1
|
Sutovska H, Molcan L, Majzunova M, Sykora M, Kopkan L, Zeman M. Mineralocorticoid receptor blockade protects the kidneys but does not affect inverted blood pressure rhythm in hypertensive transgenic (mRen-2)27 rats. Mol Cell Endocrinol 2023; 572:111967. [PMID: 37210027 DOI: 10.1016/j.mce.2023.111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Aldosterone regulates blood pressure (BP) through water and sodium balance. In our study, we studied if continuous treatment with a mineralocorticoid receptor antagonist, spironolactone (30 mg/kg/day) for 20 days can: 1) attenuate hypertension development and restore inverted 24-h BP rhythm in hypertensive transgenic (mRen-2)27 rats (TGR) measured by telemetry; 2) improve function of the kidneys and heart; 3) be protective against high salt load (1% in water) by mitigating oxidative injury and improving kidney function. Spironolactone decreased albuminuria and 8-isoprostane in normal and salt load conditions in BP-independent effects. Salt load increased BP, impaired autonomic balance, suppressed plasma aldosterone level and increased natriuresis, albuminuria and oxidative injury in TGR. Spironolactone did not restore the inverted 24-h rhythm of BP in TGR, therefore, mineralocorticoids are not crucial in regulation of BP daily profile. Spironolactone improved kidney function, decreased oxidative stress and was protective against high salt load in the BP-independent manner.
Collapse
Affiliation(s)
- Hana Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic.
| | - Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic.
| | - Miroslava Majzunova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic.
| | - Matus Sykora
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Libor Kopkan
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic.
| |
Collapse
|
2
|
Mowry FE, Biancardi VC. Neuroinflammation in hypertension: the renin-angiotensin system versus pro-resolution pathways. Pharmacol Res 2019; 144:279-291. [PMID: 31039397 DOI: 10.1016/j.phrs.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Overstimulation of the pro-inflammatory pathways within brain areas responsible for sympathetic outflow is well evidenced as a primary contributing factor to the establishment and maintenance of neurogenic hypertension. However, the precise mechanisms and stimuli responsible for promoting a pro-inflammatory state are not fully elucidated. Recent work has unveiled novel compounds derived from omega-3 polyunsaturated fatty acids (ω-3 PUFAs), termed specialized pro-resolving mediators (SPMs), which actively regulate the resolution of inflammation. Failure or dysregulation of the resolution process has been linked to a variety of chronic inflammatory and neurodegenerative diseases. Given the pathologic role of neuroinflammation in the hypertensive state, SPMs and their associated pathways may provide a link between hypertension and the long-standing association of dietary ω-3 PUFAs with cardioprotection. Herein, we review recent progress in understanding the RAS-driven pathophysiology of neurogenic hypertension, particularly in regards to the chronic low-grade neuroinflammatory response. In addition, we examine the potential for an impaired resolution of inflammation process in the context of hypertension.
Collapse
Affiliation(s)
- Francesca Elisabeth Mowry
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA; Center for Neurosciences Research Initiative, Auburn University, Alabama, USA.
| |
Collapse
|
3
|
Endothelin receptor blockade does not affect blood pressure or angiotensin II levels in CYP1A1-Ren-2 transgenic rats with acutely induced hypertension. Vascul Pharmacol 2009; 50:194-9. [DOI: 10.1016/j.vph.2009.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/08/2008] [Accepted: 01/21/2009] [Indexed: 11/22/2022]
|
4
|
Vernerová Z, Kramer HJ, Bäcker A, Červenka L, Opočenský M, Husková Z, Vaňourková Z, Eis V, Chábová VČ, Tesař V, Malý J, Vaněčková I. Late-onset endothelin receptor blockade in hypertensive heterozygous REN-2 transgenic rats. Vascul Pharmacol 2008; 48:165-73. [DOI: 10.1016/j.vph.2008.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
|
5
|
Husková Z, Kramer H, Vanourková Z, Thumová M, Malý J, Opocenský M, Skaroupková P, Kolský A, Vernerová Z, Cervenka L. Effects of Dietary Salt Load and Salt Depletion on the Course of Hypertension and Angiotensin II Levels in Male and Female Heterozygous Ren-2 Transgenic Rats. Kidney Blood Press Res 2007; 30:45-55. [PMID: 17259738 DOI: 10.1159/000099028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 12/12/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the present study we evaluated plasma and kidney angiotensin II (ANG II) levels in female and male Ren-2 transgenic rats (TGR) in comparison to age-matched female and male normotensive Hannover Sprague-Dawley rats. METHODS The rats were maintained on a normal sodium (NS) diet (0.6% NaCl) or fed a high sodium (HS) diet (2% NaCl) for 4 days or were sodium depleted by administration of 40 mg furosemide per liter drinking water overnight followed by 3 days of low sodium diet (0.01% NaCl) (LS + F). ANG II levels were determined by radioimmunoassay. RESULTS Female TGR at the age of 38 days were already hypertensive and had developed cardiac hypertrophy, whereas male TGR at this age still exhibited a normotensive phenotype. HS diet increased the blood pressure (BP) but did not alter the ANG II levels in TGR at any age. LS + F decreased the BP without significant change in ANG II concentrations in TGR. Female TGR responded to salt loading and salt depletion by more pronounced changes in BP than male TGR. CONCLUSIONS Female TGR develop hypertension more rapidly and the salt-sensitive component of hypertension is more pronounced in female than in male TGR.
Collapse
Affiliation(s)
- Zuzana Husková
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chappell MC, Yamaleyeva LM, Westwood BM. Estrogen and salt sensitivity in the female mRen(2).Lewis rat. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1557-63. [PMID: 16825422 DOI: 10.1152/ajpregu.00051.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study determined whether early loss of estrogen influences salt-sensitive changes in blood pressure, renal injury, and cardiac hypertrophy as well as the effects on the circulating renin-angiotensin-aldosterone system (RAAS) in the hypertensive female mRen( 2 ).Lewis strain. Ovariectomy (OVX) of heterozygous mRen( 2 ).Lewis rats on a normal salt (NS) diet (0.5% sodium) increased systolic blood pressure from 137 ± 3 to 177 ± 5 mmHg ( P < 0.01) by 15 wk but did not show any changes in cardiac-to-body weight index (CI), proteinuria, or creatinine clearance. Maintenance with a high-sodium (HS) diet (4%) increased blood pressure (203 ± 4 mmHg, P < 0.01), proteinuria (3.5 ± 0.3 vs. 6.4 ± 0.7 mg/day, P < 0.05), and CI (4.0 ± 0.1 vs. 5.2 ± 0.1 mg/kg, P < 0.01) but decreased creatinine clearance (0.89 ± 0.15 vs. 0.54 ± 0.06 ml/min, P < 0.05). OVX exacerbated the effects of salt on the degree of hypertension (230 ± 5 mmHg), CI (5.6 ± 0.2 mg/kg), and proteinuria (13 ± 3.0 mg/day). OVX increased the urinary excretion of aldosterone approximately twofold in animals on the NS diet (3.8 ± 0.5 vs. 6.6 ± 0.5 ng·mg creatinine−1·day−1, P < 0.05) and HS diet (1.4 ± 0.2 vs. 4.5 ± 1.0 ng·mg creatinine−1·day−1, P < 0.05). Circulating renin, angiotensin-converting enzyme, and angiotensin II were also significantly increased in the OVX group fed a HS diet. These results reveal that the protective effects of estrogen apart from the increase in blood pressure were only manifested in the setting of a chronic HS diet and suggest that the underlying sodium status may have an important influence on the overall effect of reduced estrogen.
Collapse
Affiliation(s)
- Mark C Chappell
- Hypertension and Vascular Disease Center, Wake Forest Univ. Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157-1095, USA.
| | | | | |
Collapse
|
7
|
Vanecková I, Kramer HJ, Bäcker A, Schejbalová S, Vernerová Z, Eis V, Opocenský M, Dvorák P, Cervenka L. Early-onset endothelin receptor blockade in hypertensive heterozygous Ren-2 rats. Vascul Pharmacol 2006; 45:163-70. [PMID: 16807127 DOI: 10.1016/j.vph.2006.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/26/2006] [Accepted: 05/05/2006] [Indexed: 11/19/2022]
Abstract
Male heterozygous Ren-2 transgenic rats and Hannover Sprague-Dawley rats fed a normal or high-salt diet were either untreated or treated with the nonselective receptor ET(A)/ET(B) receptor blocker bosentan or the selective ET(A) receptor blocker, ABT-627, known as atrasentan. Survival rate was partly increased by bosentan and fully normalized by atrasentan. Bosentan did not significantly influence the course of hypertension in TGR, whereas atrasentan significantly decreased BP on both diets. Atrasentan substantially reduced proteinuria, cardiac hypertrophy, glomerulosclerosis and left ventricular ET-1 tissue concentration on both diets. Our data indicate that ET(A) receptor blockade is superior to nonselective blockade in attenuating hypertension, end-organ damage and improving survival rate.
Collapse
Affiliation(s)
- Ivana Vanecková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Whaley-Connell AT, Chowdhury NA, Hayden MR, Stump CS, Habibi J, Wiedmeyer CE, Gallagher PE, Tallant EA, Cooper SA, Link CD, Ferrario C, Sowers JR. Oxidative stress and glomerular filtration barrier injury: role of the renin-angiotensin system in the Ren2 transgenic rat. Am J Physiol Renal Physiol 2006; 291:F1308-14. [PMID: 16788142 DOI: 10.1152/ajprenal.00167.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TG(mRen2)27 (Ren2) transgenic rats overexpress the mouse renin gene, manifest hypertension, and exhibit increased tissue ANG II levels and oxidative stress. Evidence indicates that elevated tissue ANG II contributes to oxidative stress, increases in glomerular macromolecular permeability, and consequent albuminuria. Furthermore, angiotensin type 1 receptor (AT1R) blockers reduce albuminuria and slow progression of renal disease. However, it is not known whether improvements in glomerular filtration barrier integrity and albuminuria during treatment are related to reductions in oxidative stress and/or kidney renin-angiotensin system (RAS) activity. To investigate the renal protective effects of AT1R blockade, we treated young (6-7 wk old) male Ren2 rats with valsartan (Ren2-V; 30 mg/kg) for 3 wk and measured urine albumin, kidney malondialdehyde (MDA), RAS component mRNAs, and NADPH oxidase subunits (gp91(phox) and Rac1) compared with age-matched untreated Ren2 and Sprague-Dawley (S-D) rats. Basement membrane thickness, slit pore diameter and number, and foot process base width were measured by transmission electron microscopy (TEM). Results indicate that AT1R blockade lowered systolic blood pressure (30%), albuminuria (91%), and kidney MDA (80%) in Ren2-V compared with untreated Ren2 rats. Increased slit pore number and diameter and reductions in basement membrane thickness and podocyte foot process base width were strongly associated with albuminuria and significantly improved following AT1R blockade. AT1R blockade was also associated with increased angiotensin-converting enzyme-2 and neprilysin expression, demonstrating a beneficial shift in balance of renal RAS. Thus reductions in blood pressure, albuminuria, and tissue oxidative stress with AT1R blockade were associated with improved indexes of glomerular filtration barrier integrity and renal RAS in Ren2 rats.
Collapse
Affiliation(s)
- Adam T Whaley-Connell
- Department of Internal Medicine, University of Missouri School of Medicine, 1 Hospital Dr., MA410 Medical Science Bldg., Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Husková Z, Kramer HJ, Vanourková Z, Cervenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J Hypertens 2006; 24:517-27. [PMID: 16467655 DOI: 10.1097/01.hjh.0000209988.51606.c7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Since there is as yet no general agreement regarding the role of plasma and kidney angiotensin II (ANG II) in the development of hypertension in Ren-2 transgenic rats (TGR), in the present study we evaluated plasma and kidney ANG II levels in anesthetized and conscious TGR and in normotensive Hannover-Sprague-Dawley rats (HanSD) fed a normal salt diet (NS). Given the importance of ANG II in the development of salt-sensitive hypertension, and the fact that hypertensinogenic actions of ANG II are mediated via ANG II type 1 (AT1) receptors, the effects of high salt (HS) intake and of sodium depletion on blood pressure (BP), ANG II levels and kidney AT1 receptor protein expression in TGR and HanSD were also examined. METHODS Rats were maintained on a NS diet (0.6% NaCl) or fed a HS diet (2% NaCl) for 4 days or were sodium depleted (40 mg/l furosemide for 1 day followed by 3 days of 0.01% NaCl diet). They were sacrificed either by an overdose of anesthetic (thiopental sodium) or by decapitation (without anesthetic) and plasma and kidney ANG II levels were determined by radioimmunoassay during the prehypertensive (32 days old), the early (52 days) and the maintenance (90 days) phases of hypertension. Total kidney AT1 receptor protein levels were assessed by Western blot analysis. RESULTS In anesthetized animals fed the NS diet, plasma ANG II levels were lower in 32-day-old TGR than in HanSD, but at 52 and 90 days of age no significant differences were noted. ANG II concentrations in kidney tissue were similar in 32- and 90-day-old TGR and HanSD, but were higher in 52-day-old TGR than in HanSD. In contrast, in conscious animals immediately after decapitation, plasma and kidney ANG II levels were higher in TGR than in HanSD at all ages. HS diet did not change BP but suppressed ANG II levels in HanSD at all ages. In contrast, HS diet increased BP but did not decrease plasma and kidney ANG II levels in TGR at all ages. Sodium restriction did not alter BP and resulted in a marked increase in ANG II levels in HanSD, but caused a significant decrease in BP in TGR without altering plasma or tissue ANG II concentrations. There were no significant differences in renal AT1 receptor protein expression between HanSD and TGR at any age of any of the experimental groups. CONCLUSIONS On the basis of our present results we conclude that TGR exhibit a disrupted interaction between sodium homeostasis and the regulation of the renin-angiotensin system (RAS) activity which results in the loss of BP regulation in this model.
Collapse
Affiliation(s)
- Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | |
Collapse
|
10
|
Dvorák P, Kramer HJ, Bäcker A, Malý J, Kopkan L, Vanecková I, Vernerová Z, Opocenský M, Tesar V, Bader M, Ganten D, Janda J, Cervenka L. Blockade of Endothelin Receptors Attenuates End-Organ Damage in Homozygous Hypertensive Ren-2 Transgenic Rats. Kidney Blood Press Res 2004; 27:248-58. [PMID: 15286437 DOI: 10.1159/000080052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2004] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/AIMS A growing body of evidence suggests that the interplay between the endothelin (ET) and the renin-angiotensin systems (RAS) plays an important role in the development of the malignant phase of hypertension. The present study was performed to evaluate the role of an interaction between ET and RAS in the development of hypertension and hypertension-associated end-organ damage in homozygous male transgenic rats harboring the mouse Ren-2 renin gene (TGRs) under conditions of normal-salt (NS, 0.45% NaCl) and high-salt (HS, 2% NaCl) intake. METHODS Twenty-eight-day-old homozygous male TGRs and age-matched transgene-negative male normotensive Hannover Sprague-Dawley (HanSD) rats were randomly assigned to groups with NS or HS intake. Nonselective ET(A/B) receptor blockade was achieved with bosentan (100 mg/kg/day). Systolic blood pressure (BP) was measured in conscious animals by tail plethysmography. Rats were placed into metabolic cages to determine proteinuria and clearance of endogenous creatinine. At the end of the experiment the final arterial BP was measured directly in anesthetized rats. Kidneys were taken for morphological examination. RESULTS All male HanSD fed either the NS or HS diet exhibited a 100% survival rate until 180 days of age (end of experiment). The survival rate in untreated homozygous male TGRs fed the NS diet was 41%, which was markedly improved by treatment with bosentan to 88%. The HS diet reduced the survival rate in homozygous male TGRs to 10%. The survival rate in homozygous male TGRs on the HS diet was significantly improved by bosentan to 69%. Treatment with bosentan did not influence either the course of hypertension or the final levels of BP in any of the experimental groups of HanSD rats or TGRs. Although the ET-1 content in the renal cortex did not differ between HanSD rats and TGRs, ET-1 in the left heart ventricle of TGRs fed the HS diet was significantly higher compared with all other groups. Administration of bosentan to homozygous male TGRs fed either the NS or HS diet markedly reduced proteinuria, glomerulosclerosis and attenuated the development of cardiac hypertrophy compared with untreated TGR. CONCLUSIONS Our data show that nonselective ET(A/B) receptor blockade markedly improves the survival rate and ameliorates end-organ damage in homozygous male TGRs without significantly lowering BP.
Collapse
Affiliation(s)
- Pavel Dvorák
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vanecková I, Cahová M, Kramer HJ, Husková Z, Skaroupková P, Komers R, Bader M, Ganten D, Cervenka L. Acute Effects of Cyclooxygenase-2 Inhibition on Renal Function in Heterozygous Ren-2-Transgenic Rats on Normal or Low Sodium Intake. Kidney Blood Press Res 2004; 27:203-10. [PMID: 15273422 DOI: 10.1159/000079865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Since there are no data available so far on the role of renal cyclooxygenase-2 (COX-2) in hypertensive Ren-2-transgenic rats (TGR), in the present study we evaluated renal cortical COX-2 protein expression and prostaglandin E2 (PGE2) concentrations as well as renal functional responses to acute COX-2 inhibition in male heterozygous TGR and in normotensive Hannover Sprague-Dawley (HanSD) rats fed either a normal-sodium (NS) or a low-sodium (LS) diet. METHODS In rats fed either the NS or the LS diet for 12 days and prepared for clearance experiments with left ureteral catheterization, the renal functional responses of the left kidney were evaluated after intrarenal COX-2 inhibition with DuP-697 or NS-398. In renal cortical tissue, COX-2 protein expression was assessed by immunoblotting, and the concentration of PGE2 as a marker of COX-2 activity was determined by enzyme immunoassay. Mean arterial pressure in the right femoral artery was monitored by means of a pressure transducer. RESULTS In heterozygous TGR, to our surprise, the LS diet normalized the mean arterial pressure. Despite significantly higher renocortical expression of COX-2 and PGE2 concentrations as well as urinary PGE2 excretion in TGR as compared with HanSD rats kept on the NS diet, selective intrarenal COX-2 inhibition did not influence renal function either in TGR or in HanSD rats. The LS diet increased renocortical COX-2 expression and PGE2 concentrations as well as urinary PGE2 excretion significantly stronger in TGR than in HanSD rats. Regardless of these increases, the intrarenal COX-2 inhibition caused comparable decreases in glomerular filtration rate, in absolute and fractional sodium excretion, as well as in urinary PGE2 excretion in TGR and HanSD rats kept on the LS diet. CONCLUSIONS The present data show that a LS diet normalizes the mean arterial pressure in heterozygous male TGR. This first study on the role of renal COX-2 in TGR also demonstrates that COX-2-derived vasodilatory prostanoids do not act as renal compensatory vasodilator and natriuretic substances in this model of hypertension.
Collapse
Affiliation(s)
- Ivana Vanecková
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Morris BJ. Renin. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Abstract
More than 50 million Americans display blood pressures outside the safe physiological range. Unfortunately for most individuals, the molecular basis of hypertension is unknown, in part because pathological elevations of blood pressure are the result of abnormal expression of multiple genes. This review identifies a number of important blood pressure regulatory genes including their loci in the human, mouse, and rat genome. Phenotypes of gene deletions and overexpression in mice are summarized. More detailed discussion of selected gene products follows, beginning with proteins involved in ion transport, specifically the epithelial sodium channel and sodium proton exchangers. Next, proteins involved in vasodilation/natriuresis are discussed with emphasis on natriuretic peptides, guanylin/uroguanylin, and nitric oxide. The renin angiotensin aldosterone system has an important role antagonizing the vasodilatory cyclic GMP system.
Collapse
Affiliation(s)
- D L Garbers
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050, USA.
| | | |
Collapse
|
14
|
Li P, Sur SH, Mistlberger RE, Morris M. Circadian blood pressure and heart rate rhythms in mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R500-4. [PMID: 9950930 DOI: 10.1152/ajpregu.1999.276.2.r500] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian pattern of mean arterial pressure (MAP) and heart rate (HR) was measured in C57BL mice with carotid arterial catheters. Cardiovascular parameters were recorded continuously with a computerized monitoring system at a sampling rate of 100 Hz. The tethered animals were healthy, showing stabilized drinking and eating patterns within 2 days of surgery and little loss of body weight. Analysis of the 24-h pattern of MAP and HR was conducted using data from 3-6 consecutive days of recording. A daily rhythm of MAP was evident in all mice, with group mean dark and light values of 101.4 +/- 7.3 and 93.1 +/- 2.9 mmHg, respectively. The group mean waveform was bimodal, with peak values evident early and late in the dark period, and a trough during the middle of the light period. The phase of maximum and minimum values showed low within-group variance. Mean heart rate was greater at night than during the day (561.9 +/- 22.7 vs. 530.3 +/- 22.3 beats/min). Peak values generally occurred at dark onset, and minimum values during the middle of both the dark and the light periods. We conclude that it is possible to perform measurements of circadian cardiovascular parameters in the mouse, providing new avenues for the investigation of genetic models.
Collapse
Affiliation(s)
- P Li
- Department of Pharmacology and Toxicology, Wright State University School of Medicine, Dayton, Ohio 45401, USA
| | | | | | | |
Collapse
|
15
|
Li P, Morris M, Ferrario CM, Barrett C, Ganten D, Callahan MF. Cardiovascular, endocrine, and body fluid-electrolyte responses to salt loading in mRen-2 transgenic rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1130-7. [PMID: 9746459 DOI: 10.1152/ajpheart.1998.275.4.h1130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that mRen-2 transgenic [Tg(+)] rats are sensitive to chronic high NaCl intake, showing increased arterial pressure and vasopressin (VP) secretion. In this study, we determined the effect of a chronic osmotic challenge, 4 days of drinking 2% NaCl, on direct arterial blood pressure, heart rate, fluid-electrolyte balance, circadian rhythm of mean arterial pressure (MAP), and changes in plasma VP and catecholamines. Under baseline conditions, male Tg(+) rats showed a significant shift in the peak in circadian MAP into the light portion of the day-night cycle. Substitution of 2% NaCl for drinking water caused a rapid increase in MAP, 20 +/- 5 mmHg in Tg(+) rats within 6 h. Whereas the amplitude of circadian MAP fluctuations increased in salt-loaded Tg(+) rats, there was no significant change in the circadian timing of peak MAP with salt loading. Tg(+) rats showed exaggerated osmotic-induced increases in plasma VP, norepinephrine (NE), and epinephrine (Epi) compared with Tg(-) rats. Plasma NE and Epi were increased two- and fourfold, respectively, in the hypertensive rats with no significant change in the Tg(-) rats. Intravenous administration of a VP antagonist did not alter arterial pressure in either Tg(+) or Tg(-) rats. Tg(+) and Tg(-) rats showed a positive sodium balance with no significant difference observed between the groups. Tg(+) rats showed a significant increase in salt consumption, plasma sodium, osmolality, and hematocrit, accompanied by a negative water balance. We conclude that Tg(+) rats are sensitive to acute and chronic osmotic stimuli in terms of blood pressure, fluid-electrolyte balance, and plasma VP and catecholamines. Whereas elevated plasma VP does not contribute to the hypertensive response, increased sympathetic drive may mediate the salt-induced blood pressure changes in this model.
Collapse
Affiliation(s)
- P Li
- Department of Physiology and Pharmacology and The Hypertension Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1083, USA
| | | | | | | | | | | |
Collapse
|