1
|
Pun CK, Chang CC, Chuang CL, Huang HC, Hsu SJ, Huang YH, Hou MC, Lee FY. Dual angiotensin receptor and neprilysin inhibitor reduced portal pressure through peripheral vasodilatation and decreasing systemic arterial pressure in cirrhotic rats. J Chin Med Assoc 2023; 86:786-794. [PMID: 37462441 DOI: 10.1097/jcma.0000000000000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Portal hypertension develops along with the progression of liver cirrhosis. Natriuretic peptides have been shown to reduce portal pressure but concomitantly activate the renin-angiotensin-aldosterone system (RAAS). Angiotensin receptor-neprilysin inhibitors (ARNIs) upregulate natriuretic peptides and avoid the adverse effects of RAAS activation. ARNIs have been shown to reduce portal pressure in rats with pre-hepatic portal hypertension, which involves relatively little liver injury. This study aimed to evaluate the relevant effects of an ARNI in rats with both liver cirrhosis and portal hypertension. METHODS Male Sprague-Dawley rats received common bile duct ligation to induce liver cirrhosis and portal hypertension. Sham-operated rats served as surgical controls. All rats were randomly allocated into three groups to receive distilled water (vehicle), LCZ696 (an ARNI), or valsartan for 4 weeks. Portal hypertension and relevant derangements were assessed after treatment. RESULTS Portal hypertension and hyperdynamic circulation developed in the cirrhotic rats. In the rats with cirrhosis and portal hypertension, both LCZ696 and valsartan reduced portal hypertension, mean arterial pressure, and systemic vascular resistance. The decrease in portal pressure was highly associated with the reduction in arterial pressure and systemic vascular resistance. Blood flow in hepatic, splanchnic, and portosystemic collateral systems was not altered. LCZ696 did not significantly influence liver injury or plasma cytokine levels. Liver fibrosis and splanchnic angiogenesis were not affected. CONCLUSION ARNI treatment exerted portal pressure lowering effects via peripheral vasodilatation and decreasing systemic arterial pressure in the rats with liver cirrhosis and portal hypertension. Caution should be taken when using ARNIs in liver cirrhosis.
Collapse
Affiliation(s)
- Chon Kit Pun
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ching-Chih Chang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
2
|
BmooMPα-I, a Metalloproteinase Isolated from Bothrops moojeni Venom, Reduces Blood Pressure, Reverses Left Ventricular Remodeling and Improves Cardiac Electrical Conduction in Rats with Renovascular Hypertension. Toxins (Basel) 2022; 14:toxins14110766. [PMID: 36356016 PMCID: PMC9697896 DOI: 10.3390/toxins14110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
BmooMPα-I has kininogenase activity, cleaving kininogen releasing bradykinin and can hydrolyze angiotensin I at post-proline and aspartic acid positions, generating an inactive peptide. We evaluated the antihypertensive activity of BmooMPα-I in a model of two-kidney, one-clip (2K1C). Wistar rats were divided into groups: Sham, who underwent sham surgery, and 2K1C, who suffered stenosis of the right renal artery. In the second week of hypertension, we started treatment (Vehicle, BmooMPα-I and Losartan) for two weeks. We performed an electrocardiogram and blood and heart collection in the fourth week of hypertension. The 2K1C BmooMPα-I showed a reduction in blood pressure (systolic pressure: 131 ± 2 mmHg; diastolic pressure: 84 ± 2 mmHg versus 174 ± 3 mmHg; 97 ± 4 mmHg, 2K1C Vehicle, p < 0.05), improvement in electrocardiographic parameters (Heart Rate: 297 ± 4 bpm; QRS: 42 ± 0.1 ms; QT: 92 ± 1 ms versus 332 ± 6 bpm; 48 ± 0.2 ms; 122 ± 1 ms, 2K1C Vehicle, p < 0.05), without changing the hematological profile (platelets: 758 ± 67; leukocytes: 3980 ± 326 versus 758 ± 75; 4400 ± 800, 2K1C Vehicle, p > 0.05), with reversal of hypertrophy (left ventricular area: 12.1 ± 0.3; left ventricle wall thickness: 2.5 ± 0.2; septum wall thickness: 2.3 ± 0.06 versus 10.5 ± 0.3; 2.7 ± 0.2; 2.5 ± 0.04, 2K1C Vehicle, p < 0.05) and fibrosis (3.9 ± 0.2 versus 7.4 ± 0.7, 2K1C Vehicle, p < 0.05). We concluded that BmooMPα-I improved blood pressure levels and cardiac remodeling, having a cardioprotective effect.
Collapse
|
3
|
Human Tissue Kallikrein 1 Is Downregulated in Elderly Human Prostates and Possesses Potential In Vitro Antioxidative and Antifibrotic Effects in Rodent Prostates. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8877540. [PMID: 34007408 PMCID: PMC8110393 DOI: 10.1155/2021/8877540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Objective The aim of the present study was to investigate the protective effects and mechanisms of KLK1 on aging-related prostate alterations and search clues about the application of KLK1 to the treatment of human BPH. Methods Thirty-six rats including 26 male wild-type SD rats and 10 transgenic rats were fed to 3- or 18-month-old and divided into three groups: young WTR (yWTR) as the control (n = 16), aged WTR (aWTR) (n = 10), and aged TGR (aTGR) (n = 10). The prostates of the three groups of rats (10 rats per group) were harvested to evaluate the levels of KLK1 expression, oxidative stress, fibrosis, and involved signaling pathways, such as NO/cGMP, COX-2/PTGIS/cAMP, and TGF-β1/RhoA/ROCK1, via quantitative PCR, Western blot, histological examinations, and ELISA. Moreover, the remaining 6 yWTRs were sacrificed to obtain primary prostate fibroblast and aortic endothelial cells, and a coculture system was built with the cells for the verification of above signaling pathways in vitro. And the direct effects of bradykinin on prostate cells were detected by MTT experiment. Prostate specimens of 47 patients (age from 48 to 92 years) undergoing BPH surgery were collected after approval. Histological examinations and KLK1 IHC were preformed to analyze the relationship between KLK1 expression and age and prostate fibrosis. Results The human KLK1 gene only existed and was expressed in aTGR. The prostate of young rats expressed more KLK1 than the aged and the expression of KLK1 in prostate decreased with age in humans (r = −0.347, P = 0.018). Compared to the aWTR group, the yWTR and aTGR groups showed milder fibrosis, less oxidative stress, upregulated NO/cGMP, and COX-2/PTGIS/cAMP signaling pathways and inhibited TGF-β1/RhoA/ROCK1 signaling pathway. In the coculture system, KLK1 suppressed TGF-β1-mediated fibroblast-to-myofibroblast transdifferentiation via cleaving LMWK to produce the BK which upregulate eNOS expression and NO production in endothelial cells. BK not only slightly stimulated the proliferation ability of prostatic stromal cells but also upregulated iNOS and inhibited TGF-β1 expression in them. Conclusion KLK1 protects prostate from oxidative stress and fibrosis via amplified NO/cGMP signal in aged rats. The decrease of KLK1 expression with aging is laying the groundwork for the application of KLK1 to the treatment of human BPH. The current experimental data showed that the side effects of KLK1 on the prostate cell were not obvious.
Collapse
|
4
|
TGF-β1 induced up-regulation of B1 kinin receptor promotes antifibrotic activity in rat cardiac myofibroblasts. Mol Biol Rep 2019; 46:5197-5207. [PMID: 31309451 DOI: 10.1007/s11033-019-04977-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/11/2019] [Indexed: 01/14/2023]
Abstract
Cardiac myofibroblast (CMF) are non-muscle cardiac cells that play a crucial role in wound healing and in pathological remodeling. These cells are mainly derived of cardiac fibroblast (CF) differentiation mediated by TGF-β1. Evidence suggests that bradykinin (BK) regulates cardiac fibroblast function in the heart. Both B1 and B2 kinin receptors (B1R and B2R, respectively) mediate the biological effects of kinins. We recently showed that both receptors are expressed in CMF and its stimulation decreases collagen secretion. Whether TGF-β1 regulates B1R and B2R expression, and how these receptors control antifibrotic activity in CMF remains poorly understood. In this work, we sought to study, the regulation of B1R expression in cultured CMF mediated by TGF-β1, and the molecular mechanisms involved in B1R activation on CMF intracellular collagen type-I levels. Cardiac fibroblast-primary culture was obtained from neonatal rats. Hearts were digested and CFs were attached to dishes and separated from cardiomyoctes. CMF were obtained from CF differentiation with TGF-β1 5 ng/mL. CF and CMF were treated with B1R and B2R agonists and with TGF-β1 at different times and concentrations, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in B1R expression, collagen type-I and prostacyclin levels. B1R and collagen type-I levels were evaluated by western blot. Prostacyclin levels were quantified by an ELISA kit. TGF-β1 increased B1R expression via TGFβ type I receptor kinase (ALK5) activation and its subsequent signaling pathways involving Smad2, p38, JNK and ERK1/2 activation. Moreover, in CMF, the activation of B1R and B2R by their respective agonists, reduced collagen synthesis. This effect was mediated by the canonical signaling pathway; phospholipase C (PLC), protein kinase C (PKC), phospholipase A2 (PLA2), COX-2 activation and PGI2 secretion and its autocrine effect. TGF-β1 through ALK5, Smad2, p38, JNK and ERK1/2 increases B1R expression; whereas in CMF, B1R and B2R activation share common signaling pathways for reducing collagen synthesis.
Collapse
|
5
|
Chen YL, Fan J, Cao L, Han TL, Zeng M, Xu Y, Ling Z, Yin Y. Unique mechanistic insights into the beneficial effects of angiotensin-(1-7) on the prevention of cardiac fibrosis: A metabolomic analysis of primary cardiac fibroblasts. Exp Cell Res 2019; 378:158-170. [PMID: 30844388 DOI: 10.1016/j.yexcr.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cell metabolic pathways are highly conserved among species and change rapidly in response to drug stimulation. Therefore, we explore the effects of angiotensin-(1-7) in a primary cell model of cardiac fibrosis established in angiotensin II-stimulated cardiac fibroblasts via metabolomics analysis and further clarify the potential protective mechanism of angiotensin-(1-7). METHODS AND RESULTS After exposing cardiac fibroblasts to angiotensin II and/or angiotensin-(1-7), 172 metabolites in these cells were quantified and identified by gas chromatography-mass spectrometry. The data were subsequently analyzed by orthogonal partial least squares discriminant analysis to shortlist biochemically significant metabolites associated with the antifibrotic action of angiotensin-(1-7). Seven significant metabolites were identified: 10,13-dimethyltetradecanoic acid, arachidonic acid, aspartic acid, docosahexaenoic acid (DHA), glutathione, palmitelaidic acid, and pyroglutamic acid. By metabolic network analysis, we found that these metabolites were involved in six metabolic pathways, including arachidonic acid metabolism, leukotriene metabolism, and the γ-glutamyl cycle. Since these metabolic pathways are related to calcium balance and oxidative stress, we further verified that angiotensin-(1-7) suppressed the abnormal extracellular calcium influx and excessive accumulation of intracellular reactive oxygen species (ROS) in angiotensin II-stimulated cardiac fibroblasts. Furthermore, we found that angiotensin-(1-7) suppressed the abnormal calcium- and ROS-dependent activation of calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ), the increased expression of CaMKIIδ-related proteins (NADPH oxidase 4 (Nox4), cellular communication network factor 2 (CTGF), and p-ERK1/2), and excessive collagen deposition in vitro and in vivo. CONCLUSIONS Angiotensin-(1-7) can ameliorate the angiotensin II-stimulated metabolic perturbations associated with cardiac fibroblast activation. These metabolic changes indicate that modulation of calcium- and ROS-dependent activation of CaMKIIδ mediates the activity of angiotensin-(1-7) against cardiac fibrosis. Moreover, pyroglutamic acid and arachidonic acid may be potential biomarkers for monitoring the antifibrotic action of angiotensin-(1-7).
Collapse
Affiliation(s)
- Yun-Lin Chen
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Jinqi Fan
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China; Departments of Biomedical Engineering and Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Li Cao
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, the 1st Affiliated Hospital of Chongqing Medical University, China; Liggins Institute, University of Auckland, New Zealand; Mass Spectrometry Centre, China-Canada-New Zealand Joint Laboratory of Maternal and Foetal Medicine, Chongqing Medical University, China
| | - Mengying Zeng
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Yanping Xu
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Zhiyu Ling
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Yuehui Yin
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
6
|
Muñoz-Rodríguez C, Fernández S, Osorio JM, Olivares F, Anfossi R, Bolivar S, Humeres C, Boza P, Vivar R, Pardo-Jimenez V, Hemmings KE, Turner NA, Díaz-Araya G. Expression and function of TLR4- induced B1R bradykinin receptor on cardiac fibroblasts. Toxicol Appl Pharmacol 2018; 351:46-56. [PMID: 29775649 DOI: 10.1016/j.taap.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/05/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.
Collapse
Affiliation(s)
- Claudia Muñoz-Rodríguez
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Samuel Fernández
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - José Miguel Osorio
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Francisco Olivares
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Renatto Anfossi
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Samir Bolivar
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Claudio Humeres
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Pía Boza
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Raúl Vivar
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Viviana Pardo-Jimenez
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Karen E Hemmings
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Guillermo Díaz-Araya
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile.
| |
Collapse
|
7
|
Cui K, Luan Y, Wang T, Zhuan L, Rao K, Wang SG, Ye ZQ, Liu JH, Wang DW. Reduced corporal fibrosis to protect erectile function by inhibiting the Rho-kinase/LIM-kinase/cofilin pathway in the aged transgenic rat harboring human tissue kallikrein 1. Asian J Androl 2017; 19:67-72. [PMID: 27678468 PMCID: PMC5227678 DOI: 10.4103/1008-682x.189209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Our previous studies have demonstrated that erectile function was preserved in aged transgenic rats (TGR) harboring the human tissue kallikrein 1 (hKLK1), while the molecular level of hKLK1 on corporal fibrosis to inhibit age-related erectile dysfunction (ED) is poorly understood. Male wild-type Sprague-Dawley rats (WTR) and TGR harboring the hKLK1 gene were fed to 4- or 18-month-old and divided into three groups: young WTR (yWTR) as the control, aged WTR (aWTR), and aged TGR (aTGR). Erectile function of all rats was assessed by cavernous nerve electrostimulation method. Masson's trichrome staining was used to evaluate corporal fibrosis in the corpus cavernosum. We found that the erectile function of rats in the aWTR group was significantly lower than that of other two groups. Masson's trichrome staining revealed that compared with those of the yWTR and aTGR groups, the ratio of smooth muscle cell (SMC)/collagen (C) was significantly lower in the aWTR group. Immunohistochemistry and Western blotting analysis were performed, and results demonstrated that expression of α-SMA was lower, while expressions of transforming growth factor-β 1 (TGF-β1), RhoA, ROCK1, p-MYPT1, p-LIMK2, and p-cofilin were higher in the aWTR group compared with those in other two groups. However, LIMK2 and cofilin expressions did not differ among three groups. Taken together, these results indicated that the RhoA/ROCK1/LIMK/cofilin pathway may be involved in the corporal fibrosis caused by advanced age, and hKLK1 may reduce this corporal fibrosis by inhibiting the activation of this pathway to ameliorate age-related ED.
Collapse
Affiliation(s)
- Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Zhuan
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Ke Rao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhang-Qun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ji-Hong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao-Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Campbell DJ. Therapeutic modulation of tissue kallikrein expression. Biol Chem 2016; 397:1293-1297. [PMID: 27533118 DOI: 10.1515/hsz-2016-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/10/2016] [Indexed: 11/15/2022]
Abstract
The kallikrein kinin system has cardioprotective actions and mediates in part the cardioprotection produced by angiotensin converting enzyme inhibitors and angiotensin type 1 receptor blockers. Additional approaches to exploit the cardioprotective effects of the kallikrein kinin system include the administration of tissue kallikrein and kinin receptor agonists. The renin inhibitor aliskiren was recently shown to increase cardiac tissue kallikrein expression and bradykinin levels, and to reduce myocardial ischemia-reperfusion injury by bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanisms. Thus, aliskiren represents a prototype drug for the modulation of tissue kallikrein expression for therapeutic benefit.
Collapse
|
9
|
Díaz-Araya G, Vivar R, Humeres C, Boza P, Bolivar S, Muñoz C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacol Res 2015; 101:30-40. [PMID: 26151416 DOI: 10.1016/j.phrs.2015.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts (CF) not only modulate extracellular matrix (ECM) proteins homeostasis, but also respond to chemical and mechanical signals. CF express a variety of receptors through which they modulate the proliferation/cell death, autophagy, adhesion, migration, turnover of ECM, expression of cytokines, chemokines, growth factors and differentiation into cardiac myofibroblasts (CMF). Differentiation of CF to CMF involves changes in the expression levels of various receptors, as well as, changes in cell phenotype and their associated functions. CF and CMF express the β2-adrenergic receptor, and its stimulation activates PKA and EPAC proteins, which differentially modulate the CF and CMF functions mentioned above. CF and CMF also express different levels of Angiotensin II receptors, in particular, AT1R activation increases collagen synthesis and cell proliferation, but its overexpression activates apoptosis. CF and CMF express different levels of B1 and B2 kinin receptors, whose stimulation by their respective agonists activates common signaling transduction pathways that decrease the synthesis and secretion of collagen through nitric oxide and prostacyclin I2 secretion. Besides these classical functions, CF can also participate in the inflammatory response of cardiac repair, through the expression of receptors commonly associated to immune cells such as Toll like receptor 4, NLRP3 and interferon receptor. The activation by their respective agonists modulates the cellular functions already described and the release of cytokines and chemokines. Thus, CF and CMF act as sentinel cells responding to a plethora of stimulus, modifying their own behavior, and that of neighboring cells.
Collapse
Affiliation(s)
- G Díaz-Araya
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile.
| | - R Vivar
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - C Humeres
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - P Boza
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - S Bolivar
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - C Muñoz
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
L-Carnitine prevents the development of ventricular fibrosis and heart failure with preserved ejection fraction in hypertensive heart disease. J Hypertens 2012; 30:1834-44. [DOI: 10.1097/hjh.0b013e3283569c5a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Catalán M, Smolic C, Contreras A, Ayala P, Olmedo I, Copaja M, Boza P, Vivar R, Avalos Y, Lavandero S, Velarde V, Díaz-Araya G. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast. Toxicol Appl Pharmacol 2012; 261:300-8. [DOI: 10.1016/j.taap.2012.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 01/08/2023]
|
12
|
Blaes N, Pécher C, Mehrenberger M, Cellier E, Praddaude F, Chevalier J, Tack I, Couture R, Girolami JP. Bradykinin inhibits high glucose- and growth factor-induced collagen synthesis in mesangial cells through the B2-kinin receptor. Am J Physiol Renal Physiol 2012; 303:F293-303. [PMID: 22573379 DOI: 10.1152/ajprenal.00437.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesangial matrix expansion is an early lesion leading to glomeruloclerosis and chronic renal diseases. A beneficial effect is achieved with angiotensin I-converting enzyme inhibitors (ACEI), which also favor bradykinin (BK) B2 receptor (B2R) activation. To define the underlying mechanism, we hypothesized that B2R activation could be a negative regulator of collagen synthesis in mesangial cells (MC). We investigated the effect of BK on collagen synthesis and signaling in MC. Inflammation was evaluated by intercellular adhesion molecule-1 (ICAM-1) expression. BK inhibited collagen I and IV synthesis stimulated by high glucose, epithelial growth factor (EGF), and transforming growth factor-β (TGF-β) but did not alter ICAM-1. Inhibition of collagen synthesis was B2R but not B1R mediated. PKC or phosphatidylinositol 3-kinase (PI3K) inhibitors mimicked the BK effect. B2R activation inhibited TGF-β- and EGF-induced Erk1/2, Smad2/3, Akt S473, and EGFR phosphorylation. A phosphatase inhibitor prevented BK effects. The in vivo impact of B2R on mesangial matrix expansion was assessed in streptozotocin-diabetic rodents. Deletion of B2R increased mesangial matrix expansion and albuminuria in diabetic mice. In diabetic rats, matrix expansion and albuminuria were prevented by ACEI but not by ACEI and B2R antagonist cotreatment. Consistently, the lowered BK content of diabetic glomeruli was restored by ACEI. In conclusion, deficient B2R activation aggravated mesangial matrix expansion in diabetic rodents whereas B2R activation reduced MC collagen synthesis by a mechanism targeting Erk1/2 and Akt, common pathways activated by EGF and TGF-β. Taken together, the data support the hypothesis of an antifibrosing effect of B2R activation.
Collapse
Affiliation(s)
- Nelly Blaes
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, Toulouse Cedex. France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Campbell DJ, Zhang Y, Kelly DJ, Gilbert RE, McCarthy DJ, Shi W, Smyth GK. Aliskiren increases bradykinin and tissue kallikrein mRNA levels in the heart. Clin Exp Pharmacol Physiol 2012; 38:623-31. [PMID: 21736602 DOI: 10.1111/j.1440-1681.2011.05572.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Aliskiren is a renin inhibitor with an IC(50) of 0.6 nmol/L for human renin, 4.5 nmol/L for mouse renin and 80 nmol/L for rat renin. 2. In the present study, we compared the effects of aliskiren (10 mg/kg per day), the angiotensin-converting enzyme inhibitor perindopril (0.2 mg/kg per day) and their combination on angiotensin and bradykinin peptides in female heterozygous (mRen-2)27 rats, transgenic for the mouse renin gene. 3. All three treatments produced similar reductions in systolic blood pressure, heart weight and plasma aldosterone levels and reduced angiotensin II levels in lung, but only perindopril and the combination reduced angiotensin II levels in kidney of (mRen-2)27 rats. In contrast, aliskiren and the combination, but not perindopril alone, increased cardiac bradykinin levels. Aliskiren increased immunostaining for tissue kallikrein in the heart and reduced cardiac fibrosis. 4. We investigated the mechanism underlying the increase in bradykinin levels following aliskiren treatment in Sprague-Dawley rats, in which aliskiren has a lower potency for renin inhibition. Aliskiren (10 mg/kg per day) reduced renal angiotensin levels within 24 h, but treatment for > 24 h was required to increase cardiac bradykinin levels. Moreover, 3 mg/kg per day aliskiren increased cardiac bradykinin levels, but did not reduce renal angiotensin levels. Aliskiren did not potentiate the hypotensive effects of bradykinin; however, it increased tissue kallikrein, but not plasma kallikrein, mRNA levels in the heart. 5. These data demonstrate that the aliskiren-induced increase in cardiac bradykinin levels is independent of renin inhibition and changes in bradykinin metabolism, but is associated with increased tissue kallikrein gene expression.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Oliveira GMD, Masuda MO, Rocha NN, Schor N, Hooper CS, Araújo-Jorge TCD, Henriques-Pons A. Absence of Fas-L aggravates renal injury in acute Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2010; 104:1063-71. [PMID: 20140366 DOI: 10.1590/s0074-02762009000800002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 10/13/2009] [Indexed: 01/28/2023] Open
Abstract
Trypanosoma cruzi infection induces diverse alterations in immunocompetent cells and organs, myocarditis and congestive heart failure. However, the physiological network of disturbances imposed by the infection has not been addressed thoroughly. Regarding myocarditis induced by the infection, we observed in our previous work that Fas-L-/- mice (gld/gld) have very mild inflammatory infiltration when compared to BALB/c mice. However, all mice from both lineages die in the early acute phase. Therefore, in this work we studied the physiological connection relating arterial pressure, renal function/damage and cardiac insufficiency as causes of death. Our results show that a broader set of dysfunctions that could be classified as a cardio/anaemic/renal syndrome is more likely responsible for cardiac failure and death in both lineages. However, gld/gld mice had very early glomerular deposition of IgM and a more intense renal inflammatory response with reduced renal filtration, which is probably responsible for the premature death in the absence of significant myocarditis in gld/gld.
Collapse
|
15
|
Isbell DC, Voros S, Yang Z, DiMaria JM, Berr SS, French BA, Epstein FH, Bishop SP, Wang H, Roy RJ, Kemp BA, Matsubara H, Carey RM, Kramer CM. Interaction between bradykinin subtype 2 and angiotensin II type 2 receptors during post-MI left ventricular remodeling. Am J Physiol Heart Circ Physiol 2007; 293:H3372-8. [DOI: 10.1152/ajpheart.00997.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II type 2 receptor (AT2R) overexpression (AT2TG) attenuates left ventricular remodeling in a mouse model of anterior myocardial infarction (MI). We hypothesized that the beneficial effects of cardiac AT2TG are mediated via the bradykinin subtype 2 receptor (B2R). Fourteen transgenic mice overexpressing the AT2R (AT2TG mice), 10 mice with a B2R deletion (B2KO mice), 13 AT2TG mice with B2R deletion (AT2TG/B2KO mice), and 11 wild-type (WT) mice were studied. All mice were on a C57BL/6 background. Mice were studied by cardiac magnetic resonance imaging at baseline and days 1, 7, and 28 after MI induced by 1 h of occlusion of the left anterior descending artery followed by reperfusion. Short-axis images from apex to base were used to compare ventricular volumes and ejection fraction (EF). At baseline, end-diastolic volume index (EDVI) and end-systolic volume index (ESVI) were lower and EF higher in AT2TG mice compared with the other three strains. Infarct size was similar between groups. No differences were observed in global remodeling parameters at day 28 between AT2TG and AT2TG/B2KO mice; however, EDVI and ESVI were lower and EF higher in both transgenic groups than in WT or B2KO mice. Both strains lacking B2R demonstrated increased collagen content and less hypertrophy in adjacent noninfarcted regions at day 28. Attenuation of postinfarct remodeling by overexpression of AT2R is not directly mediated via a B2R pathway. However, B2R does appear to have a role in the smaller cavity size and hyperdynamic function observed at baseline in AT2TG mice and in limiting collagen deposition during postinfarct remodeling.
Collapse
|
16
|
ACE Inhibition in Heart Failure and Ischaemic Heart Disease. FRONTIERS IN RESEARCH OF THE RENIN-ANGIOTENSIN SYSTEM ON HUMAN DISEASE 2007. [PMCID: PMC7122740 DOI: 10.1007/978-1-4020-6372-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Loch D, Hoey A, Brown L. Attenuation of cardiovascular remodeling in DOCA-salt rats by the vasopeptidase inhibitor, omapatrilat. Clin Exp Hypertens 2006; 28:475-88. [PMID: 16820344 DOI: 10.1080/10641960600798754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Omapatrilat, a vasopeptidase inhibitor, inhibits both neutral endopeptidase and angiotensin-converting enzyme with similar potency. The aim of this study was to investigate whether omapatrilat prevents or reverses cardiovascular remodeling and hypertension in deoxycorticosterone acetate (DOCA)-salt rats. Male Wistar rats (313 +/- 2 g, n = 114) were uninephrectomized (UNX) with or without further treatment with DOCA and 1% NaCl in the drinking water. Compared with UNX control rats, DOCA-salt rats developed hypertension, cardiovascular hypertrophy, perivascular and interstitial cardiac fibrosis and inflammation, endothelial dysfunction, and the prolongation of ventricular action potential duration within four weeks. The administration of omapatrilat (40 mg/kg/day po) for two weeks commencing two weeks after surgery attenuated the development of cardiovascular hypertrophy, inflammation, fibrosis, and ventricular action potential prolongation. In contrast, omapatrilat treatment did not lower systolic blood pressure nor improve endothelial dysfunction. This study concludes that the renin-angiotensin-aldosterone, natriuretic peptide, and bradykinin systems are directly involved in the pathogenesis of cardiovascular remodeling in the DOCA-salt model of hypertension in rats, which may be independent of their effects on blood pressure.
Collapse
Affiliation(s)
- David Loch
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, 4072, Australia
| | | | | |
Collapse
|
18
|
Koch M, Spillmann F, Dendorfer A, Westermann D, Altmann C, Sahabi M, Linthout SV, Bader M, Walther T, Schultheiss HP, Tschöpe C. Cardiac function and remodeling is attenuated in transgenic rats expressing the human kallikrein-1 gene after myocardial infarction. Eur J Pharmacol 2006; 550:143-8. [PMID: 17022964 DOI: 10.1016/j.ejphar.2006.08.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/24/2006] [Accepted: 08/28/2006] [Indexed: 11/30/2022]
Abstract
Bradykinin coronary outflow, left ventricular performance and left ventricular dimensions of transgenic rats harboring the human tissue kallikrein-1 gene TGR(hKLK1) were investigated under basal and ischemic conditions. Bradykinin content in the coronary outflow of buffer-perfused, isolated hearts of controls and TGR(hKLK1) was measured by specific radioimmunoassay before and after global ischemia. Left ventricular function and left ventricular dimensions were determined in vivo using a tip catheter and echocardiography 6 days and 3 weeks after induction of myocardial infarction. Left ventricular type I collagen mRNA expression was analyzed by RNase protection assay. Compared to controls, basal bradykinin outflow was 3.5 fold increased in TGR(hKLK1). Ischemia induced an increase of bradykinin coronary outflow in controls but did not induce a further increase in TGR(hKLK1). However, despite similar unchanged infarction sizes, left ventricular function and remodeling improved in TGR(hKLK1) after myocardial infarction, indicated by an increase in left ventricular pressure (+34%; P<0.05), contractility (dp/dt max. +25%; P<0.05), and in ejection fraction (+20%; P<0.05) as well as by a reduction in left ventricular enddiastolic pressure (-49%, P<0.05), left ventricular enddiastolic diameter (-20%, P<0.05), and collagen mRNA expression (-15%, P<0.05) compared to controls. A chronically activated transgenic kallikrein kinin system with expression of human kallikrein-1 gene counteracts the progression of left ventricular contractile dysfunction after experimental myocardial infarction. Further studies have to show whether these results can be caused by other therapeutically options. Long acting bradykinin receptor agonists might be an alternative option to improve ischemic heart disease.
Collapse
Affiliation(s)
- Matthias Koch
- Department of Cardiology and Pneumology, Charité -- University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12220 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Spillmann F, Van Linthout S, Schultheiss HP, Tschöpe C. Cardioprotective mechanisms of the kallikrein-kinin system in diabetic cardiopathy. Curr Opin Nephrol Hypertens 2006; 15:22-9. [PMID: 16340662 DOI: 10.1097/01.mnh.0000199009.56799.2b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE OF REVIEW Multiple pathogenic mechanisms contribute to the development of diabetic cardiopathy, including intramyocardial inflammation, cardiac fibrosis, abnormal intracellular Ca handling, microangiopathy and endothelial dysfunction. Moreover, the cardiac kallikrein-kinin system is thought to be altered under diabetic conditions and an improvement of this peptide system, e.g. by gene therapeutic approaches, has also been associated with an amelioration of the diabetic heart. In this review, we will discuss the hypothesis that the stimulation of the kallikrein-kinin system could be a promising target for the treatment of diabetic cardiopathy. RECENT FINDINGS The kallikrein-kinin system has cardioprotective properties, which may be particularly important under diabetic conditions. For example, its potential for endothelium-dependent vasodilation, and for improvement of glucose transport and utilization, make bradykinin an important mediator for reducing the consequences of diabetes-related oxidative stress on both the myocardium and vessels. SUMMARY The different synergistic cardioprotective effects of the kallikrein-kinin system in the diabetic heart suggest that the stimulation of the kallikrein-kinin system might open new avenues for the treatment of diabetic cardiopathy.
Collapse
Affiliation(s)
- Frank Spillmann
- Department of Cardiology and Pneumology, Charité-University Medicine of Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | |
Collapse
|
20
|
Lovgren AK, Jania LA, Hartney JM, Parsons KK, Audoly LP, Fitzgerald GA, Tilley SL, Koller BH. COX-2-derived prostacyclin protects against bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2006; 291:L144-56. [PMID: 16473862 DOI: 10.1152/ajplung.00492.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostacyclin is one of a number of lipid mediators elaborated from the metabolism of arachidonic acid by the cyclooxygenase (COX) enzymes. This prostanoid is a potent inhibitor of platelet aggregation, and its production by endothelial cells and protective role in the vasculature are well established. In contrast, much less is known regarding the function of this prostanoid in other disease processes. We show here that COX-2-dependent production of prostacyclin plays an important role in the development of fibrotic lung disease, limiting both the development of fibrosis and the consequential alterations in lung mechanics. In stark contrast, loss of prostaglandin E(2) synthesis and signaling through the G(s)-coupled EP2 and EP4 receptors had no effect on the development of disease. These findings suggest that prostacyclin analogs will protect against bleomycin-induced pulmonary fibrosis in COX-2(-/-) mice. If such protection is observed, investigation of these agents as a novel therapeutic approach to pulmonary fibrosis in humans may be warranted.
Collapse
Affiliation(s)
- Alysia Kern Lovgren
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nasrallah R, Hébert RL. Prostacyclin signaling in the kidney: implications for health and disease. Am J Physiol Renal Physiol 2005; 289:F235-46. [PMID: 16006589 DOI: 10.1152/ajprenal.00454.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The balance between vasodilator and vasoconstrictor pathways is key to the maintenance of homeostasis and the outcome of disease. In the kidney, prostaglandins (PGs) uphold this balance and regulate renal function: hemodynamics, renin secretion, growth responses, tubular transport processes, and cell fate. With the advent of cyclooxygenase (COX)-2-selective inhibitors, targeted deletions in mice (COX knockouts, PG receptor knockouts), and the discovery of intracrine signaling options for PGs (peroxisome proliferator-activated receptors and perinuclear PGE2receptors: EP1,3,4), many advances have been made in the study of arachidonic acid metabolites. Although prostacyclin (PGI2) is a major product of the COX pathway, there is very little emphasis on its importance to the kidney. This review will discuss PGI2biology and its relevance to different aspects of renal disease (growth, fibrosis, apoptosis), highlighting the most significant research from the past decade of PGI2literature, what we have learned from other organ systems, while stressing the significance of cross talk between various PGI2signaling pathways and its implications for renal health and disease.
Collapse
Affiliation(s)
- Rania Nasrallah
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | | |
Collapse
|
22
|
Couture R, Girolami JP. Putative roles of kinin receptors in the therapeutic effects of angiotensin 1-converting enzyme inhibitors in diabetes mellitus. Eur J Pharmacol 2005; 500:467-85. [PMID: 15464053 DOI: 10.1016/j.ejphar.2004.07.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/07/2023]
Abstract
The role of endogenous kinins and their receptors in diabetes mellitus is being confirmed with the recent developments of molecular and genetic animal models. Compelling evidence suggests that the kinin B(2) receptor is organ-protective and partakes to the therapeutic effects of angiotensin 1-converting enzyme inhibitors (ACEI) and angiotensin AT(1) receptor antagonists. Benefits derive primarily from vasodilatory, antihypertensive, antiproliferative, antihypertrophic, antifibrotic, antithrombotic and antioxidant properties of kinin B(2) receptor activation. Mechanisms include the formation of nitric oxide and prostacyclin and the inhibition of NAD(P)H oxidase activity involving classical and novel signalling pathways. Kinin B(2) receptor also ameliorates insulin resistance by increasing glucose uptake and supply, and by inducing glucose transporter-4 translocation either directly or through phosphorylation of insulin receptor. The kinin B(1) receptor, which is induced by the cytokine network, growth factors and hyperglycaemia, mediates hyperalgesia, vascular hyperpermeability and leukocytes infiltration in diabetic animals. However, emerging data highlight reno- and cardio-protective effects mediated by kinin B(1) receptor under chronic ACEI therapy in diabetes mellitus. Thus, the Janus-faced of kinin receptors needs to be taken into account in future drug development. For instance, locally acting kinin B(1)/B(2) receptor agonists if used in a safe therapeutic window may represent a more rationale strategy in the prevention and management of diabetic complications. Because kinin B(2) receptor antagonists may further increase insulin resistance, the persisting dogma that restricts the development of kinin receptor analogues to antagonists (that is still relevant to abrogate pain and inflammation) needs to be revisited.
Collapse
Affiliation(s)
- Réjean Couture
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7.
| | | |
Collapse
|
23
|
Pu Q, Amiri F, Gannon P, Schiffrin EL. Dual angiotensin-converting enzyme/neutral endopeptidase inhibition on cardiac and renal fibrosis and inflammation in DOCA-salt hypertensive rats. J Hypertens 2005; 23:401-9. [PMID: 15662229 DOI: 10.1097/00004872-200502000-00023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The relative roles of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP) inhibition on cardiac and renal fibrosis in deoxycorticosterone acetate (DOCA)-salt hypertensive rats were studied. METHODS The ACE/NEP inhibitor omapatrilat (40 mg/kg per day), the ACE inhibitor enalapril (10 mg/kg per day) and the NEP inhibitor CGS 25462(100 mg/kg per day) were administrated for 3 weeks to DOCA rats. Collagen was stained with Sirius red, and mediators of inflammation were identified by immunolabeling (vascular cell adhesion molecule, nuclear factor-kappaB, infiltrating ED-1-positive macrophages and monocyte chemotactic protein-1) or by western blot (platelet-endothelial cell adhesion molecule-1). RESULTS Elevated systolic blood pressure of DOCA rats was significantly reduced (P < 0.05) by omapatrilat and CGS 25462. Omapatrilat and CGS 25462 significantly (P < 0.05) decreased interstitial collagen density in the left ventricle of DOCA rats compared with untreated DOCA rats. Enalapril only decreased the subepicardial collagen of DOCA rats. Omapatrilat significantly (P < 0.05) decreased renal mesangial collagen deposition in DOCA rats. Cardiac and renal expression of surface adhesion molecules, nuclear factor-kappaB, monocyte chemotactic protein and ED-1-positive cells were decreased in omapatrilat-treated DOCA rats compared with untreated DOCA rats. Enalapril and CGS 25462 did not alter mesangial collagen of DOCA rats. CONCLUSIONS Dual ACE/NEP inhibition was more effective than ACE or NEP inhibition in decreasing inflammatory mediators, and improving cardiac and renal fibrosis. This suggests a role for NEP inhibition added to blockade of the renin-angiotensin system that may explain the greater efficacy of omapatrilat.
Collapse
Affiliation(s)
- Qian Pu
- Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
24
|
Ferrer M, Salaices M, Balfagón G. Endogenous prostacyclin increases neuronal nitric oxide release in mesenteric artery from spontaneously hypertensive rats. Eur J Pharmacol 2004; 506:151-6. [PMID: 15588735 DOI: 10.1016/j.ejphar.2004.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 10/25/2004] [Accepted: 11/02/2004] [Indexed: 11/23/2022]
Abstract
The aim of this study was to analyse the possible influence of endogenous prostacyclin on neuronal nitric oxide (NO) release induced by electrical field stimulation in mesenteric arteries from spontaneously hypertensive rats (SHR). Preincubation with the prostacyclin synthesis inhibitor tranylcypromine decreased NO release induced by electrical field stimulation, which was reversed by exogenous prostacyclin. Preincubation with tranylcypromine increased basal and electrical field stimulation-induced [3H]noradrenaline release. The nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl esther (L-NAME) increased the vasoconstrictor response induced by electrical field stimulation. In the presence of tranylcypromine, L-NAME did not modify the vasoconstrictor response induced by electrical field stimulation. In the presence of tranylcypromine and prostacyclin, LNAME increased the vasoconstrictor response to electrical field stimulation. These results indicate that endogenous prostacyclin positively modulates the neuronal NO release induced by electrical field stimulation and that this neuronal NO participates in the regulation of the vasomotor response.
Collapse
Affiliation(s)
- Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma, C/ Arzobispo Morcillo, 4, 28029- Madrid, Spain
| | | | | |
Collapse
|
25
|
Cilli F, Khan M, Fu F, Wang JHC. Prostaglandin E2 affects proliferation and collagen synthesis by human patellar tendon fibroblasts. Clin J Sport Med 2004; 14:232-6. [PMID: 15273529 DOI: 10.1097/00042752-200407000-00006] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the effect of prostaglandin E2 on proliferation and collagen synthesis by human patellar tendon fibroblasts. DESIGN AND SETTING Controlled laboratory study. METHODS Human patellar tendon fibroblasts were treated with different concentrations (1, 10, 100 ng/mL) of prostaglandin E2 in cultures. Fibroblasts without prostaglandin E2 treatment were used as the control group. The fibroblast proliferation and collagen synthesis were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and Sircol collagen assay, respectively. MAIN OUTCOME MEASURED Changes in proliferation and collagen production of human patellar tendon fibroblasts. RESULTS : At 1 ng/mL of prostaglandin E2, there was no significant effect on fibroblast proliferation compared with the control group. At concentrations of 10 ng/mL and 100 ng/mL prostaglandin E2, however, fibroblast proliferation significantly decreased, by 7.3% (P = 0.002) and 10.8% (P < 0.0001), respectively, compared with the control group. At 1 ng/mL of prostaglandin E2, collagen production of the tendon fibroblasts was unaffected. However, at both 10 ng/mL and 100 ng/mL prostaglandin E2, collagen production was significantly decreased, by 45.2% (P < 0.0001) and 45.7% (P < 0.0001), respectively, compared with the control group. The levels of collagen production between these 2 dosages did not differ significantly. CONCLUSIONS Prostaglandin E2 affects the proliferation of and collagen production by human patellar tendon fibroblasts in a dosage-dependent manner. CLINICAL RELEVANCE Based on these in vitro findings, we speculate that production of prostaglandin E2 in tendons might play some role in the acellularity and matrix disorganization seen in exercise-induced tendinopathy.
Collapse
Affiliation(s)
- Feridun Cilli
- Mechanobiology Laboratory, Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
26
|
López B, Querejeta R, González A, Sánchez E, Larman M, Díez J. Effects of loop diuretics on myocardial fibrosis and collagen type I turnover in chronic heart failure. J Am Coll Cardiol 2004; 43:2028-35. [PMID: 15172408 DOI: 10.1016/j.jacc.2003.12.052] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 12/18/2003] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This individually randomized, open-label, parallel-group pilot study was designed to test the hypothesis that the ability of loop diuretics to interfere with cardiac fibrosis in chronic heart failure (CHF) may be different between compounds. BACKGROUND The apparent mortality and cardiac benefits seen in studies comparing torasemide with furosemide in CHF suggest that torasemide may have beneficial effects beyond diuresis (e.g., on the process of cardiac fibrosis). METHODS Patients with New York Heart Association functional class II to IV CHF received diuretic therapy with either 10 to 20 mg/day oral torasemide (n = 19) or 20 to 40 mg/day oral furosemide (n = 17), in addition to their existing standard CHF therapy for eight months. At baseline and after eight months, right septal endomyocardial biopsies were obtained to quantify collagen volume fraction (CVF) with an automated image analysis system. Serum carboxy-terminal peptide of procollagen type I (PIP) and serum carboxy-terminal telopeptide of collagen type I (CITP), indexes of collagen type I synthesis and degradation, respectively, were measured by specific radioimmunoassays. RESULTS In torasemide-treated patients, CVF decreased from 7.96 +/- 0.54% to 4.48 +/- 0.26% (p < 0.01), and PIP decreased from 143 +/- 7 to 111 +/- 3 microg/l (p < 0.01). Neither CVF nor PIP changed significantly in furosemide-treated patients. In all patients, CVF was directly correlated with PIP (r = 0.88, p < 0.001) before and after treatment. No changes in CITP were observed with treatment in either group. CONCLUSIONS These findings suggest that loop diuretics possess different abilities to reverse myocardial fibrosis and reduce collagen type I synthesis in patients with CHF.
Collapse
Affiliation(s)
- Begoña López
- Area of Cardiovascular Pathophysiology, Centre for Applied Medical Research, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Tschöpe C, Walther T, Königer J, Spillmann F, Westermann D, Escher F, Pauschinger M, Pesquero JB, Bader M, Schultheiss HP, Noutsias M. Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. FASEB J 2004; 18:828-35. [PMID: 15117887 DOI: 10.1096/fj.03-0736com] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diabetic cardiomyopathy includes fibrosis. Kallikrein (KLK) can inhibit collagen synthesis and promote collagen breakdown. We investigated cardiac fibrosis and left ventricular (LV) function in transgenic rats (TGR) expressing the human kallikrein 1 (hKLK1) gene in streptozotocin (STZ) -induced diabetic conditions. Six weeks after STZ injection, LV function was determined in male Sprague-Dawley (SD) rats and TGR(hKLK1) (n=10/group) by a Millar tip catheter. Total collagen content (Sirius Red staining) and expression of types I, III, and VI collagen were quantified by digital image analysis. SD-STZ hearts demonstrated significantly higher total collagen amounts than normoglycemic controls, reflected by the concomitant increment of collagen types I, III, and VI. This correlated with a significant reduction of LV function vs. normoglycemic controls. In contrast, surface-specific content of the extracellular matrix, including collagen types I, III, and VI expression, was significantly lower in TGR(hKLK1)-STZ, not exceeding the content of SD and TGR(hKLK1) controls. This was paralleled by a preserved LV function in TGR(hKLK1)-STZ animals. The kallikrein inhibitor aprotinin and the bradykinin (BK) B2 receptor antagonist icatibant reduced the beneficial effects on LV function and collagen content in TGR(hKLK1)-STZ animals. Transgenic expression of hKLK1 counteracts the progression of LV contractile dysfunction and extracellular matrix remodeling in STZ-induced diabetic cardiomyopathy via a BK B2 receptor-dependent pathway.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Department of Cardiology and Pneumonology, Campus Benjamin Franklin, Charité-University Medicine, Free University of Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wilmer WA, Rovin BH, Hebert CJ, Rao SV, Kumor K, Hebert LA. Management of Glomerular Proteinuria: A Commentary. J Am Soc Nephrol 2003; 14:3217-32. [PMID: 14638920 DOI: 10.1097/01.asn.0000100145.27188.33] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT. It is widely accepted that proteinuria reduction is an appropriate therapeutic goal in chronic proteinuric kidney disease. Based on large randomized controlled clinical trials (RCT), ACE inhibitor (ACEI) and angiotensin receptor blocker (ARB) therapy have emerged as the most important antiproteinuric and renal protective interventions. However, there are numerous other interventions that have been shown to be antiproteinuric and, therefore, likely to be renoprotective. Unfortunately testing each of these antiproteinuric therapies in RCT is not feasible. The nephrologist has two choices: restrict antiproteinuric therapies to those shown to be effective in RCT or expand the use of antiproteinuric therapies to include those that, although unproven, are plausibly effective and prudent to use. The goal of this work is to provide the documentation needed for the nephrologist to choose between these strategies. This work describes 25 separate interventions that are either antiproteinuric or may block injurious mechanisms of proteinuria. Each intervention is assigned a level of recommendation (Level 1 is the highest; Level 3 is the lowest) according to the strength of the evidence supporting its antiproteinuric and renoprotective efficacy. Pathophysiologic mechanisms possibly involved are also discussed. The number of interventions at each level of recommendation are: Level 1, n = 7; Level 2, n = 9; Level 3, n = 9. Our experience indicates that we can achieve in most patients the majority of Level 1 and many of the Level 2 and 3 recommendations. We suggest that, until better information becomes available, a broad-based, multiple-risk factor intervention to reduce proteinuria can be justified in those with progressive nephropathies. This work is intended primarily for clinical nephrologists; therefore, each antiproteinuria intervention is described in practical detail.
Collapse
Affiliation(s)
- William A Wilmer
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio 43210-1250, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Bascands JL, Schanstra JP, Couture R, Girolami JP. Les récepteurs de la bradykinine : de nouveaux rôles physiopathologiques. Med Sci (Paris) 2003; 19:1093-100. [PMID: 14648480 DOI: 10.1051/medsci/200319111093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In addition to being a pro-inflammatory mediator, bradykinin is now recognized as a neuromediator and regulator of several vascular and renal functions. New breakthroughs point to unusual and atypical signalling pathways for a G-protein coupled receptor that could explain the anti-proliferative and anti-fibrogenic effects of bradykinin. The availability of transgenic and knock out animal models for bradykinin receptors or bradykinin-synthesizing or -catabolic enzymes confirms these cardiac and renal protective roles for this peptide system. Bradykinin receptors are involved in the therapeutic action of angiotensin-1 converting enzyme inhibitors that are used in the treatment of arterial hypertension, heart failure and diabetes. Nevertheless, recent evidence highlights dissimilar mechanisms in the regulation and function of these receptors between the central nervous system and peripheral tissues. Therefore, the development of more specific bradykinin receptor agonists or antagonists devoid of central actions seems to evolve as a new therapeutic approach.
Collapse
Affiliation(s)
- Jean-Loup Bascands
- Inserm U.388, Institut Louis Bugnard, CHU Rangueil, avenue Jean-Poulhas, 31403 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
30
|
Vío CP, Jeanneret VA. Local induction of angiotensin-converting enzyme in the kidney as a mechanism of progressive renal diseases. KIDNEY INTERNATIONAL. SUPPLEMENT 2003:S57-63. [PMID: 12969129 DOI: 10.1046/j.1523-1755.64.s86.11.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiotensin Converting Enzyme (ACE) or Kininase II has a pivotal role determining the local activity of the renin angiotensin and kallikrein kinin systems. Angiotensin II (Ang II), a main hormone of the renin system, has a well established participation as a renal injury agent in models of renal disease with tubulointerstitial fibrosis. Although, since its discovery, ACE has been known to convert Ang I to Ang II, and to inactivate bradykinin (BK), only recently has been emerged evidence for a role of BK with renal protective and antifibrotic effects opposing Ang II. Pertinent to the tubulointerstitial injury, where infiltration and proliferation of macrophages and fibroblast occur, ACE also regulates the levels of the natural hemoregulatory peptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Owing the importance of tissue ACE, its distribution was studied in several models of renal injury. The results showed increased ACE in proximal tubules and ACE induction in the cell infiltrated tubulointerstitium (macrophages and myofibroblasts) of injured kidneys from hypokalemic, Goldblatt hypertensive, Ang II and phenylefrine infused rats, and in both human diabetic and membranous nephropathies. ACE, in addition to Ang II generation, may play a pathogenic role through the hydrolysis of BK and Ac-SDKP. Thus, local increase in ACE can be a novel mechanism involved in tubulointerstitial renal injury, providing, from an anatomical ground, a pathological basis for the putative deleterious effect of ACE in the diseased kidneys, and the beneficial effect of ACE inhibition.
Collapse
Affiliation(s)
- Carlos P Vío
- Department of Physiology, Pontificia Universidad Catolica de Chile, Santiago, Chile.
| | | |
Collapse
|
31
|
Bledsoe G, Chao L, Chao J. Kallikrein gene delivery attenuates cardiac remodeling and promotes neovascularization in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2003; 285:H1479-88. [PMID: 12816755 DOI: 10.1152/ajpheart.01129.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hypertension that results in left ventricular (LV) hypertrophy and/or fibrosis can lead to cardiac dysfunction. Spontaneously hypertensive rats (SHR) develop high blood pressure and LV hypertrophy at an early age and are a popular model of human essential hypertension. To investigate the role of the tissue kallikrein-kinin system in cardiac remodeling, an adenovirus containing the human tissue kallikrein gene was injected intravenously into adult SHR and normotensive Wistar-Kyoto (WKY) rats. The blood pressure of WKY rats remained unchanged throughout the experiment. Alternatively, kallikrein gene transfer reduced blood pressure in SHR for the first 2 wk, but had no effect from 3 to 5 wk. Five weeks after kallikrein gene delivery, SHR showed significant reductions in LV-to-heart weight ratio, LV long axis, and cardiomyocyte size; however, these parameters were unaffected in WKY rats. Interestingly, cardiac collagen density was decreased in both SHR and WKY rats receiving the kallikrein gene. Kallikrein gene transfer also increased cardiac capillary density in SHR, but not in WKY rats. The morphological changes after kallikrein gene transfer were associated with decreases in JNK activation as well as transforming growth factor (TGF)-beta 1 and plasminogen activator inhibitor-1 levels in the heart. In addition, kallikrein gene delivery elevated LV nitric oxide and cGMP levels in both rat strains. These results indicate that kallikrein-kinin attenuates cardiac hypertrophy and fibrosis and enhances capillary growth in SHR through the suppression of JNK, TGF-beta 1, and plasminogen activator inhibitor-1 via the nitric oxide-cGMP pathway.
Collapse
Affiliation(s)
- Grant Bledsoe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | | | | |
Collapse
|
32
|
Godsel LM, Leon JS, Wang K, Fornek JL, Molteni A, Engman DM. Captopril prevents experimental autoimmune myocarditis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:346-52. [PMID: 12817017 DOI: 10.4049/jimmunol.171.1.346] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Captopril, an angiotensin-converting enzyme inhibitor, is widely used in the treatment of a variety of cardiomyopathies, but its effect on autoimmune myocarditis has not been addressed experimentally. We investigated the effect of captopril on myosin-induced experimental autoimmune myocarditis. A/J mice, immunized with syngeneic cardiac myosin, were given 75 mg/L of captopril in their drinking water. Captopril dramatically reduced the incidence and severity of myocarditis, which was accompanied by a reduction in heart weight to body weight ratio and heart weight. Captopril specifically interfered with cell-mediated immunity as myosin delayed-type hypersensitivity (DTH) was reduced, while anti-myosin Ab production was not affected. Captopril-treated, OVA-immunized mice also exhibited a decrease in OVA DTH. In myosin-immunized, untreated mice, injection of captopril directly into the test site also suppressed myosin DTH. Interestingly, captopril did not directly affect Ag-specific T cell responsiveness because neither in vivo nor in vitro captopril treatment affected the proliferation, IFN-gamma secretion, or IL-2 secretion by Ag-stimulated cultured splenocytes. These results indicate that captopril ameliorates experimental autoimmune myocarditis and may act, at least in part, by interfering with the recruitment of cells to sites of inflammation and the local inflammatory environment.
Collapse
Affiliation(s)
- Lisa M Godsel
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
33
|
Yokota K, Kishida M, Ogura T, Suzuki J, Otsuka F, Mimura Y, Takeda M, Nakamura Y, Makino H. Role of bradykinin in renoprotective effects by angiotensin II type 1 receptor antagonist in salt-sensitive hypertension. Hypertens Res 2003; 26:265-72. [PMID: 12675283 DOI: 10.1291/hypres.26.265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To elucidate whether bradykinin is involved in the renoprotective effect produced by angiotensin II type 1 receptor antagonist (AT1A) in chronic salt-sensitive hypertension, Dahl salt-sensitive rats receiving a high-salt (8%) diet were treated either with an AT1A (candesartan, 1 mg/kg/day), a bradykinin B2 receptor antagonist (BKB2A; FR172357, 30 mg/kg/day) or a combination of AT1A and BKB2A for 7 weeks. None of the treatments changed the markedly increased systolic blood pressure induced by a high-salt diet. However, chronic treatment with AT1A significantly improved the histological hallmarks of renal damage-i.e., glomerular sclerosis and cell proliferation-despite the presence of severe hypertension. This beneficial action of AT1A was abolished by the concomitant administration of BKB2A. In agreement with these histologically based findings, increases in levels of creatinine clearance induced by AT1A were also reversed back to the basal levels when BKB2A was administered in conjunction with AT1A. Furthermore, urinary excretions of nitrate plus nitrite and prostaglandin E2 increased moderately in response to the administration of AT1A alone, but not in combination with BKB2A. Thus, the blockade of bradykinin signaling abrogates the renoprotective actions of the angiotensin II type 1 (AT1) receptor antagonism. Collectively, these data show that when AT1 action is chronically blocked, endogenous bradykinin plays a pivotal role in preventing the progression of glomerular injury in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Kazuaki Yokota
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Harding P, Glass WF, Scherer SD. COX-2 inhibition potentiates the antiproteinuric effect of enalapril in uninephrectomized SHR. Prostaglandins Leukot Essent Fatty Acids 2003; 68:17-25. [PMID: 12538086 DOI: 10.1016/s0952-3278(02)00231-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PGE(2) and PGI(2) reduce extracellular matrix deposition and their production is altered after ACE inhibitor (ACEi) treatment. We therefore hypothesized that cyclooxygenase (COX)-2 inhibition would exacerbate renal injury and antagonize the effects of ACEi. To test these hypotheses, WKY and SHR were uninephrectomized (UNX) and treated with either vehicle, enalapril, NS398 or enalapril+NS398. NS398 did not affect systolic blood pressure nor antagonize the antihypertensive effect of enalapril. Urinary protein excretion in UNX WKY was significantly decreased after treatment with either enalapril or NS398. In UNX SHR, enalapril reduced proteinuria, but NS398 alone had no effect. Administration of both drugs, however, further reduced proteinuria. In UNX WKY, treatment with either NS398 alone or both drugs reduced glomerular volume and similar results were observed in SHR. Surprisingly, these results disprove our original hypothesis and suggest that inhibition of COX-2 provides additional renoprotection to that of enalapril alone.
Collapse
Affiliation(s)
- Pamela Harding
- Department of Pathology and Anatomy, Eastern Virginia Medical School, 700 Olney Road, Norfolk, VA 23501, USA.
| | | | | |
Collapse
|
35
|
Cruz-Gervis R, Stecenko AA, Dworski R, Lane KB, Loyd JE, Pierson R, King G, Brigham KL. Altered prostanoid production by fibroblasts cultured from the lungs of human subjects with idiopathic pulmonary fibrosis. Respir Res 2002; 3:17. [PMID: 11980586 PMCID: PMC107846 DOI: 10.1186/rr166] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2001] [Revised: 11/14/2001] [Accepted: 12/21/2001] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Prostanoids are known to participate in the process of fibrogenesis. Because lung fibroblasts produce prostanoids and are believed to play a central role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), we hypothesized that fibroblasts (HF) cultured from the lungs of patients with IPF (HF-IPF) have an altered balance between profibrotic (thromboxane [TX]A2) and antifibrotic (prostacyclin [PGI2]) prostaglandins (PGs) when compared with normal human lung fibroblasts (HF-NL). METHODS We measured inducible cyclooxygenase (COX)-2 gene and protein expression, and a profile of prostanoids at baseline and after IL-1beta stimulation. RESULTS In both HF-IPF and HF-NL COX-2 expression was undetectable at baseline, but was significantly upregulated by IL-1beta. PGE2 was the predominant COX product in IL-1beta-stimulated cells with no significant difference between HF-IPF and HF-NL (28.35 [9.09-89.09] vs. 17.12 [8.58-29.33] ng/10(6) cells/30 min, respectively; P = 0.25). TXB2 (the stable metabolite of TXA2) production was significantly higher in IL-1beta-stimulated HF-IPF compared to HF-NL (1.92 [1.27-2.57] vs. 0.61 [0.21-1.64] ng/10(6) cells/30 min, respectively; P = 0.007) and the ratio of PGI2 (as measured by its stable metabolite 6-keto-PGF1alpha) to TXB2 was significantly lower at baseline in HF-IPF (0.08 [0.04-0.52] vs. 0.12 [0.11-0.89] in HF-NL; P = 0.028) and with IL-1beta stimulation (0.24 [0.05-1.53] vs. 1.08 [0.51-3.79] in HF-NL; P = 0.09). CONCLUSION An alteration in the balance of profibrotic and antifibrotic PGs in HF-IPF may play a role in the pathogeneses of IPF.
Collapse
Affiliation(s)
- Roberto Cruz-Gervis
- Center for Lung Research, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Department of Internal Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Arlene A Stecenko
- Center for Lung Research, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ryszard Dworski
- Center for Lung Research, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Kirk B Lane
- Center for Lung Research, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - James E Loyd
- Center for Lung Research, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard Pierson
- Department of Surgery, Vanderbilt University, Nashville, Tennessee, USA
| | - Gayle King
- Center for Lung Research, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Kenneth L Brigham
- Center for Lung Research, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Männistö TK, Karvonen KE, Kerola TV, Ryhänen LJ. Inhibitory effect of the angiotensin converting enzyme inhibitors captopril and enalapril on the conversion of procollagen to collagen. J Hypertens 2001; 19:1835-9. [PMID: 11593104 DOI: 10.1097/00004872-200110000-00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE AND DESIGN Angiotensin converting enzyme inhibitors are reported to inhibit the collagen accumulation involved in left ventricular hypertrophy. We tested the effect of captopril and enalapril on the conversion of procollagen to collagen in short-term tissue cultures in order to study the possible mechanisms by which the antifibrotic effect of this group of inhibitors takes place. METHODS We employed short-term cartilage and tendon tissue cultures to monitor the conversion of procollagen to collagen. After pulse-labelling with [14C]-proline, the cultures were incubated further with the test compounds in different concentrations for a 180 min chase period. The reaction was stopped and radioactive collagenous peptides were analysed by gel electrophoresis. The amounts of collagenous proalpha and alpha chains were estimated, and the inhibition of procollagen to collagen conversion was calculated relative to 0 min control (100% inhibition) and 180 min control (0% inhibition) samples. RESULTS Inhibition (50%) was obtained with 7 mmol/l captopril and 22 mmol/l enalapril in the cartilage cultures. Both compounds seemed to inhibit the conversion in clearly lower concentrations in tendon cultures, 4 mmol/l and 7 mmol/l, respectively, were sufficient for 50% inhibition. Angiotensin I, II, saralasin and bradykinin did not have any effect on conversion at 3.5, 9, 2 and 4 mmol/l concentrations, respectively. CONCLUSION The peptidase inhibitors captopril and enalapril are able to inhibit the conversion of procollagen to collagen, which is a proteolytic process, possibly by inhibiting the specific procollagen proteases. Whether this phenomenon is involved in the antifibrotic property of angiotensin converting enzyme inhibitors warrants further study, as does the question of whether new antifibrotic agents could be developed on this basis.
Collapse
Affiliation(s)
- T K Männistö
- Department of Medical Biochemistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
37
|
Palkhiwala SA, Frishman WH, Warshafsky S. Bradykinin for the treatment of cardiovascular disease. HEART DISEASE (HAGERSTOWN, MD.) 2001; 3:333-9. [PMID: 11975815 DOI: 10.1097/00132580-200109000-00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bradykinin is a vasoactive kinin known to be involved in many biologic processes. Levels of bradykinin have been shown to be elevated in a number of cardiac diseases. It is thought that these elevated levels play a protective role in cardiovascular diseases. Preliminary studies have demonstrated that bradykinin may have beneficial effects on a wide spectrum of cardiovascular disorders. Though much study is still required, bradykinin augmentation represents an exciting new target for the treatment of cardiovascular disease.
Collapse
|
38
|
Silva JA, Araujo RC, Baltatu O, Oliveira SM, Tschöpe C, Fink E, Hoffmann S, Plehm R, Chai KX, Chao L, Chao J, Ganten D, Pesquero JB, Bader M. Reduced cardiac hypertrophy and altered blood pressure control in transgenic rats with the human tissue kallikrein gene. FASEB J 2000; 14:1858-60. [PMID: 11023967 DOI: 10.1096/fj.99-1010fje] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To evaluate the cardiovascular actions of kinins, we established a transgenic rat line harboring the human tissue kallikrein gene, TGR(hKLK1). Under the control of the zinc-inducible metallothionein promoter, the transgene was expressed in most tissues including the heart, kidney, lung, and brain, and human kallikrein was detected in the urine of transgenic animals. Transgenic rats had a lower 24-h mean arterial pressure in comparison with control rats, which was further decreased when their diet was supplemented with zinc. The day/night rhythm of blood pressure was significantly diminished in TGR(hKLK1) animals, whereas the circadian rhythms of heart rate and locomotor activity were unaffected. Induction of cardiac hypertrophy by isoproterenol treatment revealed a marked protective effect of the kallikrein transgene because the cardiac weight of TGR(hKLK1) increased significantly less, and the expression of atrial natriuretic peptide and collagen III as markers for hypertrophy and fibrosis, respectively, were less enhanced. The specific kinin-B2 receptor antagonist, icatibant, abolished this cardioprotective effect. In conclusion, the kallikrein-kinin system is an important determinant in the regulation of blood pressure and its circadian rhythmicity. It also exerts antihypertrophic and antifibrotic actions in the heart.
Collapse
Affiliation(s)
- J A Silva
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tuñón J, Ruiz-Ortega M, Egido J. Regulation of matrix proteins and impact on vascular structure. Curr Hypertens Rep 2000; 2:106-13. [PMID: 10981136 DOI: 10.1007/s11906-000-0067-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The vascular extracellular matrix is responsible for the mechanical properties of the vessel wall and is also involved in biologic processes such as cellular adhesion, regulation, and proliferation. Thus, an adequate balance of its components is necessary for the normal functioning of the vasculature. Vascular disorders affect this balance, and this plays a key role in their pathophysiology. Atherogenesis is accompanied by an increase in matrix deposition in response to low-density lipoprotein accumulation. However, this matrix, mainly collagen, also has a protective role by forming a fibrous cap around the lipid core, avoiding contact with blood. A decrease in the amount of collagen will weaken the cap and make it prone to rupture, leading to thrombosis and acute coronary syndromes. In hypertension, the increase in matrix deposition results in vascular stiffness and cardiac dysfunction. In this paper, we discuss the relevance of matrix regulation in these conditions.
Collapse
Affiliation(s)
- J Tuñón
- Department of Cardiology, Universidad Autónoma, Fundación Jiménez Díaz, Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | | | | |
Collapse
|
40
|
Dendorfer A, Wolfrum S, Dominiak P. Pharmacology and cardiovascular implications of the kinin-kallikrein system. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 79:403-26. [PMID: 10361880 DOI: 10.1254/jjp.79.403] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Kinins are peptide hormones that can exert a significant influence on the regulation of blood pressure and vascular tone due to their vasodilatatory, natriuretic and growth modulating activity. Their cardiovascular involvement in physiological and pathophysiological situations has been studied intensively since inhibitors for angiotensin I-converting enzyme and selective receptor antagonists have become available for pharmacologically potentiating or inhibiting kinin-mediated reactions. Molecular biological analysis and the establishment of genetically modified animal models have also allowed newer information to be acquired on this subject. In this review, the components and cardiovascularly relevant mechanisms of the kinin-kallikrein system shall be described. Organ-specific effects concerning the kidneys, the vascular system, the heart and nervous tissue shall also be illustrated. On this issue, the physiological functions and pathophysiological implications of the kinin-kallikrein system should be clearly distinguished from the many, mostly endothelium-mediated protective effects which occur during ACE inhibition due to the potentiation of kinin effects. Finally, a view shall also be cast upon newly discovered targets of action, which could be exploited for therapeutically altering the kinin-kallikrein system.
Collapse
Affiliation(s)
- A Dendorfer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical University Lübeck, Germany
| | | | | |
Collapse
|
41
|
Sánchez de Miguel L, de Frutos T, González-Fernández F, del Pozo V, Lahoz C, Jiménez A, Rico L, García R, Aceituno E, Millás I, Gómez J, Farré J, Casado S, López-Farré A. Aspirin inhibits inducible nitric oxide synthase expression and tumour necrosis factor-alpha release by cultured smooth muscle cells. Eur J Clin Invest 1999; 29:93-9. [PMID: 10092995 DOI: 10.1046/j.1365-2362.1999.00425.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Inflammatory related cardiovascular disease, i.e. cardiac allograft rejection, myocarditis, septic shock, are accompanied by cytokine production, which stimulates the expression of inducible nitric oxide (iNOS). MATERIALS AND METHODS The aim of the present study was to examine whether anti-inflammatory doses of acetylsalicylic acid (aspirin) could regulate iNOS protein expression in bovine vascular smooth muscle cells (BVSMCs) in culture. RESULTS Interleukin 1 beta (IL-1 beta, 0.03 U mL-1) induced nitric oxide release by BVSMCs. Aspirin inhibited nitric oxide release from IL-1 beta-stimulated BVSMCs in a dose-dependent manner. In addition, aspirin significantly inhibited iNOS protein expression in BVSMCs and reduced the translocation of the nuclear factor-kappa B (NF-kappa B). Furthermore, aspirin and the blockade of NO generation by BVSMCs reduced the production of tumour necrosis factor alpha (TNF-alpha) by these cells. CONCLUSION High doses of aspirin inhibited iNOS protein expression in BVSMCs and decreased NF-kappa B mobilization. The inhibition of iNOS expression by aspirin was further associated with a reduced ability of BVSMCs to produce TNF-alpha. This study could provide new mechanisms of action for aspirin in the treatment of the inflammation-related cardiovascular diseases.
Collapse
Affiliation(s)
- L Sánchez de Miguel
- Nephrology, Hypertension and Cardiovascular Research Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|