1
|
Gonzalez K, Merlin AC, Roye E, Ju B, Lee Y, Chicco AJ, Chung E. Voluntary Wheel Running Reduces Cardiometabolic Risks in Female Offspring Exposed to Lifelong High-Fat, High-Sucrose Diet. Med Sci Sports Exerc 2024; 56:1378-1389. [PMID: 38595204 PMCID: PMC11250925 DOI: 10.1249/mss.0000000000003443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE Maternal and postnatal overnutrition has been linked to an increased risk of cardiometabolic diseases in offspring. This study investigated the impact of adult-onset voluntary wheel running to counteract cardiometabolic risks in female offspring exposed to a life-long high-fat, high-sucrose (HFHS) diet. METHODS Dams were fed either an HFHS or a low-fat, low-sucrose (LFLS) diet starting from 8 wk before pregnancy and continuing throughout gestation and lactation. Offspring followed their mothers' diets. At 15 wk of age, they were divided into sedentary (Sed) or voluntary wheel running (Ex) groups, resulting in four groups: LFLS/Sed ( n = 10), LFLS/Ex ( n = 5), HFHS/Sed ( n = 6), HFHS/Ex ( n = 5). Cardiac function was assessed at 25 wk, with tissue collection at 26 wk for mitochondrial respiratory function and protein analysis. Data were analyzed using two-way ANOVA. RESULTS Although maternal HFHS diet did not affect the offspring's body weight at weaning, continuous HFHS feeding postweaning resulted in increased body weight and adiposity, irrespective of the exercise regimen. HFHS/Sed offspring showed increased left ventricular wall thickness and elevated expression of enzymes involved in fatty acid transport (CD36, FABP3), lipogenesis (DGAT), glucose transport (GLUT4), oxidative stress (protein carbonyls, nitrotyrosine), and early senescence markers (p16, p21). Their cardiac mitochondria displayed lower oxidative phosphorylation (OXPHOS) efficiency and reduced expression of OXPHOS complexes and fatty acid metabolism enzymes (ACSL5, CPT1B). However, HFHS/Ex offspring mitigated these effects, aligning more with LFLS/Sed offspring. CONCLUSIONS Adult-onset voluntary wheel running effectively counteracts the detrimental cardiac effects of a lifelong HFHS diet, improving mitochondrial efficiency, reducing oxidative stress, and preventing early senescence. This underscores the significant role of physical activity in mitigating diet-induced cardiometabolic risks.
Collapse
Affiliation(s)
- Kassandra Gonzalez
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Andrea Chiñas Merlin
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
- Biomedical Engineering, Tecnologico de Monterrey, Campus Monterrey, MEXICO
| | - Erin Roye
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Beomsoo Ju
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, University of West Florida, Pensacola, FL
| | - Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, University of West Florida, Pensacola, FL
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Eunhee Chung
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| |
Collapse
|
2
|
Gregolin CS, do Nascimento M, de Souza SLB, Mota GAF, Luvizotto RDAM, Sugizaki MM, Bazan SGZ, de Campos DHS, Camacho CRC, Cicogna AC, do Nascimento AF. Cardiac dysfunction in sucrose-fed rats is associated with alterations of phospholamban phosphorylation and TNF-α levels. Mol Cell Endocrinol 2024; 589:112236. [PMID: 38608803 DOI: 10.1016/j.mce.2024.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
INTRODUCTION High sucrose intake is linked to cardiovascular disease, a major global cause of mortality worldwide. Calcium mishandling and inflammation play crucial roles in cardiac disease pathophysiology. OBJECTIVE Evaluate if sucrose-induced obesity is related to deterioration of myocardial function due to alterations in the calcium-handling proteins in association with proinflammatory cytokines. METHODS Wistar rats were divided into control and sucrose groups. Over eight weeks, Sucrose group received 30% sucrose water. Cardiac function was determined in vivo using echocardiography and in vitro using papillary muscle assay. Western blotting was used to detect calcium handling protein; ELISA assay was used to assess TNF-α and IL-6 levels. RESULTS Sucrose led to cardiac dysfunction. RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channels were unchanged. However, pPBL-Thr17, and TNF-α levels were elevated in the S group. CONCLUSION Sucrose induced cardiac dysfunction and decreased myocardial contractility in association with altered pPBL-Thr17 and elevated cardiac pro-inflammatory TNF-α.
Collapse
Affiliation(s)
- Cristina Schmitt Gregolin
- Department of Pathology, Medical School (FMB) of São Paulo State University (Unesp), Botucatu Campus, São Paulo, Brazil
| | - Milena do Nascimento
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, Brazil
| | | | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Mário Mateus Sugizaki
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, Brazil
| | - Silméia Garcia Zanati Bazan
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Dijon Henrique Salomé de Campos
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Camila Renata Corrêa Camacho
- Department of Pathology, Medical School (FMB) of São Paulo State University (Unesp), Botucatu Campus, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
3
|
Duchatsch F, Miotto DS, Tardelli LP, Dionísio TJ, Campos DS, Santos CF, Okoshi K, Amaral SL. Blockade of Inflammatory Markers Attenuates Cardiac Remodeling and Fibrosis in Rats with Supravalvular Aortic Stenosis. Biomedicines 2023; 11:3219. [PMID: 38137440 PMCID: PMC10740498 DOI: 10.3390/biomedicines11123219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Since cardiac inflammation has been considered an important mechanism involved in heart failure, an anti-inflammatory treatment could control cardiac inflammation and mitigate the worsening of cardiac remodeling. This study evaluated the effects of dexamethasone (DEX) and ramipril treatment on inflammation and cardiac fibrosis in an experimental model of heart failure induced by supravalvular aortic stenosis. Wistar rats (21d) were submitted to an aortic stenosis (AS) protocol. After 21 weeks, an echocardiogram and a maximal exercise test were performed, and after 24 weeks, rats were treated with DEX, ramipril or saline for 14d. The left ventricle (LV) was removed for histological and inflammatory marker analyses. The AS group showed exercise intolerance (-32% vs. Sham), higher relative wall thickness (+63%), collagen deposition and capillary rarefaction, followed by cardiac disfunction. Both treatments were effective in reducing cardiac inflammation, but only DEX attenuated the increased relative wall thickness (-17%) and only ramipril reduced LV fibrosis. In conclusion, both DEX and ramipril decreased cardiac inflammatory markers, which probably contributed to the reduced cardiac fibrosis and relative wall thickness; however, treated AS rats did not show any improvement in cardiac function. Despite the complex pharmacological treatment of heart failure, treatment with an anti-inflammatory could delay the patient's poor prognosis.
Collapse
Affiliation(s)
- Francine Duchatsch
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos 13565-905, SP, Brazil; (F.D.); (D.S.M.); (L.P.T.)
| | - Danyelle S. Miotto
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos 13565-905, SP, Brazil; (F.D.); (D.S.M.); (L.P.T.)
| | - Lidieli P. Tardelli
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos 13565-905, SP, Brazil; (F.D.); (D.S.M.); (L.P.T.)
| | - Thiago J. Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, USP—University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9–75, Bauru 17012-901, SP, Brazil; (T.J.D.); (C.F.S.)
| | - Dijon S. Campos
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu 18618-687, SP, Brazil; (D.S.C.); (K.O.)
| | - Carlos F. Santos
- Department of Biological Sciences, Bauru School of Dentistry, USP—University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9–75, Bauru 17012-901, SP, Brazil; (T.J.D.); (C.F.S.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu 18618-687, SP, Brazil; (D.S.C.); (K.O.)
| | - Sandra L. Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos 13565-905, SP, Brazil; (F.D.); (D.S.M.); (L.P.T.)
- Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01—Vargem Limpa, Bauru 17033-360, SP, Brazil
| |
Collapse
|
4
|
Sharma AK, Singh S, Bhat M, Gill K, Zaid M, Kumar S, Shakya A, Tantray J, Jose D, Gupta R, Yangzom T, Sharma RK, Sahu SK, Rathore G, Chandolia P, Singh M, Mishra A, Raj S, Gupta A, Agarwal M, Kifayat S, Gupta A, Gupta P, Vashist A, Vaibhav P, Kathuria N, Yadav V, Singh RP, Garg A. New drug discovery of cardiac anti-arrhythmic drugs: insights in animal models. Sci Rep 2023; 13:16420. [PMID: 37775650 PMCID: PMC10541452 DOI: 10.1038/s41598-023-41942-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
- Ashish Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India.
| | - Shivam Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mehvish Bhat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Kartik Gill
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohammad Zaid
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anjali Shakya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Junaid Tantray
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Divyamol Jose
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rashmi Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Tsering Yangzom
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rajesh Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | | | - Gulshan Rathore
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Priyanka Chandolia
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Shobhit Raj
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Archita Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sumaiya Kifayat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anamika Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Prashant Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ankit Vashist
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Parth Vaibhav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Nancy Kathuria
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Vipin Yadav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Arun Garg
- MVN University, Palwal, Haryana, India
| |
Collapse
|
5
|
Ruppert M, Korkmaz-Icöz S, Benczik B, Ágg B, Nagy D, Bálint T, Sayour AA, Oláh A, Barta BA, Benke K, Ferdinandy P, Karck M, Merkely B, Radovits T, Szabó G. Pressure overload-induced systolic heart failure is associated with characteristic myocardial microRNA expression signature and post-transcriptional gene regulation in male rats. Sci Rep 2023; 13:16122. [PMID: 37752166 PMCID: PMC10522609 DOI: 10.1038/s41598-023-43171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
Although systolic function characteristically shows gradual impairment in pressure overload (PO)-evoked left ventricular (LV) hypertrophy (LVH), rapid progression to congestive heart failure (HF) occurs in distinct cases. The molecular mechanisms for the differences in maladaptation are unknown. Here, we examined microRNA (miRNA) expression and miRNA-driven posttranscriptional gene regulation in the two forms of PO-induced LVH (with/without systolic HF). PO was induced by aortic banding (AB) in male Sprague-Dawley rats. Sham-operated animals were controls. The majority of AB animals demonstrated concentric LVH and slightly decreased systolic function (termed as ABLVH). In contrast, in some AB rats severely reduced ejection fraction, LV dilatation and increased lung weight-to-tibial length ratio was noted (referred to as ABHF). Global LV miRNA sequencing revealed fifty differentially regulated miRNAs in ABHF compared to ABLVH. Network theoretical miRNA-target analysis predicted more than three thousand genes with miRNA-driven dysregulation between the two groups. Seventeen genes with high node strength value were selected for target validation, of which five (Fmr1, Zfpm2, Wasl, Ets1, Atg16l1) showed decreased mRNA expression in ABHF by PCR. PO-evoked systolic HF is associated with unique miRNA alterations, which negatively regulate the mRNA expression of Fmr1, Zfmp2, Wasl, Ets1 and Atg16l1.
Collapse
Affiliation(s)
- Mihály Ruppert
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary.
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Bettina Benczik
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Dávid Nagy
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Tímea Bálint
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Alex Ali Sayour
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Attila Oláh
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Bálint András Barta
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Kálmán Benke
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Béla Merkely
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Tamás Radovits
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| |
Collapse
|
6
|
Zhang Y, Huang Y, Ma QX, Xu ST, Shen L, Xu YY, Hai-Ye T, Chen ML, Rong YL. Guanxinning tablets improve myocardial hypertrophy by inhibiting the activation of MEK-ERK1/2 signaling pathway. J Appl Biomed 2023; 21:137-149. [PMID: 37747313 DOI: 10.32725/jab.2023.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/15/2023] [Indexed: 09/26/2023] Open
Abstract
Myocardial hypertrophy may lead to heart failure and sudden death. As traditional Chinese medicine, Guanxinning tablets (GXN) have significant pharmacological effects in the prevention and treatment of cardiovascular diseases. However, the anti-cardiac hypertrophy efficacy of GXN and its mechanism of action are still unclear. Therefore, we established a heart failure rat model and isolated primary cardiomyocytes of neonatal rat to observe the protective effect of GXN on heart failure rat model and the intervention effect on myocardial cell hypertrophy, and to explore the possible mechanism of GXN preventing and treating myocardial hypertrophy. The results of in vivo experiments showed that GXN could significantly reduce the degree of cardiac hypertrophy, reduce the size of cardiomyocytes, inhibit the degree of myocardial remodeling and fibrosis, and improve cardiac function in rats with early heart failure. The results of in vitro experiments showed that GXN was safe for primary cardiomyocytes and could improve cardiomyocyte hypertrophy and reduce the apoptosis of cardiomyocytes in pathological state, which may be related to the inhibition of the over-activation of MEK-ERK1/2 signaling pathway. In conclusion, GXN may inhibit cardiac hypertrophy and improve early heart failure by inhibiting the over-activation of MEK-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yan Zhang
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314000, China
- Zhejiang Chinese Medical University, Academy of Chinese Medicine & Institute of Comparative Medicine, Hangzhou 310053, China
| | - Yu Huang
- Zhejiang Chinese Medical University, Academy of Chinese Medicine & Institute of Comparative Medicine, Hangzhou 310053, China
| | - Quan-Xin Ma
- Zhejiang Chinese Medical University, Academy of Chinese Medicine & Institute of Comparative Medicine, Hangzhou 310053, China
| | - Song-Tao Xu
- Zhejiang Chinese Medical University, College of Pharmacy, Hangzhou 310053, China
| | - Liye Shen
- Zhejiang Chinese Medical University, College of Pharmacy, Hangzhou 310053, China
| | - Yan-Yun Xu
- Zhejiang Chinese Medical University, College of Pharmacy, Hangzhou 310053, China
| | - Tu Hai-Ye
- Zhejiang Chinese Medical University, College of Pharmacy, Hangzhou 310053, China
| | - Min-Li Chen
- Zhejiang Chinese Medical University, Academy of Chinese Medicine & Institute of Comparative Medicine, Hangzhou 310053, China
| | - Yi-Li Rong
- Zhejiang Chinese Medical University, Academy of Chinese Medicine & Institute of Comparative Medicine, Hangzhou 310053, China
| |
Collapse
|
7
|
Farag A, Mandour AS, Hendawy H, Elhaieg A, Elfadadny A, Tanaka R. A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci 2023; 10:1103229. [PMID: 37051509 PMCID: PMC10083377 DOI: 10.3389/fvets.2023.1103229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Heart failure (HF) is a serious health and economic burden worldwide, and its prevalence is continuously increasing. Current medications effectively moderate the progression of symptoms, and there is a need for novel preventative and reparative treatments. The development of novel HF treatments requires the testing of potential therapeutic procedures in appropriate animal models of HF. During the past decades, murine models have been extensively used in fundamental and translational research studies to better understand the pathophysiological mechanisms of HF and develop more effective methods to prevent and control congestive HF. Proper surgical approaches and anesthetic protocols are the first steps in creating these models, and each successful approach requires a proper anesthetic protocol that maintains good recovery and high survival rates after surgery. However, each protocol may have shortcomings that limit the study's outcomes. In addition, the ethical regulations of animal welfare in certain countries prohibit the use of specific anesthetic agents, which are widely used to establish animal models. This review summarizes the most common and recent surgical models of HF and the anesthetic protocols used in rat models. We will highlight the surgical approach of each model, the use of anesthesia, and the limitations of the model in the study of the pathophysiology and therapeutic basis of common cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Ahmed S. Mandour
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Ryou Tanaka
| |
Collapse
|
8
|
Ponzoni M, Coles JG, Maynes JT. Rodent Models of Dilated Cardiomyopathy and Heart Failure for Translational Investigations and Therapeutic Discovery. Int J Mol Sci 2023; 24:3162. [PMID: 36834573 PMCID: PMC9963155 DOI: 10.3390/ijms24043162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Even with modern therapy, patients with heart failure only have a 50% five-year survival rate. To improve the development of new therapeutic strategies, preclinical models of disease are needed to properly emulate the human condition. Determining the most appropriate model represents the first key step for reliable and translatable experimental research. Rodent models of heart failure provide a strategic compromise between human in vivo similarity and the ability to perform a larger number of experiments and explore many therapeutic candidates. We herein review the currently available rodent models of heart failure, summarizing their physiopathological basis, the timeline of the development of ventricular failure, and their specific clinical features. In order to facilitate the future planning of investigations in the field of heart failure, a detailed overview of the advantages and possible drawbacks of each model is provided.
Collapse
Affiliation(s)
- Matteo Ponzoni
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - John G. Coles
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jason T. Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
9
|
Ahsan F, Mahmood T, Wani TA, Zargar S, Siddiqui MH, Usmani S, Shamim A, Wahajuddin M. Effectual Endeavors of Silk Protein Sericin against Isoproterenol Induced Cardiac Toxicity and Hypertrophy in Wistar Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071063. [PMID: 35888151 PMCID: PMC9317748 DOI: 10.3390/life12071063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/24/2023]
Abstract
The silkworm cocoon has been used in the treatment of various ailments in different Asian countries. This research was designed to evaluate the effect of sericin on myocardial necrosis and hypertrophy in isoproterenol-challenged rats. The rats were administered with sericin (500 and 1000 mg/kg, p.o.) for 28 days, followed by administration of isoprenaline (85 mg/kg, s.c.) on the 29th and 30th days. The cardioprotective activity was assessed by various physical, enzymatic, and histopathological parameters along with apoptotic marker expression. The cardioprotective effect showed that pre-treatment of rats with sericin significantly increased the non-enzymatic antioxidants marker in serum and heart tissue (glutathione, vitamin E, and vitamin C). The results were the same in enzymatic antioxidant marker, mitochondrial enzymes, and protein. The grading of heart, heart/body weight ratio, gross morphology, cardiac markers, oxidative stress markers in serum and heart tissue, glucose, serum lipid profiling and Lysosomal hydrolases, heart apoptotic markers such as MHC expression by western blot, apoptosis by flow cytometry, total myocardial collagen content, fibrosis estimation, myocyte size were significantly decreased when compared with isoproterenol (ISG) group however histopathological studies showed normal architecture of heart in both control and treated rats. The pharmacological study reflects that sericin on both doses i.e., 500 mg/kg and 1000 mg/kg have potent cardioprotective action against the experimental model which was confirmed by various physical, biochemical, and histopathological parameters evaluated further research is required to examine the molecular mechanism of cardioprotective effect of sericin.
Collapse
Affiliation(s)
- Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
- Correspondence: ; Tel.: +91-9918681701
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow 226026, India;
| | - Shazia Usmani
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK;
| |
Collapse
|
10
|
Liu J, Lian H, Yu J, Wu J, Chen X, wang P, tian L, Yang Y, Yang J, Li D, Guo S. Study on diverse pathological characteristics of heart failure in different stages based on proteomics. J Cell Mol Med 2022; 26:1169-1182. [PMID: 35048506 PMCID: PMC8831959 DOI: 10.1111/jcmm.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Heart failure is a process characterized by significant disturbance of protein turnover. To elucidate the alterations in cardiac protein expression during the various phases of heart failure and to understand the nature of the processes involved, we analysed the proteome in an established heart failure model at different time points to monitor thousands of different proteins simultaneously. Here, heart failure was induced by transverse aortic constriction (TAC) in KM mice. At 2, 4 and 12 weeks after operation, protein expression profiles were determined in sham‐operated (controls) and TAC mice, using label‐free quantitative proteomics, leading to identification and quantification of almost 4000 proteins. The results of the KEGG pathway enrichment analysis and GO function annotation revealed critical pathways associated with the transition from cardiac hypertrophy to heart failure, such as energy pathways and matrix reorganization. Our study suggests that in the pathophysiology of heart failure, alterations of protein groups related to cardiac energy substrate metabolism and cytoskeleton remodelling could play the more dominant roles for the signalling that eventually results in contractile dysfunction and heart failure.
Collapse
Affiliation(s)
- Jinying Liu
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Hongjian Lian
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Alexa League Central Hospital Inner Mongolia China
| | - Jiang Yu
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Jie Wu
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Xiangyang Chen
- Youcare Pharmaceutical Group Drug Research Institute Beijing China
| | - Peng wang
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Lei tian
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Yunfei Yang
- Beijing Qinglian Biotech Co., Ltd Beijing China
| | - Jiaqi Yang
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Dong Li
- School of Basic Medical Sciences Anhui Medical University Hefei China
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (PHOENIX Center) Beijing Institute of Lifeomics Beijing China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
11
|
Bhullar S, Shah A, Dhalla N. Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors, which prevent the conversion of angiotensin I to angiotensin II, are well-known for the treatments of cardiovascular diseases, such as heart failure, hypertension and acute coronary syndrome. Several of these inhibitors including captopril, enalapril, ramipril, zofenopril and imidapril attenuate vasoconstriction, cardiac hypertrophy and adverse cardiac remodeling, improve clinical outcomes in patients with cardiac dysfunction and decrease mortality. Extensive experimental and clinical research over the past 35 years has revealed that the beneficial effects of ACE inhibitors in heart failure are associated with full or partial prevention of adverse cardiac remodeling. Since cardiac function is mainly determined by coordinated activities of different subcellular organelles, including sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils, for regulating the intracellular concentration of Ca2+ and myocardial metabolism, there is ample evidence to suggest that adverse cardiac remodelling and cardiac dysfunction in the failing heart are the consequence of subcellular defects. In fact, the improvement of cardiac function by different ACE inhibitors has been demonstrated to be related to the attenuation of abnormalities in subcellular organelles for Ca2+-handling, metabolic alterations, signal transduction defects and gene expression changes in failing cardiomyocytes. Various ACE inhibitors have also been shown to delay the progression of heart failure by reducing the formation of angiotensin II, the development of oxidative stress, the level of inflammatory cytokines and the occurrence of subcellular defects. These observations support the view that ACE inhibitors improve cardiac function in the failing heart by multiple mechanisms including the reduction of oxidative stress, myocardial inflammation and Ca2+-handling abnormalities in cardiomyocytes.
Collapse
|
12
|
Tokodi M, Oláh A, Fábián A, Lakatos BK, Hizoh I, Ruppert M, Sayour AA, Barta BA, Kiss O, Sydó N, Csulak E, Ladányi Z, Merkely B, Kovács A, Radovits T. Novel insights into the athlete's heart: is myocardial work the new champion of systolic function? Eur Heart J Cardiovasc Imaging 2021; 23:188-197. [PMID: 34432004 PMCID: PMC8788018 DOI: 10.1093/ehjci/jeab162] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 01/09/2023] Open
Abstract
Aims We sought to investigate the correlation between speckle-tracking echocardiography (STE)-derived myocardial work (MW) and invasively measured contractility in a rat model of athlete's heart. We also assessed MW in elite athletes and explored its association with cardiopulmonary exercise test (CPET)-derived aerobic capacity. Methods and results Sixteen rats underwent a 12-week swim training program and were compared to controls (n = 16). STE was performed to assess global longitudinal strain (GLS), which was followed by invasive pressure-volume analysis to measure contractility [slope of end-systolic pressure–volume relationship (ESPVR)]. Global MW index (GMWI) was calculated from GLS curves and left ventricular (LV) pressure recordings. In the human investigations, 20 elite swimmers and 20 healthy sedentary controls were enrolled. GMWI was calculated through the simultaneous evaluation of GLS and non-invasively approximated LV pressure curves at rest. All subjects underwent CPET to determine peak oxygen uptake (VO2/kg). Exercised rats exhibited higher values of GLS, GMWI, and ESPVR than controls (−20.9 ± 1.7 vs. −17.6 ± 1.9%, 2745 ± 280 vs. 2119 ± 272 mmHg·%, 3.72 ± 0.72 vs. 2.61 ± 0.40 mmHg/μL, all PExercise < 0.001). GMWI correlated robustly with ESPVR (r = 0.764, P < 0.001). In humans, regular exercise training was associated with decreased GLS (−17.6 ± 1.5 vs. −18.8 ± 0.9%, PExercise = 0.002) but increased values of GMWI at rest (1899 ± 136 vs. 1755 ± 234 mmHg·%, PExercise = 0.025). GMWI exhibited a positive correlation with VO2/kg (r = 0.527, P < 0.001). Conclusions GMWI precisely reflected LV contractility in a rat model of exercise-induced LV hypertrophy and captured the supernormal systolic performance in human athletes even at rest. Our findings endorse the utilization of MW analysis in the evaluation of the athlete’s heart.
Collapse
Affiliation(s)
- Márton Tokodi
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Alexandra Fábián
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Bálint Károly Lakatos
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - István Hizoh
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Bálint András Barta
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Orsolya Kiss
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Nóra Sydó
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Emese Csulak
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Zsuzsanna Ladányi
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Attila Kovács
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary
| |
Collapse
|
13
|
de Souza SLB, Mota GAF, Gregolin CS, do Nascimento M, Luvizotto RAM, Bazan SGZ, Sugizaki MM, Barbisan LF, Cicogna AC, do Nascimento AF. Exercise Training Attenuates Cirrhotic Cardiomyopathy. J Cardiovasc Transl Res 2021; 14:674-684. [PMID: 32246321 DOI: 10.1007/s12265-020-09997-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Cirrhotic cardiomyopathy is a condition where liver cirrhosis is associated with cardiac dysfunction. Triggers and blockers of cirrhotic cardiomyopathy are poorly understood, which might compromise the prognosis of chronic liver disease patients. We tested whether exercise training would reduce liver damage induced by thioacetamide and prevent liver cirrhosis-associated cardiomyopathy. Wistar rats were divided into three groups: control, thioacetamide (TAA), or TAA plus exercise. Thioacetamide increased liver weight and serum alanine aminotransferase and aspartate aminotransferase levels. Also, TAA treatment was involved with hepatic nodule formation, fibrotic septa, inflammatory infiltration, and hepatocyte necrosis. The exercise group presented with a reduction in liver injury status. We found that liver injury was associated with disordered cardiac hypertrophy as well as diastolic and systolic dysfunction. Exercise training attenuated cirrhosis-associated cardiac remodeling and diastolic dysfunction and prevented systolic impairment. These results provided insights that exercise training can mitigate cirrhotic cardiomyopathy phenotype. Graphical Abstract Exercise training attenuated liver injury as well as cirrhosis-associated cardiac remodeling and diastolic dysfunction and prevented systolic impairment.
Collapse
Affiliation(s)
- Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Cristina Schmitt Gregolin
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Avenida Alexandre Ferronato, n°1200, Setor Industrial, Sinop, Mato Grosso, 78.556-267, Brazil
| | - Milena do Nascimento
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Avenida Alexandre Ferronato, n°1200, Setor Industrial, Sinop, Mato Grosso, 78.556-267, Brazil
| | - Renata Azevedo Melo Luvizotto
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Avenida Alexandre Ferronato, n°1200, Setor Industrial, Sinop, Mato Grosso, 78.556-267, Brazil
| | - Silmeia Garcia Zanati Bazan
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Mário Mateus Sugizaki
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Avenida Alexandre Ferronato, n°1200, Setor Industrial, Sinop, Mato Grosso, 78.556-267, Brazil
| | - Luis Fernando Barbisan
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - André Ferreira do Nascimento
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Avenida Alexandre Ferronato, n°1200, Setor Industrial, Sinop, Mato Grosso, 78.556-267, Brazil.
| |
Collapse
|
14
|
Oxidative Stress as A Mechanism for Functional Alterations in Cardiac Hypertrophy and Heart Failure. Antioxidants (Basel) 2021; 10:antiox10060931. [PMID: 34201261 PMCID: PMC8228897 DOI: 10.3390/antiox10060931] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 12/23/2022] Open
Abstract
Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.
Collapse
|
15
|
Tan W, Li X, Zheng S, Li X, Zhang X, Pyle WG, Chen H, Wu J, Sun H, Zou Y, Backx PH, Yang FH. A Porcine Model of Heart Failure With Preserved Ejection Fraction Induced by Chronic Pressure Overload Characterized by Cardiac Fibrosis and Remodeling. Front Cardiovasc Med 2021; 8:677727. [PMID: 34150870 PMCID: PMC8206269 DOI: 10.3389/fcvm.2021.677727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Heart failure is induced by multiple pathological mechanisms, and current therapies are ineffective against heart failure with preserved ejection fraction (HFpEF). As there are limited animal models of HFpEF, its underlying mechanisms have not yet been elucidated. Here, we employed the descending aortic constriction (DAC) technique to induce chronic pressure overload in the left ventricles of Tibetan minipigs for 12 weeks. Cardiac function, pathological and cellular changes, fibrotic signaling activation, and gene expression profiles were explored. The left ventricles developed concentric hypertrophy from weeks 4 to 6 and transition to dilation starting in week 10. Notably, the left ventricular ejection fraction was maintained at >50% in the DAC group during the 12-week period. Pathological examination, biochemical analyses, and gene profile analysis revealed evidence of inflammation, fibrosis, cell death, and myofilament dephosphorylation in the myocardium of HFpEF model animals, together with gene expression shifts promoting cardiac remodeling and downregulating metabolic pathways. Furthermore, we noted the activation of several signaling proteins that impact cardiac fibrosis and remodeling, including transforming growth factor-β/SMAD family members 2/3, type I/III/V collagens, phosphatidylinositol 3-kinase, extracellular signal-regulated kinase, matrix metalloproteinases 2 and 9, tissue inhibitor of metalloproteinases 1 and 2, interleukins 6 and 1β, and inhibitor of κBα/nuclear factor-κB. Our findings demonstrate that this chronic pressure overload-induced porcine HFpEF model is a powerful tool to elucidate the mechanisms of this disease and translate preclinical findings.
Collapse
Affiliation(s)
- Weijiang Tan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shuang Zheng
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiaohui Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoshen Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - W. Glen Pyle
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Honghua Chen
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huan Sun
- Cardiology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peter H. Backx
- Department of Biology, York University, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Feng Hua Yang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Gonzalez EA, Tobar Leitão SA, Soares DDS, Tavares AMV, Giugliani R, Baldo G, Matte U. Cardiac pathology in mucopolysaccharidosis I mice: Losartan modifies ERK1/2 activation during cardiac remodeling. J Inherit Metab Dis 2021; 44:740-750. [PMID: 33145772 DOI: 10.1002/jimd.12327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by mutations in the IDUA gene, that codifies the alpha-L-iduronidase enzyme, which deficiency leads to storage of glycosaminoglycans, with multiple clinical manifestations. One of the leading causes of death in MPS I patients are cardiac complications such as cardiac valve thickening, conduction abnormalities, myocardial dysfunction, and cardiac hypertrophy. The mechanism leading to cardiac dysfunction in MPS I is not entirely understood. In a previous study, we have demonstrated that losartan and propranolol improved the cardiac function in MPS I mice. Thus, we aimed to investigate whether the pathways influenced by these drugs may modulate the cardiac remodeling process in MPS I mice. According to our previous observation, losartan and propranolol restore the heart function, without altering valve thickness. MPS I mice presented reduced activation of AKT and ERK1/2, increased activity of cathepsins, but no alteration in metalloproteinase activity was observed. Animals treated with losartan showed a reduction in cathepsin activity and restored ERK1/2 activation. While both losartan and propranolol improved heart function, no mechanistic evidence was found for propranolol so far. Our results suggest that losartan or propranolol could be used to ameliorate the cardiac disease in MPS I and could be considered as adjuvant treatment candidates for therapy optimization.
Collapse
Affiliation(s)
- Esteban Alberto Gonzalez
- Postgraduate Program in Genetic and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Cells, Tissues, and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Santiago Alonso Tobar Leitão
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Health Science: Cardiology and Cardiovascular Science, UFRGS, Porto Alegre, Brazil
| | - Douglas Dos Santos Soares
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Health Science: Cardiology and Cardiovascular Science, UFRGS, Porto Alegre, Brazil
| | - Angela Maria Vicente Tavares
- Cells, Tissues, and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Roberto Giugliani
- Postgraduate Program in Genetic and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Cells, Tissues, and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, UFRGS, Porto Alegre, Brazil
| | - Guilherme Baldo
- Postgraduate Program in Genetic and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Cells, Tissues, and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, UFRGS, Porto Alegre, Brazil
| | - Ursula Matte
- Postgraduate Program in Genetic and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Cells, Tissues, and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
17
|
Congestive heart failure model representing aortic banding induced hypertrophy: A study to analyse extent of pressure overload and alteration in myocardial structure and function. IJC HEART & VASCULATURE 2021; 34:100755. [PMID: 33816767 PMCID: PMC8008182 DOI: 10.1016/j.ijcha.2021.100755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/23/2022]
Abstract
Congestive Heart failure (CHF) is a severe pathology representing a major public health problem in industrialized nations which is increasing in prevalence and incidence. The aortic banding rat model provides steady progression of cardiac dysfunction under chronic pressure overload. Present study evaluated two abdominal aortic constriction techniques including constriction of aorta above renal arteries and between renal arteries. The extent of constriction was varied with 22 G and 24 G needles and the duration for evaluation of CHF was also varied by terminating the banded animals after 6 and 8 weeks of banding. Various hemodynamic, ECG and tissue parameters were evaluated after banding to see the progression of CHF. The findings revealed that the constriction of the aorta above both renal arteries with 24 G needle is a better technique amongst other tested banding techniques as the rate of progression of CHF was found to be maximum with it. On the basis of above study, it was concluded that, aortic banding above both renal arteries with 24 G needle is a better technique for induction of pressure overload and for further observation in transition of the cardiac compensatory to decompensatory phase, the duration of the model needs to be prolonged.
Collapse
|
18
|
Mohammed SA, Paramesha B, Meghwani H, Kumar Reddy MP, Arava SK, Banerjee SK. Allyl Methyl Sulfide Preserved Pressure Overload-Induced Heart Failure Via Modulation of Mitochondrial Function. Biomed Pharmacother 2021; 138:111316. [PMID: 33684689 DOI: 10.1016/j.biopha.2021.111316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cardiovascular diseases are the leading cause of death globally, and they are causing enormous socio-economic burden to the developed and developing countries. Allyl Methyl Sulfide (AMS) is a novel cardioprotective metabolite identified in the serum of rats after raw garlic administration. The present study explored the cardioprotective effect of AMS on thoracic aortic constriction (TAC)-induced cardiac hypertrophy and heart failure model in rats. METHODS Thoracic aortic constriction (TAC) by titanium ligating clips resulted in the development of pressure overload-induced cardiac hypertrophy and heart failure model. Four weeks prior to TAC and for 8 weeks after TAC, Sprague Dawley (SD) rats were administered with AMS (25 and 50 mg/kg/day) or Enalapril (10 mg/kg/day). RESULTS We have observed AMS (25 and 50 mg/kg/day) intervention significantly improved structural and functional parameters of the heart. mRNA expression of fetal genes i.e., atrial natriuretic peptide (ANP), alpha skeletal actin (α-SA) and beta myosin heavy chain (β-MHC) were reduced in AMS treated TAC hearts along with decrease in perivascular and interstitial fibrosis. AMS attenuated lipid peroxidation and improved protein expression of endogenous antioxidant enzymes i.e., catalase and manganese superoxide dismutase (MnSOD) along with electron transport chain (ETC) complex activity. AMS increased mitochondrial fusion proteins i.e., mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy protein (OPA1), and reduced fission protein i.e., dynamin-related protein 1 (DRP1). Preliminary study suggests that AMS intervention upregulated genes involved in mitochondrial bioenergetics in normal rats. Further, in-vitro studies suggest that AMS reduced mitochondrial reactive oxygen species (ROS), preserved mitochondrial membrane potential and oxygen consumption rate (OCR) in isoproterenol-treated cardiomyoblast. CONCLUSION This study demonstrated that AMS protected cardiac remodelling, LV dysfunction and fibrosis in pressure overload-induced cardiac hypertrophy and heart failure model by improving endogenous antioxidants and mitochondrial function.
Collapse
Affiliation(s)
- Soheb Anwar Mohammed
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, India.
| | - Bugga Paramesha
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, India.
| | | | - Maramreddy Prasanna Kumar Reddy
- Cardio-Respiratory Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defense Research and Development Organization (DRDO), Timarpur, Delhi, India.
| | - Sudheer Kumar Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sanjay Kumar Banerjee
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781101, India.
| |
Collapse
|
19
|
Myocardial Dysfunction in Cirrhotic Cardiomyopathy is Associated with Alterations of Phospholamban Phosphorylation and IL-6 Levels. Arch Med Res 2020; 52:284-293. [PMID: 33220932 DOI: 10.1016/j.arcmed.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Decreased cardiac contractility has been observed in cirrhosis, but the mechanisms that initiate and maintain cardiac dysfunction are not entirely understood. AIM OF THE STUDY We test the hypothesis that cirrhotic cardiomyopathy is related to deterioration of myocardial contractility due to alterations in calcium-handling proteins expression. In addition, we evaluated whether cardiac pro-inflammatory cytokine levels are associated with this process. METHODS Cirrhosis was induced by thioacetamide (TAA, 100 mg/kg/i.p., twice weekly for eight weeks). The myocardial performance was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic challenge. The cardiac calcium handling protein expression was detected by Western blotting. Cardiac TNF-α and IL-6 levels were measured by ELISA. RESULTS Thioacetamide induced liver cirrhosis, which was associated with cirrhotic cardiomyopathy characterized by in vivo left ventricular diastolic and systolic dysfunction as well as cardiac hypertrophy. In vitro baseline myocardial contractility was lower in cirrhosis. Also, myocardial responsiveness to post-rest contraction stimulus was declined. Protein expression for RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channel was quantitatively unchanged; however, pPBL Thr17 was significantly lower while IL-6 was higher. CONCLUSIONS Our study demonstrates that cirrhotic cardiomyopathy is associated with decreased cardiac contractility with alteration of phospholamban phosphorylation in association with higher cardiac pro-inflammatory IL-6 levels. These findings provided molecular and functional insights about the effects of liver cirrhosis on cardiac function.
Collapse
|
20
|
Ruppert M, Lakatos BK, Braun S, Tokodi M, Karime C, Oláh A, Sayour AA, Hizoh I, Barta BA, Merkely B, Kovács A, Radovits T. Longitudinal Strain Reflects Ventriculoarterial Coupling Rather Than Mere Contractility in Rat Models of Hemodynamic Overload–Induced Heart Failure. J Am Soc Echocardiogr 2020; 33:1264-1275.e4. [DOI: 10.1016/j.echo.2020.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
|
21
|
Riehle C, Bauersachs J. Small animal models of heart failure. Cardiovasc Res 2020; 115:1838-1849. [PMID: 31243437 PMCID: PMC6803815 DOI: 10.1093/cvr/cvz161] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Heart disease is a major cause of death worldwide with increasing prevalence, which urges the development of new therapeutic strategies. Over the last few decades, numerous small animal models have been generated to mimic various pathomechanisms contributing to heart failure (HF). Despite some limitations, these animal models have greatly advanced our understanding of the pathogenesis of the different aetiologies of HF and paved the way to understanding the underlying mechanisms and development of successful treatments. These models utilize surgical techniques, genetic modifications, and pharmacological approaches. The present review discusses the strengths and limitations of commonly used small animal HF models, which continue to provide crucial insight and facilitate the development of new treatment strategies for patients with HF.
Collapse
Affiliation(s)
- Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| |
Collapse
|
22
|
Phungphong S, Kijtawornrat A, Kampaengsri T, Wattanapermpool J, Bupha-Intr T. Comparison of exercise training and estrogen supplementation on mast cell-mediated doxorubicin-induced cardiotoxicity. Am J Physiol Regul Integr Comp Physiol 2020; 318:R829-R842. [PMID: 32159365 DOI: 10.1152/ajpregu.00224.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac inflammation has been proposed as one of the primary mechanisms of anthracycline-induced acute cardiotoxicity. A reduction in cardiac inflammation might also reduce cardiotoxicity. This study aimed to evaluate the potential of estrogen therapy and regular exercise on attenuating cardiac inflammation in the context of doxorubicin-induced cardiomyopathy. Ovariectomized rats were randomly allocated into estrogen supplementation, exercise training, and mast cell stabilizer treatment groups. Eight weeks after ovariectomy, rats received six cumulative doses of doxorubicin for two weeks. Echocardiography demonstrated a progressive decrease in ejection fraction in doxorubicin-treated rats without hypertrophic effect. This systolic defect was completely prevented by either estrogen supplementation or mast cell stabilizer treatment but not by regular exercise. As a heart disease indicator, increased β-myosin heavy chain expression induced by doxorubicin could only be prevented by estrogen supplementation. Decrease in shortening and intracellular Ca2+ transients of cardiomyocytes were due to absence of female sex hormones without further effects of doxorubicin. Again, estrogen supplementation and mast cell stabilizer treatment prevented these changes but exercise training did not. Histological analysis indicated that the hyperactivation of cardiac mast cells in ovariectomized rats was augmented by doxorubicin. Estrogen supplementation and mast cell stabilizer treatment completely prevented both increases in mast cell density and degranulation, whereas exercise training partially attenuated the hyperactivation. Our results, therefore, suggest that estrogen supplementation acts similarly to mast cell stabilizers in attenuating the effects of doxorubicin. Ineffectiveness of regular exercise in preventing the acute cardiotoxicity of doxorubicin might be due to a lesser effect on preventing cardiac inflammation.
Collapse
Affiliation(s)
- Sukanya Phungphong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Katz MG, Fargnoli AS, Gubara SM, Chepurko E, Bridges CR, Hajjar RJ. Surgical and physiological challenges in the development of left and right heart failure in rat models. Heart Fail Rev 2019; 24:759-777. [PMID: 30903356 PMCID: PMC6698228 DOI: 10.1007/s10741-019-09783-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rodent surgical animal models of heart failure (HF) are critically important for understanding the proof of principle of the cellular alterations underlying the development of the disease as well as evaluating therapeutics. Robust, reproducible rodent models are a prerequisite to the development of pharmacological and molecular strategies for the treatment of HF in patients. Due to the absence of standardized guidelines regarding surgical technique and clear criteria for HF progression in rats, objectivity is compromised. Scientific publications in rats rarely fully disclose the actual surgical details, and technical and physiological challenges. This lack of reporting is one of the main reasons that the outcomes specified in similar studies are highly variable and associated with unnecessary loss of animals, compromising scientific assessment. This review details rat circulatory and coronary arteries anatomy, the surgical details of rat models that recreate the HF phenotype of myocardial infarction, ischemia/reperfusion, left and right ventricular pressure, and volume overload states, and summarizes the technical and physiological challenges of creating HF. The purpose of this article is to help investigators understand the underlying issues of current HF models in order to reduce variable results and ensure successful, reproducible models of HF.
Collapse
Affiliation(s)
- Michael G Katz
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA.
| | - Anthony S Fargnoli
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Sarah M Gubara
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Charles R Bridges
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| |
Collapse
|
24
|
Axl expression is increased in early stages of left ventricular remodeling in an animal model with pressure-overload. PLoS One 2019; 14:e0217926. [PMID: 31181097 PMCID: PMC6557565 DOI: 10.1371/journal.pone.0217926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/21/2019] [Indexed: 01/24/2023] Open
Abstract
Background AXL is a receptor tyrosine kinase that has been related to kidney and vascular disorders. Heart failure patients with reduced ejection fraction have higher AXL in serum than controls. No information about Axl expression with HF progression is available. Methods Thoracic transverse aortic constriction (TAC) was successfully performed on male Wistar rats (n = 25) with different constriction levels. Controls underwent sham surgery (n = 12). Echocardiography measurements were performed 4–8 weeks after surgery. Collagen deposition was measured with picrosirius red staining. Axl mRNA levels in left ventricle (LV), left kidney (LK) and ascending aorta (aAo) and the LV expression of cardiac remodeling and fibrogenic factors were quantified with real-time PCR. AXL LV protein levels were quantified with western blot and localization was analyzed by immunohistochemistry. Soluble AXL levels in plasma were assayed with ELISA. Results Successful TAC rats were classified into LV hypertrophy (LVH) or heart failure (HF), modeling the progressive cardiac changes after pressure overload. Collagen deposition was increased only in the HF group. LV Axl mRNA levels were higher in LVH and HF than in Sham rats, and correlated with LVHi, and hypertrophic and fibrogenic mediators. However, no association was found with LV systolic function. AXL was expressed in LV myocytes and other cell types. Concentration of circulating sAXL in plasma was increased in the LVH group compared to Sham and HF rats. Axl mRNA levels were similar in all groups in the LK and aAo. Conclusions Axl expression pattern suggests a role in the early progression of LV remodeling in HF but not in the later systolic dysfunction. The higher levels of circulating AXL found in HF patients most probably shed from the heart.
Collapse
|
25
|
Ruppert M, Bódi B, Korkmaz-Icöz S, Loganathan S, Jiang W, Lehmann L, Oláh A, Barta BA, Sayour AA, Merkely B, Karck M, Papp Z, Szabó G, Radovits T. Myofilament Ca 2+ sensitivity correlates with left ventricular contractility during the progression of pressure overload-induced left ventricular myocardial hypertrophy in rats. J Mol Cell Cardiol 2019; 129:208-218. [PMID: 30844361 DOI: 10.1016/j.yjmcc.2019.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
AIM Here we aimed at investigating the relation between left ventricular (LV) contractility and myofilament function during the development and progression of pressure overload (PO)-induced LV myocardial hypertrophy (LVH). METHODS Abdominal aortic banding (AB) was performed to induce PO in rats for 6, 12 and 18 weeks. Sham operated animals served as controls. Structural and molecular alterations were investigated by serial echocardiography, histology, quantitative real-time PCR and western blot. LV function was assessed by pressure-volume analysis. Force measurement was carried out in permeabilized cardiomyocytes. RESULTS AB resulted in the development of pathological LVH as indicated by increased heart weight-to-tibial length ratio, LV mass index, cardiomyocyte diameter and fetal gene expression. These alterations were already present at early stage of LVH (AB-week6). Furthermore, at more advanced stages (AB-week12, AB-week18), myocardial fibrosis and chamber dilatation were also observed. From a hemodynamic point of view, the AB-wk6 group was associated with increased LV contractility, maintained ventriculo-arterial coupling (VAC) and preserved systolic function. In the same experimental group, increased myofilament Ca2+ sensitivity (pCa50) and hyperphosphorylation of cardiac troponin-I (cTnI) at Threonine-144 was detected. In contrast, in the AB-wk12 and AB-wk18 groups, the initial augmentation of LV contractility, as well as the increased myofilament Ca2+ sensitivity and cTnI (Threonine-144) hyperphosphorylation diminished, leading to impaired VAC and reduced systolic performance. Strong correlation was found between LV contractility parameters and myofilament Ca2+-sensitivity among the study groups. CONCLUSION Changes in myofilament Ca2+ sensitivity might underlie the alterations in LV contractility during the development and progression of PO-induced LVH.
Collapse
Affiliation(s)
- Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary; Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Beáta Bódi
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Weipeng Jiang
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Lorenz Lehmann
- Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary; Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
|
27
|
Lai YC, Wang L, Gladwin MT. Insights into the pulmonary vascular complications of heart failure with preserved ejection fraction. J Physiol 2018; 597:1143-1156. [PMID: 30549058 DOI: 10.1113/jp275858] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension in the setting of heart failure with preserved ejection fraction (PH-HFpEF) is a growing public health problem that is increasing in prevalence. While PH-HFpEF is defined by a high mean pulmonary artery pressure, high left ventricular end-diastolic pressure and a normal ejection fraction, some HFpEF patients develop PH in the presence of pulmonary vascular remodelling with a high transpulmonary pressure gradient or pulmonary vascular resistance. Ageing, increased left atrial pressure and stiffness, mitral regurgitation, as well as features of metabolic syndrome, which include obesity, diabetes and hypertension, are recognized as risk factors for PH-HFpEF. Qualitative studies have documented that patients with PH-HFpEF develop more severe symptoms than those with HFpEF and are associated with more significant exercise intolerance, frequent hospitalizations, right heart failure and reduced survival. Currently, there are no effective therapies for PH-HFpEF, although a number of candidate drugs are being evaluated, including soluble guanylate cyclase stimulators, phosphodiesterase type 5 inhibitors, sodium nitrite and endothelin receptor antagonists. In this review we attempt to provide an updated overview of recent findings pertaining to the pulmonary vascular complications in HFpEF in terms of clinical definitions, epidemiology and pathophysiology. Mechanisms leading to pulmonary vascular remodelling in HFpEF, a summary of pre-clinical models of HFpEF and PH-HFpEF, and new candidate therapeutic strategies for the treatment of PH-HFpEF are summarized.
Collapse
Affiliation(s)
- Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Longfei Wang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Pathological hypertrophy and cardiac dysfunction are linked to aberrant endogenous unsaturated fatty acid metabolism. PLoS One 2018; 13:e0193553. [PMID: 29494668 PMCID: PMC5832311 DOI: 10.1371/journal.pone.0193553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/29/2018] [Indexed: 01/11/2023] Open
Abstract
Pathological cardiac hypertrophy leads to derangements in lipid metabolism that may contribute to the development of cardiac dysfunction. Since previous studies, using high saturated fat diets, have yielded inconclusive results, we investigated whether provision of a high-unsaturated fatty acid (HUFA) diet was sufficient to restore impaired lipid metabolism and normalize diastolic dysfunction in the pathologically hypertrophied heart. Male, Wistar rats were subjected to supra-valvar aortic stenosis (SVAS) or sham surgery. After 6 weeks, diastolic dysfunction and pathological hypertrophy was confirmed and both sham and SVAS rats were treated with either normolipidic or HUFA diet. At 18 weeks post-surgery, the HUFA diet failed to normalize decreased E/A ratios or attenuate measures of cardiac hypertrophy in SVAS animals. Enzymatic activity assays and gene expression analysis showed that both normolipidic and HUFA-fed hypertrophied hearts had similar increases in glycolytic enzyme activity and down-regulation of fatty acid oxidation genes. Mass spectrometry analysis revealed depletion of unsaturated fatty acids, primarily linoleate and oleate, within the endogenous lipid pools of normolipidic SVAS hearts. The HUFA diet did not restore linoleate or oleate in the cardiac lipid pools, but did maintain body weight and adipose mass in SVAS animals. Overall, these results suggest that, in addition to decreased fatty acid oxidation, aberrant unsaturated fatty acid metabolism may be a maladaptive signature of the pathologically hypertrophied heart. The HUFA diet is insufficient to reverse metabolic remodeling, diastolic dysfunction, or pathologically hypertrophy, possibly do to preferentially partitioning of unsaturated fatty acids to adipose tissue.
Collapse
|
29
|
Lewalle A, Land S, Carruth E, Frank LR, Lamata P, Omens JH, McCulloch AD, Niederer SA, Smith NP. Decreasing Compensatory Ability of Concentric Ventricular Hypertrophy in Aortic-Banded Rat Hearts. Front Physiol 2018; 9:37. [PMID: 29527171 PMCID: PMC5829063 DOI: 10.3389/fphys.2018.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/10/2018] [Indexed: 11/28/2022] Open
Abstract
The cardiac system compensates for variations in physiological and pathophysiological conditions through a dynamic remodeling at the organ, tissue, and intracellular levels in order to maintain function. However, on longer time scales following the onset of ventricular pressure overload, such remodeling may begin to inhibit physiological function and ultimately lead to heart failure. This progression from compensatory to decompensatory behavior is poorly understood, in particular owing to the absence of a unified perspective of the concomitantly remodeling subsystems. To address this issue, the present study investigates the evolution of compensatory mechanisms, in response to overload, by integrating diffusion-tensor MRI, echocardiography, and intracellular and hemodynamic measurements within consistent computational simulations of aortic-banded rat hearts. This approach allows a comparison of the relative leverage of different cardiac properties (geometry, passive mechanical stiffness, fiber configuration, diastolic and peak calcium concentrations, calcium-binding affinity, and aortic impedance) to affect cardiac contraction. Measurements indicate that, following aortic banding, an ejection fraction (EF) of 75% was maintained, relative to control rats, despite significant remodeling of the left-ventricular wall thickness (increasing by ~90% over 4 weeks). Applying our framework, we identified the left-ventricular wall thickness (concentric hypertrophy) and the intracellular calcium dynamics as playing the dominant roles in preserving EF acutely, whereas the significance of hypertrophy decreased subsequently. This trend suggests an increasing reliance on intracellular mechanisms (average increase ~50%), rather than on anatomical features (average decrease ~60%), to achieve compensation of pump function in the early phase of heart failure.
Collapse
Affiliation(s)
- Alexandre Lewalle
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Sander Land
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Eric Carruth
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Lawrence R. Frank
- Radiology Department, University of California, San Diego, San Diego, CA, United States
| | - Pablo Lamata
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Jeffrey H. Omens
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Steven A. Niederer
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Nicolas P. Smith
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Amat-Santos IJ, Catalá P, Diez Del Hoyo F, Fernandez-Diaz JA, Alonso-Briales JH, Del Trigo M, Regueiro A, Juan-Salvadores P, Serra V, Gutierrez-Ibanes E, Muñoz-García AJ, Nombela-Franco L, Sabate M, Jimenez-Diaz VA, García Del Blanco B, López J, Varela-Falcón LH, Sevilla T, Arnold R, Revilla A, San Roman JA. Impact of renin-angiotensin system inhibitors on clinical outcomes and ventricular remodelling after transcatheter aortic valve implantation: rationale and design of the RASTAVI randomised multicentre study. BMJ Open 2018; 8:e020255. [PMID: 29440218 PMCID: PMC5829899 DOI: 10.1136/bmjopen-2017-020255] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Transcatheter aortic valve implantation (TAVI) as a treatment in severe aortic stenosis (AS) is an excellent alternative to conventional surgical replacement. However, long-term outcomes are not benign. Renin-angiotensin system (RAS) blockade has shown benefit in terms of adverse remodelling in severe AS and after surgical replacement. METHODS AND ANALYSIS The RAS blockade after TAVI (RASTAVI) trial aims to detect if there is a benefit in clinical outcomes and ventricular remodelling with this therapeutic strategy following the TAVI procedure. The study has been designed as a randomised 1:1 open-label study that will be undertaken in 8 centres including 336 TAVI recipients. All patients will receive the standard treatment. The active treatment group will receive ramipril as well. Randomisation will be done before discharge, after signing informed consent. All patients will be followed up for 3 years. A cardiac magnetic resonance will be performed initially and at 1 year to assess ventricular remodelling, defined as ventricular dimensions, ejection fraction, ventricular mass and fibrosis. Recorded events will include cardiac death, admission due to heart failure and stroke. The RASTAVI Study will improve the management of patients after TAVI and may help to increase their quality of life, reduce readmissions and improve long-term survival in this scenario. ETHICS AND DISSEMINATION All authors and local ethics committees have approved the study design. All patients will provide informed consent. Results will be published irrespective of whether the findings are positive or negative. TRIAL REGISTRATION NUMBER NCT03201185.
Collapse
Affiliation(s)
| | - Pablo Catalá
- Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain
| | - Felipe Diez Del Hoyo
- Cardiology Department, CIBERCV, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | - María Del Trigo
- Cardiology Department, CIBERCV, Hospital Clínico San Carlos, Madrid, Spain
| | - Ander Regueiro
- Cardiology Department, CIBERCV, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pablo Juan-Salvadores
- Cardiology Department, CIBERCV, Hospital Universitario Álvaro Cunqueiro, EOXI de Vigo, Vigo, Spain
| | - Vicenç Serra
- Cardiology Department, CIBERCV, Hospital Val d'Hebron, Barcelona, Spain
| | | | | | | | - Manel Sabate
- Cardiology Department, CIBERCV, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Victor A Jimenez-Diaz
- Cardiology Department, CIBERCV, Hospital Universitario Álvaro Cunqueiro, EOXI de Vigo, Vigo, Spain
| | | | - Javier López
- Cardiology Department, CIBERCV, Hospital Clínico Universitario, Valladolid, Spain
| | - Luis H Varela-Falcón
- Cardiology Department, CIBERCV, Hospital Clínico Universitario, Valladolid, Spain
| | - Teresa Sevilla
- Cardiology Department, CIBERCV, Hospital Clínico Universitario, Valladolid, Spain
| | - Roman Arnold
- Cardiology Department, CIBERCV, Hospital Clínico Universitario, Valladolid, Spain
| | - Ana Revilla
- Cardiology Department, CIBERCV, Hospital Clínico Universitario, Valladolid, Spain
| | - J Alberto San Roman
- Cardiology Department, CIBERCV, Hospital Clínico Universitario, Valladolid, Spain
| |
Collapse
|
31
|
Prado FP, dos Santos DO, Blefari V, Silva CA, Machado J, Kettelhut IDC, Ramos SG, Baruffi MD, Salgado HC, Prado CM. Early dystrophin loss is coincident with the transition of compensated cardiac hypertrophy to heart failure. PLoS One 2017; 12:e0189469. [PMID: 29267303 PMCID: PMC5739420 DOI: 10.1371/journal.pone.0189469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart failure (HF). Despite the importance of cardiac hypertrophy as a risk factor for the development of HF, not all hypertrophied hearts will ultimately fail. Alterations of cytoskeletal and sarcolemma-associated proteins are considered markers cardiac remodeling during HF. Dystrophin provides mechanical stability to the plasma membrane through its interactions with the actin cytoskeleton and, indirectly, to extracellular matrix proteins. This study was undertaken to evaluate dystrophin and calpain-1 in the transition from compensated cardiac hypertrophy to HF. Wistar rats were subjected to abdominal aorta constriction and killed at 30, 60 and 90 days post surgery (dps). Cardiac function and blood pressure were evaluated. The hearts were collected and Western blotting and immunofluorescence performed for dystrophin, calpain-1, alpha-fodrin and calpastatin. Statistical analyses were performed and considered significant when p<0.05. After 90 dps, 70% of the animals showed hypertrophic hearts (HH) and 30% hypertrophic+dilated hearts (HD). Systolic and diastolic functions were preserved at 30 and 60 dps, however, decreased in the HD group. Blood pressure, cardiomyocyte diameter and collagen content were increased at all time points. Dystrophin expression was lightly increased at 30 and 60 dps and HH group. HD group showed decreased expression of dystrophin and calpastatin and increased expression of calpain-1 and alpha-fodrin fragments. The first signals of dystrophin reduction were observed as early as 60 dps. In conclusion, some hearts present a distinct molecular pattern at an early stage of the disease; this pattern could provide an opportunity to identify these failure-prone hearts during the development of the cardiac disease. We showed that decreased expression of dystrophin and increased expression of calpains are coincident and could work as possible therapeutic targets to prevent heart failure as a consequence of cardiac hypertrophy.
Collapse
Affiliation(s)
- Fernanda P. Prado
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniele O. dos Santos
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Valdecir Blefari
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A. Silva
- Department of Phisiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Machado
- Department of Biochemistry/Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isis do Carmo Kettelhut
- Department of Biochemistry/Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Simone G. Ramos
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Dias Baruffi
- Department of Clinical Analysis, Toxicology and Food Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helio C. Salgado
- Department of Phisiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cibele M. Prado
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
32
|
Witzenburg CM, Holmes JW. A Comparison of Phenomenologic Growth Laws for Myocardial Hypertrophy. JOURNAL OF ELASTICITY 2017; 129:257-281. [PMID: 29632418 PMCID: PMC5889094 DOI: 10.1007/s10659-017-9631-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The heart grows in response to changes in hemodynamic loading during normal development and in response to valve disease, hypertension, and other pathologies. In general, a left ventricle subjected to increased afterload (pressure overloading) exhibits concentric growth characterized by thickening of individual myocytes and the heart wall, while one experiencing increased preload (volume overloading) exhibits eccentric growth characterized by lengthening of myocytes and dilation of the cavity. Predictive models of cardiac growth could be important tools in evaluating treatments, guiding clinical decision making, and designing novel therapies for a range of diseases. Thus, in the past 20 years there has been considerable effort to simulate growth within the left ventricle. While a number of published equations or systems of equations (often termed "growth laws") can capture some aspects of experimentally observed growth patterns, no direct comparisons of the various published models have been performed. Here we examine eight of these laws and compare them in a simple test-bed in which we imposed stretches measured during in vivo pressure and volume overload. Laws were compared based on their ability to predict experimentally measured patterns of growth in the myocardial fiber and radial directions as well as the ratio of fiber-to-radial growth. Three of the eight laws were able to reproduce most key aspects of growth following both pressure and volume overload. Although these three growth laws utilized different approaches to predict hypertrophy, they all employed multiple inputs that were weakly correlated during in vivo overload and therefore provided independent information about mechanics.
Collapse
Affiliation(s)
- Colleen M. Witzenburg
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, VA, USA
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, VA, USA
- Department of Medicine, University of Virginia, Charlottesville, VA,
USA
- Robert M. Berne Cardiovascular Research Center, University of
Virginia, Charlottesville, VA, USA
- Phone: 434-924-8797
| |
Collapse
|
33
|
Wallner M, Eaton DM, Berretta RM, Borghetti G, Wu J, Baker ST, Feldsott EA, Sharp TE, Mohsin S, Oyama MA, von Lewinski D, Post H, Wolfson MR, Houser SR. A Feline HFpEF Model with Pulmonary Hypertension and Compromised Pulmonary Function. Sci Rep 2017; 7:16587. [PMID: 29185443 PMCID: PMC5707379 DOI: 10.1038/s41598-017-15851-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023] Open
Abstract
Heart Failure with preserved Ejection Fraction (HFpEF) represents a major public health problem. The causative mechanisms are multifactorial and there are no effective treatments for HFpEF, partially attributable to the lack of well-established HFpEF animal models. We established a feline HFpEF model induced by slow-progressive pressure overload. Male domestic short hair cats (n = 20), underwent either sham procedures (n = 8) or aortic constriction (n = 12) with a customized pre-shaped band. Pulmonary function, gas exchange, and invasive hemodynamics were measured at 4-months post-banding. In banded cats, echocardiography at 4-months revealed concentric left ventricular (LV) hypertrophy, left atrial (LA) enlargement and dysfunction, and LV diastolic dysfunction with preserved systolic function, which subsequently led to elevated LV end-diastolic pressures and pulmonary hypertension. Furthermore, LV diastolic dysfunction was associated with increased LV fibrosis, cardiomyocyte hypertrophy, elevated NT-proBNP plasma levels, fluid and protein loss in pulmonary interstitium, impaired lung expansion, and alveolar-capillary membrane thickening. We report for the first time in HFpEF perivascular fluid cuff formation around extra-alveolar vessels with decreased respiratory compliance. Ultimately, these cardiopulmonary abnormalities resulted in impaired oxygenation. Our findings support the idea that this model can be used for testing novel therapeutic strategies to treat the ever growing HFpEF population.
Collapse
Affiliation(s)
- Markus Wallner
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States.,Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Deborah M Eaton
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Remus M Berretta
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Giulia Borghetti
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Jichuan Wu
- Temple University Lewis Katz School of Medicine, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Philadelphia, PA, United States
| | - Sandy T Baker
- Temple University Lewis Katz School of Medicine, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Philadelphia, PA, United States
| | - Eric A Feldsott
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Thomas E Sharp
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Sadia Mohsin
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Mark A Oyama
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Heiner Post
- Department of Cardiology, Campus Virchow-Klinikum, Charite Universitätsmedizin, Berlin, Germany
| | - Marla R Wolfson
- Temple University Lewis Katz School of Medicine, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Philadelphia, PA, United States
| | - Steven R Houser
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States.
| |
Collapse
|
34
|
Jacobsen BB, Leopoldo APL, Cordeiro JP, Campos DHSD, Nascimento AFD, Sugizaki MM, Cicogna AC, Padovani CR, Leopoldo AS. Cardiac, Metabolic and Molecular Profiles of Sedentary Rats in the Initial Moment of Obesity. Arq Bras Cardiol 2017; 109:432-439. [PMID: 29069204 PMCID: PMC5729779 DOI: 10.5935/abc.20170151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/28/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Different types of high-fat and/or high-energy diets have been used to induce obesity in rodents. However, few studies have reported on the effects observed at the initial stage of obesity induced by high-fat feeding on cardiac functional and structural remodelling. OBJECTIVE To characterize the initial moment of obesity and investigate both metabolic and cardiac parameters. In addition, the role of Ca2+ handling in short-term exposure to obesity was verified. METHODS Thirty-day-old male Wistar rats were randomized into two groups (n = 19 each): control (C; standard diet) and high-fat diet (HF, unsaturated high-fat diet). The initial moment of obesity was defined by weekly measurement of body weight (BW) complemented by adiposity index (AI). Cardiac remodelling was assessed by morphological, histological, echocardiographic and papillary muscle analysis. Ca2+ handling proteins were determined by Western Blot. RESULTS The initial moment of obesity occurred at the 3rd week. Compared with C rats, the HF rats had higher final BW (4%), body fat (20%), AI (14.5%), insulin levels (39.7%), leptin (62.4%) and low-density lipoprotein cholesterol (15.5%) but did not exhibit alterations in systolic blood pressure. Echocardiographic evaluation did not show alterations in cardiac parameters. In the HF group, muscles were observed to increase their +dT/dt (C: 52.6 ± 9.0 g/mm2/s and HF: 68.0 ± 17.0 g/mm2/s; p < 0.05). In addition, there was no changes in the cardiac expression of Ca2+ handling proteins. CONCLUSION The initial moment of obesity promotes alterations to hormonal and lipid profiles without cardiac damage or changes in Ca2+ handling.
Collapse
|
35
|
Phungphong S, Kijtawornrat A, Chaiduang S, Saengsirisuwan V, Bupha-Intr T. 20-Hydroxyecdysone attenuates cardiac remodeling in spontaneously hypertensive rats. Steroids 2017; 126:79-84. [PMID: 28803209 DOI: 10.1016/j.steroids.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Ecdysteroids, a group of steroid hormones found in insects and many plants, have been shown to prevent various changes in mammalian tissues after female sex hormone deprivation. PURPOSE To examine whether an ecdysteroid, 20-hydroxyecdysone (20-HE), exhibits regulatory or protective roles in the cardiovascular system. STUDY DESIGN/METHOD Blood pressure and cardiac function were evaluated in spontaneously hypertensive rats (SHR) during and after daily treatment with 20-HE for six weeks. RESULTS The progressive increase in systolic blood pressure with age in SHR rats was significantly lower in animals treated with either 5 or 10mg/kg body weight of 20-HE. However, treatment with 20-HE did not diminish the increase in diastolic pressure. Echocardiography after six weeks of treatment demonstrated that the left ventricular chamber of SHR rats treated with 20-HE was smaller than that of SHR controls, while contractility was not affected by 20-HE. Histological images also demonstrated a decrease in cardiomyocyte cross-sectional area in 20-HE treated groups. Interestingly, treatment with 20-HE caused a shift in cardiac myosin heavy chain towards more β-isoforms. SHR rats treated with 20-HE also exhibited a decrease in seminal vesicular weight and an increase in testicular weight, especially at a dose of 10mg/kg body weight. This finding suggests a possible anti-androgenic effect of 20-HE. CONCLUSION Our finding reveal that 20-HE has a beneficial effect on reducing blood pressure and consequently preventing dilated cardiac hypertrophy in SHR rats.
Collapse
Affiliation(s)
- Sukanya Phungphong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirinut Chaiduang
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Vitoon Saengsirisuwan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
36
|
Sanz-de la Garza M, Rubies C, Batlle M, Bijnens BH, Mont L, Sitges M, Guasch E. Severity of structural and functional right ventricular remodeling depends on training load in an experimental model of endurance exercise. Am J Physiol Heart Circ Physiol 2017; 313:H459-H468. [DOI: 10.1152/ajpheart.00763.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/02/2017] [Accepted: 05/21/2017] [Indexed: 11/22/2022]
Abstract
Arrhythmogenic right ventricular (RV) remodeling has been reported in response to regular training, but it remains unclear how exercise intensity affects the presence and extent of such remodeling. We aimed to assess the relationship between RV remodeling and exercise load in a long-term endurance training model. Wistar rats were conditioned to run at moderate (MOD; 45 min, 30 cm/s) or intense (INT; 60 min, 60 cm/s) workloads for 16 wk; sedentary rats served as controls. Cardiac remodeling was assessed with standard echocardiographic and tissue Doppler techniques, sensor-tip pressure catheters, and pressure-volume loop analyses. After MOD training, both ventricles similarly dilated (~16%); the RV apical segment deformation, but not the basal segment deformation, was increased [apical strain rate (SR): −2.9 ± 0.5 vs. −3.3 ± 0.6 s−1, SED vs. MOD]. INT training prompted marked RV dilatation (~26%) but did not further dilate the left ventricle (LV). A reduction in both RV segments' deformation in INT rats (apical SR: −3.3 ± 0.6 vs. −3.0 ± 0.4 s−1 and basal SR: −3.3 ± 0.7 vs. −2.7 ± 0.6 s−1, MOD vs. INT) led to decreased global contractile function (maximal rate of rise of LV pressure: 2.53 ± 0.15 vs. 2.17 ± 0.116 mmHg/ms, MOD vs. INT). Echocardiography and hemodynamics consistently pointed to impaired RV diastolic function in INT rats. LV systolic and diastolic functions remained unchanged in all groups. In conclusion, we showed a biphasic, unbalanced RV remodeling response with increasing doses of exercise: physiological adaptation after MOD training turns adverse with INT training, involving disproportionate RV dilatation, decreased contractility, and impaired diastolic function. Our findings support the existence of an exercise load threshold beyond which cardiac remodeling becomes maladaptive. NEW & NOTEWORTHY Exercise promotes left ventricular eccentric hypertrophy with no changes in systolic or diastolic function in healthy rats. Conversely, right ventricular adaptation to physical activity follows a biphasic, dose-dependent, and segmentary pattern. Moderate exercise promotes a mild systolic function enhancement at the right ventricular apex and more intense exercise impairs systolic and diastolic function.
Collapse
Affiliation(s)
- Maria Sanz-de la Garza
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Cira Rubies
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Montserrat Batlle
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red, Madrid, Spain
| | - Bart H. Bijnens
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; and
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Lluis Mont
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red, Madrid, Spain
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red, Madrid, Spain
| | - Eduard Guasch
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red, Madrid, Spain
| |
Collapse
|
37
|
Prat V, Rozec B, Gauthier C, Lauzier B. Human heart failure with preserved ejection versus feline cardiomyopathy: what can we learn from both veterinary and human medicine? Heart Fail Rev 2017; 22:783-794. [DOI: 10.1007/s10741-017-9645-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Gattoni S, Røe ÅT, Aronsen JM, Sjaastad I, Louch WE, Smith NP, Niederer SA. Compensatory and decompensatory alterations in cardiomyocyte Ca 2+ dynamics in hearts with diastolic dysfunction following aortic banding. J Physiol 2017; 595:3867-3889. [PMID: 28542952 PMCID: PMC5471387 DOI: 10.1113/jp273879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/06/2017] [Indexed: 01/20/2023] Open
Abstract
Key points At the cellular level cardiac hypertrophy causes remodelling, leading to changes in ionic channel, pump and exchanger densities and kinetics. Previous studies have focused on quantifying changes in channels, pumps and exchangers without quantitatively linking these changes with emergent cellular scale functionality. Two biophysical cardiac cell models were created, parameterized and validated and are able to simulate electrophysiology and calcium dynamics in myocytes from control sham operated rats and aortic‐banded rats exhibiting diastolic dysfunction. The contribution of each ionic pathway to the calcium kinetics was calculated, identifying the L‐type Ca2+ channel and sarco/endoplasmic reticulum Ca2+ATPase as the principal regulators of systolic and diastolic Ca2+, respectively. Results show that the ability to dynamically change systolic Ca2+, through changes in expression of key Ca2+ modelling protein densities, is drastically reduced following the aortic banding procedure; however the cells are able to compensate Ca2+ homeostasis in an efficient way to minimize systolic dysfunction.
Abstract Elevated left ventricular afterload leads to myocardial hypertrophy, diastolic dysfunction, cellular remodelling and compromised calcium dynamics. At the cellular scale this remodelling of the ionic channels, pumps and exchangers gives rise to changes in the Ca2+ transient. However, the relative roles of the underlying subcellular processes and the positive or negative impact of each remodelling mechanism are not fully understood. Biophysical cardiac cell models were created to simulate electrophysiology and calcium dynamics in myocytes from control rats (SHAM) and aortic‐banded rats exhibiting diastolic dysfunction. The model parameters and framework were validated and the fitted parameters demonstrated to be unique for explaining our experimental data. The contribution of each ionic pathway to the calcium kinetics was calculated, identifying the L‐type Ca2+ channel (LCC) and the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) as the principal regulators of systolic and diastolic Ca2+, respectively. In the aortic banding model, the sensitivity of systolic Ca2+ to LCC density and diastolic Ca2+ to SERCA density decreased by 16‐fold and increased by 23%, respectively, relative to the SHAM model. The energy cost of ionic homeostasis is maintained across the two models. The models predict that changes in ionic pathway densities in compensated aortic banding rats maintain Ca2+ function and efficiency. The ability to dynamically alter systolic function is significantly diminished, while the capacity to maintain diastolic Ca2+ is moderately increased. At the cellular level cardiac hypertrophy causes remodelling, leading to changes in ionic channel, pump and exchanger densities and kinetics. Previous studies have focused on quantifying changes in channels, pumps and exchangers without quantitatively linking these changes with emergent cellular scale functionality. Two biophysical cardiac cell models were created, parameterized and validated and are able to simulate electrophysiology and calcium dynamics in myocytes from control sham operated rats and aortic‐banded rats exhibiting diastolic dysfunction. The contribution of each ionic pathway to the calcium kinetics was calculated, identifying the L‐type Ca2+ channel and sarco/endoplasmic reticulum Ca2+ATPase as the principal regulators of systolic and diastolic Ca2+, respectively. Results show that the ability to dynamically change systolic Ca2+, through changes in expression of key Ca2+ modelling protein densities, is drastically reduced following the aortic banding procedure; however the cells are able to compensate Ca2+ homeostasis in an efficient way to minimize systolic dysfunction.
Collapse
Affiliation(s)
- Sara Gattoni
- King's College London, Department of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, 4th floor North Wing, The Rayne Institute, London, SE1 7EH, UK
| | - Åsmund Treu Røe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | | | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Nicolas P Smith
- King's College London, Department of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, 4th floor North Wing, The Rayne Institute, London, SE1 7EH, UK.,University of Auckland, Engineering School Block 1, Level 5, 20 Symonds St., Auckland, 101, New Zealand
| | - Steven A Niederer
- King's College London, Department of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, 4th floor North Wing, The Rayne Institute, London, SE1 7EH, UK
| |
Collapse
|
39
|
A role for galectin-3 in the development of early molecular alterations in short-term aortic stenosis. Clin Sci (Lond) 2017; 131:935-949. [DOI: 10.1042/cs20170145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 02/02/2023]
Abstract
Aortic stenosis (AS) is characterized by pressure overload and causes left ventricular (LV) fibrosis and inflammation, two mechanisms that eventually lead to cardiac dysfunction. Galectin-3 (Gal-3), a β-galactoside-binding lectin, promotes cardiac remodelling. In the present study, we investigated the role of Gal-3 in LV remodelling in patients with AS and the effects of Gal-3 blockade in rats subjected to short-term (6-week) supravalvular aortic banding (AS group). Myocardial biopsies were obtained from 25 patients with severe AS referred for aortic valve replacement and from necropsies of 11 cardiovascular disease-free control individuals. Gal-3 was up-regulated in myocardial biopsies from AS patients compared with controls. Gal-3 directly correlated with parameters assessing myocardial fibrosis and inflammation in AS patients. Normotensive AS animals presented decreased LV diastolic diameter compared with controls. At the histological level, AS rats exhibited a slight increase in LV cross-sectional area and LV wall thickness, and augmented cardiomyocyte width and cross-sectional area. AS animals presented enhanced cardiac Gal-3 expression, which paralleled higher myocardial fibrosis and inflammation. Cardiac Gal-3 was associated with fibrosis and inflammatory markers. Gal-3 pharmacological inhibition prevented the increase in cardiac Gal-3 and normalized histological and molecular alterations in AS rats. In short-term AS, the increase in myocardial Gal-3 expression was associated with cardiac fibrosis and inflammation, alterations that were prevented by Gal-3 blockade. These data suggest that Gal-3 inhibition could be a novel therapeutic approach in the prevention of AS-associated early pathological cardiac remodelling.
Collapse
|
40
|
Silveira CFSMP, Campos DHS, Freire PP, Deus AF, Okoshi K, Padovani CR, Cicogna AC. Importance of SERCA2a on early isolated diastolic dysfunction induced by supravalvular aortic stenosis in rats. ACTA ACUST UNITED AC 2017; 50:e5742. [PMID: 28423119 PMCID: PMC5441282 DOI: 10.1590/1414-431x20175742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/10/2017] [Indexed: 01/19/2023]
Abstract
Cardiac remodeling is defined as changes in shape and function of the heart in response to aggression (pressure overload). The sarcoplasmic reticulum calcium ATPase cardiac isoform 2a (SERCA2a) is a known factor that influences function. A wide spectrum of studies report a decrease in SERCA2a in heart failure, but none evaluate it's the role in early isolated diastolic dysfunction in supravalvular aortic stenosis (AoS). Our hypothesis was that SERCA2a participates in such dysfunction. Thirty-day-old male Wistar rats (60-80 g) were divided into AoS and Sham groups, which were submitted to surgery with or without aorta clipping, respectively. After 6 weeks, the animals were submitted to echocardiogram and functional analysis by isolated papillary muscle (IPM) in basal condition, hypoxia, and SERCA2a blockage with cyclopiazonic acid at calcium concentrations of 0.5, 1.5, and 2.5 mM. Western-blot analyses were used for SERCA2a and phospholamban detection. Data analysis was carried out with Student's t-test and ANOVA. AoS enhanced left atrium and E and A wave ratio, with preserved ejection fraction. Basal condition in IPM showed similar increases in developed tension (DT) and resting tension (RT) in AoS, and hypoxia was similar between groups. After cyclopiazonic acid blockage, final DT was equally decreased and RT was similar between groups, but the speed of relaxation was decreased in the AoS group. Western-blot was uniform in all evaluations. The hypothesis was confirmed, since functional parameters regarding SERCA2a were changed in the AoS group.
Collapse
Affiliation(s)
- C F S M P Silveira
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - D H S Campos
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - P P Freire
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - A F Deus
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - K Okoshi
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - C R Padovani
- Departamento de Bioestatística, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - A C Cicogna
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| |
Collapse
|
41
|
Brown L, Fenning A, Shek A, Burstow D. Reversal of cardiovascular remodelling with candesartan. J Renin Angiotensin Aldosterone Syst 2016; 2:S141-S147. [DOI: 10.1177/14703203010020012501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular remodelling, defined as ventricular and vascular hypertrophy together with fibrosis, characterises hypertension following inhibition of the production of the endogenous vasodilator, nitric oxide (NO). This study has determined whether the cardiovascular remodelling following chronic NO synthase inhibition can be reversed by administration of the selective angiotensin II AT1-receptor antagonist, candesartan. Male Wistar rats were treated with L-nitroarginine methyl ester (L-NAME, 400 mg/l in drinking water) for eight weeks and with candesartan cilexetil (2 mg/kg/day by oral gavage) for the last four weeks. L-NAME-treated rats became hypertensive with systolic blood pressure increasing from 110±4 mmHg (control) to 170±10 mmHg. Rats developed left ventricular hypertrophy (control 1.70±0.06; L-NAME 2.10±0.04 mg/kg body wt) with markedly increased deposition of perivascular and interstitial collagen. Candesartan returned blood pressure, left ventricular weights and collagen deposition to control values. Echocardiographic assessment showed concentric hypertrophy with an increased fractional shortening; this was reversed by candesartan treatment. Heart failure was not evident. In the isolated Langendorff heart, diastolic stiffness increased in L-NAME-treated rats while the rate of increase in pressure (+dP/dt) increased after eight weeks only; candesartan reduced collagen deposition and normalised +dP/dt. In isolated left ventricular papillary muscles, the potency (negative log EC50) of noradrenaline as a positive inotropic compound was unchanged, (control 6.56±0.14); maximal increase in force before ectopic beats was reduced from 5.0±0.4 mN to 2.0±0.2 mN. Noradrenaline potency as a vasoconstrictor in thoracic aortic rings was unchanged, but maximal contraction was markedly reduced from 25.2±2.0 mN to 3.0±0.3 mN; this was partially reversed by candesartan treatment. Thus, chronic inhibition of NO production with L-NAME induces hypertension, hypertrophy and fibrosis with increased toxicity and significant decreases in vascular responses to noradrenaline. These changes were at least partially reversible by treatment with candesartan, implying a significant role of AT1-receptors in L-NAME-induced cardiovascular changes.
Collapse
Affiliation(s)
- Lindsay Brown
- Department of Physiology and Pharmacology, The University
of Queensland,
| | - Andrew Fenning
- Department of Physiology and Pharmacology, The University
of Queensland
| | - Annie Shek
- Department of Physiology and Pharmacology, The University
of Queensland
| | | |
Collapse
|
42
|
Németh BT, Mátyás C, Oláh A, Lux Á, Hidi L, Ruppert M, Kellermayer D, Kökény G, Szabó G, Merkely B, Radovits T. Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload. Sci Rep 2016; 6:37166. [PMID: 27853261 PMCID: PMC5112572 DOI: 10.1038/srep37166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/25/2016] [Indexed: 01/19/2023] Open
Abstract
Pathologic myocardial hypertrophy develops when the heart is chronically pressure-overloaded. Elevated intracellular cGMP-levels have been reported to prevent the development of pathologic myocardial hypertrophy, therefore we investigated the effects of chronic activation of the cGMP producing enzyme, soluble guanylate cyclase by Cinaciguat in a rat model of pressure overload-induced cardiac hypertrophy. Abdominal aortic banding (AAB) was used to evoke pressure overload-induced cardiac hypertrophy in male Wistar rats. Sham operated animals served as controls. Experimental and control groups were treated with 10 mg/kg/day Cinaciguat (Cin) or placebo (Co) p.o. for six weeks, respectively. Pathologic myocardial hypertrophy was present in the AABCo group following 6 weeks of pressure overload of the heart, evidenced by increased relative heart weight, average cardiomyocyte diameter, collagen content and apoptosis. Cinaciguat did not significantly alter blood pressure, but effectively attenuated all features of pathologic myocardial hypertrophy, and normalized functional changes, such as the increase in contractility following AAB. Our results demonstrate that chronic enhancement of cGMP signalling by pharmacological activation of sGC might be a novel therapeutic approach in the prevention of pathologic myocardial hypertrophy.
Collapse
Affiliation(s)
- Balázs Tamás Németh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Árpád Lux
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - László Hidi
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Dalma Kellermayer
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Gábor Kökény
- Institute of Pathophysiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Im Neuenheimer Feld 110., 69210 Heidelberg, Germany
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122 Budapest, Hungary
| |
Collapse
|
43
|
Andersson C, Abdulla J. Is the use of renin-angiotensin system inhibitors in patients with aortic valve stenosis safe and of prognostic benefit? A systematic review and meta-analysis. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2016; 3:21-27. [PMID: 27615013 DOI: 10.1093/ehjcvp/pvw027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/13/2022]
Abstract
Aortic valve stenosis (AVS) is associated with significant morbidity and mortality, especially in the presence of symptoms and echocardiographic signs of left ventricular remodelling (i.e. increase in left ventricular mass, left ventricular dilation, and systolic dysfunction). Renin-angiotensin system inhibitors (RASi) attenuate cardiac remodelling in various conditions, but the safety and efficacy of RASi in AVS is unsure. We performed a systematic review and meta-analysis to address these issues. We identified three smaller randomized clinical trials and five observational studies eligible for inclusion (PubMed, EMBASE, and Cochrane library search criteria: aortic stenosis, aortic valve, angiotensin-converting enzyme inhibitor in different combinations, published in English at any time up to 1 April 2016). Our analyses suggested that use of RASi was safe, with no observed increase in mortality risk [576/3389 patients receiving RASi vs. 1118/4384 controls died; relative risk 0.93 (95% confidence interval 0.78-1.11), P = 0.44]. Use of RASi was also observed to lower the risk of aortic valve replacement (AVR) surgery [67/2913 patients with RASi vs. 154/3666 controls underwent AVR; relative risk 0.68 (95% confidence interval 0.51-0.91), P = 0.01]. In current clinical practice (based on published literature; mainly observational studies), use of RASi appears to be safe in patients with AVS and may reduce the need for AVR, but the evidence is overall weak. Large-scale randomized clinical trials are warranted to address whether prescription of RASi to treatment-naïve patients may prevent disease progression, delay AVR surgery need, and lower the risk of mortality.
Collapse
Affiliation(s)
- Charlotte Andersson
- Department of Internal Medicine, Section of Cardiology, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 57, Glostrup 2600, Denmark
| | - Jawdat Abdulla
- Department of Internal Medicine, Section of Cardiology, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 57, Glostrup 2600, Denmark
| |
Collapse
|
44
|
Chockalingam A, Venkatesan S, Dorairajan S, Chockalingam V, Subramaniam T, Jaganathan V, Elangovan S, Alagesan R, Gnanavelu G, Arul AS. Safety and Efficacy of Enalapril in Multivalvular Heart Disease with Significant Mitral Stenosis—SCOPE-MS. Angiology 2016; 56:151-8. [PMID: 15793604 DOI: 10.1177/000331970505600205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin-converting enzyme inhibitors (ACEI) are often used in preventing and treating heart failure due to regurgitant valve disease. The majority of patients with symptomatic rheumatic heart disease (RHD) have significant mitral stenosis (MS) and are denied ACEI therapy, because of the fear of hypotension in the presence of fixed obstruction. The authors assessed the safety and efficacy of ACEI in 109 consecutive patients with RHD and with significant mitral stenosis (mitral valve orifice, MVO <1.5 cm2) and with NYHA class III or IV heart failure symptoms. Mean age was 33.1 ±12 years, systolic blood pressure (BP) was 111 ±10, and diastolic BP was 73 ±8 mm Hg. MS was significant in 100 patients with mitral regurgitation in 46, aortic regurgitation in 19, and pulmonary hypertension in 60 patients. After initial stabilization, enalapril 2.5 mg bid was started in hospital and titrated up to 10 mg bid over 2 weeks. NYHA status, Borg score, and 6-minute walk test were assessed at baseline, and at 1, 2, and 4 weeks. Seventy-nine of the 100 patients who completed the study had severe MS (MVO <1.0 cm2). Enalapril was well tolerated by all study patients without hypotension or worsening of symptoms. NYHA class (3.2 ±0.5 baseline vs 2.3 ±0.5 at 4 weeks, p<0.01) Borg Dyspnea Index (7.6 ±1.3 vs 5.6 ±1.3, p<0.01), and 6-minute walk distance (226 ±106 vs 299 ±127 m, p<0.01) improved significantly with enalapril. Patients with associated regurgitant lesions showed more improvement in exercise capacity (120 ±93 vs 39 ±56 m, p<0.001). Enalapril was well tolerated in patients with RHD with moderate and severe MS. Irrespective of the valve pathology, enalapril improved functional status and exercise capacity with maximum benefit in patients with concomitant regurgitant valvular heart disease.
Collapse
Affiliation(s)
- Anand Chockalingam
- Department of Cardiology, Madras Medical College and Research Institute, Chennai, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Harada M, Tabako S. Carotid atherosclerosis is associated with left ventricular diastolic function. J Echocardiogr 2016; 14:120-9. [PMID: 27364492 DOI: 10.1007/s12574-016-0296-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND It has been reported that carotid intima-media thickness (IMT) correlates with the risk of stroke or cardiovascular disease. The purpose of this study was to analyze the relationships between echocardiographic findings and carotid atherosclerosis. METHODS A total of 234 patients (62 ± 15 years) were referred for echocardiography to evaluate the left ventricular (LV) function. The LV ejection fraction, the ratio of the peak velocity of early rapid filling and the peak velocity of atrial filling (E/A), and the peak early diastolic mitral annular velocity (e') were obtained by echocardiography. The maximum IMT (Max-IMT) and plaque score (PS) were measured by carotid ultrasonography within 1 month of the echocardiographic examination. RESULTS The mean values of Max-IMT and carotid PS were 2.41 ± 1.23 mm and 8.5 ± 6.3, respectively. The decreased mean E/A (0.94 ± 0.39) and mitral e' (5.5 ± 1.9 cm/s) indicated LV diastolic dysfunction. A good correlation was observed between Max-IMT and PS (r = 0.83, p < 0.0001). It was shown that 2.8 mm of Max-IMT was equivalent to 10.1 of carotid PS, which indicated severe carotid atherosclerosis. In multiple logistic stepwise regression analysis, among the echocardiographic parameters, only e' was independently associated with severe carotid atherosclerosis (Max-IMT ≥ 2.8 mm or PS ≥ 10.1). CONCLUSIONS The present study demonstrated that decreased early diastolic mitral annular velocity relates to the parameter reflecting carotid atherosclerosis. Therefore, the presence of severe carotid atherosclerosis may affect LV diastolic dysfunction.
Collapse
Affiliation(s)
- Masahiko Harada
- Department of Clinical Functional Physiology, Toho University Medical Center Omori Hospital, 6-11-1 Omori-nishi, Oota-ku, Tokyo, 143-8541, Japan.
| | - Satoshi Tabako
- Department of Clinical Functional Physiology, Toho University Medical Center Omori Hospital, 6-11-1 Omori-nishi, Oota-ku, Tokyo, 143-8541, Japan
| |
Collapse
|
46
|
Jugdutt BI, Menon V. Upregulation of Angiotensin II Type 2 Receptor and Limitation of Myocardial Stunning by Angiotensin II Type 1 Receptor Blockers during Reperfused Myocardial Infarction in the Rat. J Cardiovasc Pharmacol Ther 2016; 8:217-26. [PMID: 14506547 DOI: 10.1177/107424840300800307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: We have previously shown that angiotensin II type 1 receptor blockers induce cardioprotection and upregulate angiotensin II type 2 receptor during in vivo postischemicreperfusion in dogs. Whether angiotensin II type 1 receptor blockers upregulate angiotensin II type 2 receptors in rats is controversial, and whether surmountable and insurmountable angiotensin II type 1 receptor blockers exert similar protective effects during reperfused myocardial infarction is not known. Methods: We assessed the effects of the surmountable angiotensin receptor blocker valsartan, and the insurmountable angiotensin receptor blocker irbesartan, on hemodynamics and left ventricular systolic and diastolic function (echocardiography/Doppler) in vivo and infarct size (triphenyl tetrazolium chloride method), and regional angiotensin II type 1 receptor and angiotensin II type 2 receptor expression (immunoblots) ex vivo, after anterior reperfused myocardial infarction in rats. The rats were randomized to four groups: intravenous valsartan (10 mg/kg, n = 8), irbesartan (10 mg/kg, n = 8), or saline vehicle (controls, n = 14) over 30 minutes before reperfused myocardial infarction, and sham (n = 8). Angiotensin II type 1 receptor blockade was assessed by the inhibition of angiotensin II pressor responses. Results: Compared with the control group, both angiotensin receptor blockers significantly decreased infarct size, limited the increase in left atrial pressure, improved positive left ventricular dP/dtm,x and dP/dtm,,, improved left ventricular ejection fraction and diastolic function, and limited infarct expansion after reperfused myocardial infarction. Both angiotensin receptor blockers increased angiotensin II type 2 receptor protein in the postischemic-reperfused zone, with no change in angiotensin II type 1 receptor protein. There were no changes in the sham group. Conclusion: The overall results indicate that the angiotensin receptor blockers valsartan and irbesartan both induce cardioprotection, limit myocardial stunning, and upregulate angiotensin II type 2 receptor protein expression after reperfused myocardial infarction in the rat. Patients who are already receiving angiotensin receptor blockers and develop acute coronary syndromes might benefit from these cardioprotective effects during reperfusion therapy.
Collapse
Affiliation(s)
- Bodh I Jugdutt
- Division of Cardiology, Department of Medicine and the Cardiovascular Research Group, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
47
|
Wu J, Cheng Z, Zhang M, Zhu P, Gu Y. Impact of aortocaval shunt flow on cardiac and renal function in unilateral nephrectomized rats. Sci Rep 2016; 6:27493. [PMID: 27279232 PMCID: PMC4899735 DOI: 10.1038/srep27493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/18/2016] [Indexed: 11/13/2022] Open
Abstract
We previously reported significantly enhanced cardiac remodeling post aortocaval fistula (AV) in unilateral nephrectomized (UNX) rats. However, the relationship between the size of the AV and the cardiorenal effects in UNX rats remains unknown. In the present study, AV was induced by 20, 18 and 16 gauge needles in UNX rats to see if larger shunt would definitely induce heavier cardiac and renal damage in UNX rats. Our results demonstrated that bigger shunt size is linked with proportional more significant cardiorenal remodeling and dysfunction in UNX rats. Expression of inflammatory biomarkers including CRP, TNF-α, IL-6, IL-1β, TGF-β and MCP-1 in left kidney and heart was significantly increased in all UNX + AV groups compared to Sham rats. Inflammation might thus participate in the worsening cardiorenal functions and remodeling processes in this model.
Collapse
Affiliation(s)
- Jie Wu
- Department of Cardiology, Puai Hospital, Jianghan University, Wuhan, 430033, China
| | - Zhong Cheng
- Department of Cardiology, Puai Hospital, Jianghan University, Wuhan, 430033, China
| | - Mingjing Zhang
- Department of Cardiology, Puai Hospital, Jianghan University, Wuhan, 430033, China
| | - Pengfei Zhu
- Department of Cardiology, Puai Hospital, Jianghan University, Wuhan, 430033, China
| | - Ye Gu
- Department of Cardiology, Puai Hospital, Jianghan University, Wuhan, 430033, China
| |
Collapse
|
48
|
Lee LC, Kassab GS, Guccione JM. Mathematical modeling of cardiac growth and remodeling. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2016; 8:211-26. [PMID: 26952285 PMCID: PMC4841715 DOI: 10.1002/wsbm.1330] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/05/2022]
Abstract
This review provides an overview of the current state of mathematical models of cardiac growth and remodeling (G&R). We concisely describe the experimental observations associated with cardiac G&R and discuss existing mathematical models that describe this process. To facilitate the discussion, we have organized the G&R models in terms of (1) the physical focus (biochemical vs mechanical) and (2) the process that they describe (myocyte hypertrophy vs extracellular matrix remodeling). The review concludes with a discussion of some possible directions that can advance the existing state of cardiac G&R mathematical modeling. WIREs Syst Biol Med 2016, 8:211-226. doi: 10.1002/wsbm.1330 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- L C Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - G S Kassab
- California Medical Innovations Institute, San Diego, CA, USA
| | - J M Guccione
- Department of Surgery, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Rodrigues PG, Leite-Moreira AF, Falcão-Pires I. Myocardial reverse remodeling: how far can we rewind? Am J Physiol Heart Circ Physiol 2016; 310:H1402-22. [PMID: 26993225 DOI: 10.1152/ajpheart.00696.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is a systemic disease that can be divided into HF with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). HFpEF accounts for over 50% of all HF patients and is typically associated with high prevalence of several comorbidities, including hypertension, diabetes mellitus, pulmonary hypertension, obesity, and atrial fibrillation. Myocardial remodeling occurs both in HFrEF and HFpEF and it involves changes in cardiac structure, myocardial composition, and myocyte deformation and multiple biochemical and molecular alterations that impact heart function and its reserve capacity. Understanding the features of myocardial remodeling has become a major objective for limiting or reversing its progression, the latter known as reverse remodeling (RR). Research on HFrEF RR process is broader and has delivered effective therapeutic strategies, which have been employed for some decades. However, the RR process in HFpEF is less clear partly due to the lack of information on HFpEF pathophysiology and to the long list of failed standard HF therapeutics strategies in these patient's outcomes. Nevertheless, new proteins, protein-protein interactions, and signaling pathways are being explored as potential new targets for HFpEF remodeling and RR. Here, we review recent translational and clinical research in HFpEF myocardial remodeling to provide an overview on the most important features of RR, comparing HFpEF with HFrEF conditions.
Collapse
Affiliation(s)
- Patrícia G Rodrigues
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| |
Collapse
|
50
|
Conceição G, Heinonen I, Lourenço AP, Duncker DJ, Falcão-Pires I. Animal models of heart failure with preserved ejection fraction. Neth Heart J 2016; 24:275-86. [PMID: 26936157 PMCID: PMC4796054 DOI: 10.1007/s12471-016-0815-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) constitutes a clinical syndrome in which the diagnostic criteria of heart failure are not accompanied by gross disturbances of systolic function, as assessed by ejection fraction. In turn, under most circumstances, diastolic function is impaired. Although it now represents over 50 % of all patients with heart failure, the mechanisms of HFpEF remain understood, precluding effective therapy. Understanding the pathophysiology of HFpEF has been restricted by both limited access to human myocardial biopsies and by the lack of animal models that fully mimic human pathology. Animal models are valuable research tools to clarify subcellular and molecular mechanisms under conditions where the comorbidities and other confounding factors can be precisely controlled. Although most of the heart failure animal models currently available represent heart failure with reduced ejection fraction, several HFpEF animal models have been proposed. However, few of these fulfil all the features present in human disease. In this review we will provide an overview of the currently available models to study HFpEF from rodents to large animals as well as present advantages and disadvantages of these models.
Collapse
Affiliation(s)
- G Conceição
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - I Heinonen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Turku PET Centre, University of Turku, Turku, Finland
| | - A P Lourenço
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Anesthesiology, Centro Hospitalar de São João, Porto, Portugal
| | - D J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - I Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|