1
|
Lee YC, Jou YC, Chou WC, Tsai KL, Shen CH, Lee SD. Ellagic acid protects against angiotensin II-induced hypertrophic responses through ROS-mediated MAPK pathway in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3253-3263. [PMID: 38356441 DOI: 10.1002/tox.24170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
The early myocardial response of hypertension is an elevation of angiotensin-II (Ang-II) concentration, leading to heart failure and cardiac hypertrophy. This hypertrophic event of the heart is mediated by the interaction of Ang type 1 receptors (AT-R1), thereby modulating NADPH oxidase activity in cardiomyocytes, which alters redox status in cardiomyocytes. Ellagic acid (EA) has anti-inflammatory and anti-oxidative capacities. Thus, EA has potential preventive effects on cardiovascular diseases and diabetes. In the last decades, because the protective effect of EA on Ang-II-induced hypertrophic responses is unclear, this study aims to investigate the protective effect of EA in cardiomyocytes. H9c2 cells were treated to Ang-II 1 μM for 24 h to induce cellular damage. We found that EA protected against Ang-II-increased cell surface area and pro-hypertrophic gene expression in H9c2. EA reduced Ang-II-caused AT-R1 upregulation, thereby inhibiting oxidative stress NADPH oxidase activation. EA mitigated Ang-II-enhanced p38 and extracellular-signal-regulated kinase (ERK) phosphorylation. Moreover, EA treatment under Ang-II stimulation also reversed NF-κB activity and iNOS expression. This study shows that EA protects against Ang-II-induced myocardial hypertrophy and attenuates oxidative stress through reactive oxygen species-mediated mitogen-activated protein kinase signaling pathways in H9c2 cells. Thus, EA may be an effective compound for preventing Ang-II-induced myocardial hypertrophy.
Collapse
Affiliation(s)
- Ya-Che Lee
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, St. Martin De Porres Hospital, Chia-Yi City, Taiwan
- Department of Health and Nutrition Biotechnology, College of Medical and Health Science, Asia University, Taichung City, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Allied Health Science, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Min Hsiung, Chia-Yi, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung City, Taiwan
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Momot K, Krauz K, Czarzasta K, Zarębiński M, Puchalska L, Wojciechowska M. Evaluation of Nitrosative/Oxidative Stress and Inflammation in Heart Failure with Preserved and Reduced Ejection Fraction. Int J Mol Sci 2023; 24:15944. [PMID: 37958927 PMCID: PMC10649140 DOI: 10.3390/ijms242115944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Heart failure (HF) is a complex syndrome characterized by impaired cardiac function. Two common subtypes of HF include heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). In this study, we aimed to evaluate and compare the plasma levels of 3-nitrotyrosine (3-NT)-as a marker of nitrosative/oxidative stress and myeloperoxidase (MPO)-as an indicator of inflammation between HFpEF and HFrEF. Twenty-seven patients diagnosed with HFpEF and twenty-two with HFrEF were enrolled in this study. Additionally, forty-one patients were recruited for the control group. An echocardiographic assessment was conducted, followed by the collection of blood samples from all participants. Subsequently, the levels of 3-NT and MPO were quantified using the ELISA method. Comprehensive clinical characteristics and medical histories were obtained. Circulating levels of 3-NT were significantly higher in the HFpEF patients than in the control and the HFrEF groups. Nitrosative/oxidative stress is significantly intensified in HFpEF but not in HFrEF.
Collapse
Affiliation(s)
- Karol Momot
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (K.K.); (K.C.); (L.P.)
| | - Kamil Krauz
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (K.K.); (K.C.); (L.P.)
| | - Katarzyna Czarzasta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (K.K.); (K.C.); (L.P.)
| | - Maciej Zarębiński
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, 05-825 Grodzisk Mazowiecki, Poland;
| | - Liana Puchalska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (K.K.); (K.C.); (L.P.)
| | - Małgorzata Wojciechowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (K.K.); (K.C.); (L.P.)
| |
Collapse
|
3
|
Association of carotid wall layers with atherosclerotic plaques and cardiac hypertrophy in hypertensive subjects. J Hum Hypertens 2022; 36:732-737. [PMID: 34131263 DOI: 10.1038/s41371-021-00565-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023]
Abstract
Carotid intima-media thickness (cIMT) is considered a marker of subclinical atherosclerosis and is related to target-organ damage in hypertensive patients. However, increased cIMT may be due to increases in the thickness of intima (cIT) and media (cMT) layers. This study evaluated whether cIMT layers (cIT and cMT) had a greater association with carotid atherosclerotic plaques and left ventricular hypertrophy (LVH) than cIMT in hypertensive subjects. We cross-sectionally evaluated clinical, carotid, and echocardiography characteristics of 186 hypertensive patients followed at an outpatient clinic. High-resolution images of common carotid arteries were obtained by ultrasonography equipped with 10-MHz transducers, and cIT, cMT, and cIMT were manually measured using an image-processing software. Among all participants (n = 186; age = 60.8 ± 10.9 years, 43% males), there were 58% with carotid plaques and 58% with LVH. Mean cIT, cMT, and cIMT values were 0.267 ± 0.060, 0.475 ± 0.107, and 0.742 ± 0.142 mm, respectively. In logistic regression analysis adjusted for relevant covariates, carotid plaques showed stronger association with cIT than with cMT and cIMT. Furthermore, cIT showed greater area under the ROC curve (0.92; 95% CI 0.87-0.96) than cIMT (0.79; 95% CI 0.72-0.85) and cMT (0.64; 95% CI 0.56-0.72) to identify plaques. Conversely, cIT, cMT, and cIMT had modest association and accuracy to identify LVH (area under the ROC curve = 0.61, 0.57, and 0.60, respectively). In conclusion, cIT is a more accurate marker of atherosclerosis than cMT or cIMT, while cIT and cMT provide no incremental value in identifying LVH when compared with cIMT among hypertensive subjects.
Collapse
|
4
|
TRPV1 Activation Attenuates High-Salt Diet-Induced Cardiac Hypertrophy and Fibrosis through PPAR-δ Upregulation. PPAR Res 2014; 2014:491963. [PMID: 25152753 PMCID: PMC4131514 DOI: 10.1155/2014/491963] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/20/2014] [Indexed: 12/30/2022] Open
Abstract
High-salt diet-induced cardiac hypertrophy and fibrosis are associated with increased reactive oxygen species production. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, exerts a protective role in cardiac remodeling that resulted from myocardial infarction, and peroxisome proliferation-activated receptors δ (PPAR-δ) play an important role in metabolic myocardium remodeling. However, it remains unknown whether activation of TRPV1 could alleviate cardiac hypertrophy and fibrosis and the effect of cross-talk between TRPV1 and PPAR-δ on suppressing high-salt diet-generated oxidative stress. In this study, high-salt diet-induced cardiac hypertrophy and fibrosis are characterized by significant enhancement of HW/BW%, LVEDD, and LVESD, decreased FS and EF, and increased collagen deposition. These alterations were associated with downregulation of PPAR-δ, UCP2 expression, upregulation of iNOS production, and increased oxidative/nitrotyrosine stress. These adverse effects of long-term high-salt diet were attenuated by chronic treatment with capsaicin. However, this effect of capsaicin was absent in TRPV1−/− mice on a high-salt diet. Our finding suggests that chronic dietary capsaicin consumption attenuates long-term high-salt diet-induced cardiac hypertrophy and fibrosis. This benefit effect is likely to be caused by TRPV1 mediated upregulation of PPAR-δ expression.
Collapse
|
5
|
Yang C, Madonna R, Li Y, Zhang Q, Shen WF, McNamara K, Yang YJ, Geng YJ. Simvastatin-enhanced expression of promyogenic nuclear factors and cardiomyogenesis of murine embryonic stem cells. Vascul Pharmacol 2013; 60:8-16. [PMID: 24200505 DOI: 10.1016/j.vph.2013.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/30/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022]
Abstract
A combination of statin and stem cell therapies has been shown to benefit in experimental models of myocardial infarction. This study tests whether treatment with simvastatin has a direct impact on the cardiomyogenic development of murine embryonic stem cells (ESCs) in embryoid bodies. In a concentration-dependent manner, simvastatin treatment enhanced expression of several promyogenic nuclear transcription factors, including GATA4, Nkx2.5, DTEF-1 and myocardin A. The statin-treated cells also displayed higher levels of cardiac proteins, including myosin, α-actinin, Ryanodine receptor-2, and atrial natriuretic peptide, and they developed synchronized contraction. The statin's promyogenic effect was partially diminished by the addition of the two isoprenoids FPP and GGPP, which are intermediates of cholesterol synthesis. Thus, simvastatin treatment enhances ESC myogenesis during early development perhaps via a mechanism inhibiting the mevalonate-FPP/GGPP pathway.
Collapse
Affiliation(s)
- ChenMin Yang
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; The Department of Obstetrics and Gynecology, Ruijin Hospital, Jiao-Tong University Medical School, Shanghai, China; Texas Heart Institute, Houston, TX, USA
| | - Rosalinda Madonna
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA
| | - Yangxin Li
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA
| | - Qi Zhang
- The Department of Cardiovascular Medicine, Ruijin Hospital, Jiao-Tong University Medical School, Shanghai, China
| | - Wei-Feng Shen
- The Department of Cardiovascular Medicine, Ruijin Hospital, Jiao-Tong University Medical School, Shanghai, China
| | - Katharine McNamara
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA
| | - Yue-Jin Yang
- FuWai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong-Jian Geng
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
6
|
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013; 61:473-501. [PMID: 23583330 PMCID: PMC3883979 DOI: 10.1016/j.freeradbiomed.2013.04.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyperactivation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia-reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Marschall S Runge
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Yang D, Yuan J, Liu G, Ling Z, Zeng H, Chen Y, Zhang Y, She Q, Zhou X. Angiotensin receptor blockers and statins could alleviate atrial fibrosis via regulating platelet-derived growth factor/Rac1/nuclear factor-kappa B Axis. Int J Med Sci 2013; 10:812-24. [PMID: 23794945 PMCID: PMC3689874 DOI: 10.7150/ijms.5931] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/11/2013] [Indexed: 12/19/2022] Open
Abstract
AIMS To investigate whether the administration of renin-angiotensin system (RAS) inhibitors and statins could alleviate atrial fibrosis via platelet-derived growth factor (PDGF)/Rac1 /nuclear factor-kappa B (NF-κB) axis. METHODS AND RESULTS In human left atrium, the degree of atrial fibrosis, as well as the expression levels of PDGF, Rac1 and NF-κB increased 1.5 to 2.9 folds in patients with atrial fibrillation compared to that with sinus rhythm, (P<0.0001). There were strongly positive correlations between angiotensin II (Ang II) or procollagen type III-alpha-1 (COL3A1) with PDGF, Rac1, NF-κB, and among PDGF, Rac1 and NF-κB (all P<0.05). At 3 weeks after the transverse aorta constriction (TAC) operation in rat model and with intervention of irbesartan or/and simvastatin, the collagen volume fraction (CVF) and atrial natriuretic peptide (ANP) values respectively increased 6-folds and 3.5-folds in the TAC group compared to SHAM group (P<0.0001), but these levels decreased by 16% to 63% with following drug intervention (all P<0.0001), the combined treatment was the lowest. Accordingly, the expression levels of PDGF (3-folds), Rac1 (1.6-folds), NF-κB (7-folds) and AngII (12-folds) significantly increased in the TAC group compared to the SHAM group, and these levels were also reduced by 25% to 64% with following drug intervention. The highest reduction could be seen after treatment with irbesartan and simvastatin in combination (all P<0.001).There were strongly positive correlations between AngII or CVF with PDGF, Rac1, NF-κB, and among PDGF, Rac1 and NF-κB (all P<0.05). CONCLUSIONS Irbesartan or/and simvastatin can improve atrial fibrosis by regulating PDGF/Rac1/NF-κB axis.
Collapse
Affiliation(s)
- Dongfang Yang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
McDermott PJ, Baicu CF, Wahl SR, Van Laer AO, Zile MR. In vivo measurements of the contributions of protein synthesis and protein degradation in regulating cardiac pressure overload hypertrophy in the mouse. Mol Cell Biochem 2012; 367:205-13. [PMID: 22610791 DOI: 10.1007/s11010-012-1334-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Cardiac hypertrophy is generated in response to hemodynamic overload by altering steady-state protein metabolism such that the rate of protein synthesis exceeds the rate of protein degradation. To determine the relative contributions of protein synthesis and degradation in regulating cardiac hypertrophy in mice, a continuous infusion strategy was developed to measure myocardial protein synthesis rates in vivo. Osmotic mini-pumps were implanted in the abdominal cavity to infuse radiolabeled leucine in mice that are conscious and ambulatory. Protein synthesis rates were calculated by measuring incorporation of leucine into myocardial protein over 24 h prior to each time point and dividing by the specific radioactivity of plasma leucine. Compared to sham-operated controls, fractional rates of protein synthesis (K(s)) increased significantly at days 1 and 3 of TAC, but was lower on day 7 and returned to control values by day 14. These changes coincided with the curvilinear increase in LV mass that characterizes the hypertrophic response. Fractional rates of protein degradation (K(d)) were calculated by subtracting the rate of myocardial growth from the corresponding K(s) value. K(d) fell at days 1 and 3 of TAC, increased at day 7 and returned to control on day 14. Thus, the increase in LV mass generated in response to pressure overload is caused by acceleration of K(s) and suppression of K(d). As the growth rate slows, a new steady-state is achieved once the hypertrophic response is completed.
Collapse
Affiliation(s)
- Paul J McDermott
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, USA.
| | | | | | | | | |
Collapse
|
9
|
Gan XT, Hunter JC, Huang C, Xue J, Rajapurohitam V, Javadov S, Karmazyn M. Ouabain increases iNOS-dependent nitric oxide generation which contributes to the hypertrophic effect of the glycoside: possible role of peroxynitrite formation. Mol Cell Biochem 2011; 363:323-33. [PMID: 22160804 DOI: 10.1007/s11010-011-1185-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/24/2011] [Indexed: 12/27/2022]
Abstract
In addition to inotropic effects, cardiac glycosides exert deleterious effects on the heart which limit their use for cardiac therapeutics. In this study, we determined the possible contribution of ouabain-induced iNOS stimulation to the resultant hypertrophic as well as cytotoxic effects of the glycoside on cultured adult rat ventricular myocytes. Myocytes were treated with ouabain (50 μM) for up to 24 h. Ouabain significantly increased gene and protein levels of inducible nitric oxide synthase (iNOS) which was associated with significantly increased release of NO from myocytes as well as increased total release of reactive oxygen species (ROS), superoxide anion (O(2) (-)), and increased peroxynitrite formation as assessed by protein tyrosine nitration. Administration of ouabain was also associated with increased levels of myocyte toxicity as determined by myocyte morphology, trypan blue staining and lactate dehydrogenase (LDH) efflux. The nonspecific NOS inhibitor Nω-nitro-L: -arginine methyl ester and the more selective iNOS inhibitor 1400W both abrogated the increase in LDH release but had no significant effect on either morphology or trypan blue staining. Ouabain also significantly increased both myocyte surface area and expression of atrial natriuretic peptide indicating a hypertrophic response with both parameters being completely prevented by NOS inhibition. The effects of iNOS inhibitors were associated with diminished ouabain tyrosine nitration as well as abrogation of ouabain-induced p38 and ERK phosphorylation. Our study shows that ouabain is a potent inducer of NO formation, iNOS upregulation, and increased production of ROS. Inhibition of ouabain-dependent peroxynitrite formation may contribute to the antihypertrophic effect of iNOS inhibition possibly by preventing downstream MAPK activation.
Collapse
MESH Headings
- Animals
- Cardiotonic Agents/toxicity
- Cell Shape/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Enzyme Induction
- Enzyme Inhibitors/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- L-Lactate Dehydrogenase/metabolism
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Ouabain/toxicity
- Peroxynitrous Acid/metabolism
- Phosphorylation
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Superoxides/metabolism
- Time Factors
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
- Up-Regulation
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Xiaohong Tracey Gan
- Department of Physiology & Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Schreiber R, Ferreira-Sae MC, Ronchi JA, Pio-Magalhães JA, Cipolli JA, Matos-Souza JR, Mill JG, Vercesi AE, Krieger JE, Franchini KG, Pereira AC, Nadruz Junior W. The C242T polymorphism of the p22-phox gene (CYBA) is associated with higher left ventricular mass in Brazilian hypertensive patients. BMC MEDICAL GENETICS 2011; 12:114. [PMID: 21884584 PMCID: PMC3182137 DOI: 10.1186/1471-2350-12-114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/31/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Reactive oxygen species have been implicated in the physiopathogenesis of hypertensive end-organ damage. This study investigated the impact of the C242T polymorphism of the p22-phox gene (CYBA) on left ventricular structure in Brazilian hypertensive subjects. METHODS We cross-sectionally evaluated 561 patients from 2 independent centers [Campinas (n = 441) and Vitória (n = 120)] by clinical history, physical examination, anthropometry, analysis of metabolic and echocardiography parameters as well as p22-phox C242T polymorphism genotyping. In addition, NADPH-oxidase activity was quantified in peripheral mononuclear cells from a subgroup of Campinas sample. RESULTS Genotype frequencies in both samples were consistent with the Hardy- Weinberg equilibrium. Subjects with the T allele presented higher left ventricular mass/height2.7 than those carrying the CC genotype in Campinas (76.8 ± 1.6 vs 70.9 ± 1.4 g/m2.7; p = 0.009), and in Vitória (45.6 ± 1.9 vs 39.9 ± 1.4 g/m2.7; p = 0.023) samples. These results were confirmed by stepwise regression analyses adjusted for age, gender, blood pressure, metabolic variables and use of anti-hypertensive medications. In addition, increased NADPH-oxidase activity was detected in peripheral mononuclear cells from T allele carriers compared with CC genotype carriers (p = 0.03). CONCLUSIONS The T allele of the p22-phox C242T polymorphism is associated with higher left ventricular mass/height 2.7 and increased NADPH-oxidase activity in Brazilian hypertensive patients. These data suggest that genetic variation within NADPH-oxidase components may modulate left ventricular remodeling in subjects with systemic hypertension.
Collapse
Affiliation(s)
- Roberto Schreiber
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med 2011; 50:777-93. [PMID: 21236334 PMCID: PMC3049876 DOI: 10.1016/j.freeradbiomed.2011.01.003] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
The heart has complex mechanisms that facilitate the maintenance of an oxygen supply-demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation-contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved-where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases.
Collapse
Key Words
- aif, apoptosis-inducing factor
- arc, apoptosis repressor with caspase recruitment domain
- camkii, calmodulin kinase ii
- ctgf, connective tissue growth factor
- eb, embryoid body
- ecc, excitation–contraction coupling
- er, endoplasmic reticulum
- es, embryonic stem
- etc, electron transport chain
- g6pdh, glucose-6-phosphate dehydrogenase
- gpcr, g-protein-coupled receptor
- hdac, histone deacetylase
- hif, hypoxia-inducible factor
- mao-a, monoamine oxidase-a
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mptp, mitochondrial permeability transition pore
- mtdna, mitochondrial dna
- ncx, na/ca exchanger
- nos, nitric oxide synthase
- phd, prolyl hydroxylase dioxygenase
- pka, protein kinase a
- pkc, protein kinase c
- pkg, protein kinase g
- ros, reactive oxygen species
- ryr, ryanodine receptor
- serca, sarcoplasmic reticulum calcium atpase
- sr, sarcoplasmic reticulum
- trx1, thioredoxin1
- tnfα, tumor necrosis factor-α
- vegf, vascular endothelial growth factor
- cardiac myocyte
- reactive oxygen species
- redox signaling
- hypertrophy
- heart failure
- nadph oxidase
- mitochondria
- free radicals
Collapse
|
12
|
Cha HN, Choi JH, Kim YW, Kim JY, Ahn MW, Park SY. Metformin Inhibits Isoproterenol-induced Cardiac Hypertrophy in Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:377-84. [PMID: 21311678 DOI: 10.4196/kjpp.2010.14.6.377] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 12/18/2022]
Abstract
The present study examined whether metformin treatment prevents isoporterenol-induced cardiac hypertrophy in mice. Chronic subcutaneous infusion of isoproterenol (15 mg/kg/24 h) for 1 week using an osmotic minipump induced cardiac hypertrophy measured by the heart-to-body weight ratio and left ventricular posterior wall thickness. Cardiac hypertrophy was accompanied with increased interleukin-6 (IL-6), transforming growth factor (TGF)-β, atrial natriuretic peptide (ANP), collagen I and III, and matrix metallopeptidase 2 (MMP-2). Coinfusion of metformin (150 mg/kg/24 h) with isoproterenol partially inhibited cardiac hypertrophy that was followed by reduced IL-6, TGF-β, ANP, collagen I and III, and MMP-2. Chronic subcutaneous infusion of metformin did not increase AMP-activated protein kinase (AMPK) activity in heart, although acute intraperitoneal injection of metformin (10 mg/kg) increased AMPK activity. Isoproterenol increased nitrotyrosine levels and mRNA expression of antioxidant enzyme glutathione peroxidase and metformin treatment normalized these changes. These results suggest that metformin inhibits cardiac hypertrophy through attenuating oxidative stress.
Collapse
Affiliation(s)
- Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, Korea
| | | | | | | | | | | |
Collapse
|
13
|
Huang C, Liu Z, Wang Z, Shen Z, Zhu J. Simvastatin prevents ERK activation in myocardial hypertrophy of spontaneously hypertensive rats. SCAND CARDIOVASC J 2010; 44:346-51. [PMID: 21080865 DOI: 10.3109/14017431.2010.521185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Statins exert regression of left ventricular hypertrophy independent of their plasma cholesterol-lowering actions. However, the underlying mechanism is not clear. METHODS We tested the hypothesis that the extracellular signal-regulated kinases (ERKs) signaling pathway could be a target of simvastatin (SIM) and involved in SIM-induced LVH regression in spontaneously hypertensive rats (SHR). Fourteen 14-week old-SHR males were randomly divided into a SHR SIM group (n = 7) or a SHR control group (n = 7). The SHR SIM group was given SIM 40 mg/kg · d via injection ig, while the SHR control group was routinely given only vehicle (0.5% carboxymethyl cellulose ig). Seven Wistar Kyoto rats served as normal controls. RESULTS Ten weeks of treatment with SIM in SHR had no influence on blood pressure. The ratio of left ventricle weight to body weight in the SHR SIM group was decreased significantly compared to that in the SHR control group (p < 0.05). Among the three groups there was no significant difference in total ERK expression (p > 0.05). SIM treatment caused a significant reduction in the expression of phosphorylated-ERK, the kinase activity of ERK, the levels of mitogen-activated protein kinase phosphatase-1 protein and its mRNA (p <0.01 for all). CONCLUSIONS The Hydroxymethylglutaryl coenzyme A reductase inhibitor SIM prevents the activation of ERK in SHR to mediate regression of myocardial hypertrophy in SHR.
Collapse
Affiliation(s)
- Chaoyang Huang
- Department of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
14
|
McCarty MF. Practical prevention of cardiac remodeling and atrial fibrillation with full-spectrum antioxidant therapy and ancillary strategies. Med Hypotheses 2010; 75:141-7. [PMID: 20083360 DOI: 10.1016/j.mehy.2009.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 12/19/2009] [Indexed: 11/26/2022]
Abstract
A wealth of research data points to increased oxidative stress as a key driver of the cardiac remodeling triggered by chronic pressure overload, loss of functional myocardial tissue, or atrial fibrillation. Oxidative stress is a mediator of the cardiomyocyte hypertrophy and apoptosis, the cardiac fibrosis, and the deficits in cardiac function which typify this syndrome, and may play a role in initiating and sustaining atrial fibrillation. Nox2- and Nox4-dependent NADPH oxidase activity appears to be a major source of this oxidative stress, and oxidants can induce conformational changes in xanthine dehydrogenase, nitric oxide synthase, and the mitochondrial respiratory chain which increase their capacity to generate superoxide as well. Consistent with these insights, various synthetic antioxidants have been shown to suppress cardiac remodeling in rodents subjected to myocardial infarction, aortic constriction, or rapid atrial pacing. It may prove feasible to achieve comparable benefits in humans through use of a "full-spectrum antioxidant therapy" (FSAT) that features a complementary array of natural antioxidants. Spirulina is a rich source of phycocyanobilin, a derivative and homolog of biliverdin that appears to mimic the potent inhibitory impact of biliverdin and free bilirubin on NADPH oxidase activity. Mega-doses of folate can markedly increase intracellular levels of tetrahydrofolates which have potent and versatile radical-scavenging activities - including efficient quenching of peroxynitrite-derived radicals Supplemental coenzyme Q10, already shown to improve heart function in clinical congestive failure, can provide important antioxidant protection to mitochondria. Phase 2 inducer nutraceuticals such as lipoic acid, administered in conjunction with N-acetylcysteine, have the potential to blunt the impact of oxidative stress by boosting myocardial levels of glutathione. While taurine can function as an antioxidant for myeloperoxidase-derived radicals, its positive inotropic effect on the failing heart seems more likely to reflect an effect on intracellular calcium dynamics. These measures could aid control of cardiac modeling less directly by lowering elevated blood pressure, or by aiding the perfusion of ischemic cardiac regions through an improvement in coronary endothelial function. Since nitric oxide functions physiologically to oppose cardiomyocyte hypertrophy and cardiac fibrosis, and is also a key regulator of blood pressure and endothelial function, cocoa flavanols - which provoke endothelial release of nitric oxide - might usefully complement the antioxidant measures recommended here.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
15
|
S-nitroso-N-acetylcysteine (SNAC) prevents myocardial alterations in hypercholesterolemic LDL receptor knockout mice by antiinflammatory action. J Cardiovasc Pharmacol 2008; 51:78-85. [PMID: 18209572 DOI: 10.1097/fjc.0b013e31815c39d4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the ability of S-nitroso-N-acetylcyseine (SNAC) to prevent structural and functional myocardial alterations in hypercholesterolemic mice. C57BL6 wild-type (WT) and LDL-R-/- male mice (S) were fed a standard diet for 15 days. LDL-R-/- mice (S) showed an 11% increase in blood pressure, 62% decrease in left atrial contractility, and lower CD40L and eNOS expression relative to WT. LDL-R-/- mice fed an atherogenic diet for 15 days (Chol) showed significant increased left ventricular mass compared to S, which was characterized by: (1) 1.25-fold increase in the LV weight/body weight ratio and cardiomyocyte diameter; (2) enhanced expression of the NOS isoforms, CD40L, and collagen amount; and (3) no alteration in the atrial contractile performance. Administration of SNAC to Chol mice (Chol + SNAC) (0.51 micromol/kg/day for 15 day, IP) prevented increased left ventricular mass, collagen deposit, NOS isoforms, and CD40L overexpression, but it had no effect on the increased blood pressure or atrial basal hypocontractility. Deletion of the LDL receptor gene in mice resulted in hypertension and a marked left atrial contractile deficit, which may be related to eNOS underexpression. Our data show that SNAC treatment has an antiinflammatory action that might contribute to prevention of structural and functional myocardial alterations in atherosclerotic mice independently of changes in blood pressure.
Collapse
|
16
|
Yan X, Schuldt AJT, Price RL, Amende I, Liu FF, Okoshi K, Ho KKL, Pope AJ, Borg TK, Lorell BH, Morgan JP. Pressure overload-induced hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes. Am J Physiol Heart Circ Physiol 2008; 294:H1274-81. [DOI: 10.1152/ajpheart.00174.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the angiotensin II type 2 (AT2) receptor in cardiac hypertrophy remains controversial. We studied the effects of AT2 receptors on chronic pressure overload-induced cardiac hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes. Left ventricular (LV) hypertrophy was induced by ascending aorta banding (AS). Transgenic mice overexpressing AT2 (AT2TG-AS) and nontransgenic mice (NTG-AS) were studied after 70 days of aortic banding. Nonbanded NTG mice were used as controls. LV function was determined by catheterization via LV puncture and cardiac magnetic resonance imaging. LV myocyte diameter and interstitial collagen were determined by confocal microscopy. Atrial natriuretic polypeptide (ANP) and brain natriuretic peptide (BNP) were analyzed by Northern blot. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2, inducible nitric oxide synthase (iNOS), endothelial NOS, ERK1/2, p70S6K, Src-homology 2 domain-containing protein tyrosine phosphatase-1, and protein serine/threonine phosphatase 2A were analyzed by Western blot. LV myocyte diameter and collagen were significantly reduced in AT2TG-AS compared with NTG-AS mice. LV anterior and posterior wall thickness were not different between AT2TG-AS and NTG-AS mice. LV systolic and diastolic dimensions were significantly higher in AT2TG-AS than in NTG-AS mice. LV systolic pressure and end-diastolic pressure were lower in AT2TG-AS than in NTG-AS mice. ANP, BNP, and SERCA2 were not different between AT2TG-AS and NTG-AS mice. Phospholamban (PLB) and the PLB-to-SERCA2 ratio were significantly higher in AT2TG-AS than in NTG-AS mice. iNOS was higher in AT2TG-AS than in NTG-AS mice but not significantly different. Our results indicate that AT2 receptor overexpression modified the pathological hypertrophic response to aortic banding in transgenic mice.
Collapse
|
17
|
LIAO Y, ZHAO H, OGAI A, KATO H, ASAKURA M, KIM J, ASANUMA H, MINAMINO T, TAKASHIMA S, KITAKAZE M. Atorvastatin Slows the Progression of Cardiac Remodeling in Mice with Pressure Overload and Inhibits Epidermal Growth Factor Receptor Activation. Hypertens Res 2008; 31:335-44. [DOI: 10.1291/hypres.31.335] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
ÁLVAREZ MC, CALDIZ C, FANTINELLI JC, GARCIARENA CD, CONSOLE GM, CHIAPPE DE CINGOLANI GE, MOSCA SM. Is Cardiac Hypertrophy in Spontaneously Hypertensive Rats the Cause or the Consequence of Oxidative Stress? Hypertens Res 2008; 31:1465-76. [DOI: 10.1291/hypres.31.1465] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Abstract
Left ventricular hypertrophy (LVH), despite its adaptive nature, is associated with an increased risk of cardiovascular morbidity and mortality. Achievement of LVH regression is thus considered a principal therapeutic aim. However, regression of LVH induced by various therapeutic means may exhibit differing patterns, with variable biological implications. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) have been shown to induce prevention or regression of LVH in different models of pathological myocardial growth. In addition to reduction of LV mass, statins were shown to reduce myocardial fibrosis, increase capillary density network and attenuate electrical instability of the hypertrophied heart. Most importantly, statins improved systolic and diastolic LV function and even decreased mortality. The inhibition of hypertrophic growth was only partly achieved by reduction of haemodynamic overload. Direct mechanisms, such as inhibition of neurohumoral activation in the myocardial tissue, attenuated production of growth factors and markers of inflammation and reduction of oxidative stress also seem to participate. The protective effect of statins was associated with the inhibition of expression and activation of small guanosintriphosphate-binding proteins such as Ras and Rho, which control the intensity of oxidative stress, the production and availability of nitric oxide, and the expression of genes involved in myocardial growth. In addition to reduction of LV mass, statins may also improve the prognosis of LVH independently of their lipid-lowering effect.
Collapse
Affiliation(s)
- F Simko
- School of Medicine, Komensky University, Bratislava, Slovak Republic.
| |
Collapse
|
20
|
Zhang P, Xu X, Hu X, van Deel ED, Zhu G, Chen Y. Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure. Circ Res 2007; 100:1089-98. [PMID: 17363700 PMCID: PMC2386857 DOI: 10.1161/01.res.0000264081.78659.45] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inducible nitric oxide synthase (iNOS) protein is expressed in cardiac myocytes of patients and experimental animals with congestive heart failure (CHF). Here we show that iNOS expression plays a role in pressure overload-induced myocardial chamber dilation and hypertrophy. In wild-type mice, chronic transverse aortic constriction (TAC) resulted in myocardial iNOS expression, cardiac hypertrophy, ventricular dilation and dysfunction, and fibrosis, whereas iNOS-deficient mice displayed much less hypertrophy, dilation, fibrosis, and dysfunction. Consistent with these findings, TAC resulted in marked increases of myocardial atrial natriuretic peptide 4-hydroxy-2-nonenal (a marker of lipid peroxidation) and nitrotyrosine (a marker for peroxynitrite) in wild-type mice but not in iNOS-deficient mice. In response to TAC, myocardial endothelial NO synthase and iNOS was expressed as both monomer and dimer in wild-type mice, and this was associated with increased reactive oxygen species production, suggesting that iNOS monomer was a source for the increased oxidative stress. Moreover, systolic overload-induced Akt, mammalian target of rapamycin, and ribosomal protein S6 activation was significantly attenuated in iNOS-deficient mice. Furthermore, selective iNOS inhibition with 1400W (6 mg/kg per hour) significantly attenuated TAC induced myocardial hypertrophy and pulmonary congestion. These data implicate iNOS in the maladaptative response to systolic overload and suggest that selective iNOS inhibition or attenuation of iNOS monomer content might be effective for treatment of systolic overload-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Ping Zhang
- Center of Vascular Biology and Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
21
|
Sales ML, Ferreira MCS, Leme CA, Velloso LA, Gallani MCJ, Colombo RCR, Franchini KG, Nadruz W. Non-effect of p22-phox −930A/G polymorphism on end-organ damage in Brazilian hypertensive patients. J Hum Hypertens 2007; 21:504-6. [PMID: 17314996 DOI: 10.1038/sj.jhh.1002170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The p22-phox subunit is an essential component of NAD(P)H oxidase enzymatic complex, which is considered the major source of oxidative stress products in the cardiovascular system. The -930G allele of p22-phox has been associated with higher promoter activity, increased NAD(P)H oxidase-mediated oxidative stress and hypertension. We recently reported that left ventricular hypertrophy is accompanied by increased myocardial p22-phox expression in aortic-banded rats, suggesting that this protein might be involved in hypertensive cardiac hypertrophy.
Collapse
|
22
|
Grieve DJ, Byrne JA, Siva A, Layland J, Johar S, Cave AC, Shah AM. Involvement of the Nicotinamide Adenosine Dinucleotide Phosphate Oxidase Isoform Nox2 in Cardiac Contractile Dysfunction Occurring in Response to Pressure Overload. J Am Coll Cardiol 2006; 47:817-26. [PMID: 16487851 DOI: 10.1016/j.jacc.2005.09.051] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Revised: 09/14/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES This study sought to examine the role of Nox2 in the contractile dysfunction associated with pressure-overload left ventricular hypertrophy (LVH). BACKGROUND Reactive oxygen species (ROS) production is implicated in the pathophysiology of LVH. The nicotinamide adenosine dinucleotide phosphate oxidase isoform, Nox2, is pivotally involved in angiotensin II-induced hypertrophy but is not essential for development of pressure-overload LVH. Its possible impact on contractile function is unknown. METHODS The effects of aortic banding or sham surgery on cardiac contractile function and interstitial fibrosis were compared in adult Nox2-/- and matched wild-type (WT) mice. RESULTS Banding induced similar increases in left ventricular (LV) mass in both groups. Banded Nox2-/- mice had better LV function than WT by echocardiography (e.g., fractional shortening 33.6 +/- 2.5% vs. 21.4 +/- 2.2%, p < 0.05). Comprehensive LV pressure-volume analyses also showed significant contractile dysfunction in banded WT compared with sham, whereas banded Nox2-/- mice had preserved function (e.g., maximum rate of rise of LV pressure: banded WT, 4,879 +/- 213; vs. banded Nox2-/-, 5,913 +/- 259 mm Hg/s; p < 0.05). Similar preservation of function was observed in isolated cardiomyocytes. The 24-h to 36-h treatment of banded WT mice with N-acetylcysteine resulted in recovery of contractile function. Cardiac interstitial fibrosis was significantly increased in banded WT but not Nox2-/- mice, together with greater increases in procollagen I and III mRNA expression. CONCLUSIONS The Nox2 oxidase contributes to the development of cardiac contractile dysfunction and interstitial fibrosis during pressure overload, although it is not essential for development of morphologic hypertrophy per se. These data suggest divergent downstream effects of Nox2 on different components of the overall response to pressure overload.
Collapse
Affiliation(s)
- David J Grieve
- King's College London, Cardiovascular Division, Guy's, King's, and St. Thomas' School of Medicine, London, England
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
We know a great deal about the receptors and signaling pathways in cardiomyocytes that contribute to hypertrophic growth. Although drugs that target them have proven effective in substantially reducing left ventricular hypertrophy and associated mortality, cardiovascular disease remains the leading cause of death in the West. Another approach may rest with exploiting naturally occurring regulators of maladaptive cardiac hypertrophy that have been identified in the past few years. These endogenous negative regulators can be grouped, for the most part, into those constitutively active but whose activity is decreased by hypertrophic stimulation, and those with little or no baseline activity that are activated by hypertrophic stimulation. Spanning both groups are 4 systems that converge on cyclic guanosine 3', 5'-monophosphate (cGMP) generation, namely natriuretic peptides (ANP and BNP), kinins, nitric oxide (NO), and the angiotensin II type 2 receptor (AT2). Although holding promise as a means for restricting hypertrophy, each of these signaling molecules has certain limitations that need to be overcome. What follows is an overview of research over the past 2 years, much of it published in Hypertension, which has dealt with the antihypertrophic action of this particular group of endogenous signaling molecules. Understanding the function and regulation of the antihypertrophic NO-cGMP system offers the promise of novel therapeutic strategies for treating cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- George W Booz
- Cardiovascular Research Institute, the Texas A&M University System Health Science Center, College of Medicine, Temple, Tex, USA.
| |
Collapse
|
24
|
Kuster GM, Kotlyar E, Rude MK, Siwik DA, Liao R, Colucci WS, Sam F. Mineralocorticoid Receptor Inhibition Ameliorates the Transition to Myocardial Failure and Decreases Oxidative Stress and Inflammation in Mice With Chronic Pressure Overload. Circulation 2005; 111:420-7. [PMID: 15687129 DOI: 10.1161/01.cir.0000153800.09920.40] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background—
Although aldosterone, acting via mineralocorticoid receptors, causes left ventricular (LV) hypertrophy in experimental models of high-aldosterone hypertension, little is known about the role of aldosterone or mineralocorticoid receptors in mediating adverse remodeling in response to chronic pressure overload.
Methods and Results—
We used the mineralocorticoid receptor–selective antagonist eplerenone (EPL) to test the role of mineralocorticoid receptors in mediating the transition from hypertrophy to failure in mice with chronic pressure overload caused by ascending aortic constriction (AAC). One week after AAC, mice were randomized to regular chow or chow containing EPL (200 mg/kg per day) for an additional 7 weeks. EPL had no significant effect on systolic blood pressure after AAC. Eight weeks after AAC, EPL treatment improved survival (94% versus 65%), attenuated the increases in LV end-diastolic (3.4±0.1 versus 3.7±0.1 mm) and end-systolic (2.0±0.1 versus 2.5±0.2 mm) dimensions, and ameliorated the decrease in fractional shortening (42±2% versus 34±4%). EPL also decreased myocardial fibrosis, myocyte apoptosis, and the ratio of matrix metalloproteinase-2/tissue inhibitor of matrix metalloproteinase-2. These beneficial effects of EPL were associated with less myocardial oxidative stress, as assessed by 3-nitrotyrosine staining, reduced expression of the adhesion molecule intercellular adhesion molecule-1, and reduced infiltration by macrophages.
Conclusions—
Mineralocorticoid receptors play an important role in mediating the transition from LV hypertrophy to failure with chronic pressure overload. The effects of mineralocorticoid receptor stimulation are associated with alterations in the interstitial matrix and myocyte apoptosis and may be mediated, at least in part, by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Gabriela M Kuster
- Cardiovascular Medicine Section, Boston University Medical Center, Boston, Mass, USA
| | | | | | | | | | | | | |
Collapse
|