1
|
Zhou X, Sun Y, Feng W, Wan W, Cui L. Long-term effects of IVF on offspring kidneys in mice: observations from adolescence to adulthood. Reprod Biomed Online 2024; 51:104501. [PMID: 40367636 DOI: 10.1016/j.rbmo.2024.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 05/16/2025]
Abstract
RESEARCH QUESTION What is the effect of IVF on the long-term health of offspring kidneys? DESIGN An IVF mouse model was established and renal structure, renal function and cortical oxidative stress were observed from the age of 2 months to ascertain any disparities compared with naturally conceived offspring. Observation continued until the mice reached 5 months of age. RESULTS No significant difference was found in the body weight of IVF and naturally conceived offspring mice aged 2-5 months. The renal-to-body weight ratio of the IVF offspring was higher than that of the naturally conceived offspring at 2 months (P = 0.02) and 3 months (P = 0.01), but this difference disappeared in offspring aged 4-5 months. At 5 months of age IVF offspring had lower urine creatinine concentrations than naturally conceived offspring (P = 0.03). Moreover, the expression of Ace2 was observed to decrease in the kidneys of 4- to 5-month-old IVF mice (4 months, P = 0.003; 5 months, P = 0.04), and the expression of Agtr1a was higher in 5-month-old IVF mice compared with naturally conceived mice (P = 0.002). The malondialdehyde concentration in 5-month-old IVF offspring was higher than in naturally conceived offspring (P = 0.03). CONCLUSIONS This study indicated that the microvascular thickness in the kidneys of IVF offspring remains unchanged, but minor alterations in kidney function, renin-angiotensin system gene expression and renal cortical oxidative stress were evident by 5 months of age.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yifei Sun
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Wanbing Feng
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Wenjing Wan
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Linlin Cui
- Center for Reproductive Medicine, the Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Li FJ, Fu S, Ye H, Hu YH, Chen J, Privratsky JR, Yu W, Dong F, Reiter RJ, Dong M, Guo J, Ren J. Metallothionein Alleviates Glutathione Depletion-Induced Oxidative Cardiomyopathy through CISD1-Dependent Regulation of Ferroptosis in Murine Hearts. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:912-926. [PMID: 38417695 DOI: 10.1016/j.ajpath.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
This study was designed to discern the effect of heavy scavenger metallothionein on glutathione (GSH) deprivation-evoked cardiac anomalies and mechanisms involved with an emphasis on ferroptosis. Wild-type and cardiac metallothionein transgenic mice received GSH synthase inhibitor buthionine sulfoximine (BSO; 30 mmol/L in drinking water) for 14 days before assessment of myocardial morphology and function. BSO evoked cardiac remodeling and contractile anomalies, including cardiac hypertrophy, interstitial fibrosis, enlarged left ventricular chambers, deranged ejection fraction, fraction shortening, cardiomyocyte contractile capacity, intracellular Ca2+ handling, sarcoplasmic reticulum Ca2+ reuptake, loss of mitochondrial integrity (mitochondrial swelling, loss of aconitase activity), mitochondrial energy deficit, carbonyl damage, lipid peroxidation, ferroptosis, and apoptosis. Metallothionein itself did not affect myocardial morphology and function, although it mitigated BSO-provoked myocardial anomalies, loss of mitochondrial integrity and energy, and ferroptosis. Immunoblotting revealed down-regulated sarco(endo)plasmic reticulum Ca2+-ATPase 2a, glutathione peroxidase 4, ferroptosis-suppressing CDGSH iron-sulfur domain 1 (CISD1), and mitochondrial regulating glycogen synthase kinase-3β phosphorylation with elevated p53, myosin heavy chain-β isozyme, IκB phosphorylation, and solute carrier family 7 member 11 (SLC7A11) as well as unchanged SLC39A1, SLC1A5, and ferroptosis-suppressing protein 1 following BSO challenge, all of which, except glutamine transporter SLC7A11 and p53, were abrogated by metallothionein. Inhibition of CISD1 using pioglitazone nullified GSH-offered benefit against BSO-induced cardiomyocyte ferroptosis and contractile and intracellular Ca2+ derangement. Taken together, these findings support a regulatory modality for CISD1 in the impedance of ferroptosis in metallothionein-offered protection against GSH depletion-evoked cardiac aberration.
Collapse
Affiliation(s)
- Feng-Juan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shouzhi Fu
- Department of ICU/Emergency, Wuhan Third Hospital, Wuhan University, Wuhan, China
| | - Hua Ye
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Burns and Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, China
| | - Yi-Han Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianxin Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jamie R Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Jun Ren
- National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Lee G, Jung BH, Lee T, Park JH, Kim HS, Kim H, Yang HO. Exploring the Metabolic Effects of a Herbal Remedy of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia Extracts: Unraveling Its Therapeutic Potential as a Topical Application for Atopic Dermatitis Treatment. Antioxidants (Basel) 2024; 13:563. [PMID: 38790668 PMCID: PMC11117881 DOI: 10.3390/antiox13050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Our previous study demonstrated that our novel herbal remedy, a mixture of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum Cassia extracts, exhibits a therapeutic effect in 1-chloro-2,4-dinitrobenzene (DNCB)-induced mice by inhibiting the Th-2 inflammatory response upon oral administration. It also ameliorated imbalances in lipid metabolism related to the skin barrier function in keratinocytes, indicating its potential as a topical agent. This study aims to further investigate the therapeutic effects and metabolic mechanisms of its topical application. The anti-atopic effect was evaluated using dermatitis scores, histopathological analysis, and immune cell factors in DNCB-induced mice. Metabolomic profiling of serum and lesional skin was conducted to elucidate the metabolic mechanisms. The topical application significantly reduced dermatitis scores, mast cell infiltration, and serum levels of immunoglobulin E (IgE), IFN-γ, interleukin (IL)-4, IL-17, and thymic stromal lymphopoietin (TSLP), demonstrating its effectiveness in treating atopic dermatitis (AD). Serum metabolomics revealed alterations in fatty acid metabolism related to the pro-inflammatory response. In lesional skin, metabolic markers associated with oxidative stress, immune regulation, and AD symptoms were restored. This study demonstrated its potential as a topical agent in suppressing Th-2 inflammatory responses and improving metabolic abnormalities related to AD symptoms, providing crucial insights for developing natural AD treatments.
Collapse
Affiliation(s)
- Gakyung Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (G.L.); (T.L.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Byung Hwa Jung
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Taemin Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (G.L.); (T.L.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea; (J.H.P.); (H.S.K.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea; (J.H.P.); (H.S.K.)
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (G.L.); (T.L.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
4
|
Wu H, Yi MH, Liu BG, Xu Y, Wu Q, Liu YH, Lu LP. Association of gestational metabolic syndrome with the Chinese Healthy Eating Index in mid-pregnancy: a cross-sectional study. Nutr Metab (Lond) 2024; 21:8. [PMID: 38279139 PMCID: PMC10811910 DOI: 10.1186/s12986-024-00780-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND This study aims to investigate the relationship between gestational metabolic syndrome (GMS) and the Chinese Healthy Eating Index (CHEI) in mid-pregnancy, and to identify potentially beneficial or high-risk dietary habits. We have developed a mid-pregnancy version of CHEI-2022, adapting the Chinese Healthy Eating Index to align with the food quantity recommendations outlined in the 2022 Dietary Guidelines for Chinese Residents for mid-pregnancy. METHODS Using the inclusion and exclusion criteria, data from 2411 mid-pregnant individuals were collected through interviews. The Total CHEI score and its component scores were determined through analysis of responses from the food frequency questionnaire. GMS diagnosis involved conducting physical examinations and performing blood biochemical tests. A logistic regression model was employed to analyze the relationship between GMS or related indices and both the total CHEI score and its component scores. RESULTS The study identified an overall GMS prevalence of 21.65% (522 out of 2411 participants). During mid-pregnancy, participants diagnosed with GMS exhibited higher BMI, FBG, 1hPBG, 2hPBG, TC, TG, HDL, SBP, as well as higher educational levels and daily activity, compared to those without GMS (P < 0.001). After adjusting for potential confounders, participants with higher total CHEI scores (≥ 80) were found to have lower odds of GMS or related indices (P < 0.05). Increasing dietary intake of potatoes, whole grains, beans, dark green vegetables, and fruits, as per the CHEI recommendations, was associated with reduced odds of GMS or related indices (P < 0.05). CONCLUSION A high-quality diet, as indicated by a total CHEI score of 80 or higher, and increased consumption of specific dietary components, namely potatoes, beans, dark green vegetables, and fruits, were found to effectively reduce the odds of GMS or related indices during mid-pregnancy.
Collapse
Affiliation(s)
- Hui Wu
- Department of Nutrition, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Min-Hui Yi
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Bing-Gang Liu
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yan Xu
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Qin Wu
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yu-Hong Liu
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Ling-Peng Lu
- Department of Clinical Lab, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| |
Collapse
|
5
|
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol 2023; 14:1269581. [PMID: 37927596 PMCID: PMC10622810 DOI: 10.3389/fphar.2023.1269581] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Increased production and buildup of reactive oxygen species (ROS) can lead to various health issues, including metabolic problems, cancers, and neurological conditions. Our bodies counteract ROS with biological antioxidants such as SOD, CAT, and GPx, which help prevent cellular damage. However, if there is an imbalance between ROS and these antioxidants, it can result in oxidative stress. This can cause genetic and epigenetic changes at the molecular level. This review delves into how ROS plays a role in disorders caused by oxidative stress. We also look at animal models used for researching ROS pathways. This study offers insights into the mechanism, pathology, epigenetic changes, and animal models to assist in drug development and disease understanding.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
6
|
Reinal I, Ontoria-Oviedo I, Selva M, Casini M, Peiró-Molina E, Fambuena-Santos C, Climent AM, Balaguer J, Cañete A, Mora J, Raya Á, Sepúlveda P. Modeling Cardiotoxicity in Pediatric Oncology Patients Using Patient-Specific iPSC-Derived Cardiomyocytes Reveals Downregulation of Cardioprotective microRNAs. Antioxidants (Basel) 2023; 12:1378. [PMID: 37507917 PMCID: PMC10376252 DOI: 10.3390/antiox12071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Anthracyclines are widely used in the treatment of many solid cancers, but their efficacy is limited by cardiotoxicity. As the number of pediatric cancer survivors continues to rise, there has been a concomitant increase in people living with anthracycline-induced cardiotoxicity. Accordingly, there is an ongoing need for new models to better understand the pathophysiological mechanisms of anthracycline-induced cardiac damage. Here we generated induced pluripotent stem cells (iPSCs) from two pediatric oncology patients with acute cardiotoxicity induced by anthracyclines and differentiated them to ventricular cardiomyocytes (hiPSC-CMs). Comparative analysis of these cells (CTX hiPSC-CMs) and control hiPSC-CMs revealed that the former were significantly more sensitive to cell injury and death from the anthracycline doxorubicin (DOX), as measured by viability analysis, cleaved caspase 3 expression, oxidative stress, genomic and mitochondrial damage and sarcomeric disorganization. The expression of several mRNAs involved in structural integrity and inflammatory response were also differentially affected by DOX. Functionally, optical mapping analysis revealed higher arrythmia complexity after DOX treatment in CTX iPSC-CMs. Finally, using a panel of previously identified microRNAs associated with cardioprotection, we identified lower levels of miR-22-3p, miR-30b-5p, miR-90b-3p and miR-4732-3p in CTX iPSC-CMs under basal conditions. Our study provides valuable phenotype information for cellular models of cardiotoxicity and highlights the significance of using patient-derived cardiomyocytes for studying the associated pathogenic mechanisms.
Collapse
Affiliation(s)
- Ignacio Reinal
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Marta Selva
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Marilù Casini
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | | | - Andreu M Climent
- ITACA Institute, Universitat Politècnica de València, 46026 Valencia, Spain
| | - Julia Balaguer
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Transtational Research in Cancer Unit-Pediatric Oncology, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Adela Cañete
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Transtational Research in Cancer Unit-Pediatric Oncology, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
- Department of Pediatrics, University of Valencia, 46010 Valencia, Spain
| | - Jaume Mora
- Oncology Service, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Ángel Raya
- Regenerative Medicine Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia-P-[CMRC], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carlos III Institute of Health, 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, 28029 Madrid, Spain
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
7
|
Aboukhater D, Morad B, Nasrallah N, Nasser SA, Sahebkar A, Kobeissy F, Boudaka A, Eid AH. Inflammation and hypertension: Underlying mechanisms and emerging understandings. J Cell Physiol 2023; 238:1148-1159. [PMID: 37039489 DOI: 10.1002/jcp.31019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Hypertension remains a major contributor to cardiovascular disease (CVD), a leading cause of global death. One of the major insults that drive increased blood pressure is inflammation. While it is the body's defensive response against some homeostatic imbalances, inflammation, when dysregulated, can be very deleterious. In this review, we highlight and discuss the causative relationship between inflammation and hypertension. We critically discuss how the interplay between inflammation and reactive oxygen species evokes endothelial damage and dysfunction, ultimately leading to narrowing and stiffness of blood vessels. This, along with phenotypic switching of the vascular smooth muscle cells and the abnormal increase in extracellular matrix deposition further exacerbates arterial stiffness and noncompliance. We also discuss how hyperhomocysteinemia and microRNA act as links between inflammation and hypertension. The premises we discuss suggest that the blue-sky scenarios for targeting the underlying mechanisms of hypertension necessitate further research.
Collapse
Affiliation(s)
- Diana Aboukhater
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Bassel Morad
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadim Nasrallah
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Tolj I, Stupin A, Drenjančević I, Šušnjara P, Perić L, Stupin M. The Role of Nitric Oxide in the Micro- and Macrovascular Response to a 7-Day High-Salt Diet in Healthy Individuals. Int J Mol Sci 2023; 24:ijms24087157. [PMID: 37108318 PMCID: PMC10138534 DOI: 10.3390/ijms24087157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to investigate the specific role of nitric oxide (NO) in micro- and macrovascular response to a 7-day high-salt (HS) diet, specifically by measuring skin microvascular local thermal hyperemia and the flow-mediated dilation of the brachial artery, as well as serum NO and three NO synthase enzyme (NOS) isoform concentrations in healthy individuals. It also aimed to examine the concept of non-osmotic sodium storage in the skin following the HS diet by measuring body fluid status and systemic hemodynamic responses, as well as serum vascular endothelial growth factor C (VEGF-C) concentration. Forty-six young, healthy individuals completed a 7-day low-salt diet, followed by a 7-day HS diet protocol. The 7-day HS diet resulted in impaired NO-mediated endothelial vasodilation in peripheral microcirculation and conduit arteries, in increased eNOS, decreased nNOS, and unchanged iNOS concentration and NO serum level. The HS diet did not change the volume of interstitial fluid, the systemic vascular resistance or the VEGF-C serum level. These results indicate that the 7-day HS-diet induces systemic impairment of NO-mediated endothelial vasodilation, while dissociation in the eNOS and nNOS response indicates complex adaptation of main NO-generating enzyme isoforms to HS intake in healthy individuals. Our results failed to support the concept of non-osmotic sodium storage.
Collapse
Affiliation(s)
- Ivana Tolj
- Department of Internal Medicine and History of Medicine, Faculty of Medicine Osijek, Josip Juraj University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Department of Nephrology, University Hospital Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Leon Perić
- Department of Emergency Medicine of Osijek-Baranja County, J. Huttlera 2, 31000 Osijek, Croatia
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
9
|
The Role of Lead and Cadmium in Gynecological Malignancies. Antioxidants (Basel) 2022; 11:antiox11122468. [PMID: 36552675 PMCID: PMC9774668 DOI: 10.3390/antiox11122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Lead and cadmium are non-essential and toxic heavy metals. Their presence and elevated levels can lead to many pathologies. They disrupt the antioxidant properties of many enzymes, consume the resources of antioxidant cells, and thus participate in the generation of oxidative stress, which may result in DNA damage. In addition, they have been found to be carcinogenic through their genotoxic properties. They have been shown to be present in various types of cancer, including cancer of the female reproductive system. Both metals have been recognized as metalloestrogens, which are important in hormone-related cancers. Participation in the oncogenesis of ovarian, endometrial and cervical cancer was analysed in detail, using the available research in this field. We emphasize their role as potential biomarkers in cancer risk and diagnosis as well as advancement of gynaecological malignancies.
Collapse
|
10
|
Bourgonje AR, Bourgonje MF, Post A, la Bastide-van Gemert S, Kieneker LM, Bulthuis MLC, Gordijn SJ, Gansevoort RT, Bakker SJL, Mulder DJ, Pasch A, van Goor H, Abdulle AE. Systemic oxidative stress associates with new-onset hypertension in the general population. Free Radic Biol Med 2022; 187:123-131. [PMID: 35636658 DOI: 10.1016/j.freeradbiomed.2022.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oxidative stress is known to be involved in the development of hypertension, but accurate redox biomarkers predicting the risk of developing hypertension are scarce. Serum free sulfhydryl groups (R-SH, free thiols) have been shown to accurately reflect systemic oxidative stress in various conditions. In this study, we aimed to investigate associations between serum free thiols and the risk of developing new-onset hypertension in a population-based cohort study. METHODS Subjects (n = 3,575) who participated in the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) study, a prospective, population-based cohort study in the Netherlands, were included. Baseline protein-adjusted serum free thiols were studied for their associations with the development of hypertension, defined as a systolic blood pressure (SBP) of at least 140 mmHg, a diastolic blood pressure (DBP) of at least 90 mmHg, or the first usage of antihypertensive medication. Subjects with hypertension at baseline were excluded from the study. RESULTS Mean protein-adjusted serum free thiols at baseline was 5.16 μmol/g of protein (range: 1.62-8.41 μmol/g). Protein-adjusted serum free thiols were significantly associated with the risk of incident hypertension (hazard ratio [HR] per doubling 0.60 [95% confidence interval [CI]: 0.49-0.72, P < 0.001), also after adjustment for age and sex (HR 0.81 [95% CI: 0.66-0.91], P < 0.05), but not after additional adjustment for relevant confounding factors (HR 0.90 [95% CI: 0.70-1.15], P = 0.382). CONCLUSION Higher levels of serum free thiols, i.e. less oxidative stress, are associated with a decreased risk of developing incident hypertension in subjects from the general population.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin F Bourgonje
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adrian Post
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sacha la Bastide-van Gemert
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lyanne M Kieneker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marian L C Bulthuis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sanne J Gordijn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Douwe J Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Amaal E Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
11
|
Feelisch M, Cortese-Krott MM, Santolini J, Wootton SA, Jackson AA. Systems redox biology in health and disease. EXCLI JOURNAL 2022; 21:623-646. [PMID: 35721574 PMCID: PMC9203981 DOI: 10.17179/excli2022-4793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022]
Abstract
Living organisms need to be able to cope with environmental challenges and other stressors and mount adequate responses that are as varied as the spectrum of those challenges. Understanding how the multi-layered biological stress responses become integrated across and between different levels of organization within an organism can provide a different perspective on the nature and inter-relationship of complex systems in health and disease. We here compare two concepts which have been very influential in stress research: Selye's 'General Adaptation Syndrome' and Sies's 'Oxidative Stress' paradigm. We show that both can be embraced within a more general framework of 'change and response'. The 'Reactive Species Interactome' allows each of these to be considered as distinct but complementary aspects of the same system, representative of roles at different levels of organization within a functional hierarchy. The versatile chemistry of sulfur - exemplified by hydrogen sulfide, glutathione and proteinous cysteine thiols - enriched by its interactions with reactive oxygen, nitrogen and sulfur species, would seem to sit at the heart of the 'Redox Code' and underpin the ability of complex organisms to cope with stress.
Collapse
Affiliation(s)
- Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Biomedical Research Center, University Hospital Southampton, NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Stephen A Wootton
- Institute of Human Nutrition, University of Southampton and University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Alan A Jackson
- Institute of Human Nutrition, University of Southampton and University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
12
|
High Iron Exposure from the Fetal Stage to Adulthood in Mice Alters Lipid Metabolism. Nutrients 2022; 14:nu14122451. [PMID: 35745181 PMCID: PMC9227341 DOI: 10.3390/nu14122451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Iron supplementation is recommended during pregnancy and fetal growth. However, excess iron exposure may increase the risk of abnormal fetal development. We investigated the potential side effects of high iron levels in fetuses and through their adult life. C57BL/6J pregnant mice from 2 weeks of gestation and their offspring until 30 weeks were fed a control (CTRL, FeSO4 0 g/1 kg) or high iron (HFe, FeSO4 9.9 g/1 kg) diets. HFe group showed higher iron accumulation in the liver with increased hepcidin, reduced TfR1/2 mRNAs, and lowered ferritin heavy chain (FTH) proteins in both liver and adipose tissues despite iron loading. HFe decreased body weight, fat weight, adipocyte size, and triglyceride levels in the blood and fat, along with downregulation of lipogenesis genes, including PPARγ, C/EBPα, SREBP1c, FASN, and SCD1, and fatty acid uptake and oxidation genes, such as CD36 and PPARα. UCP2, adiponectin, and mRNA levels of antioxidant genes such as GPX4, HO-1, and NQO1 were increased in the HFe group, while total glutathione was reduced. We conclude that prolonged exposure to high iron from the fetal stage to adulthood may decrease fat accumulation by altering ferritin expression, adipocyte differentiation, and triglyceride metabolism, resulting in an alteration in normal growth.
Collapse
|
13
|
Zuin M, Capatti E, Borghi C, Zuliani G. Serum Malondialdehyde Levels in Hypertensive Patients: A Non-invasive Marker of Oxidative Stress. A Systematic Review and Meta-analysis. High Blood Press Cardiovasc Prev 2022; 29:263-273. [PMID: 35347636 DOI: 10.1007/s40292-022-00514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Previous analyses have reported a higher malondialdehyde (MDA) serum level in hypertensive patients (HTs) compared to normotensive subjects (NTs). AIM We performed a systematic review and meta-analysis of these studies to offer a comprehensive information on this issue. METHODS The PubMed, EMBASE and Web of Science databases were analysed to locate English-language articles published from January 1, 2000 up to January 1 2021. Studies were identified using the following MeSH terms: "Malondialdehyde" AND "Arterial hypertension". The difference of MDA serum levels between HTs and NTs was expressed as standardized mean difference (SMD) with 95% CI using a random-effect model. RESULTS A total of of 4102 patients (2158 HTs and 1944 NTs, mean age 52.7 and 48.0 years, respectively) were included in 17 studies. Pooled mean MDA serum levels in HTs and NTs were 4.91 [standard error (SE): 0.34, 95% CI 4.23-5.59)] and 3.43 [SE 0.15, 95% CI 3.18-3.78] nmol/L, respectively. The SMD between HTs and NTs was 3.23 nmol/L (95% CI 2.54-3.92; Z-score for overall effect: 9.17, p < 0.0001, I2 = 98.6%). Egger's test resulted significant at p = 0.009 while Begg's test was not, p = 0.11. Subsequent adjustment via the trim-and-fill method did not predict a new model (studies trimmed = 0). Meta-regression analysis found no correlations either between SMD and age (p = 0.95) or BMI (p = 0.96) but a significant one considering the latitude of the study site as moderator variable (p = 0.001). CONCLUSIONS Among patients with HTs, serum MDA appears to have the greatest potential as non-invasive biomarkers of oxidative stress and endothelial dysfunction (ED).
Collapse
Affiliation(s)
- Marco Zuin
- Section of Internal and Cardio-Respiraotry Medicine, Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy.
- University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Emilia Romagna, Italy.
| | - Elenonora Capatti
- Section of Internal and Cardio-Respiraotry Medicine, Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
- University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Emilia Romagna, Italy
| | - Claudio Borghi
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Giovanni Zuliani
- Section of Internal and Cardio-Respiraotry Medicine, Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
- University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Emilia Romagna, Italy
| |
Collapse
|
14
|
GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage. Nutrients 2022; 14:nu14051114. [PMID: 35268089 PMCID: PMC8912885 DOI: 10.3390/nu14051114] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Determinants of length of life are not well understood, and therefore increasing lifespan is a challenge. Cardinal theories of aging suggest that oxidative stress (OxS) and mitochondrial dysfunction contribute to the aging process, but it is unclear if they could also impact lifespan. Glutathione (GSH), the most abundant intracellular antioxidant, protects cells from OxS and is necessary for maintaining mitochondrial health, but GSH levels decline with aging. Based on published human studies where we found that supplementing glycine and N-acetylcysteine (GlyNAC) improved/corrected GSH deficiency, OxS and mitochondrial dysfunction, we hypothesized that GlyNAC supplementation could increase longevity. We tested our hypothesis by evaluating the effect of supplementing GlyNAC vs. placebo in C57BL/6J mice on (a) length of life; and (b) age-associated GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage in the heart, liver and kidneys. Results showed that mice receiving GlyNAC supplementation (1) lived 24% longer than control mice; (2) improved/corrected impaired GSH synthesis, GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage. These studies provide proof-of-concept that GlyNAC supplementation can increase lifespan and improve multiple age-associated defects. GlyNAC could be a novel and simple nutritional supplement to improve lifespan and healthspan, and warrants additional investigation.
Collapse
|
15
|
Kalinovic S, Stamm P, Oelze M, Daub S, Kröller-Schön S, Kvandova M, Steven S, Münzel T, Daiber A. Comparison of three methods for in vivo quantification of glutathione in tissues of hypertensive rats. Free Radic Res 2021; 55:1048-1061. [PMID: 34918601 DOI: 10.1080/10715762.2021.2016735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, GSH) is a tripeptide that is part of the antioxidant defense system and contributes to numerous redox-regulatory processes. In vivo, reduced GSH and oxidized glutathione disulfide (GSSG) are present in redox equilibrium and their ratio provides important information on the cellular redox state. Here, we compared three different methods for in vivo quantification of glutathione in tissues of hypertensive rats, an accepted animal model of oxidative stress. In the present study, we used hypertensive rats (infusion of 1 mg/kg/d angiotensin-II for 7 days) to determine the levels of reduced GSH and/or GSH/GSSG ratios in different tissue samples. We used an HPLC-based method with direct electrochemical detection (HPLC/ECD) and compared it with Ellman's reagent (DTNB) dependent derivatization of reduced GSH to the GS-NTB adduct and free NTB (UV/Vis HPLC) as well as with a commercial GSH/GSSG assay (Oxiselect). Whereas all three methods indicated overall a decreased redox state in hypertensive rats, the assays based on HPLC/ECD and DTNB derivatization provided the most significant differences. We applied a direct, fast and sensitive method for electrochemical GSH detection in tissues from hypertensive animals, and confirmed its reliability for in vivo measurements by head-to-head comparison with two other established assays. The HPLC/ECD but not DTNB and Oxiselect assays yielded quantitative GSH data but all three assays reflected nicely the qualitative redox changes and functional impairment in hypertensive rats. However, especially our GSH/GSSG values are lower than reported by others pointing to problems in the work-up protocol.
Collapse
Affiliation(s)
- Sanela Kalinovic
- From Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Paul Stamm
- From Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Oelze
- From Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Steffen Daub
- From Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- From Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Miroslava Kvandova
- From Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- From Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Münzel
- From Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Andreas Daiber
- From Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
16
|
Ahmed M, Herrmann N, Chen JJ, Saleem M, Oh PI, Andreazza AC, Kiss A, Lanctôt KL. Glutathione Peroxidase Activity Is Altered in Vascular Cognitive Impairment-No Dementia and Is a Potential Marker for Verbal Memory Performance. J Alzheimers Dis 2021; 79:1285-1296. [PMID: 33427735 PMCID: PMC7990450 DOI: 10.3233/jad-200754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Coronary artery disease (CAD) increases risk for vascular cognitive impairment-no dementia (VCIND), a precursor to dementia, potentially through persistent oxidative stress. Objective: This study assessed peripheral glutathione peroxidase activity (GPX), which is protective against oxidative stress, in VCIND versus cognitively normal CAD controls (CN). GPX activity was also evaluated as a biomarker of cognition, particularly verbal memory. Methods: 120 CAD patients with VCIND (1SD below norms on executive function or verbal memory (VM)) or without (CN) participated in exercise rehabilitation for 24 weeks. Neurocognitive and cardiopulmonary fitness (VO2peak) assessments and plasma were collected at baseline and 24-weeks. Results: GPX was higher in VCIND compared to CN (F1,119 = 3.996, p = 0.048). Higher GPX was associated with poorer baseline VM (β= –0.182, p = 0.048), and longitudinally with VM decline controlling for sex, body mass index, VO2peak, and education (b[SE] = –0.02[0.01], p = 0.004). Only CN participants showed improved VM performance with increased fitness (b[SE] = 1.30[0.15], p < 0.005). Conclusion: GPX was elevated in VCIND consistent with a compensatory response to persistent oxidative stress. Increased GPX predicted poorer cognitive outcomes (verbal memory) in VCIND patients despite improved fitness.
Collapse
Affiliation(s)
- Mehnaz Ahmed
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jinghan Jenny Chen
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mahwesh Saleem
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Paul I Oh
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Alexander Kiss
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
17
|
Saleh DO, Mansour DF, Fayez AM. Thioacetamide-induced acute hepatic encephalopathy: central vs peripheral effect of Allicin. Metab Brain Dis 2021; 36:1331-1340. [PMID: 33765229 DOI: 10.1007/s11011-021-00695-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
Hepatic encephalopathy (HE) is a debilitating and life-threatening disease. Results from acute or chronic liver failure and is characterized by abnormal cerebral and neurological alterations. This study aimed at investigating the effect of allicin, the major functional component in freshly crushed garlic extract, on thioacetamide (TAA)-induced HE in rats. Induction of HE by a single dose of TAA (300 mg/kg; I.P.) was associated with a marked elevation in the serum levels of alanine aminotransferase, aspartate aminotransferase, bilirubin, albumin, total protein, blood urea nitrogen and serum ammonia besides reduction in the serum level of albumin. Moreover, it was accompanied with an increase in the hepatic and brain levels of inflammatory mediators; TNF-α and IL-1β as well as elevation of the hepatic and brain levels of oxidative stress biomarkers; reduced glutathione and lipid peroxidation evidenced by malondialdeyde. Oral administration of allicin (50, 100 and 200 mg/kg; P.O.) for 6 days prior to TAA injection restored the serum liver function, hepatic and brain levels of inflammatory mediators as well as oxidative stress biomarkers in a dose-dependent manner. From our results, it can be concluded that allicin has a protective effect on TAA-induced HE in rats in a dose-dependent manner due to its powerful antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Dalia O Saleh
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki, Cairo, P.O:12622, Egypt.
| | - Dina F Mansour
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki, Cairo, P.O:12622, Egypt
| | - Ahmed M Fayez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Science and Arts (MSA University), 6th of October, Egypt
| |
Collapse
|
18
|
Bélanger V, Benmoussa A, Napartuk M, Warin A, Laverdière C, Marcoux S, Levy E, Marcil V. The Role of Oxidative Stress and Inflammation in Cardiometabolic Health of Children During Cancer Treatment and Potential Impact of Key Nutrients. Antioxid Redox Signal 2021; 35:293-318. [PMID: 33386063 DOI: 10.1089/ars.2020.8143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: The 5-year survival rate of childhood cancers is now reaching 84%. However, treatments cause numerous acute and long-term side effects. These include cardiometabolic complications, namely hypertension, dyslipidemia, hyperglycemia, insulin resistance, and increased fat mass. Recent Advances: Many antineoplastic treatments can induce oxidative stress (OxS) and trigger an inflammatory response, which may cause acute and chronic side effects. Critical Issues: Clinical studies have reported a state of heightened OxS and inflammation during cancer treatment in children as the result of treatment cytotoxic action on both cancerous and noncancerous cells. Higher levels of OxS and inflammation are associated with treatment side effects and with the development of cardiometabolic complications. Key nutrients (omega-3 polyunsaturated fatty acids, dietary antioxidants, probiotics, and prebiotics) have the potential to modulate inflammatory and oxidative responses and, therefore, could be considered in the search for adverse complication prevention means as long as antineoplastic treatment efficiency is maintained. Future Directions: There is a need to better understand the relationship between cardiometabolic complications, OxS, inflammation and diet during pediatric cancer treatment, which represents the ultimate goal of this review. Antioxid. Redox Signal. 35, 293-318.
Collapse
Affiliation(s)
- Véronique Bélanger
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Abderrahim Benmoussa
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Mélanie Napartuk
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Alexandre Warin
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada
| | | | - Sophie Marcoux
- Department of Public Health & Preventive Medicine, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| |
Collapse
|
19
|
Lakshmanan AP, Shatat IF, Zaidan S, Jacob S, Bangarusamy DK, Al-Abduljabbar S, Al-Khalaf F, Petroviski G, Terranegra A. Bifidobacterium reduction is associated with high blood pressure in children with type 1 diabetes mellitus. Biomed Pharmacother 2021; 140:111736. [PMID: 34034069 DOI: 10.1016/j.biopha.2021.111736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Children with Type 1 diabetes mellitus (T1DM) have an elevated risk of abnormal blood pressure (BP) measurements and patterns. Both hypertension and T1DM are well-known risk factors for cardiovascular disease and kidney failure. The human microbiome has been linked to both diabetes and hypertension, but the relationship between the gut microbiome and BP in children with T1DM is not well-understood. In this cross-sectional study, we examined the relationship between resting office BP and gut microbiota composition, diversity, and richness in children with T1DM and healthy controls. We recruited 29 pediatric subjects and divided them into three groups: healthy controls (HC, n = 5), T1DM with normal BP (T1DM-Normo, n = 17), and T1DM with elevated BP (T1DM-HBP, n = 7). We measured the BP, dietary and clinical parameters for each subject. We collected fecal samples to perform the 16s rDNA sequencing and to measure the short-chain fatty acids (SCFAs) level. The microbiome downstream analysis included the relative abundance of microbiota, alpha and beta diversity, microbial markers using Linear Discriminant effect size analysis (LEfSe), potential gut microbial metabolic pathways using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) and metabolic pathways validation using Statistical Inference of Associations between Microbial Communities And host phenotype (SIAMCAT) machine learning toolbox. Our study results showed that T1DM-HBP group had distinct gut microbial composition (at multiple taxonomic levels) and reduced diversity (richness and abundance) compared with T1DM-Normo and HC groups. Children with T1DM-HBP showed a significant reduction of Bifidobacterium levels (especially B. adolescentis, B. bifidum, and B. longum) compared to the T1DM-Normo group. We also observed unique gut-microbial metabolic pathways, such as elevated lipopolysaccharide synthesis and glutathione metabolism in children with T1DM-HBP compared to T1DM-Normo children. We can conclude that the reduction in the abundance of genus Bifidobacterium could play a significant role in elevating the BP in pediatric T1DM subjects. More studies are needed to corroborate our findings and further explore the potential contributing mechanisms we describe.
Collapse
Affiliation(s)
| | - Ibrahim F Shatat
- Pediatric Nephrology and Hypertension, Sidra Medicine, HB. 7A. 106A, P.O. Box 26999, Doha, Qatar; Weill Cornell College of Medicine-Qatar, Ar-Rayyan, Doha, Qatar; Medical University of South Carolina, Charleston, SC, USA
| | - Sara Zaidan
- Research Department, Sidra Medicine, OPC, P.O. Box 26999, Doha, Qatar
| | - Shana Jacob
- Research Department, Sidra Medicine, OPC, P.O. Box 26999, Doha, Qatar
| | | | | | - Fawziya Al-Khalaf
- Pediatric Endocrinology, Sidra Medicine, OPC, P.O. Box 26999, Doha, Qatar
| | - Goran Petroviski
- Pediatric Endocrinology, Sidra Medicine, OPC, P.O. Box 26999, Doha, Qatar
| | | |
Collapse
|
20
|
Wang G, Hao M, Liu Q, Jiang Y, Huang H, Yang G, Wang C. Protective effect of recombinant Lactobacillus plantarum against H 2O 2-induced oxidative stress in HUVEC cells. J Zhejiang Univ Sci B 2021; 22:348-365. [PMID: 33973418 PMCID: PMC8110467 DOI: 10.1631/jzus.b2000441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study probed the protective effect of recombinant Lactobacillus plantarum against hydrogen peroxide (H2O2)-induced oxidative stress in human umbilical vein endothelial cells (HUVECs). We constructed a new functional L. plantarum (NC8-pSIP409-alr-angiotensin-converting enzyme inhibitory peptide (ACEIP)) with a double-gene-labeled non-resistant screen as an expression vector. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetric assay was carried out to determine the cell viability of HUVEC cells following pretreatment with NC8-pSIP409-alr-ACEIP. Flow cytometry (FCM) was used to determine the apoptosis rate of HUVEC cells. Cysteinyl aspartate specific proteinase (caspase)-3/8/9 activity was also assayed and western blotting was used to determine protein expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), inducible nitric oxide synthase (iNOS), nicotinamide adenine dinucleotide phosphate oxidase 2 (gp91phox), angiotensin II (AngII), and angiotensin-converting enzyme 2 (ACE2), as well as corresponding indicators of oxidative stress, such as reactive oxygen species (ROS), mitochondrial membrane potential (MMP), malondialdehyde (MDA), and superoxide dismutase (SOD). NC8-pSIP409-alr-ACEIP attenuated H2O2-induced cell death, as determined by the MTT assay. NC8-pSIP409-alr-ACEIP reduced apoptosis of HUVEC cells by FCM. In addition, compared to the positive control, the oxidative stress index of the H2O2-induced HUVEC (Hy-HUVEC), which was pretreated by NC8-pSIP409-alr-ACEIP, iNOS, gp91phox, MDA, and ROS, was decreased obviously; SOD expression level was increased; caspase-3 or -9 was decreased, but caspase-8 did not change; Bcl-2/Bax ratio was increased; permeability changes of mitochondria were inhibited; and loss of transmembrane potential was prevented. Expression of the hypertension-related protein (AngII protein) in HUVEC cells protected by NC8-pSIP409-alr-ACEIP decreased and expression of ACE2 protein increased. These plantarum results suggested that NC8-pSIP409-alr-ACEIP protects against H2O2-induced injury in HUVEC cells. The mechanism for this effect is related to enhancement of antioxidant capacity and apoptosis.
Collapse
Affiliation(s)
- Guan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China.,College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Mingyue Hao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Qiong Liu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
21
|
Kozakova M, Gastaldelli A, Morizzo C, Højlund K, Nilssson PM, Ferrannini E, Palombo C. Gamma-glutamyltransferase, arterial remodeling and prehypertension in a healthy population at low cardiometabolic risk. J Hum Hypertens 2021; 35:334-342. [PMID: 32350440 DOI: 10.1038/s41371-020-0337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/31/2020] [Indexed: 01/29/2023]
Abstract
Plasma gamma-glutamyltransferase (GGT) was suggested to reflect the level of systemic oxidative stress. Oxidative stress induces changes in arterial structure and function and contributes to the development of hypertension. Therefore, GGT may be associated with arterial remodeling and blood pressure (BP) increment, even in absence of disease. To test this hypothesis, we evaluated, in 825 healthy subjects at low cardiometabolic risk, the associations of plasma GGT with carotid artery intima-media thickness (IMT), luminal diameter and prehypertension; in 154 subjects was evaluated also the association with aortic stiffness (cfPWV). Associations were controlled for insulin sensitivity, C-reactive protein, and life-style habits. In the main population, BP was remeasured after 3 years. Carotid diameter and cfPWV, but not IMT, were directly and independently related to plasma GGT. Subjects with prehypertension (N = 330) had higher GGT as compared with subjects with normal BP (22 [14] vs 17 [11] IU/L; adjusted P = 0.001), and within prehypertensive subjects, those who developed hypertension during 3 years had higher GGT than those without incident hypertension (27 [16] vs 21 [14] IU/L; adjusted P < 0.05). Within subjects with arterial stiffness measurement, those with prehypertension (N = 79) had higher both GGT and arterial stiffness (25 [14] vs 16 [20] IU/L and 9.11 ± 1.24 vs 7.90 ± 0.94 m/s; adjusted P < 0.01 and <0.05). In the view of previous evidence linking plasma GGT concentration to the level of systemic oxidative stress, our findings suggest a role of oxidative stress in subclinical arterial damage and in prehypertension, even in healthy subjects free of cardiometabolic risk. Arterial organ damage may represent the link between GGT and hypertension.
Collapse
Affiliation(s)
- Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Carmela Morizzo
- Department of Surgical, Medical Molecular Pathology and Critical Care Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, J.B.Winslows Vej 4, 5000, Odense C, Denmark
| | - Peter M Nilssson
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmo, Sweden
| | - Ele Ferrannini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | | | - Carlo Palombo
- Department of Surgical, Medical Molecular Pathology and Critical Care Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy.
| |
Collapse
|
22
|
Atheroprotective Properties of Costus spicatus (Jacq.) Sw. in Female Rats. Life (Basel) 2021; 11:life11030212. [PMID: 33800454 PMCID: PMC8001518 DOI: 10.3390/life11030212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Costus spicatus (Jacq.) Sw. is a medicinal species frequently prescribed for the treatment of cardiovascular diseases. This study aims to evaluate the effects of this species against the development of atherosclerosis. Methods: First, an anatomical study of the C. spicatus leaves was performed. Then, the extract (ESCS) was obtained and submitted to phytochemical analysis. Female rats were treated with a single dose of ESCS (2000 mg/kg) to assess acute toxicity. Other groups of female rats received an atherogenic diet for 60 days. After 30 days, the animals were treated orally with ESCS (30 and 300 mg/kg), rosuvastatin (5 mg/kg), or vehicle once daily for 30 days. Serum lipids oxidized low-density lipoprotein, soluble adhesion molecules, interleukins 1β and 6, and markers of renal and liver function were measured. Renal function, blood pressure, electrocardiography, and vascular reactivity were also evaluated. Arteries, heart, liver, and kidney were also collected to evaluate the tissue redox state and histopathological analysis. Results: Prolonged treatment with ESCS induces significant hypolipidemic and antioxidant effects, that prevent endothelial dysfunction and modulated the local inflammatory process, reducing the evolution of the atherosclerotic disease. Conclusions: This study provides a scientific basis for the popular use of C. spicatus for the treatment of atherosclerosis.
Collapse
|
23
|
Agunloye OM. Effect of aqueous extracts of Pleurotus ostreatus and Lentinus subnudus on activity of adenosine deaminase, arginase, cholinergic enzyme, and angiotensin-1-converting enzyme. J Food Biochem 2021; 45:e13490. [PMID: 33043511 DOI: 10.1111/jfbc.13490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 01/11/2023]
Abstract
Pleurotus ostreatus (P. ostreatus) and Lentinus subnudus (L. subnudus) commonly consumed as food or as food supplement have been reported in folklore for their antihypertensive property with limited scientific proof. This study aims to unravel the antihypertensive mechanism of P. ostreatus and L. subnudus in vitro. The antioxidant properties of P. ostreatus and L. subnudus were established via standard antioxidant assays. Also, the effect of P. ostreatus and L. subnudus extracts on relevant enzymes associated to the development of hypertension were evaluated. Findings from this study revealed that P. ostreatus and L. subnudus extracts exhibited antihypertensive and antioxidant properties. Meanwhile, according to our results, various bioactive compounds present in P. ostreatus and L. subnudus could be responsible for the observed in vitro antihypertensive property. PRACTICAL APPLICATIONS: P. ostreatus and L. subnudus are the most commonly consumed mushrooms by the rural dwellers in South Western Nigeria, perhaps, based on their nutritive value and health-enhancing benefits. This paper showed that P. ostreatus and L. subnudus possess antihypertensive and antioxidant properties. Thus, their consumption as foods or food supplements may provide therapeutic benefits for hypertensive patients. Therefore, P. ostreatus and L. subnudus are promising candidates for the development of nutraceuticals.
Collapse
Affiliation(s)
- Odunayo Michael Agunloye
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
24
|
Ojetola AA, Adedeji TG, Fasanmade AA. Changes in antioxidants status, atherogenic index and cardiovascular variables after prolonged doses of D-ribose-L-cysteine in male Wistar rats. Heliyon 2021; 7:e06287. [PMID: 33665444 PMCID: PMC7902549 DOI: 10.1016/j.heliyon.2021.e06287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2020] [Accepted: 02/10/2021] [Indexed: 01/16/2023] Open
Abstract
D-ribose-L-cysteine (DRLC) acts as a rate limiting substrate for the synthesis of glutathione (GSH). GSH deficiency has been linked to oxidative stress, hypertension and cardiovascular diseases. There are limited findings on the effects of DRLC in the physiologic state. This study was therefore designed to investigate cardiovascular effects of different doses of DRLC in normal Wistar rats. Fifteen male Wistar rats were assigned into 3 groups (n = 5). Group 1 was administered orally with 10 mg/kg distilled water (Control). Groups 2 and 3 were administered orally with DRLC 125 mg/kg and 250 mg/kg respectively daily for 8 weeks, respectively. Animals were weighed; blood pressure and heart rate measured using rat tail cuff method. They were euthanized, blood collected and organs harvested. Serum C-reactive protein (CRP) was determined through ELISA. Gamma glutamyl transferase (GGT), heart GSH, glutathione peroxidase (GPx), total thiol and lipid profile and were assessed through spectrophotometry. Data were expressed as mean ± SEM and compared by ANOVA at P < 0.05. DRLC 250 significantly increased total thiol, GSH and GPx in heart tissues but decreased GGT, atherogenic index and CRP in normal male Wistar rats compared to DRLC 125 and control. DRLC supplementation in normal male Wistar rats may sustain cardio functions and decrease atherogenicity.
Collapse
Affiliation(s)
| | - Temitope Gabriel Adedeji
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
25
|
Yang P, Zhao X, Zhou L, Jin Y, Zheng X, Ouyang Y, Chen M, Zeng L, Chen S, Chen X, Tian Z. Protective effect of oral histidine on hypertension in Dahl salt-sensitive rats induced by high-salt diet. Life Sci 2021; 270:119134. [PMID: 33513395 DOI: 10.1016/j.lfs.2021.119134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 01/11/2023]
Abstract
AIMS Salt-sensitive hypertension is a risk factor for cardiovascular disease. Previous studies have shown that insufficient arginine in the kidney caused by metabolic imbalance is an important factor in salt-sensitive hypertension. Whether the high nitrogen content of histidine can affect the balance of nitrogen metabolism in Dahl salt-sensitive (SS) rats. This article aimed to study the effects of oral histidine on salt-sensitive hypertension, kidney damage and metabolic patterns of high-salt diet in SS rats. MAIN METHODS Adult rats were divided into four groups, and blood pressure was measured using a non-invasive tail-cuff system. Gas chromatography-mass spectrometry analyzed metabolites in serum and kidney tissues. KEY FINDINGS High-salt diet significantly increased the blood pressure of rats and aggravated kidney damage. Of note, histidine can attenuate salt-sensitive hypertension and kidney damage by improving metabolic pattern, reducing Reactive Oxygen Species (ROS) and increasing nitric oxide levels in SS rats. SIGNIFICANCE These results suggest that histidine could be a potential adjuvant to prevent and control salt-sensitive hypertension.
Collapse
Affiliation(s)
- Pengfei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinrui Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Luxin Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuexin Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanan Ouyang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Zeng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sa Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiangbo Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
26
|
Oral nitrite treatment increases S-nitrosylation of vascular protein kinase C and attenuates the responses to angiotensin II. Redox Biol 2020; 38:101769. [PMID: 33126056 PMCID: PMC7596338 DOI: 10.1016/j.redox.2020.101769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Nitrate and nitrite supplement deficient endogenous nitric oxide (NO) formation. While these anions may generate NO, recent studies have shown that circulating nitrite levels do not necessarily correlate with the antihypertensive effect of oral nitrite administration and that formation of nitrosylated species (RXNO) in the stomach is critically involved in this effect. This study examined the possibility that RXNO formed in the stomach after oral nitrite administration promotes target protein nitrosylation in the vasculature, inhibits vasoconstriction and the hypertensive responses to angiotensin II. Our results show that oral nitrite treatment enhances circulating RXNO concentrations (measured by ozone-based chemiluminescence methods), increases aortic protein kinase C (PKC) nitrosylation (measured by resin-assisted capture SNO-RAC method), and reduces both angiotensin II-induced vasoconstriction (isolated aortic ring preparation) and hypertensive (in vivo invasive blood pressure measurements) effects implicating PKC nitrosylation as a key mechanism for the responses to oral nitrite. Treatment of rats with the nitrosylating compound S-nitrosoglutathione (GSNO) resulted in the same effects described for oral nitrite. Moreover, partial depletion of thiols with buthionine sulfoximine prevented PKC nitrosylation and the blood pressure effects of oral nitrite. Further confirming a role for PKC nitrosylation, preincubation of aortas with GSNO attenuated the responses to both angiotensin II and to a direct PKC activator, and this effect was attenuated by ascorbate (reverses GSNO-induced nitrosylation). GSNO-induced nitrosylation also inhibited the increases in Ca2+ mobilization in angiotensin II-stimulated HEK293T cells expressing angiotensin type 1 receptor. Together, these results are consistent with the idea that PKC nitrosylation in the vasculature may underlie oral nitrite treatment-induced reduction in the vascular and hypertensive responses to angiotensin II. Oral nitrite treatment exerts antihypertensive effects. The mechanisms explaining such effects are not entirely known. Oral nitrite treatment increases circulating concentrations of nitrosylating species. Vascular PKC nitrosylation attenuates the vascular responses to angiotensin II.
Collapse
|
27
|
Pakdeechote P, Meephat S, Sakonsinsiri C, Phetcharaburanin J, Bunbupha S, Maneesai P. Syzygium gratum Extract Alleviates Vascular Alterations in Hypertensive Rats. ACTA ACUST UNITED AC 2020; 56:medicina56100509. [PMID: 33007813 PMCID: PMC7600592 DOI: 10.3390/medicina56100509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Background and Objectives: Syzygium gratum (SG) is a local vegetable and widely consumed in Thailand. Previously, a strong antioxidative effect of SG extract has been reported. The effects of SG extract on hypertension have remained unknown. The effect of SG aqueous extract on blood pressure and vascular changes were examined in L-NAME-induced hypertensive rats (LHR), and its potential active constituents were also explored. Materials and Methods: Male Sprague Dawley rats were allocated to control, L-NAME (40 mg/kg/day), L-NAME + SG (100, 300, 500 mg/kg/day), or captopril (5 mg/kg/day) groups. The components of SG extract were analyzed. Results: The analysis of aqueous SG extract was carried out using HPLC-Mass spectroscopy, and phenolic compounds could be identified as predominant components which might be responsible for its antihypertensive effects observed in the LHR model (p < 0.05). Additionally, SG extract also improved vascular responses to acetylcholine and decreased vascular remodeling in LHR (p < 0.05). Enhancements of eNOS expression and plasma nitric oxide metabolite levels, and attenuation of angiotensin converting enzyme (ACE) activity and plasma angiotensin II levels were observed in the LHR group treated with SG. Moreover, SG exhibited strong antioxidant activities by reducing vascular superoxide generation and systemic malondialdehyde in LHRs. Captopril suppressed high blood pressure and alleviated vascular changes and ACE activity in LHRs, similar to those of the SG extract (p < 0.05). Conclusion: Our results suggest that the SG extract exhibited antihypertensive effects, which is relevant to alleviation of vascular dysfunction and vascular remodeling of LHRs. These effects might be mediated by phenolic compounds to inhibit ACE activity and scavenge reactive oxygen species in LHR.
Collapse
Affiliation(s)
- Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sariya Meephat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (J.P.)
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (J.P.)
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
- Correspondence: ; Tel.: +66-43348394
| |
Collapse
|
28
|
Measurement of Glutathione as a Tool for Oxidative Stress Studies by High Performance Liquid Chromatography. Molecules 2020; 25:molecules25184196. [PMID: 32933160 PMCID: PMC7571047 DOI: 10.3390/molecules25184196] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 01/31/2023] Open
Abstract
Background: Maintenance of the ratio of glutathione in the reduced (GSH) and oxidised (GSSG) state in cells is important in redox control, signal transduction and gene regulation, factors that are altered in many diseases. The accurate and reliable determination of GSH and GSSG simultaneously is a useful tool for oxidative stress determination. Measurement is limited primarily to the underestimation of GSH and overestimation GSSG as a result of auto-oxidation of GSH. The aim of this study was to overcome this limitation and develop, optimise and validate a reverse-phase high performance liquid chromatographic (HPLC) assay of GSH and GSSG for the determination of oxidant status in cardiac and chronic kidney diseases. Methods: Fluorescence detection of the derivative, glutathione-O-pthaldialdehyde (OPA) adduct was used. The assay was validated by measuring the stability of glutathione and glutathione-OPA adduct under conditions that could affect the reproducibility including reaction time and temperature. Linearity, concentration range, limit of detection (LOD), limit of quantification (LOQ), recovery and extraction efficiency and selectivity of the method were assessed. Results: There was excellent linearity for GSH (r2 = 0.998) and GSSG (r2 = 0.996) over concentration ranges of 0.1 µM–4 mM and 0.2 µM–0.4 mM respectively. The extraction of GSH from tissues was consistent and precise. The limit of detection for GSH and GSSG were 0.34 µM and 0.26 µM respectively whilst their limits of quantification were 1.14 µM and 0.88 µM respectively. Conclusion: These data validate a method for the simultaneous measurement of GSH and GSSG in samples extracted from biological tissues and offer a simple determination of redox status in clinical samples.
Collapse
|
29
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: Physical, chemical and molecular biology aspects. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
30
|
Yang Y, Xiang J, Zhang Z, Umego EC, Huang G, He R, Ma H. Stimulation of in situ low intensity ultrasound on batch fermentation of
Saccharomyces cerevisiae
to enhance the
GSH
yield. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yao Yang
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Jiahui Xiang
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Zhaoli Zhang
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
- Institute of Applied Chemistry and Biological Engineering Weifang Engineering Vocational College Qingzhou Shandong China
| | - Ekene Christopher Umego
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Department of Food Science and Technology University of Nigeria Nsukka Enugu State Nigeria
| | - Guoping Huang
- Institute of Life Science Jiangsu University Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
31
|
MiR-124-3p reduces angiotensin II-dependent hypertension by down-regulating EGR1. J Hum Hypertens 2020; 35:696-708. [PMID: 32709884 DOI: 10.1038/s41371-020-0381-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/18/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
Through previous literature studies, we found that miR-124-3p may be associated with hypertension. Therefore, we investigated the relationship between miR-124-3p and hypertension in Human Umbilical Vein Endothelial Cells (HUVECs) induced by angiotensin II (AngII). AngII-induced HUVECs model was constructed and the expression of miR-124-3p was detected by qRT-PCR. After transfected cells, apoptosis and ROS production were detected by flow cytometry, caspase-3 kit, and DCFH-DA staining. The target genes of miR-124-3p were predicted and verified by TargrtScan, Luciferase assay, qRT-PCR, and western blot. After silencing Early growth response factor 1 (siEGR1), its effects on apoptosis and ROS production were explored. Finally, the rescue experiments were conducted to explore the mechanism of miR-124-3p to reduce hypertension. MiR-124-3p was underexpressed in the cell model. In Ang II-induced HUVECs, the number of apoptosis increased, the content of caspase-3 was higher, and ROS production increased. However, these effects could be partially inhibited by miR-124-3p mimic. EGR1 was down-regulated by miR-124-3p, and siEGR1 was able to inhibit apoptosis and ROS production of cell model. In the final rescue experiments, miR-124-3p partially reversed the effect of Ang-II on the viability, migration, invasion and apoptosis and ROS production in HUVECs by down-regulating EGR1. MiR-124-3p inhibits Ang II-induced apoptosis and ROS production in HUVECs by down-regulating EGR1.
Collapse
|
32
|
The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19. Antioxidants (Basel) 2020; 9:antiox9070624. [PMID: 32708578 PMCID: PMC7402141 DOI: 10.3390/antiox9070624] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
The novel COVID-19 pandemic is affecting the world’s population differently: mostly in the presence of conditions such as aging, diabetes and hypertension the virus triggers a lethal cytokine storm and patients die from acute respiratory distress syndrome, whereas in many cases the disease has a mild or even asymptomatic progression. A common denominator in all conditions associated with COVID-19 appears to be the impaired redox homeostasis responsible for reactive oxygen species (ROS) accumulation; therefore, levels of glutathione (GSH), the key anti-oxidant guardian in all tissues, could be critical in extinguishing the exacerbated inflammation that triggers organ failure in COVID-19. The present review provides a biochemical investigation of the mechanisms leading to deadly inflammation in severe COVID-19, counterbalanced by GSH. The pathways competing for GSH are described to illustrate the events concurring to cause a depletion of endogenous GSH stocks. Drawing on evidence from literature that demonstrates the reduced levels of GSH in the main conditions clinically associated with severe disease, we highlight the relevance of restoring GSH levels in the attempt to protect the most vulnerable subjects from severe symptoms of COVID-19. Finally, we discuss the current data about the feasibility of increasing GSH levels, which could be used to prevent and subdue the disease.
Collapse
|
33
|
Ibrahim MA, Eraqi MM, Alfaiz FA. Therapeutic role of taurine as antioxidant in reducing hypertension risks in rats. Heliyon 2020; 6:e03209. [PMID: 31989053 PMCID: PMC6970174 DOI: 10.1016/j.heliyon.2020.e03209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
AIM The current investigation focused on the therapeutic role of the administration of taurine on hypertensive rats to reduce or cure the hazard effects of hypertension problems. METHODOLOGY This research included 2 experiments; 1st was done to survey the variations that might occur in blood pressure (BP) of male rats because of the fed 8% NaCl diet for 4 weeks. 2nd experiment, it contains normal control rats', hypertensive rats were served as hypertension recovery group and hypertensive rats were took orally by the help of gastric tube 50 mg taurine/100 g b.wt/day for four weeks and served as taurine group. RESULTS 1st experimental, clarified a significant elevation in BP, body weight, serum cholesterol, triglycerides, LDL, activities of serum cardiac enzymes, endothelin-1, ADMA, MDA and TNF-α in hypertensive rats' group. On contrary, there is a significant reduction in serum level of TNO and antioxidant enzymes level in relation to the control group. A numerical variation but not statistically significant was happened in HDL in hypertensive rats' group as compared to their matching results in control rats' group. 2nd experimental taurine significantly reduced the BP as compared with hypertensive control. Furthermore, a significant improvement occurred in the mean value of most investigation parameters in hypertensive animal group which treated with taurine. CONCLUSION The previous data could be concluded that, there is an obvious amelioration effects of taurine on hypertensive rats by reducing the hazard effects of hypertension problems. The primary mechanisms were discussed according to existing published investigations.
Collapse
Affiliation(s)
- Marwan A. Ibrahim
- Department of Biology, College of Science, Majmaah University, Majmaah, 11952, Saudi Arabia
| | | | | |
Collapse
|
34
|
Yang N, Gonzalez-Vicente A, Garvin JL. Angiotensin II-induced superoxide and decreased glutathione in proximal tubules: effect of dietary fructose. Am J Physiol Renal Physiol 2019; 318:F183-F192. [PMID: 31760771 DOI: 10.1152/ajprenal.00462.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Angiotensin II exacerbates oxidative stress in part by increasing superoxide (O2-) production by many renal tissues. However, whether it does so in proximal tubules and the source of O2- in this segment are unknown. Dietary fructose enhances the stimulatory effect of angiotensin II on proximal tubule Na+ reabsorption, but whether this is true for oxidative stress is unknown. We hypothesized that angiotensin II causes proximal nephron oxidative stress in part by stimulating NADPH oxidase (NOX)4-dependent O2- production and decreasing the amount of the antioxidant glutathione, and this is exacerbated by dietary fructose. We measured basal and angiotensin II-stimulated O2- production with and without inhibitors, NOX1 and NOX4 expression, and total and reduced glutathione (GSH) in proximal tubules from rats drinking either tap water (control) or 20% fructose. Angiotensin II (10 nM) increased O2- production by 113 ± 42 relative light units·mg protein-1·s-1 in controls and 401 ± 74 relative light units·mg protein-1·s-1 with 20% fructose (n = 11 for each group, P < 0.05 vs. control). Apocynin and the Nox1/4 inhibitor GKT136901 prevented angiotensin II-induced increases in both groups. NOX4 expression was not different between groups. NOX1 expression was undetectable. Angiotensin II decreased GSH by 1.8 ± 0.8 nmol/mg protein in controls and by 4.2 ± 0.9 nmol/mg protein with 20% fructose (n = 18 for each group, P < 0.047 vs. control). We conclude that 1) angiotensin II causes oxidative stress in proximal tubules by increasing O2- production by NOX4 and decreasing GSH and 2) dietary fructose enhances the ability of angiotensin II to stimulate O2- and diminish GSH, thereby exacerbating oxidative stress in this segment.
Collapse
Affiliation(s)
- Nianxin Yang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
35
|
Oxidative stress in early pregnancy and the risk of preeclampsia. Pregnancy Hypertens 2019; 18:99-102. [PMID: 31586785 DOI: 10.1016/j.preghy.2019.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/13/2019] [Accepted: 09/22/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Preeclampsia (PE), one of the most serious complications of pregnancy, is characterized by endothelial dysfunction and hypertension. The pathophysiology of the disease is still unknown; however, evidence suggests that placental and maternal oxidative stress promote the disease process. Several studies have assessed levels of oxidative stress during pregnancy, but after diagnosis of PE. However, few studies have examined oxidative stress before PE diagnosis. Thus, the present work was aimed to gain further insight into the role of oxidative stress prior to diagnosis of PE (i.e. 12-20 weeks of gestation) and to further understand and predict PE incidence. METHODS Blood levels of superoxide (O2-) and erythrocyte antioxidants such as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were measured in 23 preeclamptic pregnant women and 91 women with normal pregnancies. We further used logistic regression of O2- and each antioxidant level as the main predictor variable for PE risk. RESULTS CAT activity, GSH, and Total glutathione (TGSH) were significantly lower with All PE pregnant groups, whereas O2- levels were modestly, but significantly, higher in women with mild PE. Logistic regression analysis suggests increased CAT activity in pregnant women is associated with a decreased odds of being preeclamptic. CONCLUSION CAT is the only antioxidant as shown in our study to be related to the severity of the disease and may be a promising predictor for PE. Further studies are warranted to investigate the use of CAT as a novel therapeutic for PE.
Collapse
|
36
|
Cuevas S, Villar VAM, Jose PA. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. THE PHARMACOGENOMICS JOURNAL 2019; 19:315-336. [PMID: 30723314 PMCID: PMC6650341 DOI: 10.1038/s41397-019-0082-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Translational Science, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010, USA.
| | - Van Anthony M Villar
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
37
|
An Adverse Outcome Pathway Linking Organohalogen Exposure to Mitochondrial Disease. J Toxicol 2019; 2019:9246495. [PMID: 31057609 PMCID: PMC6463576 DOI: 10.1155/2019/9246495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/05/2019] [Indexed: 12/23/2022] Open
Abstract
Adverse outcome pathways (AOPs) are pragmatic tools in human health hazard characterization and risk assessment. As such, one of the main goals of AOP development is to provide a clear, progressive, and linear mechanistic representation of pertinent toxicological key events (KEs) occurring along the different levels of biological organization. Here, we present an AOP framework that depicts how exposure to organohalogens can lead to mitochondrial disease. Organohalogens are disinfectant by-products (DBPs) found in our drinking water. Chloroform, trichloroacetic acid, and trichlorophenol were selected to represent specific types of organohalogens for the development of this AOP. Although each of these compounds contains chlorine atoms, they differ in aromaticity and solubility, which have a significant impact on their potency. This AOP consists of two main pathways, both of which are triggered by the molecular initiating event (MIE) of excessive reactive oxygen species generation. Pathway 1 details the downstream consequences of oxidative stress, which include mitochondrial DNA damage, protein aggregation, and depolarization of the mitochondrial membrane. Pathway 2 shows the KEs that result from inadequate supply of glutathione, including calcium dysregulation and ATP depletion. Pathways 1 and 2 converge at a common KE: opening of the mitochondrial membrane transition pore (mPTP). This leads to the release of cytochrome c, caspase activation, apoptosis, and mitochondrial disease. This AOP was developed according to the Organisation for Economic Co-operation and Development guidance, including critical consideration of the Bradford Hill criteria for Weight of Evidence assessment and key questions for evaluating confidence. The presented AOP is expected to serve as the basis for designing new toxicological tests as well as the characterization of novel biomarkers for disinfectant by-product exposure and adverse health effects.
Collapse
|
38
|
|
39
|
Comparison of Reactivity of the Lipid Peroxidation-Antioxidant Defense System in Normal and Hypertensive Rats at Different Stages of Stress-Reaction. Bull Exp Biol Med 2019; 166:613-616. [PMID: 30903491 DOI: 10.1007/s10517-019-04403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 10/27/2022]
Abstract
We compared changes in the parameters of LPO-antioxidant defense system at various stages of the stress response in mature male ISIAH rats (hereditary stress-induced arterial hypertension) and WAG rats in 3 h (stage of anxiety) and 7 days (resistance stage) after a 3-h single immobilization in the supine position. It was found that post-stress reactivity of the nonspecific stress-limiting LPO system is different in normotensive and hypertensive rats. ISIAH rats, irrespective of the stage of the stress-reaction, demonstrated more intense LPO reactions (accumulation of TBA-reactive products) and reduced antioxidant defense parameters (low content of lipid-soluble vitamins, increased oxidized glutathione content) in comparison with the corresponding parameters in WAG rats.
Collapse
|
40
|
Li J, Sun M, Ye J, Li Y, Jin R, Zheng H, Liang F. The Mechanism of Acupuncture in Treating Essential Hypertension: A Narrative Review. Int J Hypertens 2019; 2019:8676490. [PMID: 30984420 PMCID: PMC6431462 DOI: 10.1155/2019/8676490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/14/2019] [Indexed: 01/13/2023] Open
Abstract
Essential hypertension has a high incidence worldwide, and patients with essential hypertension endure a lifetime of medication, leading to a heavy economic burden on the patient's family and causing serious impacts on the patient's quality of life. Much evidence has demonstrated that acupuncture as an adjunctive therapy can lower blood pressure in patients with hypertension, but the mechanism of its action is unclear. This article reviews the research from 2000 to 2018 regarding the mechanism of acupuncture for hypertension, and we summarize the current knowledge about using acupuncture for hypertension. We found that the mechanism whereby acupuncture lowers blood pressure is related to the regulation of renin-angiotensin-aldosterone system, vascular endothelium, oxidative stress, neuroendocrine system, and so on. Besides, there may be cross-talk between multiple systems and multiple targets. We also investigate the influence factors of acupuncture for hypertension. These results may provide evidence and research ideas for the treatment of hypertension via acupuncture.
Collapse
Affiliation(s)
- Juan Li
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Mingsheng Sun
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jing Ye
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yuxi Li
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Rongjiang Jin
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hui Zheng
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fanrong Liang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
41
|
Khatkar S, Nanda A, Ansari SH. Comparative Evaluation of Conventional and Novel Extracts of Stem Bark of Terminalia arjuna for Antihypertensive Activity in BSO Induced Oxidative Stress based Rat Model. Curr Pharm Biotechnol 2019; 20:157-167. [PMID: 30806310 DOI: 10.2174/1389201020666190222185209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Terminalia arjuna (TA) has been reported and explored traditionally for its cardiotonic properties while the mechanism of antihypertensive effect of TA has not been clearly reported. METHOD The oxidative stress is a major cause for hypertension, hence different extracts of TA having variable marker yield were evaluated for their antihypertensive effect in buthionine sulfoxamine (BSO) induced oxidative stress based model. Soxhlet extraction (SE), room temperature extraction (RTE), microwave assisted extraction (MAE), and ultrasound assisted extraction (USAE) were quantitatively estimated for marker compounds arjunolic acid and arjunic acid through HPTLC. RESULTS The hypertension was induced using buthionine sulfoxamine (2 mmol/kg b.w. i.p.) and results suggested that the MAE and USAE showed better recovery of systolic blood pressure (110.33±0.10 and 118.33±0.10) and GSH level (3.62±0.07 nmoles/mL and 3.22±0.13 nmoles/mL), respectively as compared to the positive control group treated with ascorbic acid (Systolic BP: 119.67±0.10, GSH level: 3.11±0.10 nmoles/mL). The RTE and SE also showed a decrease in hypertension but were having moderate effect as compared with the standard positive control. CONCLUSION The total percentage yield, the yield of the marker compounds arjunolic and arjunic acid, the IC50 values for antioxidant activity as well as the antihypertensive effect were in order: MAE>USAE>SE>RTE that suggested the role of biomarkers arjunolic acid and arjunic acid in reversing the effect of buthionine sulfoxamine.
Collapse
Affiliation(s)
- Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, India
| | - Arun Nanda
- Faculty of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana 124001, India
| | | |
Collapse
|
42
|
Matsubara A, Oda S, Jia R, Yokoi T. Acute kidney injury model established by systemic glutathione depletion in mice. J Appl Toxicol 2019; 39:919-930. [DOI: 10.1002/jat.3780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Akiko Matsubara
- Department of Drug Safety Sciences, Division of Clinical PharmacologyNagoya University Graduate School of Medicine 65 Tsurumai‐cho, Showa‐ku Nagoya 466‐8550 Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical PharmacologyNagoya University Graduate School of Medicine 65 Tsurumai‐cho, Showa‐ku Nagoya 466‐8550 Japan
| | - Ru Jia
- Department of Drug Safety Sciences, Division of Clinical PharmacologyNagoya University Graduate School of Medicine 65 Tsurumai‐cho, Showa‐ku Nagoya 466‐8550 Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical PharmacologyNagoya University Graduate School of Medicine 65 Tsurumai‐cho, Showa‐ku Nagoya 466‐8550 Japan
| |
Collapse
|
43
|
Basi Z, Turkoglu V. In vitro effect of oxidized and reduced glutathione peptides on angiotensin converting enzyme purified from human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:190-195. [PMID: 30508739 DOI: 10.1016/j.jchromb.2018.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Abstract
Angiotensin converting enzyme (ACE, peptidyldipeptidase A, EC 3.4.15.1) plays an important role in the regulation of blood pressure. In this study, ACE was purified from human plasma by affinity chromatography in single step. The enzyme purified in 5367-fold from human plasma and specific activity was found to be 1208 EU/mg protein. The purity and molecular weight of ACE were determined by SDS-PAGE, which indicated two bands at around 60 kDa and 70 kDa on the gel. Effect of oxidized glutathione (GSSG) peptide and reduced glutathione (GSH) peptide on purified ACE activity were also investigated in which lisinopril was used as reference inhibitor. GSSG showed activation effect on ACE activity whereas GSH provided inhibition effect. In the lights of activity (%) versus activator graph for GSSG and activity (%) versus inhibitor graphs for GSH and lisinopril; IC50 values for GSH and lisinopril were determined to be 16.2 μM and 0.781 nM, respectively. Type of inhibition for GSH and lisinopril from graph Lineweaver-Burk was found to be reversible non-competitive inhibition and Ki constants for GSH and lisinopril were calculated as 11.7 μM and 0.662 nM, respectively.
Collapse
Affiliation(s)
- Zehra Basi
- Van Yüzüncü Yıl University, School of Health, Department of Nutrition and Dietetics, Van, Turkey.
| | - Vedat Turkoglu
- Van YüzüncüYıl University, Faculty of Science, Department of Chemistry, Van, Turkey
| |
Collapse
|
44
|
Kafami M, Hosseini M, Niazmand S, Farrokhi E, Hajzadeh MAR, Nazemi S. The effects of estradiol and testosterone on renal tissues oxidative after central injection of angiotensin II in female doca - salt treated rats. Horm Mol Biol Clin Investig 2018; 37:/j/hmbci.2019.37.issue-3/hmbci-2018-0044/hmbci-2018-0044.xml. [PMID: 30398970 DOI: 10.1515/hmbci-2018-0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/11/2018] [Indexed: 02/03/2023]
Abstract
Background Although numerous studies have proven that estrogen (Est) has a protective effect on the development of hypertension, more research needs to be done to show its detailed mechanism in a variety of hypertension. The important role of active oxygen species in blood pressure is well defined. We examined whether or not sex hormones change the growth of reactive oxygen species (ROS) in kidneys after central microinjection of angiotensin II (Ang II). Materials and methods Female Wistar rats, 8 weeks old (200 ± 10 g) were used in this study. The animal groups were (1) Sham, (2) Ovariectomy (OVX), (3) Sham-Hypertension (Sham-Hyper), (4) OVX-Hypertension (OVX-Hyper), (5) Sham-Hyper-Est, (6) OVX-Hyper-Est; (7) Sham-Hyper-Testosterone (Tst) and (8) OVX-Hyper-Tst. Solutions of 1% NaCl and 0.1 KCl were used and desoxycorticostrone (doca-salt) was injected (45 mg/kg) 3 times a week in Hypertension groups. Estradiol and Tst (2 mg/kg and 5 mg/kg; daily; subcutaneously) for 4 weeks. Ang II (50 μM, 5 μL) was microinjected by intracerebroventricular ( i.c.v.) infusion and malondialdehyde (MDA) and thiol in the kidneys were measured. Results MDA in the kidneys was increased by Ang II and doca-salt treatments. Both estradiol and Tst decreased the kidney's MDA. The level of thiol was higher in Hyper groups and reversed after treatment with estradiol and Tst. Conclusions Our findings suggest that central effect of Ang II on blood pressure and kidney disease is accompanied with increased levels of oxidative stress in the kidneys. Indeed sex hormones change the ROS level in the kidneys after central microinjection of Ang II..
Collapse
Affiliation(s)
- Marzieh Kafami
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar Universityof Medical Sciences, Sabzevar, Iran, Phone: 0098-051-4446070, Fax: 0098-051-4445648
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmaeil Farrokhi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mosa Al-Reza Hajzadeh
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samad Nazemi
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
45
|
Chen JR, Ko J, Yeh WJ, Huang WC, Yang HY. Renoprotective Effects of Antroquinonol in Rats with N ω-Nitro-l-Arginine Methyl Ester-Induced Hypertension. Nutrients 2018; 10:nu10101521. [PMID: 30336562 PMCID: PMC6212859 DOI: 10.3390/nu10101521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction leads to elevation of blood pressure and vascular remodeling, which may result in tissue injuries. The aim of this study was to investigate the mechanisms and effects of antroquinonol on hypertension and related renal injuries. Rats were fed water containing 25 mg/kg/day Nω-nitro-l-arginine methyl ester (L-NAME) to induce hypertension, and a diet with or without antroquinonol (20 or 40 mg/kg/day) for a 9-week experiment. During the experimental period, antroquinonol reduced the elevation of systolic and diastolic blood pressure. At the end of the study, we found that the antroquinonol groups had lower serum creatinine, renal endothelin-1, angiotensin II, and malondialdehyde levels and arteriole thickening. We found that the 40 mg/kg/day antroquinonol group had lower renal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activities, greater nuclear factor erythroid-2, and heme oxygenase-1 expressions. Moreover, we also found that antroquinonol decreased proinflammatory cytokine concentrations in the kidney by modulating the nuclear factor-κB pathway. These results suggest that antroquinonol may ameliorate hypertension and improve renal function by reducing oxidative stress and inflammation in rats with endothelial dysfunction.
Collapse
Affiliation(s)
- Jiun-Rong Chen
- Department of Nutrition and Health Sceinces, School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan.
| | - Jung Ko
- Department of Nutrition and Health Sceinces, School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan.
| | - Wan-Ju Yeh
- Department of Food Science, College of Agriculture, Tunghai University, Taichung 407, Taiwan.
| | - Wen-Chih Huang
- Department of Anatomic Pathology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan.
- College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Hsin-Yi Yang
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan.
| |
Collapse
|
46
|
Tokazzabani Belasi F, Vaezi G, Bakhtiarian A, Hojati V, Mousavi Z, Nikoui V. On the benefit of melatonin in protection against ouabain-induced arrhythmia through modulation of oxidative stress factors in isolated rat atria. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1424769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Azam Bakhtiarian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Zahra Mousavi
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Tenkorang MA, Snyder B, Cunningham RL. Sex-related differences in oxidative stress and neurodegeneration. Steroids 2018; 133:21-27. [PMID: 29274405 PMCID: PMC5864532 DOI: 10.1016/j.steroids.2017.12.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been implicated in a number of neurodegenerative diseases spanning various fields of research. Reactive oxygen species can be beneficial or harmful, depending on their concentration. High levels of reactive oxygen species can lead to oxidative stress, which is an imbalance between free radicals and antioxidants. Increased oxidative stress can result in cell loss. Interestingly, sex differences have been observed in oxidative stress generation, which may underlie sex differences observed in neurodegenerative disorders. An enhanced knowledge of the role of sex hormones on oxidative stress signaling and cell loss can yield valuable information, leading to sex-based mechanistic approaches to neurodegeneration.
Collapse
Affiliation(s)
- Mavis A Tenkorang
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Brina Snyder
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States.
| |
Collapse
|
48
|
Effects of Xin-Ji-Er-Kang on Anticardiovascular Remodeling in L-NAME Induced Hypertensive Mice and Its Potential Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8067361. [PMID: 29681984 PMCID: PMC5850902 DOI: 10.1155/2018/8067361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/02/2018] [Accepted: 01/14/2018] [Indexed: 11/17/2022]
Abstract
Background Xin-Ji-Er-Kang (XJEK) shows protective effects on the myocardial ischemic diseases in our previous reports. We hypothesized that XJEK may exert preventing effects on L-NAME induced hypertensive mice by ameliorating oxidative stress (OS) and endothelial dysfunction (ED). Methods After treatment with XJEK for four weeks, cardiac function and cardiovascular pathology changes were evaluated. Then, endothelial-dependent vascular relaxation and serum NO, eNOS, AMDA, SOD, MDA content, and cardiac tissue eNOS expression were detected. Results The hypertensive mice displayed distinct cardiovascular remodeling including increased HW/BW index (4.7 ± 0.33 versus 5.2 ± 0.34), cross-section area, and collagen deposition. In addition, ED was found manifested by decreased serum NO (20.54 ± 8.05 versus 6.29 ± 2.33), eNOS (28.34 ± 2.36 versus 20.37 ± 2.30), content, and decreased eNOS expression in cardiac tissue and damaged endothelium-dependent diastolic function. Moreover, OS was detected confirmed by decreased SOD activity and increased MDA content in serum. However, treatment with XJEK for 4 wk could reverse cardiovascular remodeling (HW/BW index normalized from 5.2 ± 0.34 to 4.59 ± 0.25), ameliorate and preserve endothelial function (NO: 16.67 ± 7.24 versus 6.29 ± 2.33; eNOS: 16.67 ± 7.24 versus 6.29 ± 2.33), and suppress OS. Conclusion XJEK has protective effects against cardiovascular remodeling in L-NAME induced hypertensive mice.
Collapse
|
49
|
Gao W, Pu L, Chen M, Wei J, Xin Z, Wang Y, Yao Z, Shi T, Guo C. Glutathione homeostasis is significantly altered by quercetin via the Keap1/Nrf2 and MAPK signaling pathways in rats. J Clin Biochem Nutr 2017; 62:56-62. [PMID: 29371754 PMCID: PMC5773830 DOI: 10.3164/jcbn.17-40] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Previously, we showed that 0.5% quercetin simultaneously decreased serum homocysteine and glutathione (GSH) levels in rats. The aim of the present study was to investigate the effects of 0.5% quercetin on GSH metabolism, related enzymes and signal pathways in rats. Rats were fed the control diet and 0.5% quercetin-supplemented diet for 6 weeks. The results showed that quercetin reduced serum and hepatic content of GSH and the ratio of GSH and oxidized glutathione (GSSG), enhanced hepatic activity and mRNA expression of glutathione S-transferase (GST), inhibited hepatic activity and mRNA expression of glutamate cysteine ligase (GCL), and decreased hepatic glutathione reductase (GR) mRNA expression. Levels of phosphorylated p38 and extracellular signal-regulated kinase (ERK) 1/2 mitogen-activated protein kinases (MAPKs) increased, while that of nuclear factor E2-like 2 (Nrf2) protein decreased after quercetin treatment. However, no significant hepatotoxicity was noted. We concluded that quercetin treatment altered hepatic GSH metabolism by modulating GSH metabolic enzyme activities and mRNA expression in rats, and p38, ERK1/2 MAPKs, and Nrf2 were involved in modulating GSH metabolism-related enzymes.
Collapse
Affiliation(s)
- Weina Gao
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Lingling Pu
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Ming Chen
- The People's Hospital of Lichuan, Jiangxi Province, 344600, P. R. China
| | - Jingyu Wei
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Zhonghao Xin
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Yawen Wang
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Zhanxin Yao
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Tala Shi
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Changjiang Guo
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| |
Collapse
|
50
|
Katengua-Thamahane E, Szeiffova Bacova B, Bernatova I, Sykora M, Knezl V, Van Rooyen J, Tribulova N. Effects of Red Palm Oil on Myocardial Antioxidant Enzymes, Nitric Oxide Synthase and Heart Function in Spontaneously Hypertensive Rats. Int J Mol Sci 2017; 18:ijms18112476. [PMID: 29160855 PMCID: PMC5713442 DOI: 10.3390/ijms18112476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the effect of antioxidants rich red palm oil (RPO) supplementation on cardiac oxidative stress known as crucial factor deteriorating heart function in hypertension. 3-month-old, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were fed standard rat chow without or with RPO (0.2 mL/day/5 weeks). General characteristic of rats were registered. Left ventricular tissue (LV) was used to determine expression of superoxide dismutases (SOD1, SOD2) and glutathione peroxidases (Gpx) as well as activity of nitric oxide synthase (NOS). Functional parameters of the heart were examined during basal conditions and at the early-phase of post-ischemic reperfusion using Langendorff-perfused system. RPO intake significantly reduced elevated blood pressure and total NOS activity as well as increased lowered expression of mitochondrial SOD2 in SHR hearts during basal condition. Moreover, RPO supplementation resulted in suppression of elevated heart rate, increase of reduced coronary flow and enhancement of systolic and diastolic heart function at the early-phase of post-ischemic reperfusion. It is concluded that SHR benefit from RPO intake due to decrease of blood pressure, amelioration of oxidative stress and protection of heart function that was deteriorated by post-ischemic reperfusion.
Collapse
Affiliation(s)
- Emma Katengua-Thamahane
- Botho University, Francistown Campus, Plot 6434 Tati River plots, Francistown P/Bag F451, Botswana.
| | - Barbara Szeiffova Bacova
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. Box 104, 840 05 Bratislava, Slovakia.
| | - Iveta Bernatova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia.
| | - Matus Sykora
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. Box 104, 840 05 Bratislava, Slovakia.
| | - Vladimir Knezl
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia.
| | - Jacques Van Rooyen
- Binutra, Unit E 11 Prime Business Park Mocke Rd., Diep River, Cape Town 7806, South Africa.
| | - Narcis Tribulova
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. Box 104, 840 05 Bratislava, Slovakia.
| |
Collapse
|