricular histological and immunohistochemical changes that had been effectively improved by MSCs therapy.
Collapse
Affiliation(s)
- Nariman A Khater
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Sally A Selim
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Samia A Abd El-Baset
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Samar H Abd El Hameed
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| |
Collapse
|
17
|
Kim J, Jung Y. Thymosin Beta 4 Is a Potential Regulator of Hepatic Stellate Cells. VITAMINS AND HORMONES 2016; 102:121-149. [PMID: 27450733 DOI: 10.1016/bs.vh.2016.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis, a major characteristic of chronic liver disease, is inappropriate tissue remodeling caused by prolonged parenchymal cell injury and inflammation. During liver injury, hepatic stellate cells (HSCs) undergo transdifferentiation from quiescent HSCs into activated HSCs, which promote the deposition of extracellular matrix proteins, leading to liver fibrosis. Thymosin beta 4 (Tβ4), a major actin-sequestering protein, is the most abundant member of the highly conserved β-thymosin family and controls cell morphogenesis and motility by regulating the dynamics of the actin cytoskeleton. Tβ4 is known to be involved in various cellular responses, including antiinflammation, wound healing, angiogenesis, and cancer progression. Emerging evidence suggests that Tβ4 is expressed in the liver; however, its biological roles are poorly understood. Herein, we introduce liver fibrogenesis and recent findings regarding the function of Tβ4 in various tissues and discuss the potential role of Tβ4 in liver fibrosis with a special focus on the effects of exogenous and endogenous Tβ4. Recent studies have revealed that activated HSCs express Tβ4 in vivo and in vitro. Treatment with the exogenous Tβ4 peptide inhibits the proliferation and migration of activated HSCs and reduces liver fibrosis, indicating it has an antifibrotic action. Meanwhile, the endogenously expressed Tβ4 in activated HSCs is shown to promote HSCs activation. Although the role of Tβ4 has not been elucidated, it is apparent that Tβ4 is associated with HSC activation. Therefore, understanding the potential roles and regulatory mechanisms of Tβ4 in liver fibrosis may provide a novel treatment for patients.
Collapse
Affiliation(s)
- J Kim
- Pusan National University, Pusan, Republic of Korea
| | - Y Jung
- Pusan National University, Pusan, Republic of Korea.
| |
Collapse
|
18
|
Zhu L, Yang XP, Janic B, Rhaleb NE, Harding P, Nakagawa P, Peterson EL, Carretero OA. Ac-SDKP suppresses TNF-α-induced ICAM-1 expression in endothelial cells via inhibition of IκB kinase and NF-κB activation. Am J Physiol Heart Circ Physiol 2016; 310:H1176-83. [PMID: 26945075 DOI: 10.1152/ajpheart.00252.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 02/08/2016] [Indexed: 11/22/2022]
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring tetrapeptide that prevents inflammation and fibrosis in hypertension and other cardiovascular diseases. We previously showed that, in angiotensin II-induced hypertension, Ac-SDKP decreased the activation of nuclear transcription factor NF-κB, whereas, in experimental autoimmune myocarditis and hypertension animal models, it also reduced the expression of endothelial leukocyte adhesion molecule ICAM-1. However, the mechanisms by which Ac-SDKP downregulated ICAM-1 expression are still unclear. TNF-α is a proinflammatory cytokine that induces ICAM-1 expression in various cell types via TNF receptor 1 and activation of the classical NF-κB pathway. We hypothesized that in endothelial cells Ac-SDKP suppresses TNF-α-induced ICAM-1 expression by decreasing IKK phosphorylation that as a consequence leads to a decrease of IκB phosphorylation and NF-κB activation. To test this hypothesis, human coronary artery endothelial cells were treated with Ac-SDKP and then stimulated with TNF-α. We found that TNF-α-induced ICAM-1 expression was significantly decreased by Ac-SDKP in a dose-dependent manner. Ac-SDKP also decreased TNF-α-induced NF-κB translocation from cytosol to nucleus, as assessed by electrophoretic mobility shift assay, which correlated with a decrease in IκB phosphorylation. In addition, we found that Ac-SDKP decreased TNF-α-induced IKK phosphorylation and IKK-β expression. However, Ac-SDKP had no effect on TNF-α-induced phosphorylation of p38 MAP kinase or ERK. Thus we conclude that Ac-SDKP inhibition of TNF-α activation of canonical, i.e., IKK-β-dependent, NF-κB pathway and subsequent decrease in ICAM-1 expression is achieved via inhibition of IKK-β.
Collapse
Affiliation(s)
- Liping Zhu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Branislava Janic
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
| |
Collapse
|
19
|
Worou ME, Liao TD, D'Ambrosio M, Nakagawa P, Janic B, Peterson EL, Rhaleb NE, Carretero OA. Renal protective effect of N-acetyl-seryl-aspartyl-lysyl-proline in dahl salt-sensitive rats. Hypertension 2015; 66:816-22. [PMID: 26324505 DOI: 10.1161/hypertensionaha.115.05970] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide with anti-inflammatory and antifibrotic properties. Its effect on salt-sensitive (SS) hypertension is unknown. We hypothesized that in Dahl SS rats on high-salt (HS) diet, Ac-SDKP prevents loss of nephrin expression and renal immune cell infiltration, leading to a decrease in albuminuria, renal inflammation, fibrosis, and glomerulosclerosis. To test this, Dahl SS rats and consomic SS13BN controls were fed either a low-salt (0.23% NaCl) or HS (4% NaCl) diet and treated for 6 weeks with vehicle or Ac-SDKP at either low or high dose (800 or 1600 μg/kg per day, respectively). HS increased systolic blood pressure in SS rats (HS+vehicle, 186±5 versus low salt+vehicle, 141±3 mm Hg; P<0.005) but not in SS13BN rats. Ac-SDKP did not affect blood pressure. Compared with low salt, HS-induced albuminuria, renal inflammation, fibrosis, and glomerulosclerosis in both strains, but the damages were higher in SS than in SS13BN. Interestingly, in SS13BN rats, Ac-SDKP prevented albuminuria induced by HS (HS+vehicle, 44±8 versus HS+low Ac-SDKP, 24±3 or HS+high Ac-SDKP, 8±1 mg/24 h; P<0.05), whereas in SS rats, only high Ac-SDKP dose significantly attenuated albuminuria (HS+vehicle, 94±10 versus HS+high Ac-SDKP, 57±7 mg/24 h; P<0.05). In both strains, Ac-SDKP prevented HS-induced inflammation, interstitial fibrosis, and glomerulosclerosis. In summary, in SS rats on HS diet, at low and high doses, Ac-SDKP prevented renal damage without affecting the blood pressure. Only the high dose of Ac-SDKP attenuated HS-induced albuminuria. Conversely, in SS13BN rats, both doses of Ac-SDKP prevented HS-induced renal damage and albuminuria.
Collapse
Affiliation(s)
- Morel E Worou
- Hypertension and Vascular Research Division, Departments of Internal Medicine, Henry Ford Hospital, Detroit, MI
| | | | | | | | | | | | | | | |
Collapse
|
20
|
N-Acetyl-seryl-aspartyl-lysyl-proline Alleviates Renal Fibrosis Induced by Unilateral Ureteric Obstruction in BALB/C Mice. Mediators Inflamm 2015; 2015:283123. [PMID: 26508815 PMCID: PMC4609855 DOI: 10.1155/2015/283123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/02/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022] Open
Abstract
To expand the armamentarium of treatment for chronic kidney disease (CKD), we explored the utility of boosting endogenously synthesized N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), which is augmented by inhibition of the angiotensin converting enzyme. Male BALB/c mice underwent unilateral ureteral ligation (UUO) or sham operation and received exogenously administered Ac-SDKP delivered via a subcutaneous osmotic minipump or Captopril treatment by oral gavage. Seven days after UUO, there were significant reductions in the expression of both collagen 1 and collagen 3 in kidneys treated with Ac-SDKP or Captopril, and there was a trend towards reductions in collagen IV, α-SMA, and MCP-1 versus control. However, no significant attenuation of interstitial injury or macrophage infiltration was observed. These findings are in contrary to observations in other models and underscore the fact that a longer treatment time frame may be required to yield anti-inflammatory effects in BALB/c mice treated with Ac-SDKP compared to untreated mice. Finding an effective treatment regimen for CKD requires fine-tuning of pharmacologic protocols.
Collapse
|
21
|
Wei C, Kim IK, Li L, Wu L, Gupta S. Thymosin Beta 4 protects mice from monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy. PLoS One 2014; 9:e110598. [PMID: 25412097 PMCID: PMC4239012 DOI: 10.1371/journal.pone.0110598] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/19/2014] [Indexed: 01/25/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH) and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC) dysfunction and pulmonary arterial smooth muscle cell (PASMC) proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4) is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT)-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Connective Tissue Growth Factor/genetics
- Connective Tissue Growth Factor/metabolism
- Disease Models, Animal
- Endothelial Cells/drug effects
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/prevention & control
- Injections, Intraperitoneal
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Male
- Mice
- Monocrotaline/toxicity
- Receptor, Notch3
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction/drug effects
- Thymosin/administration & dosage
- Thymosin/pharmacology
Collapse
Affiliation(s)
- Chuanyu Wei
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center and Scott & White, Central Texas Veterans Health Care System, Temple, Texas, United States of America
| | - Il-Kwon Kim
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center and Scott & White, Central Texas Veterans Health Care System, Temple, Texas, United States of America
| | - Li Li
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center and Scott & White, Central Texas Veterans Health Care System, Temple, Texas, United States of America
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Liling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Sudhiranjan Gupta
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center and Scott & White, Central Texas Veterans Health Care System, Temple, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Peng H, Xu J, Yang XP, Dai X, Peterson EL, Carretero OA, Rhaleb NE. Thymosin-β4 prevents cardiac rupture and improves cardiac function in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 2014; 307:H741-51. [PMID: 25015963 DOI: 10.1152/ajpheart.00129.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thymosin-β4 (Tβ4) promotes cell survival, angiogenesis, and tissue regeneration and reduces inflammation. Cardiac rupture after myocardial infarction (MI) is mainly the consequence of excessive regional inflammation, whereas cardiac dysfunction after MI results from a massive cardiomyocyte loss and cardiac fibrosis. It is possible that Tβ4 reduces the incidence of cardiac rupture post-MI via anti-inflammatory actions and that it decreases adverse cardiac remodeling and improves cardiac function by promoting cardiac cell survival and cardiac repair. C57BL/6 mice were subjected to MI and treated with either vehicle or Tβ4 (1.6 mg·kg(-1)·day(-1) ip via osmotic minipump) for 7 days or 5 wk. Mice were assessed for 1) cardiac remodeling and function by echocardiography; 2) inflammatory cell infiltration, capillary density, myocyte apoptosis, and interstitial collagen fraction histopathologically; 3) gelatinolytic activity by in situ zymography; and 4) expression of ICAM-1 and p53 by immunoblot analysis. Tβ4 reduced cardiac rupture that was associated with a decrease in the numbers of infiltrating inflammatory cells and apoptotic myocytes, a decrease in gelatinolytic activity and ICAM-1 and p53 expression, and an increase in the numbers of CD31-positive cells. Five-week treatment with Tβ4 ameliorated left ventricular dilation, improved cardiac function, markedly reduced interstitial collagen fraction, and increased capillary density. In a murine model of acute MI, Tβ4 not only decreased mortality rate as a result of cardiac rupture but also significantly improved cardiac function after MI. Thus, the use of Tβ4 could be explored as an alternative therapy in preventing cardiac rupture and restoring cardiac function in patients with MI.
Collapse
Affiliation(s)
- Hongmei Peng
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Xiangguo Dai
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan; and
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Department of Physiology, Wayne State University, Detroit, Michigan
| |
Collapse
|
23
|
Nagai T, Nitta K, Kanasaki M, Koya D, Kanasaki K. The biological significance of angiotensin-converting enzyme inhibition to combat kidney fibrosis. Clin Exp Nephrol 2014; 19:65-74. [PMID: 24975544 DOI: 10.1007/s10157-014-1000-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/08/2014] [Indexed: 12/23/2022]
Abstract
Both angiotensin-converting enzyme inhibitor (ACE-I) and angiotensin II receptor blocker have been recognized as renin-angiotensin system (RAS) inhibitors. These two RAS inhibitors are rarely recognized as drugs with distinct pharmacological effects in the clinic or most clinical trials. Some preclinical basic research and clinical trials indicate that ACE-I might display superior organ-protective effects, especially anti-fibrotic effects. Such anti-fibrotic effects of ACE-I could be associated with an endogenous anti-fibrotic peptide, N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP). In this review, we focused on the anti-fibrotic effects of RAS inhibition and the endogenous anti-fibrotic peptide AcSDKP.
Collapse
Affiliation(s)
- Takako Nagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | | | | | | | | |
Collapse
|
24
|
Kanasaki K, Nagai T, Nitta K, Kitada M, Koya D. N-acetyl-seryl-aspartyl-lysyl-proline: a valuable endogenous anti-fibrotic peptide for combating kidney fibrosis in diabetes. Front Pharmacol 2014; 5:70. [PMID: 24782774 PMCID: PMC3995071 DOI: 10.3389/fphar.2014.00070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/25/2014] [Indexed: 12/11/2022] Open
Abstract
Fibroproliferative diseases are responsible for 45% of deaths in the developed world. Curing organ fibrosis is essential for fibroproliferative diseases. Diabetic nephropathy is a common fibroproliferative disease of the kidney and is associated with multiorgan dysfunction. However, therapy to combat diabetic nephropathy has not yet been established. In this review, we discuss the novel therapeutic possibilities for kidney fibrosis in diabetes focusing on the endogenous anti-fibrotic peptide, N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), which is the substrate for angiotensin-converting enzyme and exhibits meaningful anti-fibrotic effects in various experimental models of fibrotic disease.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University Uchinada, Ishikawa, Japan
| | - Takako Nagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University Uchinada, Ishikawa, Japan
| | - Kyoko Nitta
- Department of Diabetology and Endocrinology, Kanazawa Medical University Uchinada, Ishikawa, Japan
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University Uchinada, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University Uchinada, Ishikawa, Japan
| |
Collapse
|
25
|
Zhang L, Chopp M, Teng H, Ding G, Jiang Q, Yang XP, Rhaleb NE, Zhang ZG. Combination treatment with N-acetyl-seryl-aspartyl-lysyl-proline and tissue plasminogen activator provides potent neuroprotection in rats after stroke. Stroke 2014; 45:1108-14. [PMID: 24549864 DOI: 10.1161/strokeaha.113.004399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), an endogenously produced circulating peptide in humans and rodents, exerts anti-inflammatory and cardioprotective activities in various cardiovascular diseases. METHODS The present study evaluated the neuroprotective effect of AcSDKP alone and in combination with thrombolytic therapy in a rat model of embolic focal cerebral ischemia. RESULTS We found that treatment with AcSDKP alone at 1 hour or the combination treatment with AcSDKP and tissue plasminogen activator (tPA) at 4 hours after stroke onset substantially increased AcSDKP levels in plasma and cerebrospinal fluid and robustly reduced infarct volume and neurological deficits, without increasing the incidence of brain hemorrhage compared with ischemic rats treated with saline, AcSDKP alone at 4 hours, and tPA alone at 4 hours. Moreover, the combination treatment considerably reduced the density of nuclear transcription factor-κB (NF-κB), transforming growth factor β (TGF-β), and plasminogen activator inhibitor-1 (PAI-1) positive cerebral blood vessels in the ischemic brain, all of which were associated with reduced microvascular fibrin extravasation and platelet accumulation compared with tPA monotherapy. In vitro, AcSDKP blocked fibrin-elevated TGF-β1, PAI-1, and NF-κB proteins in primary human brain microvascular endothelial cells. CONCLUSIONS Our data indicate that AcSDKP passes the blood-brain barrier, and that treatment of acute stroke with AcSDKP either alone at 1 hour or in combination with tPA at 4 hours of the onset of stroke is effective to reduce ischemic cell damage in a rat model of embolic stroke. Inactivation of TGF-β and NF-κB signaling by AcSDKP in the neurovascular unit may underlie the neuroprotective effect of AcSDKP.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Neurology (L.Z., M.C., H.T., G.D., Q.J., Z.G.Z.), Hypertension and Vascular Research Division (X.P.Y., N.E.R.), Henry Ford Health Sciences Center, Detroit, MI; and Department of Physics (M.C.), Oakland University, Rochester, MI
| | | | | | | | | | | | | | | |
Collapse
|
26
|
N-acetyl-seryl-aspartyl-lysyl-proline reduces cardiac collagen cross-linking and inflammation in angiotensin II-induced hypertensive rats. Clin Sci (Lond) 2013; 126:85-94. [PMID: 23834332 DOI: 10.1042/cs20120619] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have reported previously that Ac-SDKP (N-acetyl-seryl-aspartyl-lysyl-proline) reduces fibrosis and inflammation (in macrophages and mast cells). However, it is not known whether Ac-SDKP decreases collagen cross-linking and lymphocyte infiltration; lymphocytes modulate both collagen cross-linking and ECM (extracellular matrix) formation in hypertension. Thus we hypothesized that (i) in AngII (angiotensin II)-induced hypertension, Ac-SDKP prevents increases in cross-linked and total collagen by down-regulating LOX (lysyl oxidase), the enzyme responsible for cross-linking, and (ii) these effects are associated with decreased pro-fibrotic cytokine TGFβ (transforming growth factor β) and the pro-inflammatory transcription factor NF-κB (nuclear factor κB) and CD4+/CD8+ lymphocyte infiltration. We induced hypertension in rats by infusing AngII either alone or combined with Ac-SDKP for 3 weeks. Whereas Ac-SDKP failed to lower BP (blood pressure) or LV (left ventricular) hypertrophy, it did prevent AngII-induced increases in (i) cross-linked and total collagen, (ii) LOX mRNA expression and LOXL1 (LOX-like 1) protein, (iii) TGFβ expression, (iv) nuclear translocation of NF-κB, (v) CD4+/CD8+ lymphocyte infiltration, and (vi) CD68+ macrophages infiltration. In addition, we found a positive correlation between CD4+ infiltration and LOXL1 expression. In conclusion, the effect of Ac-SDKP on collagen cross-linking and total collagen may be due to reduced TGFβ1, LOXL1, and lymphocyte and macrophage infiltration, and its effect on inflammation could be due to lower NF-κB.
Collapse
|
27
|
|
28
|
Conte E, Genovese T, Gili E, Esposito E, Iemmolo M, Fruciano M, Fagone E, Pistorio MP, Crimi N, Cuzzocrea S, Vancheri C. Protective effects of thymosin β4 in a mouse model of lung fibrosis. Ann N Y Acad Sci 2012; 1269:69-73. [DOI: 10.1111/j.1749-6632.2012.06694.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Nakagawa P, Liu Y, Liao TD, Chen X, González GE, Bobbitt KR, Smolarek D, Peterson EL, Kedl R, Yang XP, Rhaleb NE, Carretero OA. Treatment with N-acetyl-seryl-aspartyl-lysyl-proline prevents experimental autoimmune myocarditis in rats. Am J Physiol Heart Circ Physiol 2012; 303:H1114-27. [PMID: 22923621 DOI: 10.1152/ajpheart.00300.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocarditis is commonly associated with cardiotropic infections and has been linked to development of autoimmunity. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring tetrapeptide that prevents inflammation and fibrosis in hypertension and other cardiovascular diseases; however, its effect on autoimmune-mediated cardiac diseases remains unknown. We studied the effects of Ac-SDKP in experimental autoimmune myocarditis (EAM), a model of T cell-mediated autoimmune disease. This study was conducted to test the hypothesis that Ac-SDKP prevents autoimmune myocardial injury by modulating the immune responses. Lewis rats were immunized with porcine cardiac myosin and treated with Ac-SDKP or vehicle. In EAM, Ac-SDKP prevented both systolic and diastolic cardiac dysfunction, remodeling as shown by hypertrophy and fibrosis, and cell-mediated immune responses without affecting myosin-specific autoantibodies or antigen-specific T cell responses. In addition, Ac-SDKP reduced cardiac infiltration by macrophages, dendritic cells, and T cells, pro-inflammatory cytokines [interleukin (IL)-1α, tumor necrosis factor-α, IL-2, IL-17] and chemokines (cytokine-induced neutrophil chemoattractant-1, interferon-γ-induced protein 10), cell adhesion molecules (intercellular adhesion molecule-1, L-selectin), and matrix metalloproteinases (MMP). Ac-SDKP prevents autoimmune cardiac dysfunction and remodeling without reducing the production of autoantibodies or T cell responses to cardiac myosin. The protective effects of Ac-SDKP in autoimmune myocardial injury are most likely mediated by inhibition of 1) innate and adaptive immune cell infiltration and 2) expression of proinflammatory mediators such as cytokines, chemokines, adhesion molecules, and MMPs.
Collapse
Affiliation(s)
- Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Suzuki Y, Itoh H, Katagiri F, Sato F, Kawasaki K, Sato Y, Mimata H, Takeyama M. Establishment and clinical application of a highly sensitive enzyme immunoassay for determination of N
-acetyl-seryl-aspartyl-lysyl-proline. J Pept Sci 2012; 18:276-81. [DOI: 10.1002/psc.2400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/26/2011] [Accepted: 01/10/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Yosuke Suzuki
- Department of Clinical Pharmacy; Oita University Hospital; Hasama-machi Oita 879-5593 Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy; Oita University Hospital; Hasama-machi Oita 879-5593 Japan
| | - Fumihiko Katagiri
- Laboratory of Clinical Biochemistry; Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Fuminori Sato
- Department of Urology, Faculty of Medicine; Oita University; Hasama-machi Oita 879-5593 Japan
| | - Kanako Kawasaki
- Department of Clinical Pharmacy; Oita University Hospital; Hasama-machi Oita 879-5593 Japan
| | - Yuhki Sato
- Department of Clinical Pharmacy; Oita University Hospital; Hasama-machi Oita 879-5593 Japan
| | - Hiromitsu Mimata
- Department of Urology, Faculty of Medicine; Oita University; Hasama-machi Oita 879-5593 Japan
| | - Masaharu Takeyama
- Department of Clinical Pharmacy; Oita University Hospital; Hasama-machi Oita 879-5593 Japan
| |
Collapse
|
31
|
Kanasaki M, Nagai T, Kitada M, Koya D, Kanasaki K. Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors. FIBROGENESIS & TISSUE REPAIR 2011; 4:25. [PMID: 22126210 PMCID: PMC3253677 DOI: 10.1186/1755-1536-4-25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022]
Abstract
Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP).
Collapse
Affiliation(s)
- Megumi Kanasaki
- Division of Diabetes & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|
32
|
Renal protective effects of N-acetyl-Ser-Asp-Lys-Pro in deoxycorticosterone acetate-salt hypertensive mice. J Hypertens 2011; 29:330-8. [PMID: 21052020 DOI: 10.1097/hjh.0b013e32834103ee] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypertension-induced renal injury is characterized by inflammation, fibrosis and proteinuria. Previous studies have demonstrated that N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP) inhibits renal damage following diabetes mellitus and antiglomerular basement membrane nephritis. However, its effects on low-renin hypertensive nephropathy are not known. Thus, we hypothesized that Ac-SDKP has renal protective effects on deoxycorticosterone acetate (DOCA)-salt hypertensive mice, decreasing inflammatory cell infiltration, matrix deposition and albuminuria. METHOD We uninephrectomized 16-week-old C57BL/6J mice and treated them with either placebo, DCOA (10 mg/10 g body weight subcutaneous) and 1% sodium chloride with 0.2% potassium chloride in drinking water (DOCA-salt) or DOCA-salt with Ac-SDKP (800 μg/kg per day) for 12 weeks. We measured blood pressure, urine albumin, glomerular matrix, renal collagen content, monocyte/macrophage infiltration and glomerular nephrin expression. RESULTS Treatment with DOCA-salt significantly increased blood pressure (P < 0.01), which remained unaltered by Ac-SDKP. Ac-SDKP decreased DOCA-salt-induced renal collagen deposition, glomerular matrix expansion and monocyte/macrophage infiltration. Moreover, DOCA-salt-induced increase in albuminuria was normalized by Ac-SDKP (controls, 10.8 ± 1.7; DOCA-salt, 41 ± 5; DOCA-salt + Ac-SDKP, 13 ± 3 μg/10 g body weight per 24 h; P < 0.001, DOCA-salt vs. DOCA-salt + Ac-SDKP). Loss of nephrin reportedly causes excess urinary protein excretion; therefore, we determined whether Ac-SDKP inhibits proteinuria by restoring nephrin expression in the glomerulus of hypertensive mice. DOCA-salt significantly downregulated glomerular nephrin expression (controls, 37 ± 8; DOCA-salt, 10 ± 1.5% of glomerular area; P < 0.01), which was partially reversed by Ac-SDKP (23 ± 4.0% of glomerular area; P = 0.065, DOCA-salt vs. DOCA-salt + Ac-SDKP). CONCLUSION We concluded that Ac-SDKP prevents hypertension-induced inflammatory cell infiltration, collagen deposition, nephrin downregulation and albuminuria, which could lead to renoprotection in hypertensive mice.
Collapse
|
33
|
Rupp H, Rupp TP, Alter P, Jung N, Pankuweit S, Maisch B. Intrapericardial procedures for cardiac regeneration by stem cells: need for minimal invasive access (AttachLifter) to the normal pericardial cavity. Herz 2011; 35:458-65. [PMID: 20941468 DOI: 10.1007/s00059-010-3382-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In view of the only modest functional and anatomical improvements achieved by bone marrow-derived cell transplantation in patients with heart disease, the question was addressed whether the intracoronary, transcoronary-venous, and intramyocardial delivery routes are adequate. It is hypothesized that an intrapericardial delivery of stem cells or activators of resident cardiac stem cells increases therapeutic benefits. From such an intrapericardial depot, cells or modulating factors, such as thymosin β4 or Ac-SDKP, are expected to reach the myocardium with sustained kinetics. Novel tools which provide access to the pericardial space even in the absence of pericardial effusion are, therefore, described. When the pericardium becomes attached to the suction head (monitored by an increase in negative pressure), the pericardium is lifted from the epicardium ("AttachLifter"). The opening of the suction head ("Attacher") is narrowed by flexible clamps which grab the tissue and improve the vacuum seal in the case of uneven tissue. A ridge, i.e.,"needle guidance", on the suction head excludes injury to the epicardium, whereby the pericardium is punctured by a needle which resides outside the suction head. A fiberscope can be used to inspect the pericardium prior to puncture. Based on these procedures, the role of the pericardial space and the presence of pericardial effusion in cardiac regeneration can be assessed.
Collapse
Affiliation(s)
- H Rupp
- Department of Internal Medicine - Cardiology, Experimental Cardiology Laboratory, Philipps University of Marburg, Marburg, Deutschland.
| | | | | | | | | | | |
Collapse
|
34
|
Chen YW, Liu BW, Zhang YJ, Chen YW, Dong GF, Ding XD, Xu LM, Pat B, Fan JG, Li DG. Preservation of basal AcSDKP attenuates carbon tetrachloride-induced fibrosis in the rat liver. J Hepatol 2010; 53:528-536. [PMID: 20646773 DOI: 10.1016/j.jhep.2010.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/15/2010] [Accepted: 03/31/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous tetrapeptide which has antifibrogenic effects at physiological concentrations in various tissues. AcSDKP is produced locally in the liver, however, little is known about its biological effect in this organ. We hypothesize that basal levels of endogenous AcSDKP decrease during the development of liver fibrosis and preservation of basal AcSDKP attenuates liver fibrosis. METHODS Endogenous levels of AcSDKP in the liver were measured by enzyme immunoassay after 2, 6, and 10 weeks of carbon tetrachloride (CCl(4))-induced liver fibrosis in rats. Subcutaneous osmotic pump infusion of vehicle or AcSDKP (800 microg/kg/day) was administered to CCl(4)-treated rats for 8 weeks to study the effect of exogenous AcSDKP on liver fibrosis. The effect of AcSDKP on profibrogenic properties of hepatic stellate cells was studied in vitro. RESULTS Endogenous AcSDKP was significantly decreased in the liver of CCl(4)-treated rats. Chronic AcSDKP infusion preserved basal levels of AcSDKP and reduced liver injury, inflammation, fibrosis, and profibrogenic transforming growth factor-beta signaling. This was demonstrated by decreased aminotransferase serum levels, CD45 positive cells, collagen accumulation, alpha-smooth muscle actin positivity, transforming growth factor-beta1, phosphorylated Smad2/3 protein, increased bone morphogenetic protein-7, and phosphorylated Smad1/5/8. Further, AcSDKP exerts antifibrogenic effects on hepatic stellate cells (HSCs) by downregulation of HSC activation in vitro. CONCLUSIONS Maintaining physiological levels of AcSDKP is critical in negatively regulating the development of fibrosis in chronic liver injury. Preservation of AcSDKP may be a useful therapeutic approach in the management of liver fibrosis.
Collapse
Affiliation(s)
- Yuan-Wen Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Thymosin beta(4) as well as the other members of the beta-thymosin family are important G-actin sequestering peptides. The chemical properties, the biosynthesis, and posttranslational modifications (PTMs) of these peptides are discussed. During biosynthesis of thymosin beta(4) the initiator methionine is removed and the N-terminus is acetylated. Research on proteomics revealed several acetylated lysine residues and two phosphorylated threonine residues. The enormous number of phosphorylable and acetylable sites in the human proteome raises the question about the biological significance of these PTMs in the context of beta-thymosins. Presently, this question cannot be answered because neither the concentration of these modified beta-thymosins in cells is known nor the consequences of the modifications on the biological function(s) of beta-thymosins have been studied yet. Thymosin beta(4) is also posttranslationally modified by transglutaminase forming covalent bonds with other molecules. Prolyl oligopeptidase generates ac-SDKP from thymosin beta(4). The concentration of C-terminal peptide fragments of thymosin beta(4) is elevated in the blood of patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- E Hannappel
- Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
36
|
Peng H, Carretero OA, Peterson EL, Rhaleb NE. Ac-SDKP inhibits transforming growth factor-beta1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Am J Physiol Heart Circ Physiol 2010; 298:H1357-64. [PMID: 20154264 DOI: 10.1152/ajpheart.00464.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) inhibits collagen production and cell proliferation in cultured rat cardiac fibroblasts, but its effect on differentiation of fibroblasts into myofibroblasts is not known. High amounts of transforming growth factor-beta1 (TGF-beta1) have been found in fibrotic cardiac tissue. TGF-beta1 converts fibroblasts into myofibroblasts, which produce more extracellular matrix proteins than fibroblasts. We hypothesized that 1) Ac-SDKP inhibits TGF-beta1-induced differentiation of fibroblasts into myofibroblasts; and 2) this effect is mediated in part by blocking phosphorylation of small-mothers-against-decapentaplegic (Smad) 2 and extracellular signal-regulated kinase (ERK) 1/2. For this study, we used human fetal cardiac fibroblasts (HCFs), which do not spontaneously become myofibroblasts when cultured at low passages. We investigated the effect of Ac-SDKP on TGF-beta1-induced HCF transformation into myofibroblasts, Smad2 and ERK1/2 phosphorylation, Smad7 expression, cell proliferation, and collagen production. We also investigated TGF-beta1 production by HCFs stimulated with endothelin-1 (ET-1). As expected, HCFs treated with TGF-beta1 transformed into myofibroblasts as indicated by increased expression of alpha-smooth muscle actin and a higher proportion of the embryonic isoform of smooth muscle myosin compared with untreated cells. TGF-beta1 also increased Smad2 and ERK1/2 phosphorylation but did not affect Smad7 expression. In addition, TGF-beta1 stimulated HCF proliferation as indicated by an increase in mitochondrial dehydrogenase activity and collagen production (hydroxyproline assay). Ac-SDKP significantly inhibited all of the effects of TGF-beta1. It also inhibited ET-1-stimulated TGF-beta1 production. We concluded that Ac-SDKP markedly suppresses differentiation of human cardiac fibroblasts into myofibroblasts, probably by inhibiting the TGF-beta/Smad/ERK1/2 signaling pathway, and thus mediating its anti-fibrotic effects.
Collapse
Affiliation(s)
- Hongmei Peng
- Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
37
|
Liao TD, Yang XP, D'Ambrosio M, Zhang Y, Rhaleb NE, Carretero OA. N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal injury and dysfunction in hypertensive rats with reduced renal mass: council for high blood pressure research. Hypertension 2009; 55:459-67. [PMID: 20026760 DOI: 10.1161/hypertensionaha.109.144568] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring peptide of which the plasma concentration is increased 4- to 5-fold by angiotensin-converting enzyme inhibitors. We reported previously that, in models of both hypertension and postmyocardial infarction, Ac-SDKP reduces cardiac inflammation and fibrosis. However, it is unknown whether Ac-SDKP can prevent or reverse renal injury and dysfunction in hypertension. In the present study, we tested the hypothesis that, in rats with 5/6 nephrectomy (5/6Nx)-induced hypertension, Ac-SDKP reduces renal damage, albuminuria, and dysfunction by decreasing inflammatory cell infiltration and renal fibrosis and by increasing nephrin protein. Ac-SDKP (800 microg/kg per day, SC via osmotic minipump) or vehicle was either started 7 days before 5/6Nx (prevention) and continued for 3 weeks or started 3 weeks after 5/6Nx (reversal) and continued for another 3 weeks. Rats with 5/6Nx developed high blood pressure, left ventricular hypertrophy, albuminuria, decreased glomerular filtration rate, and increased macrophage infiltration (inflammation) and renal collagen content (fibrosis). Ac-SDKP did not affect blood pressure or left ventricular hypertrophy in either group; however, it significantly reduced albuminuria, renal inflammation, and fibrosis and improved glomerular filtration rate in both prevention and reversal groups. Moreover, slit diaphragm nephrin protein expression in the glomerular filtration barrier was significantly decreased in hypertensive rats. This effect was partially prevented or reversed by Ac-SDKP. We concluded that Ac-SDKP greatly attenuates albuminuria and renal fibrosis and improves renal function in rats with 5/6Nx. These effects may be related to decreased inflammation (macrophages) and increased nephrin protein.
Collapse
Affiliation(s)
- Tang-Dong Liao
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Mich 48202-2689, USA
| | | | | | | | | | | |
Collapse
|
38
|
Prevention of myocardial fibrosis by N-acetyl-seryl-aspartyl-lysyl-proline in diabetic rats. Clin Sci (Lond) 2009; 118:211-20. [PMID: 20310083 DOI: 10.1042/cs20090234] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ac-SDKP (N-acetyl-seryl-aspartyl-lysyl-proline) is a physiological tetrapeptide hydrolysed by ACE (angiotensin-converting enzyme). In experimental models of hypertension, Ac-SDKP has antifibrotic effects in the heart; however, the role of Ac-SDKP in diabetic cardiomyopathy is currently unknown. The aim of the present study was to evaluate the effect of Ac-SDKP on cardiac systolic and diastolic function, and interstitial and perivascular fibrosis in the heart of diabetic rats.Diabetes was induced in 55 Sprague-Dawley rats by streptozotocin injection. Control rats (n=18)underwent only buffer injection.Out of the 55 diabetic rats, 19 were chronically treated with insulin and 13 with the ACEI (ACE inhibitor) ramipril (3 mg x kg(-1 )of body weight x day(-1)). At 2 months after the onset of diabetes, Ac-SDKP (1 mg x kg(-1) of body weight x day(-1)) was administered by osmotic minipumps for 8 weeks to eight control rats, 13 diabetic rats, seven diabetic rats treated with ramipril and nine insulin-treated diabetic rats. Diabetic rats had a significant increase in blood glucose levels. Left ventricular interstitial and perivascular fibrosis, and TGF-beta1 (transforming growth factor-beta1) protein levels were increased in diabetic rats, but not in insulin-treated diabetic rats and ramipril-treated diabetic rats, compared with control rats. Ac-SDKP administration significantly reduced left ventricular interstitial and perivascular fibrosis in diabetic rats and in diabetic rats treated with ramipril. This was accompanied by a significant reduction in active TGF-beta1 and phospho-Smad2/3 protein levels in myocardial tissue of diabetic rats. Echocardiography showed that diabetes was associated with increased end-systolic diameters, and depressed global systolic function and diastolic dysfunction, as assessed by transmitral Doppler velocity profile. These changes were completely reversed by insulin or ramipril treatment. Ac-SDKP treatment partially restored diastolic function in diabetic rats. In conclusion, Ac-SDKP administration in diabetic rats reduces left ventricular interstitial and perivascular fibrosis, active TGF-beta1 and phospho-Smad2/3levels, and improves diastolic function. Taken together, these findings suggest that, by inhibiting theTGF-beta/Smad pathway, Ac-SDKP protects against the development of diabetic cardiomyopathy
Collapse
|
39
|
Liu YH, D'Ambrosio M, Liao TD, Peng H, Rhaleb NE, Sharma U, André S, Gabius HJ, Carretero OA. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol 2008; 296:H404-12. [PMID: 19098114 DOI: 10.1152/ajpheart.00747.2008] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Galectin-3 (Gal-3) is secreted by activated macrophages. In hypertension, Gal-3 is a marker for hypertrophic hearts prone to develop heart failure. Gal-3 infused in pericardial sac leads to cardiac inflammation, remodeling, and dysfunction. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a naturally occurring tetrapeptide, prevents and reverses inflammation and collagen deposition in the heart in hypertension and heart failure postmyocardial infarction. In the present study, we hypothesize that Ac-SDKP prevents Gal-3-induced cardiac inflammation, remodeling, and dysfunction, and these effects are mediated by the transforming growth factor (TGF)-beta/Smad3 signaling pathway. Adult male rats were divided into four groups and received the following intrapericardial infusion for 4 wk: 1) vehicle (saline, n = 8); 2) Ac-SDKP (800 microg x kg(-1) x day(-1), n = 8); 3) Gal-3 (12 microg/day, n = 7); and 4) Ac-SDKP + Gal-3 (n = 7). Left ventricular ejection fraction, cardiac output, and transmitral velocity were measured by echocardiography; inflammatory cell infiltration, cardiomyocyte hypertrophy, and collagen deposition in the heart by histological and immunohistochemical staining; and TGF-beta expression and Smad3 phosphorylation by Western blot. We found that, in the left ventricle, Gal-3 1) enhanced macrophage and mast cell infiltration, increased cardiac interstitial and perivascular fibrosis, and causes cardiac hypertrophy; 2) increased TGF-beta expression and Smad3 phosphorylation; and 3) decreased negative change in pressure over time response to isoproterenol challenge, ratio of early left ventricular filling phase to atrial contraction phase, and left ventricular ejection fraction. Ac-SDKP partially or completely prevented these effects. We conclude that Ac-SDKP prevents Gal-3-induced cardiac inflammation, fibrosis, hypertrophy, and dysfunction, possibly via inhibition of the TGF-beta/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Yun-He Liu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang H, Zhu SJ, Wang D, Wei YJ, Hu SS. Intramyocardial injection of tannic acid attenuates postinfarction remodeling: a novel approach to stabilize the breaking extracellular matrix. J Thorac Cardiovasc Surg 2008; 137:216-22, 222e1-2. [PMID: 19154928 DOI: 10.1016/j.jtcvs.2008.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 06/10/2008] [Accepted: 07/06/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Myocardial infarction is associated with early matrix metalloproteinase activation and extracellular matrix degradation. We tested the hypothesis that stabilizing the original extracellular matrix of the infarcted left ventricle with local injection of tannic acid would preserve cardiac structure and function. METHODS In vitro cytotoxicity of tannic acid was performed first; myocardial infarction model was induced by ligation of the left anterior descending branch in rats. Tannic acid was intramyocardially injected into infarcted site 24 hours after myocardial infarction (n = 30), and saline solution was injected in the same way as in the control (n = 30). The matrix metalloproteinase activity from tannic acid/saline solution-treated tissues was assayed by gelatin zymography 24 hours and 1 week after the treatment. The collagen content in the infarcted area was evaluated by hydroxyproline colorimetry assay 1 and 4 weeks after the treatment. Left ventricular structure and function were also evaluated with echocardiography, hemodynamics, and histologic examination. RESULTS Tannic acid at a concentration of 0.05% had minimal cytotoxic effects on cultured cardiomyocytes and thus was subsequently chosen as the optimal concentration for injection. Compared with the saline solution injection group, tannic acid treatment inhibited the matrix metalloproteinase-2/-9 activity and increased the collagen content at the early post-myocardial infarction stage (48.6 +/- 7.2 vs 37.3 +/- 6 microg/mg dry weight). Tannic acid treatment also significantly reduced infarct expansion (infarct expansion index: 1.04 +/- 0.15 vs 1.42 +/- 0.21) and left ventricular dilatation at 4 weeks after infarction. Although tannic acid treatment improved fractional shortening (26% +/- 2.4% vs 23.3% +/- 3.2%), it failed to alter blood pressure (systolic blood pressure: 93.8 +/- 8.2 vs 90.6 +/- 8.5 mm Hg) and rate of pressure rise. CONCLUSIONS Local delivery of tannic acid prevents collagen matrix degradation via cross-linking fibrous collagen and inhibiting matrix metalloproteinase activity but does not improve the intrinsic contractile function of myocardium. This treatment may be helpful to attenuate the adverse topographic remodeling after acute myocardial infarction.
Collapse
Affiliation(s)
- Hao Zhang
- Research Center for Cardiac Regenerative Medicine, the Ministry of Health, Cardiovascular Institute, Fu Wai Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
41
|
Lin CX, Rhaleb NE, Yang XP, Liao TD, D'Ambrosio MA, Carretero OA. Prevention of aortic fibrosis by N-acetyl-seryl-aspartyl-lysyl-proline in angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol 2008; 295:H1253-H1261. [PMID: 18641275 DOI: 10.1152/ajpheart.00481.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibrosis is an important component of large conduit artery disease in hypertension. The endogenous tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory and antifibrotic effects in the heart and kidney. However, it is not known whether Ac-SDKP has an anti-inflammatory and antifibrotic effect on conduit arteries such as the aorta. We hypothesize that in ANG II-induced hypertension Ac-SDKP prevents aortic fibrosis and that this effect is associated with decreased protein kinase C (PKC) activation, leading to reduced oxidative stress and inflammation and a decrease in the profibrotic cytokine transforming growth factor-beta1 (TGF-beta1) and phosphorylation of its second messenger Smad2. To test this hypothesis we used rats with ANG II-induced hypertension and treated them with either vehicle or Ac-SDKP. In this hypertensive model we found an increased collagen deposition and collagen type I and III mRNA expression in the aorta. These changes were associated with increased PKC activation, oxidative stress, intercellular adhesion molecule (ICAM)-1 mRNA expression, and macrophage infiltration. TGF-beta1 expression and Smad2 phosphorylation also increased. Ac-SDKP prevented these effects without decreasing blood pressure or aortic hypertrophy. Ac-SDKP also enhanced expression of inhibitory Smad7. These data indicate that in ANG II-induced hypertension Ac-SDKP has an aortic antifibrotic effect. This effect may be due in part to inhibition of PKC activation, which in turn could reduce oxidative stress, ICAM-1 expression, and macrophage infiltration. Part of the effect of Ac-SDKP could also be due to reduced expression of the profibrotic cytokine TGF-beta1 and inhibition of Smad2 phosphorylation.
Collapse
Affiliation(s)
- Chun-Xia Lin
- Hypertension and Vascular Research Div., Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202-2689, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sharma U, Rhaleb NE, Pokharel S, Harding P, Rasoul S, Peng H, Carretero OA. Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage. Am J Physiol Heart Circ Physiol 2008; 294:H1226-32. [PMID: 18178715 PMCID: PMC6824420 DOI: 10.1152/ajpheart.00305.2007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High blood pressure (HBP) is an important risk factor for cardiac, renal, and vascular dysfunction. Excess inflammation is the major pathogenic mechanism for HBP-induced target organ damage (TOD). N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a tetrapeptide specifically degraded by angiotensin converting enzyme (ACE), reduces inflammation, fibrosis, and TOD induced by HBP. Our hypothesis is that Ac-SDKP exerts its anti-inflammatory effects by inhibiting: 1) differentiation of bone marrow stem cells (BMSC) to macrophages, 2) activation and migration of macrophages, and 3) release of the proinflammatory cytokine TNF-alpha by activated macrophages. BMSC were freshly isolated and cultured in macrophage growth medium. Differentiation of murine BMSC to macrophages was analyzed by flow cytometry using F4/80 as a marker of macrophage maturation. Macrophage migration was measured in a modified Boyden chamber. TNF-alpha release by activated macrophages in culture was measured by ELISA. Myocardial macrophage activation in mice with ANG II-induced hypertension was studied by Western blotting of Mac-2 (galectin-3) protein. Interstitial collagen deposition was measured by picrosirius red staining. We found that Ac-SDKP (10 nM) reduced differentiation of cultured BMSC to mature macrophages by 24.5% [F4/80 positivity: 14.09 +/- 1.06 mean fluorescent intensity for vehicle and 10.63 +/- 0.35 for Ac-SDKP; P < 0.05]. Ac-SDKP also decreased galectin-3 and macrophage colony-stimulating factor-dependent macrophage migration. In addition, Ac-SDKP decreased secretion of TNF-alpha by macrophages stimulated with bacterial LPS. In mice with ANG II-induced hypertension, Ac-SDKP reduced expression of galectin-3, a protein produced by infiltrating macrophages in the myocardium, and interstitial collagen deposition. In conclusion, this study demonstrates that part of the anti-inflammatory effect of Ac-SDKP is due to its direct effect on BMSC and macrophage, inhibiting their differentiation, activation, and cytokine release. These effects explain some of the anti-inflammatory and antifibrotic properties of Ac-SDKP in hypertension.
Collapse
Affiliation(s)
- Umesh Sharma
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Blockade of the renin-angiotensin system (RAS) with angiotensin I-converting enzyme (ACE) inhibitors and AT1-receptor (AT1R) blockers has become one of the most successful therapeutic approaches in medicine. The question is no longer whether RAS inhibition helps, but rather how we can optimize inhibition to achieve optimal cardiovascular and renal protection. Indeed, numerous data have shown that the RAS is not blocked fully over 24 hours with current doses of RAS blockers because they trigger a counter-regulatory renin release that can offset pharmacologic inhibition of the RAS. This absence of full blockade may have clinical implications. Combination therapy with ACE inhibitors and AT1R antagonists thus has been proposed to inhibit the biological effects of the reactive renin release triggered by single-site RAS inhibition. By using this approach, numerous experimental and clinical studies have suggested that this combination therapy has additive or synergistic effects on blood pressure and on the prevention of cardiovascular and renal lesions. Although similar intensity of RAS blockade can be achieved by either combination therapy or by using high doses of an AT1-receptor antagonist given alone, the ACE inhibitor present in the combination interferes with the bradykinin-nitric oxide pathway and the N-acetyl-Ser-Asp-Lys-Pro metabolism, which both may have additional biological effects.
Collapse
Affiliation(s)
- Michel Azizi
- Université Paris Descartes, Faculté de Médecine, and Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, and INSERM, CIC 9201, Paris, France
| | | |
Collapse
|
44
|
Cavasin MA. Therapeutic potential of thymosin-beta4 and its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) in cardiac healing after infarction. Am J Cardiovasc Drugs 2007; 6:305-11. [PMID: 17083265 DOI: 10.2165/00129784-200606050-00003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite the numerous advances made in the prevention and treatment of cardiovascular diseases, there is a need for new strategies to repair and/or regenerate the myocardium after ischemia and infarction in order to prevent maladaptive remodeling and cardiac dysfunction. This article compiles and analyzes the available experimental data regarding the potential therapeutic effects of thymosin-beta4 and its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) in cardiac healing after myocardial infarction (MI) as well as discussing the possible mechanisms involved. The healing properties of thymosin-beta4 have been described in different types of tissues, such as the skin and cornea, and more recently it has been shown that thymosin-beta4 facilitates cardiac repair after infarction by promoting cell migration and myocyte survival. Additionally, the tetrapeptide Ac-SDKP was reported to reduce left ventricular fibrosis in hypertensive rats, reverse fibrosis and inflammation in rats with MI, and stimulate both in vitro and in vivo angiogenesis. Ac-SDKP also reduced cardiac rupture rate in mice post-MI. Some of the effects of Ac-SDKP, such as the enhancement of angiogenesis and the decrease in inflammation and collagenase activity, are similar to those described for thymosin-beta4. Thus, it is possible that Ac-SDKP could be mediating some of the beneficial effects of its precursor. Although the experimental evidence is very promising, there are no data available from a clinical trial supporting the use of thymosin-beta(4) or Ac-SDKP as means of healing the myocardium after MI in patients.
Collapse
Affiliation(s)
- Maria A Cavasin
- Hypertension and Vascular Research Division, Henry Ford Health System, Detroit, Michigan, USA.
| |
Collapse
|
45
|
Peng H, Carretero OA, Liao TD, Peterson EL, Rhaleb NE. Role of N-acetyl-seryl-aspartyl-lysyl-proline in the antifibrotic and anti-inflammatory effects of the angiotensin-converting enzyme inhibitor captopril in hypertension. Hypertension 2007; 49:695-703. [PMID: 17283252 PMCID: PMC3257515 DOI: 10.1161/01.hyp.0000258406.66954.4f] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Angiotensin-converting enzyme inhibitors (ACEis) are known to have antifibrotic effects on the heart and kidney in both animal models and humans. N-acetyl-seryl-aspartyl-lysyl-proline is a natural inhibitor of proliferation of hematopoietic stem cells and a natural substrate of ACEi that was reported to prevent cardiac and renal fibrosis in vivo. However, it is not clear whether N-acetyl-seryl-aspartyl-lysyl-proline participates in the antifibrotic effects of ACEi. To clarify this issue, we used a model of aldosterone-salt-induced hypertension in rats treated with the ACEi captopril either alone or combined with an anti-N-acetyl-seryl-aspartyl-lysyl-proline monoclonal antibody. These hypertensive rats had the following: (1) left ventricular and renal hypertrophy, as well as increased collagen deposition in the left ventricular and the kidney; (2) glomerular matrix expansion; and (3) increased ED1-positive cells and enhanced phosphorylated-p42/44 mitogen-activated protein kinase in the left ventricle and kidney. The ACEi alone significantly lowered systolic blood pressure (P=0.008) with no effect on organ hypertrophy; it significantly lowered left ventricular collagen content, and this effect was blocked by the monoclonal antibody as confirmed by the histological data. As expected, the ACEi significantly decreased renal collagen deposition and glomerular matrix expansion, and these effects were attenuated by the monoclonal antibody. Likewise, the ACEi significantly decreased ED1-positive cells and inhibited p42/44 mitogen-activated protein kinase phosphorylation in the left ventricle and kidney, and these effects were blocked by the monoclonal antibody. We concluded that in aldosterone-salt-induced hypertension, the antifibrotic effect of ACEi on the heart and kidney, is partially mediated by N-acetyl-seryl-aspartyl-lysyl-proline, resulting in decreased inflammatory cell infiltration and p42/44 mitogen-activated protein kinase activation.
Collapse
Affiliation(s)
- Hongmei Peng
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI 48202-2689, USA
| | | | | | | | | |
Collapse
|
46
|
Zhuo JL, Carretero OA, Peng H, Li XC, Regoli D, Neugebauer W, Rhaleb NE. Characterization and localization of Ac-SDKP receptor binding sites using 125I-labeled Hpp-Aca-SDKP in rat cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2007; 292:H984-93. [PMID: 17028162 PMCID: PMC2276842 DOI: 10.1152/ajpheart.00776.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown that the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) inhibited endothelin-1 (ET-1)-induced cell proliferation and collagen synthesis in cultured rat cardiac fibroblasts (CFs) and reduced left ventricle collagen deposition in rats with aldosterone (salt)- and ANG II-induced hypertension. However, it is not known whether these effects are mediated by receptor binding sites specific for Ac-SDKP. We hypothesized that Ac-SDKP exerts antifibrotic effects by binding to specific receptor sites in cultured rat CFs, which mediate the inhibitory effects of Ac-SDKP on ET-1-stimulated collagen synthesis. Ac-SDKP binding sites in rat CFs and hearts were characterized by a specific radioligand, (125)I-labeled 3-(p-hydroxyphenyl)-propionic acid (or desaminotyrosine) (Hpp)-Aca-SDKP, a biologically active analog of Ac-SDKP. (125)I-labeled Hpp-Aca-SDKP bound to rat CFs and fractionated membranes with similar affinities and specificity in a concentration- and time-dependent fashion. Scatchard plot analyses revealed a single class of high-affinity Hpp-Aca-SDKP binding sites (maximal binding: 1,704 +/- 198 fmol/mg protein; dissociation constant: 3.3 +/- 0.6 nM). (125)I-labeled Hpp-Aca-SDKP binding in CFs was displaced by unlabeled native peptide Ac-SDKP (inhibition constant: 0.69 +/- 0.15 nM) and the analog Hpp-Aca-SDKP (inhibition constant: 10.4 +/- 0.2 nM) but not the unrelated peptide ANG II or ET-1 (10 microM). In vitro, both Ac-SDKP and Hpp-Aca-SDKP inhibited ET-1-stimulated collagen synthesis in CFs in a dose-dependent fashion, reaching a maximal effect at 1 nM (control: 7.5 +/- 0.4, ET-1: 19.9 +/- 1.2, ET-1+SDKP: 7.7 +/- 0.4, ET-1+Hpp-Aca-SDKP: 9.7 +/- 0.1 microg/mg protein; P < 0.001). Ac-SDKP also significantly attenuated ET-1-induced increases in intracellular calcium and MAPK ERK1/2 phosphorylation in CFs. In the rat heart, in vitro autoradiography revealed specific (125)I-labeled Hpp-Aca-SDKP binding throughout the myocardium, primarily interstitially. We believe that these results demonstrate for the first time that Hpp-Aca-SDKP is a functional ligand specific for Ac-SDKP receptor binding sites and that both Ac-SDKP and Hpp-Aca-SDKP exert antifibrotic effects by binding to Ac-SDKP receptors in rat CFs.
Collapse
Affiliation(s)
- Jia L Zhuo
- Division of Hypertension and Vascular Research, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Omata M, Taniguchi H, Koya D, Kanasaki K, Sho R, Kato Y, Kojima R, Haneda M, Inomata N. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline Ameliorates the Progression of Renal Dysfunction and Fibrosis in WKY Rats with Established Anti–Glomerular Basement Membrane Nephritis. J Am Soc Nephrol 2006; 17:674-85. [PMID: 16452498 DOI: 10.1681/asn.2005040385] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), which is hydrolyzed by angiotensin-converting enzyme, is a natural regulator of hematopoiesis. Here it is shown that Ac-SDKP inhibits TGF-beta action in mesangial cells. Because TGF-beta is thought to play a pivotal role in the development and progression of glomerulonephritis, the therapeutic effects of Ac-SDKP on an established model of renal dysfunction and histologic alteration in Wistar-Kyoto rats with anti-glomerular basement membrane nephritis was examined. Fourteen days after the induction of anti-glomerular basement membrane nephritis, the rats were treated subcutaneously with Ac-SDKP at a dose of 1 mg/kg per d for 4 wk. Treatment with Ac-SDKP significantly improved proteinuria and renal dysfunction, including increased plasma blood urea nitrogen and creatinine levels and decreased creatinine clearance. Histologic examination showed severe glomerulosclerosis and interstitial fibrosis in the vehicle-treated rats, whereas these histologic injuries were significantly ameliorated in rats that were treated with Ac-SDKP. The histologic improvements were accompanied by the suppression of gene and protein expression of fibronectin, interstitial collagen, and TGF-beta1 in the nephritic kidney. Furthermore, treatment with Ac-SDKP resulted in the inhibition of Smad2 phosphorylation, an increase in Smad7 expression in the kidney, and reduction of macrophage accumulation into the glomeruli and tubulointerstitium in nephritic rats. In conclusion, Ac-SDKP significantly ameliorated the progression of renal dysfunction and fibrosis even after the establishment of nephritis. The inhibitory effect of Ac-SDKP was mediated in part by the inhibition of TGF-beta/Smad signal transduction and the inflammatory response. These findings suggest that Ac-SDKP treatment may be a novel and useful therapeutic strategy for the treatment of progressive renal diseases.
Collapse
Affiliation(s)
- Mitsugu Omata
- Biomedical Research Laboratories, Daiichi Asubio Pharma Co., Ltd., 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8513, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Peng H, Carretero OA, Vuljaj N, Liao TD, Motivala A, Peterson EL, Rhaleb NE. Angiotensin-converting enzyme inhibitors: a new mechanism of action. Circulation 2005; 112:2436-45. [PMID: 16216963 PMCID: PMC6824430 DOI: 10.1161/circulationaha.104.528695] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Angiotensin-converting enzyme (ACE) inhibitors are valuable agents for the treatment of hypertension, heart failure, and other cardiovascular and renal diseases. The cardioprotective effects of ACE inhibitors are mediated by blockade of both conversion of angiotensin (Ang) I to Ang II and kinin hydrolysis. Here, we report a novel mechanism that may explain the cardiac antifibrotic effect of ACE inhibition, involving blockade of the hydrolysis of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). METHODS AND RESULTS To study the role of Ac-SDKP in the therapeutic effects of the ACE inhibitor captopril, we used a model of Ang II-induced hypertension in rats treated with the ACE inhibitor either alone or combined with a blocking monoclonal antibody (mAb) to Ac-SDKP. These hypertensive rats had left ventricular hypertrophy (LVH) as well as increases in cardiac fibrosis, cell proliferation, transforming growth factor-beta (TGF-beta) expression, and phosphorylation of Smad2 (P-Smad2), a signaling mediator of the effects of TGF-beta. The ACE inhibitor did not decrease either blood pressure or LVH; however, it significantly decreased LV collagen from 13.3+/-0.9 to 9.6+/-0.6 microg/mg dry wt (P<0.006), and this effect was blocked by the mAb (12.1+/-0.6; P<0.034, ACE inhibitor versus ACE inhibitor+mAb). In addition, analysis of interstitial collagen volume fraction and perivascular collagen (picrosirius red staining) showed a very similar tendency. Likewise, the ACE inhibitor significantly decreased LV monocyte/macrophage infiltration, cell proliferation, and TGF-beta expression, and these effects were blocked by the mAb. Ang II increased Smad2 phosphorylation 3.2+/-0.9-fold; the ACE inhibitor lowered this to 0.6+/-0.1-fold (P<0.001), and the mAb blocked this decrease to 2.1+/-0.3 (P<0.001, ACE inhibitor versus ACE inhibitor+mAb). Similar findings were seen when the ACE inhibitor was replaced by Ac-SDKP. CONCLUSIONS We concluded that in Ang II-induced hypertension, the cardiac antifibrotic effect of ACE inhibitors is a result of the inhibition of Ac-SDKP hydrolysis, resulting in a decrease in cardiac cell proliferation (probably fibroblasts), inflammatory cell infiltration, TGF-beta expression, Smad2 activation, and collagen deposition.
Collapse
Affiliation(s)
- Hongmei Peng
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI 48202-2689, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang D, Carretero OA, Yang XY, Rhaleb NE, Liu YH, Liao TD, Yang XP. N-acetyl-seryl-aspartyl-lysyl-proline stimulates angiogenesis in vitro and in vivo. Am J Physiol Heart Circ Physiol 2004; 287:H2099-105. [PMID: 15256375 PMCID: PMC6824423 DOI: 10.1152/ajpheart.00592.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a natural inhibitor of pluripotent hematopoietic stem cell proliferation, has been suggested as capable of promoting an angiogenic response. We studied whether Ac-SDKP stimulates endothelial cell proliferation, migration, and tube formation; enhances angiogenic response in the rat cornea after implantation of a tumor spheroid; and increases capillary density in rat hearts with myocardial infarction (MI). In vitro, an immortal BALB/c mouse aortic endothelial 22106 cell line was used to determine the effects of Ac-SDKP on endothelial cell proliferation and migration and tube formation. In vivo, a 9L-gliosarcoma cell spheroid (250-300 microm in diameter) was implanted in the rat cornea and vehicle or Ac-SDKP (800 microg.kg(-1).day(-1) ip) infused via osmotic minipump. Myocardial capillary density was studied in rats with MI given either vehicle or Ac-SDKP. We found that Ac-SDKP 1) stimulated endothelial cell proliferation and migration and tube formation in a dose-dependent manner, 2) enhanced corneal neovascularization, and 3) increased myocardial capillary density. Endothelial cell proliferation and angiogenesis stimulated by Ac-SDKP could be beneficial in cardiovascular diseases such as hypertension and MI. Furthermore, because Ac-SDKP is mainly cleaved by ACE, it may partially mediate the cardioprotective effect of ACE inhibitors.
Collapse
Affiliation(s)
- Dahai Wang
- Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 W. Grand Blvd., Detroit, MI 48202-2689, USA
| | | | | | | | | | | | | |
Collapse
|