1
|
Dutta SR, Singh P, Song CY, Shin JS, Malik KU. Central Interaction of 2-Methoxyestradiol and Lipoxygenase in AngII-Hypertension. Hypertension 2025; 82:e34-e46. [PMID: 39902602 PMCID: PMC11924115 DOI: 10.1161/hypertensionaha.124.23905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Our previous findings that arachidonic acid-12/15-lipoxygenase (LOX)-generated metabolite 12(S)-HETE contributes to angiotensin II (AngII)-induced hypertension and 17β-estradiol protects from AngII-induced hypertension via its cytochrome P450 (CYP)1B1-generated metabolite 2-methoxyestradiol in the paraventricular nucleus (PVN) in female mice led us to test the hypothesis that 2-methoxyestradiol acts by inhibiting the LOX/12(S)-HETE in the PVN. METHODS AngII was infused subcutaneously by osmotic pumps for 2 weeks in wild-type, LOX-knockout (LOXKO), and CYP1B1KO female mice. The blood pressure was measured by tail-cuff/radiotelemetry. Adenovirus (Ad)-GFP (green fluorescence protein)-LOX-short hairpin RNA, Ad-GFP-LOX-DNA, 12(S)-HETE, and 2-methoxyestradiol were injected selectively in PVN or intracerebroventricularly. Histological, immunohistochemical, and biochemical techniques were used to determine pathophysiological changes caused by various interventions. RESULTS AngII-induced hypertension that was exaggerated in CYP1B1KO compared with wild-type mice was minimized by PVN-LOX knockdown with Ad-LOX-short hairpin RNA and restored by PVN-LOX reconstitution with Ad-LOX-DNA in intact-LOXKO mice and exacerbated in ovariectomized-LOXKO mice. Furthermore, intracerebroventricular-12(S)-HETE restored AngII-induced increases in blood pressure, autonomic impairment, neuroinflammation, and renal pathogenesis in intact-LOXKO mice, which were exacerbated in ovariectomized-LOXKO mice. Intracerebroventricular-2-methoxyestradiol that reduced the LOX expression and 12(S)-HETE content in PVN minimized AngII effects mentioned above in ovariectomized-LOXKO mice transduced with intracerebroventricular-Ad-LOX-DNA. CONCLUSIONS These data suggest that 2-methoxyestradiol protects against AngII-induced hypertension and associated pathogenesis, most likely by inhibiting LOX/12(S)-HETE actions in the PVN of female mice. Therefore, the selective LOX inhibitors or 12(S)-HETE receptor antagonists could be useful in treating hypertension and its pathogenesis in postmenopausal, hypoestrogenic women or females with ovarian failure.
Collapse
Affiliation(s)
| | - Purnima Singh
- Department of Pharmacology, Addiction Science, and Toxicology, College of
Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United
States
| | | | | | - Kafait U. Malik
- Department of Pharmacology, Addiction Science, and Toxicology, College of
Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United
States
| |
Collapse
|
2
|
Wang L, Sun Y, Du L, Wang Q, Zhan M, Li S, Xiao X. Daily koumiss has positive regulatory effects on blood lipids and immune system: A metabolomics study. Heliyon 2024; 10:e36429. [PMID: 39253138 PMCID: PMC11382052 DOI: 10.1016/j.heliyon.2024.e36429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Koumiss, a traditional Mongolian beverage, is believed to possess high nutritional value and potential medical benefits. However, there is a lack of comprehensive research on its potential impact on the human body. Metabolomics, as a sensitive approach in systems biology, offers a new avenue for studying the overall effects of koumiss. In this work, metabolomics was utilized to identify potential biomarkers and pathways associated with koumiss using UPLC-MS detection, pattern recognition analysis, pathway enrichment, network pharmacology. The findings indicated that koumiss exerts a beneficial regulatory influence on lipid metabolism, neurotransmitters, hormones, phospholipids and arachidonic acid metabolism, besides up regulating the content of nutrients. It could reduce the risks of dyslipidemia and inflammatory responses. This study confirmed the benign regulatory effect of koumiss on normal organism from the perspective of endogenous metabolites, and provided objective support for the promotion and application of this ethnic food.
Collapse
Affiliation(s)
- Leqi Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanfang Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lijing Du
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhan
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Li M, Dai M, Cheng B, Li S, Guo E, Fu J, Ma T, Yu B. Strategies that regulate LSD1 for novel therapeutics. Acta Pharm Sin B 2024; 14:1494-1507. [PMID: 38572094 PMCID: PMC10985039 DOI: 10.1016/j.apsb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Histone methylation plays crucial roles in regulating chromatin structure and gene transcription in epigenetic modifications. Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is universally overexpressed in various diseases. LSD1 dysregulation is closely associated with cancer, viral infections, and neurodegenerative diseases, etc., making it a promising therapeutic target. Several LSD1 inhibitors and two small-molecule degraders (UM171 and BEA-17) have entered the clinical stage. LSD1 can remove methyl groups from histone 3 at lysine 4 or lysine 9 (H3K4 or H3K9), resulting in either transcription repression or activation. While the roles of LSD1 in transcriptional regulation are well-established, studies have revealed that LSD1 can also be dynamically regulated by other factors. For example, the expression or activity of LSD1 can be regulated by many proteins that form transcriptional corepressor complexes with LSD1. Moreover, some post-transcriptional modifications and cellular metabolites can also regulate LSD1 expression or its demethylase activity. Therefore, in this review, we will systematically summarize how proteins involved in the transcriptional corepressor complex, various post-translational modifications, and metabolites act as regulatory factors for LSD1 activity.
Collapse
Affiliation(s)
- Meng Li
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Mengge Dai
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Cheng
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shaotong Li
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Enhui Guo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Junwei Fu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Ma
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Wang C, Kaufmann A, Kampschulte N, Elbelt U, Kassner U, Steinhagen-Thiessen E, Pietzner A, Schmöcker C, Datta D, Sanpietro T, Schebb NH, Weylandt KH, Rohwer N. Changing from lipoprotein apheresis to evolocumab treatment lowers circulating levels of arachidonic acid and oxylipins. ATHEROSCLEROSIS PLUS 2024; 55:55-62. [PMID: 38390468 PMCID: PMC10881432 DOI: 10.1016/j.athplu.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Background and aims Previous studies have shown that lipoprotein apheresis can modify the plasma lipidome and pro-inflammatory and pro-thrombotic lipid mediators. This has not been examined for treatment with protein convertase subtilisin/kexin type 9 inhibitors such as evolocumab, which are increasingly used instead of lipoprotein apheresis in treatment-resistant familial hypercholesterolemia. The aim of this study was to compare the effects of evolocumab treatment and lipoprotein apheresis on the fatty acid profile and on formation of lipid mediators in blood samples. Methods We analyzed blood samples from 37 patients receiving either lipoprotein apheresis or evolocumab treatment as part of a previous study. Patients were stratified according to receiving lipoprotein apheresis (n = 19) and evolocumab treatment (n = 18). Serum fatty acid analysis was performed using gas chromatography flame ionization detection and plasma oxylipin analysis was done using liquid chromatography tandem mass spectrometry. Results Changing from lipoprotein apheresis to evolocumab treatment led to lower levels of omega-6 polyunsaturated fatty acid (n-6 PUFA) including arachidonic acid, dihomo-γ-linolenic acid and linoleic acid. Moreover, several n-6 PUFA-derived oxylipins were reduced after evolocumab treatment. Conclusions Given that arachidonic acid, either directly or as a precursor, is associated with the development of inflammation and atherosclerosis, evolocumab-mediated reductions of arachidonic acid and its metabolites might have an additional beneficial effect to lower cardiovascular risk.
Collapse
Affiliation(s)
- Chaoxuan Wang
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Anne Kaufmann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Ulf Elbelt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
- MVZ Endokrinologikum Berlin, Berlin, Germany
| | - Ursula Kassner
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Campus Virchow Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Campus Virchow Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Pietzner
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Christoph Schmöcker
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Dev Datta
- Department of Metabolic Medicine, University Hospital Llandough, Cardiff, United Kingdom
| | - Tiziana Sanpietro
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Karsten-H Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
5
|
Zhang Y, Kou M, Liu K, Zhan Y, Xu W, Huang C, Huang W, Zhao X. Serum metabolism characteristics of patients with myocardial injury after noncardiac surgery explored by the untargeted metabolomics approach. BMC Cardiovasc Disord 2024; 24:88. [PMID: 38310264 PMCID: PMC10838454 DOI: 10.1186/s12872-024-03736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Myocardial injury after noncardiac surgery (MINS) is one of the most common complications associated with postoperative adverse cardiovascular outcomes and mortality. However, MINS often fails to be timely diagnosed due to the absence of clinical symptoms and limited diagnostic methods. The metabolomic analysis might be an efficient way to discover new biomarkers of MINS. Characterizing the metabolomic features of MINS patients may provide new insight into the diagnosis of MINS. METHODS In this study, serum samples from 20 matched patients with or without MINS (n = 10 per group) were subjected to untargeted metabolomics analysis to investigate comprehensive metabolic information. Differential metabolites were identified, and the enriched metabolic pathway was determined based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. RESULTS A comprehensive analysis revealed 124 distinct metabolites, predominantly encompassing lipids, amino acids and other compounds. The observed modifications in metabolic pathways in patients with or without MINS showed significant clustering in cholesterol metabolism, aldosterone synthesis and secretion, primary bile acid biosynthesis, as well as cysteine and methionine metabolism. Four specific metabolites (taurocholic acid, L-pyroglutamic acid, taurochenodeoxycholic acid, and pyridoxamine) exhibited promising potential as biomarkers for prognosticating MINS. CONCLUSIONS This study contributes valuable insights into the metabolomic features of MINS and the discovery of potential biomarkers which may help the early diagnosis of MINS. The identified metabolites and altered pathways offer valuable insights into the molecular underpinnings of MINS, paving the way for improved diagnostic approaches and potential intervention strategies.
Collapse
Affiliation(s)
- Yuanjia Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, China
| | - Mengjia Kou
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, China
| | - Kuanzhi Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, China
| | - Yaqing Zhan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, China
| | - Weiyi Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, China
| | - Chanyan Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, China.
| | - Xu Zhao
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, China.
| |
Collapse
|
6
|
Helal SA, Gerges SH, El-Kadi AOS. Enantioselectivity in some physiological and pathophysiological roles of hydroxyeicosatetraenoic acids. Drug Metab Rev 2024; 56:31-45. [PMID: 38358327 DOI: 10.1080/03602532.2023.2284110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 02/16/2024]
Abstract
The phenomenon of chirality has been shown to greatly impact drug activities and effects. Different enantiomers may exhibit different effects in a certain biological condition or disease state. Cytochrome P450 (CYP) enzymes metabolize arachidonic acid (AA) into a large variety of metabolites with a wide range of activities. Hydroxylation of AA by CYP hydroxylases produces hydroxyeicosatetraenoic acids (HETEs), which are classified into mid-chain (5, 8, 9, 11, 12, and 15-HETE), subterminal (16-, 17-, 18- and 19-HETE) and terminal (20-HETE) HETEs. Except for 20-HETE, these metabolites exist as a racemic mixture of R and S enantiomers in the physiological system. The two enantiomers could have different degrees of activity or sometimes opposing effects. In this review article, we aimed to discuss the role of mid-chain and subterminal HETEs in different organs, importantly the heart and the kidneys. Moreover, we summarized their effects in some conditions such as neutrophil migration, inflammation, angiogenesis, and tumorigenesis, with a focus on the reported enantiospecific effects. We also reported some studies using genetically modified models to investigate the roles of HETEs in different conditions.
Collapse
Affiliation(s)
- Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
The enantioselective separation and quantitation of the hydroxy-metabolites of arachidonic acid by liquid chromatography - tandem mass spectrometry. Prostaglandins Other Lipid Mediat 2023; 165:106701. [PMID: 36528330 DOI: 10.1016/j.prostaglandins.2022.106701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Arachidonic acid (AA) is a polyunsaturated fatty acid with a structure of 20:4(ω-6). Cytochrome P450s (CYPs) metabolize AA to several regioisomers and enantiomers of hydroxyeicosatetraenoic acids (HETEs). The hydroxy-metabolites (HETEs) exist as enantiomers in the biological system. The chiral assays developed for HETEs are so far limited to a few assays reported for midchain HETEs. The developed method is capable of quantitative analysis for midchain, subterminal HETE enantiomers, and terminal HETEs in microsomes. The peak area or height ratios were linear over concentrations ranging (0.01 -0.6 µg/ml) with r2 > 0.99. The intra-run percent error and coefficient of variation (CV) were ≤ ± 12 %. The inter-run percent error and coefficient of variation (CV)were ≤ ± 13 %, and ≤ 15 %, respectively. The matrix effect for the assay was also within the acceptable limit (≤ ± 15 %). The recovery of HETE metabolites ranged from 70 % to 115 %. The method showed a reliable and robust performance for chiral analysis of cytochrome P450-mediated HETE metabolites.
Collapse
|
8
|
Ishimwe JA, Ferguson JF, Kirabo A. Sex Differences in Fatty Acid Metabolism and Blood Pressure Response to Dietary Salt in Humans. CARDIOGENETICS 2023; 13:33-46. [PMID: 38605973 PMCID: PMC11008634 DOI: 10.3390/cardiogenetics13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Salt sensitivity is a trait in which high dietary sodium (Na+) intake causes an increase in blood pressure (BP). We previously demonstrated that in the gut, elevated dietary Na+ causes dysbiosis. The mechanistic interplay between excess dietary Na+-induced alteration in the gut microbiome and sex differences is less understood. The goal of this study was to identify novel metabolites in sex differences and blood pressure in response to a high dietary Na+ intake. We performed stool and plasma metabolomics analysis and measured the BP of human volunteers with salt intake above or below the American Heart Association recommendations. We also performed RNA sequencing on human monocytes treated with high salt in vitro. The relationship between BP and dietary Na+ intake was different in women and men. Network analysis revealed that fatty acids as top subnetworks differentially changed with salt intake. We found that women with high dietary Na+ intake have high levels of arachidonic acid related metabolism, suggesting a role in sex differences of the blood pressure response to Na+. The exposure of monocytes to high salt in vitro upregulates the transcription of fatty acid receptors and arachidonic acid-related genes. These findings provide potentially novel insights into metabolic changes underlying gut dysbiosis and inflammation in salt sensitivity of BP.
Collapse
Affiliation(s)
- Jeanne A. Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN 37235, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Medical Center, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
9
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
11
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
12
|
Gomes de Azevedo-Quintanilha I, Campos MM, Teixeira Monteiro AP, Dantas do Nascimento A, Calheiros AS, Oliveira DM, Dias SSG, Soares VC, Santos JDC, Tavares I, Lopes Souza TM, Hottz ED, Bozza FA, Bozza PT. Increased platelet activation and platelet-inflammasome engagement during chikungunya infection. Front Immunol 2022; 13:958820. [PMID: 36189282 PMCID: PMC9520464 DOI: 10.3389/fimmu.2022.958820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Chikungunya fever is a viral disease transmitted by mosquitoes of the genus Aedes. The infection is usually symptomatic and most common symptoms are fever accompanied by joint pain and swelling. In most cases symptoms subside within a week. However, severe prolonged and disabling joint pain, that may persist for several months, even years, are reported. Although the pathogenesis of Chikungunya infection is not fully understood, the evolution to severe disease seems to be associated with the activation of immune mechanisms and the action of inflammatory mediators. Platelets are recognized as inflammatory cells with fundamental activities in the immune response, maintenance of vascular stability and pathogenicity of several inflammatory and infectious diseases. Although the involvement of platelets in the pathogenesis of viral diseases has gained attention in recent years, their activation in Chikungunya has not been explored. The aim of this study was to analyze platelet activation and the possible role of platelets in the amplification of the inflammatory response during Chikungunya infection. We prospectively included 132 patients attended at the Quinta D’Or hospital and 25 healthy volunteers during the 2016 epidemic in Rio de Janeiro, Brazil. We observed increased expression of CD62P on the surface of platelets, as well as increased plasma levels of CD62P and platelet-derived inflammatory mediators indicating that the Chikungunya infection leads to platelet activation. In addition, platelets from chikungunya patients exhibit increased expression of NLRP3, caspase 4, and cleaved IL-1β, suggestive of platelet-inflammasome engagement during chikungunya infection. In vitro experiments confirmed that the Chikungunya virus directly activates platelets. Moreover, we observed that platelet activation and soluble p-selectin at the onset of symptoms were associated with development of chronic forms of the disease. Collectively, our data suggest platelet involvement in the immune processes and inflammatory amplification triggered by the infection.
Collapse
Affiliation(s)
- Isaclaudia Gomes de Azevedo-Quintanilha
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Patricia T. Bozza, ; Isaclaudia Gomes de Azevedo-Quintanilha,
| | - Mariana Macedo Campos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Alessandra Dantas do Nascimento
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Andrea Surrage Calheiros
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Douglas Mathias Oliveira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Suelen Silva Gomes Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Julia da Cunha Santos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Isabel Tavares
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Thiago Moreno Lopes Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS) and National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratório de Imunotrombose, Departamento de Bioquimica, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Fernando A. Bozza
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Patricia T. Bozza, ; Isaclaudia Gomes de Azevedo-Quintanilha,
| |
Collapse
|
13
|
Xu J, Jin L, Sun Y, Zhang R, Chen X, Zhou R, Gu Y, Hu C. 12(S)-hydroxyeicosatetraenoic acid is significantly increased in diabetic kidney disease and associated with renal function decline. Diabetes Metab Res Rev 2022; 38:e3554. [PMID: 35667014 DOI: 10.1002/dmrr.3554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
AIMS 12(S)-hydroxyeicosatetraenoic (12(S)-HETE), an alternate arachidonic acid metabolite, has been recently examined in metabolic disease. However, the role of 12(S)-HETE in diabetic kidney disease (DKD) remains unclear. We studied for the first time the relationship of serum 12(S)-HETE and DKD and renal function parameters in a Chinese population. MATERIALS AND METHODS We recruited 275 subjects who were diagnosed with type 2 diabetes (T2DM) for more than 10 years, including 149 DKD patients and 126 T2DM patients without DKD. Serum 12(S)-HETE was measured using the enzyme-linked immunosorbent assay. RESULTS Serum 12(S)-HETE was significantly higher in DKD patients than controls [384.69 (77.54, 1003.05) pg/ml and 17.77 (8.11, 75.13) pg/ml, respectively, p < 0.0001]. Compared to controls, 12(S)-HETE was significantly increased in both macroalbuminuria and microalbuminuria groups (p < 0.0001). Further, the macroalbuminuria group also had a higher serum 12(S)-HETE level compared to the microalbuminuria group (p = 0.0063). Moreover, serum 12(S)-HETE was positively correlated with the albuminuria level (r = 0.5833, p < 0.0001), serum creatinine (r = 0.2725, p < 0.0001), and was negatively associated with the estimated glomerular filtration rate (r = -0.2085, p = 0.0005). Further, receiver operating characteristic analysis (ROC) revealed that 12(S)-HETE had a good performance of distinguishing DKD from controls (AUC 0.828) with a sensitivity of 0.913 and a specificity of 0.711. CONCLUSION Our findings revealed that serum 12(S)-HETE significantly associated with DKD and disease severity, suggesting that serum 12(S)-HETE may be used as a potential biomarker for the early diagnosis of DKD.
Collapse
Affiliation(s)
- Jie Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Jin
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Sun
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xianghui Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ranran Zhou
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yunjuan Gu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| |
Collapse
|
14
|
Kriska T, Herrnreiter A, Pfister SL, Adebesin A, Falck JR, Campbell WB. Macrophage 12(S)-HETE Enhances Angiotensin II-Induced Contraction by a BLT2 (Leukotriene B 4 Type-2 Receptor) and TP (Thromboxane Receptor)-Mediated Mechanism in Murine Arteries. Hypertension 2022; 79:104-114. [PMID: 34784723 PMCID: PMC8849474 DOI: 10.1161/hypertensionaha.121.17824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
12/15-LO (12/15-lipoxygenase), encoded by Alox15 gene, metabolizes arachidonic acid to 12(S)-HETE (12-hydroxyeicosatetraenoic acid). Macrophages are the major source of 12/15-LO among immune cells, and 12/15-LO plays a crucial role in development of hypertension. Global Alox15- or macrophage-deficient mice are resistant to Ang II (angiotensin II)-induced hypertension. This study tests the hypothesis that macrophage 12(S)-HETE contributes to Ang II-mediated arterial constriction and thus to development of Ang II-induced hypertension. Ang II constricted isolated abdominal aortic and mesenteric arterial rings. 12(S)-HETE (100 nmol/L) alone was without effect; however, it significantly enhanced Ang II-induced constriction. The presence of wild-type macrophages also enhanced the Ang II-induced constriction, while Alox15-/- macrophages did not. Using this model, pretreatment of aortic rings with inhibitors, receptor agonists/antagonists, or removal of the endothelium, systematically uncovered an endothelium-mediated, Ang II receptor-2-mediated and superoxide-mediated enhancing effect of 12(S)-HETE on Ang II constrictions. The role of superoxide was confirmed using aortas from p47phox-/- mice where 12(S)-HETE failed to enhance constriction to Ang II. In cultured arterial endothelial cells, 12(S)-HETE increased the production of superoxide, and 12(S)-HETE or Ang II increased the production of an isothromboxane-like metabolite. A TP (thromboxane receptor) antagonist inhibited 12(S)-HETE enhancement of Ang II constriction. Both Ang II-induced hypertension and the enhancing effect of 12(S)-HETE on Ang II contractions were eliminated by a BLT2 (leukotriene B4 receptor-2) antagonist. These results outline a mechanism where the macrophage 12/15-LO pathway enhances the action of Ang II. 12(S)-HETE, acting on the BLT2, contributes to the hypertensive action of Ang II in part by promoting endothelial synthesis of a superoxide-derived TP agonist.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee (T.K., A.H., S.L.P., W.B.C.)
| | - Anja Herrnreiter
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee (T.K., A.H., S.L.P., W.B.C.)
| | - Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee (T.K., A.H., S.L.P., W.B.C.)
| | - Adeniyi Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (A.A., J.R.F.)
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (A.A., J.R.F.)
| | - William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee (T.K., A.H., S.L.P., W.B.C.)
| |
Collapse
|
15
|
Abstract
Pepducins are lipidated peptides that target the intracellular loops of G protein-coupled receptors (GPCRs) in order to modulate transmembrane signaling to internally located effectors. With a wide array of potential activities ranging from partial, biased, or full agonism to antagonism, pepducins represent a versatile class of compounds that can be used to potentially treat diverse human diseases or be employed as novel tools to probe complex mechanisms of receptor activation and signaling in cells and in animals. Here, we describe a number of different pepducins including an advanced compound, PZ-128, that has successfully progressed through phase 2 clinical trials in cardiac patients demonstrating safety and efficacy in suppressing myonecrosis and arterial thrombosis.
Collapse
Affiliation(s)
- Emily Michael
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Lidija Covic
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Athan Kuliopulos
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Stawarska A, Czerwonka M, Jelińska M, Piasecka I, Bobrowska-Korczak B. The Influence of Supplementation with Zinc in Micro and Nano Forms on the Metabolism of Fatty Acids in Livers of Rats with Breast Cancer. Nutrients 2021; 13:nu13113821. [PMID: 34836077 PMCID: PMC8623502 DOI: 10.3390/nu13113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the effect of zinc supplementation (in the form of nano or microparticles) on the profile and metabolism of fatty acids in the liver microsomes of rats with induced breast cancer. The activity of desaturases (Δ5, Δ6, Δ9) and the level of cholesterol and its oxidized derivatives were measured. The aim of this study was also to determine the effect of various forms of zinc supplements on rats that were on 5-, 12- and 15-hydroxyeicosatetraenoic (5-, 12- and 15-HETE) and hydroxyoctadecadienoic (HODE) acids, and the level of prostaglandin E2 (PGE2). Female Spraque-Dawley rats (n = 24) were divided into 2 groups that were supplemented with zinc in the micro form (342 nm) or nano form (99 nm) particles, respectively, and a group with a standard diet (control group). All animals received 7,12-dimethylbenz[a]anthracene twice for the induction of breast cancer. Dietary nano-Zn supplementation increased vaccenic acid content (p = 0.032) and decreased Δ6-desaturase activity (p = 0.006), whereas micro-Zn increased cholesterol (p = 0.006), ∑COPs (total cholesterol-oxidation products) (p = 0.019) and PGE2 (p = 0.028) content. Dietary enrichment with Zn microparticles resulted in lower concentrations of the metabolites 15-, 12- and 5-HETE and HODE. Our study indicates that the effect of zinc supplementation on the metabolism of fatty acids in the liver microsomes under neoplastic conditions depends on the form in which it is administered.
Collapse
|
17
|
Zhu K, Browne RW, Blair RH, Bonner MR, Tian M, Niu Z, Deng F, Farhat Z, Mu L. Changes in arachidonic acid (AA)- and linoleic acid (LA)-derived hydroxy metabolites and their interplay with inflammatory biomarkers in response to drastic changes in air pollution exposure. ENVIRONMENTAL RESEARCH 2021; 200:111401. [PMID: 34089746 PMCID: PMC11483949 DOI: 10.1016/j.envres.2021.111401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Untargeted metabolomics analyses have indicated that fatty acids and their hydroxy derivatives may be important metabolites in the mechanism through which air pollution potentiates diseases. This study aimed to use targeted analysis to investigate how metabolites in arachidonic acid (AA) and linoleic acid (LA) pathways respond to short-term changes in air pollution exposure. We further explored how they might interact with markers of antioxidant enzymes and systemic inflammation. METHODS This study included a subset of participants (n = 53) from the Beijing Olympics Air Pollution (BoaP) study in which blood samples were collected before, during, and after the Beijing Olympics. Hydroxy fatty acids were measured by liquid chromatography/mass spectrometry (LC/MS). Native total fatty acids were measured as fatty acid methyl esters (FAMEs) using gas chromatography. A set of chemokines were measured by ELISA-based chemiluminescent assay and antioxidant enzyme activities were analyzed by kinetic enzyme assays. Changes in levels of metabolites over the three time points were examined using linear mixed-effects models, adjusting for age, sex, body mass index (BMI), and smoking status. Pearson correlation and repeated measures correlation coefficients were calculated to explore the relationships of metabolites with levels of serum chemokines and antioxidant enzymes. RESULTS 12-hydroxyeicosatetraenoic acid (12-HETE) decreased by 50.5% (95% CI: -66.5, -34.5; p < 0.0001) when air pollution dropped during the Olympics and increased by 119.4% (95% CI: 36.4, 202.3; p < 0.0001) when air pollution returned to high levels after the Olympics. In contrast, 13-hydroxyoctadecadienoic acid (13-HODE) elevated significantly (p = 0.023) during the Olympics and decreased nonsignificantly after the games (p = 0.104). Interleukin 8 (IL-8) correlated with 12-HETE (r = 0.399, BH-adjusted p = 0.004) and 13-HODE (r = 0.342, BH-adjusted p = 0.014) over the three points; it presented a positive and moderate correlation with 12-HETE during the Olympics (r = 0.583, BH-adjusted p = 0.002) and with 13-HODE before the Olympics (r = 0.543, BH-adjusted p = 0.008). CONCLUSION AA- and LA-derived hydroxy metabolites are associated with air pollution and might interact with systemic inflammation in response to air pollution exposure.
Collapse
Affiliation(s)
- Kexin Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Mingmei Tian
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Zhongzheng Niu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Furong Deng
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Zeinab Farhat
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
18
|
Ning Z, Song Z, Wang C, Peng S, Wan X, Liu Z, Lu A. How Perturbated Metabolites in Diabetes Mellitus Affect the Pathogenesis of Hypertension? Front Physiol 2021; 12:705588. [PMID: 34483960 PMCID: PMC8416465 DOI: 10.3389/fphys.2021.705588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of hypertension (HTN) in type 2 diabetes mellitus (DM) is a common phenomenon in more than half of the diabetic patients. Since HTN constitutes a predictor of vascular complications and cardiovascular disease in type 2 DM patients, it is of significance to understand the molecular and cellular mechanisms of type 2 DM binding to HTN. This review attempts to understand the mechanism via the perspective of the metabolites. It reviewed the metabolic perturbations, the biological function of perturbated metabolites in two diseases, and the mechanism underlying metabolic perturbation that contributed to the connection of type 2 DM and HTN. DM-associated metabolic perturbations may be involved in the pathogenesis of HTN potentially in insulin, angiotensin II, sympathetic nervous system, and the energy reprogramming to address how perturbated metabolites in type 2 DM affect the pathogenesis of HTN. The recent integration of the metabolism field with microbiology and immunology may provide a wider perspective. Metabolism affects immune function and supports immune cell differentiation by the switch of energy. The diverse metabolites produced by bacteria modified the biological process in the inflammatory response of chronic metabolic diseases either. The rapidly evolving metabolomics has enabled to have a better understanding of the process of diseases, which is an important tool for providing some insight into the investigation of diseases mechanism. Metabolites served as direct modulators of biological processes were believed to assess the pathological mechanisms involved in diseases.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
19
|
Freedman C, Tran A, Tourdot BE, Kalyanaraman C, Perry S, Holinstat M, Jacobson MP, Holman TR. Biosynthesis of the Maresin Intermediate, 13S,14S-Epoxy-DHA, by Human 15-Lipoxygenase and 12-Lipoxygenase and Its Regulation through Negative Allosteric Modulators. Biochemistry 2020; 59:1832-1844. [PMID: 32324389 PMCID: PMC7729281 DOI: 10.1021/acs.biochem.0c00233] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human reticulocyte 15-lipoxygenase-1 (h15-LOX-1 or ALOX15) and platelet 12-lipoxygenase (h12-LOX or ALOX12) catalysis of docosahexaenoic acid (DHA) and the maresin precursor, 14S-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid (14S-HpDHA), were investigated to determine their product profiles and relative rates in the biosynthesis of the key maresin intermediate, 13S,14S-epoxy-4Z,7Z,9E,11E,16Z,19Z-docosahexaenoic acid (13S,14S-epoxy-DHA). Both enzymes converted DHA to 14S-HpDHA, with h12-LOX having a 39-fold greater kcat/KM value (14.0 ± 0.8 s-1 μM-1) than that of h15-LOX-1 (0.36 ± 0.08 s-1 μM-1) and a 1.8-fold greater 14S-HpDHA product selectivity, 81 and 46%, respectively. However, h12-LOX was markedly less effective at producing 13S,14S-epoxy-DHA from 14S-HpDHA than h15-LOX-1, with a 4.6-fold smaller kcat/KM value, 0.0024 ± 0.0002 and 0.11 ± 0.006 s-1 μM-1, respectively. This is the first evidence of h15-LOX-1 to catalyze this reaction and reveals a novel in vitro pathway for maresin biosynthesis. In addition, epoxidation of 14S-HpDHA is negatively regulated through allosteric oxylipin binding to h15-LOX-1 and h12-LOX. For h15-LOX-1, 14S-HpDHA (Kd = 6.0 μM), 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12S-HETE) (Kd = 3.5 μM), and 14S-hydroxy-7Z,10Z,12E,16Z,19Z-docosapentaenoic acid (14S-HDPAω-3) (Kd = 4.0 μM) were shown to decrease 13S,14S-epoxy-DHA production. h12-LOX was also shown to be allosterically regulated by 14S-HpDHA (Kd = 3.5 μM) and 14S-HDPAω-3 (Kd = 4.0 μM); however, 12S-HETE showed no effect, indicating for the first time an allosteric response by h12-LOX. Finally, 14S-HpDHA inhibited platelet aggregation at a submicrololar concentration, which may have implications in the benefits of diets rich in DHA. These in vitro biosynthetic pathways may help guide in vivo maresin biosynthetic investigations and possibly direct therapeutic interventions.
Collapse
Affiliation(s)
- Cody Freedman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Adrianne Tran
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Benjamin E Tourdot
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Steve Perry
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
20
|
Oils' Impact on Comprehensive Fatty Acid Analysis and Their Metabolites in Rats. Nutrients 2020; 12:nu12051232. [PMID: 32349264 PMCID: PMC7281977 DOI: 10.3390/nu12051232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty acids, especially polyunsaturated, and their metabolites (eicosanoids) play many pivotal roles in human body, influencing various physiological and pathological processes. The aim of the study was to evaluate the effect of supplementation with edible oils diverse in terms of fatty acid composition on fatty acid contents, activities of converting their enzymes, and on lipoxygenase metabolites of arachidonic and linoleic acids (eicosanoids) in rat serum. Female Sprague-Dawley rats divided into seven groups were used in the study. Animals from six groups were fed one of oils daily (carotino oil, made up by combining of red palm oil and canola oil, linseed oil, olive oil, rice oil, sesame oil, or sunflower oil). One group received a standard diet only. Fatty acids were determined using gas chromatography with flame ionization detection. Eicosanoids—hydroxyeicosatetraenoic (HETE) and hydroxyoctadecadienoic acids (HODE) were extracted using a solid-phase extraction method and analyzed with HPLC. Vegetable oils given daily to rats caused significant changes in serum fatty acid profile and eicosanoid concentrations. Significant differences were also found in desaturases’ activity, with the linseed and olive oil supplemented groups characterized by the highest D6D and D5D activity. These findings may play a significant role in various pathological states.
Collapse
|
21
|
Chung EJ, Reedy JL, Kwon S, Patil S, Valle L, White AO, Citrin DE. 12-Lipoxygenase is a Critical Mediator of Type II Pneumocyte Senescence, Macrophage Polarization and Pulmonary Fibrosis after Irradiation. Radiat Res 2019; 192:367-379. [PMID: 31373871 PMCID: PMC6816027 DOI: 10.1667/rr15356.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive complication of therapeutic irradiation of the thorax. It has been suggested that senescence of type II pneumocytes (AECIIs), an alveolar stem cell, plays a role in the development of RIPF through loss of replicative reserve and via senescent AECII-driven release of proinflammatory and profibrotic cytokines. Within this context, we hypothesized that arachidonate 12-lipoxygenase (12-LOX) is a critical mediator of AECII senescence and RIPF. Treatment of wild-type AECIIs with 12S-hydroxyeicosateraenoic acid (12S-HETE), a downstream product of 12-LOX, was sufficient to induce senescence in a NADPH oxidase 4 (NOX4)-dependent manner. Mice deficient in 12-LOX exhibited reduced AECII senescence, pulmonary collagen accumulation and accumulation of alternatively activated (M2) macrophages after thoracic irradiation (5 × 6 Gy) compared to wild-type mice. Conditioned media from irradiated or 12S-HETE-treated primary pneumocytes contained elevated levels of IL-4 and IL-13 compared to untreated pneumocytes. Primary macrophages treated with conditioned media from irradiated AECII demonstrated preferential M2 type polarization when AECIIs were derived from wild-type mice compared to 12-LOX-deficient mice. Together, these data identified 12-LOX as a critical component of RIPF and a therapeutic target for radiation-induced lung injury.
Collapse
Affiliation(s)
- Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jessica L. Reedy
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Shilpa Patil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Luca Valle
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Ayla O. White
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
22
|
Manega CM, Fiorelli S, Porro B, Turnu L, Cavalca V, Bonomi A, Cosentino N, Di Minno A, Marenzi G, Tremoli E, Eligini S. 12(S)-Hydroxyeicosatetraenoic acid downregulates monocyte-derived macrophage efferocytosis: New insights in atherosclerosis. Pharmacol Res 2019; 144:336-342. [PMID: 31028904 DOI: 10.1016/j.phrs.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/24/2022]
Abstract
The involvement of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), a 12-lipooxygenase product of arachidonic acid, has been suggested in atherosclerosis. However, its effect on macrophage functions is not completely understood, so far. The uptake of apoptotic cells (efferocytosis) by macrophages is an anti-inflammatory process, impaired in advanced atherosclerotic lesions. This process induces the release of the anti-inflammatory cytokine interleukin-10 (IL-10), and it is regulated by Rho-GTPases, whose activation involves the isoprenylation, a modification inhibited by statins. We assessed 12-HETE levels in serum of coronary artery disease (CAD) patients, and explored 12(S)-HETE in vitro effect on monocyte-derived macrophage (MDM) efferocytosis. Sixty-four CAD patients and 24 healthy subjects (HS) were enrolled. Serum 12-HETE levels were measured using a tandem mass spectrometry method. MDMs, obtained from a spontaneous differentiation of adherent monocytes, were treated with 12(S)-HETE (10-50 ng/mL). Efferocytosis and RhoA activation were evaluated by flow cytometry. IL-10 was measured by ELISA. CAD patients showed increased 12-HETE serum levels compared to HS (665.2 [438.1-896.2] ng/mL and 525.1 [380.1-750.1] ng/mL, respectively, p < 0.05) and reduced levels of IL-10. MDMs expressed the 12(S)-HETE cognate receptor GPR31. CAD-derived MDMs displayed defective efferocytosis vs HS-MDMs (9.4 [7.7-11.3]% and 11.1 [9.6-14.1]% of MDMs that have engulfed apoptotic cells, respectively, p < 0.01). This reduction is marked in MDMs obtained from patients not treated with statin (9.3 [7.4-10.6]% statin-free CAD vs HS, p = 0.01; and 9.9 [8.6-11.6]% statin-treated CAD vs HS, p = 0.07). The in vitro treatment of MDMs with 12(S)-HETE (20 ng/mL) induced 20% decrease of efferocytosis (p < 0.01) and 71% increase of RhoA activated form (p < 0.05). Atorvastatin (0.1 μM) counteracted these 12(S)-HETE-mediated effects.These results show a 12(S)-HETE pro-inflammatory effect and suggest a new potential contribution of this mediator in the development of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Linda Turnu
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | | | - Alice Bonomi
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | | | | | | | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Sonia Eligini
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| |
Collapse
|
23
|
Kriska T, Thomas MJ, Falck JR, Campbell WB. Deactivation of 12(S)-HETE through (ω-1)-hydroxylation and β-oxidation in alternatively activated macrophages. J Lipid Res 2018; 59:615-624. [PMID: 29472381 PMCID: PMC5880500 DOI: 10.1194/jlr.m081448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Polarization of macrophages to proinflammatory M1 and to antiinflammatory alternatively activated M2 states has physiological implications in the development of experimental hypertension and other pathological conditions. 12/15-Lipoxygenase (12/15-LO) and its enzymatic products 12(S)- and 15(S)-hydroxyeicosatetraenoic acid (HETE) are essential in the process since disruption of the gene encoding 12/15-LO renders the mice unsusceptible to hypertension. The objective was to test the hypothesis that M2 macrophages catabolize 12(S)-HETE into products that are incapable of promoting vasoconstriction. Cultured M2 macrophages metabolized externally added [14C]12(S)-HETE into more polar metabolites, while M1 macrophages had little effect on the catabolism. The major metabolites were identified by mass spectrometry as (ω-1)-hydroxylation and β-oxidation products. The conversion was inhibited by both peroxisomal β-oxidation inhibitor, thioridazine, and cytochrome P450 inhibitors. Quantitative PCR analysis confirmed that several cytochrome P450 enzymes (CYP2E1 and CYP1B1) and peroxisomal β-oxidation markers were upregulated upon M2 polarization. The identified 12,19-dihydroxy-5,8,10,14-eicosatetraenoic acid and 8-hydroxy-6,10-hexadecadienoic acid metabolites were tested on abdominal aortic rings for biological activity. While 12(S)-HETE enhanced vasoconstrictions to angiotensin II from 15% to 25%, the metabolites did not. These results indicate that M2, but not M1, macrophages degrade 12(S)-HETE into products that no longer enhance the angiotensin II-induced vascular constriction, supporting a possible antihypertensive role of M2 macrophages.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology,* Medical College of Wisconsin, Milwaukee, WI 53226.
| | - Michael J Thomas
- Department of Pharmacology and Toxicology,* Medical College of Wisconsin, Milwaukee, WI 53226
| | - John R Falck
- Department of Biochemistry,† University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - William B Campbell
- Department of Pharmacology and Toxicology,* Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
24
|
Kain V, Halade GV. Metabolic and Biochemical Stressors in Diabetic Cardiomyopathy. Front Cardiovasc Med 2017; 4:31. [PMID: 28620607 PMCID: PMC5449449 DOI: 10.3389/fcvm.2017.00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) or diabetes-induced cardiac dysfunction is a direct consequence of uncontrolled metabolic syndrome and is widespread in US population and worldwide. Despite of the heterogeneous and distinct features of DCM, the clinical relevance of DCM is now becoming established. DCM progresses to pathological cardiac remodeling with the higher risk of heart attack and subsequent heart failure in diabetic patients. In this review, we emphasize lipid substrate quality and the phenotypic, metabolic, and biochemical stressors of DCM in the rodent and human pathophysiology. We discuss lipoxygenase signaling in the inflammatory pathway with multiple contributing and confounding factors leading to DCM. Additionally, emerging biochemical pathways are emphasized to make progress toward therapeutic advancement to treat DCM.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
25
|
A lipidomic analysis approach in patients undergoing lipoprotein apheresis. Atherosclerosis 2016; 249:30-5. [DOI: 10.1016/j.atherosclerosis.2016.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/01/2016] [Accepted: 03/16/2016] [Indexed: 01/29/2023]
|
26
|
Long A, Ma S, Li Q, Lin N, Zhan X, Lu S, Zhu Y, Jiang L, Tan L. Association between the maternal serum levels of 19 eicosanoids and pre-eclampsia. Int J Gynaecol Obstet 2016; 133:291-6. [PMID: 27039049 DOI: 10.1016/j.ijgo.2015.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 10/10/2015] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate whether serum levels of 19 eicosanoids are associated with pre-eclampsia. METHODS A case-control study was performed using data for pregnant women with pre-eclampsia, normotensive pregnant women, and nonpregnant women, for all of whom serum samples had been collected at a hospital in Shanghai, China, between December 2012 and December 2013. Ultra-performance liquid chromatography-tandem mass spectrometry was used to measure the serum levels of 19 eicosanoids. RESULTS Overall, 49 pregnant women with pre-eclampsia, 26 normotensive pregnant women, and 14 nonpregnant women were included. Women with pre-eclampsia had significantly higher serum levels of 11,12-epoxyeicosatrienoic acid (11,12-EET), the hydroxyeicosatetraenoic acids 5-HETE, 8-HETE, 12-HETE, and 15-HETE, and leukotriene B4 than did women with a normal pregnancy and nonpregnant women, both before and after the onset of pre-eclampsia (P<0.01 for all comparisons). Women with severe pre-eclampsia had significantly higher serum levels of 5-HETE, 15-HETE, and leukotriene B4 than did women with mild pre-eclampsia, women with a normal pregnancy, and nonpregnant women (P<0.01 for all comparisons). CONCLUSION The eicosanoids 11,12-EET, 5-HETE, 8-HETE, 12-HETE, 15-HETE, and leukotriene B4 might play important parts in the occurrence and development of pre-eclampsia.
Collapse
Affiliation(s)
- Anxiong Long
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China; Clinical Laboratory Department, People's Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Shungao Ma
- Clinical Laboratory Department, People's Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Qian Li
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China
| | - Na Lin
- Institute of Pediatrics, Xinhua Hospital, Shanghai, China
| | - Xia Zhan
- Institute of Pediatrics, Xinhua Hospital, Shanghai, China
| | - Shuaijun Lu
- Clinical Laboratory Department, Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yuli Zhu
- Clinical Laboratory Department, Jiujiang First People's Hospital, Jiujiang, China
| | - Liansheng Jiang
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China
| | - Longyi Tan
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China.
| |
Collapse
|
27
|
The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Arch Toxicol 2015; 90:119-36. [PMID: 26525395 DOI: 10.1007/s00204-015-1620-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Abstract
The incidence, prevalence, and hospitalization rates associated with cardiovascular diseases (CVDs) are projected to increase substantially in the world. Understanding of the biological and pathophysiological mechanisms of survival can help the researchers to develop new management modalities. Numerous experimental studies have demonstrated that mid-chain HETEs are strongly involved in the pathogenesis of the CVDs. Mid-chain HETEs are biologically active eicosanoids that result from the metabolism of arachidonic acid (AA) by both lipoxygenase and CYP1B1 (lipoxygenase-like reaction). Therefore, identifying the localizations and expressions of the lipoxygenase and CYP1B1 and their associated AA metabolites in the cardiovascular system is of major importance in understanding their pathological roles. Generally, the expression of these enzymes is shown to be induced during several CVDs, including hypertension and cardiac hypertrophy. The induction of these enzymes is associated with the generation of mid-chain HETEs and subsequently causation of cardiovascular events. Of interest, inhibiting the formation of mid-chain HETEs has been reported to confer a protection against different cardiac hypertrophy and hypertension models such as angiotensin II, Goldblatt, spontaneously hypertensive rat and deoxycorticosterone acetate (DOCA)-salt-induced models. Although the exact mechanisms of mid-chain HETEs-mediated cardiovascular dysfunction are not fully understood, the present review proposes several mechanisms which include activating G-protein-coupled receptor, protein kinase C, mitogen-activated protein kinases, and nuclear factor kappa B. This review provides a clear understanding of the role of mid-chain HETEs in the pathogenesis of cardiovascular diseases and their importance as novel targets in the treatment for hypertension and cardiac hypertrophy.
Collapse
|
28
|
Mashima R, Okuyama T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol 2015; 6:297-310. [PMID: 26298204 PMCID: PMC4556770 DOI: 10.1016/j.redox.2015.08.006] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022] Open
Abstract
Lipoxygenases (LOXs) are dioxygenases that catalyze the formation of corresponding hydroperoxides from polyunsaturated fatty acids such as linoleic acid and arachidonic acid. LOX enzymes are expressed in immune, epithelial, and tumor cells that display a variety of physiological functions, including inflammation, skin disorder, and tumorigenesis. In the humans and mice, six LOX isoforms have been known. 15-LOX, a prototypical enzyme originally found in reticulocytes shares the similarity of amino acid sequence as well as the biochemical property to plant LOX enzymes. 15-LOX-2, which is expressed in epithelial cells and leukocytes, has different substrate specificity in the humans and mice, therefore, the role of them in mammals has not been established. 12-LOX is an isoform expressed in epithelial cells and myeloid cells including platelets. Many mutations in this isoform are found in epithelial cancers, suggesting a potential link between 12-LOX and tumorigenesis. 12R-LOX can be found in the epithelial cells of the skin. Defects in this gene result in ichthyosis, a cutaneous disorder characterized by pathophysiologically dried skin due to abnormal loss of water from its epithelial cell layer. Similarly, eLOX-3, which is also expressed in the skin epithelial cells acting downstream 12R-LOX, is another causative factor for ichthyosis. 5-LOX is a distinct isoform playing an important role in asthma and inflammation. This isoform causes the constriction of bronchioles in response to cysteinyl leukotrienes such as LTC4, thus leading to asthma. It also induces neutrophilic inflammation by its recruitment in response to LTB4. Importantly, 5-LOX activity is strictly regulated by 5-LOX activating protein (FLAP) though the distribution of 5-LOX in the nucleus. Currently, pharmacological drugs targeting FLAP are actively developing. This review summarized these functions of LOX enzymes under pathophysiological conditions in mammals.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
29
|
Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci U S A 2015; 112:E3564-73. [PMID: 26106157 DOI: 10.1073/pnas.1507905112] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platelets are anucleated blood elements highly potent at generating extracellular vesicles (EVs) called microparticles (MPs). Whereas EVs are accepted as an important means of intercellular communication, the mechanisms underlying platelet MP internalization in recipient cells are poorly understood. Our lipidomic analyses identified 12(S)-hydroxyeicosatetranoic acid [12(S)-HETE] as the predominant eicosanoid generated by MPs. Mechanistically, 12(S)-HETE is produced through the concerted activity of secreted phospholipase A2 IIA (sPLA2-IIA), present in inflammatory fluids, and platelet-type 12-lipoxygenase (12-LO), expressed by platelet MPs. Platelet MPs convey an elaborate set of transcription factors and nucleic acids, and contain mitochondria. We observed that MPs and their cargo are internalized by activated neutrophils in the endomembrane system via 12(S)-HETE. Platelet MPs are found inside neutrophils isolated from the joints of arthritic patients, and are found in neutrophils only in the presence of sPLA2-IIA and 12-LO in an in vivo model of autoimmune inflammatory arthritis. Using a combination of genetically modified mice, we show that the coordinated action of sPLA2-IIA and 12-LO promotes inflammatory arthritis. These findings identify 12(S)-HETE as a trigger of platelet MP internalization by neutrophils, a mechanism highly relevant to inflammatory processes. Because sPLA2-IIA is induced during inflammation, and 12-LO expression is restricted mainly to platelets, these observations demonstrate that platelet MPs promote their internalization in recipient cells through highly regulated mechanisms.
Collapse
|
30
|
Effects of thyroid hormone status on metabolic pathways of arachidonic acid in mice and humans: A targeted metabolomic approach. Prostaglandins Other Lipid Mediat 2015; 118-119:11-8. [PMID: 25841349 DOI: 10.1016/j.prostaglandins.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/28/2015] [Accepted: 03/19/2015] [Indexed: 12/24/2022]
Abstract
Symptoms of cardiovascular diseases are frequently found in patients with hypothyroidism and hyperthyroidism. However, it is unknown whether arachidonic acid metabolites, the potent mediators in cardiovascular system, are involved in cardiovascular disorders caused by hyperthyroidism and hypothyroidism. To answer this question, serum levels of arachidonic acid metabolites in human subjects with hypothyroidism, hyperthyroidism and mice with hypothyroidism or thyroid hormone treatment were determined by a mass spectrometry-based method. Over ten arachidonic acid metabolites belonging to three catalytic pathways: cyclooxygenases, lipoxygenases, and cytochrome P450, were quantified simultaneously and displayed characteristic profiles under different thyroid hormone status. The level of 20-hydroxyeicosatetraenoic acid, a cytochrome P450 metabolite, was positively correlated with thyroid hormone level and possibly contributed to the elevated blood pressured in hyperthyroidism. The increased prostanoid (PG) I2 and decreased PGE2 levels in hypothyroid patients might serve to alleviate atherosclerosis associated with dyslipidemia. The elevated level of thromboxane (TX) A2, as indicated by TXB2, in hyperthyroid patients and mice treated with thyroid hormone might bring about pulmonary hypertension frequently found in hyperthyroid patients. In conclusion, our prospective study revealed that arachidonic acid metabolites were differentially affected by thyroid hormone status. Certain metabolites may be involved in cardiovascular disorders associated with thyroid diseases.
Collapse
|
31
|
5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-κB-dependent mechanism. Arch Toxicol 2015; 90:359-73. [DOI: 10.1007/s00204-014-1419-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023]
|
32
|
Determination of ω-6 and ω-3 PUFA metabolites in human urine samples using UPLC/MS/MS. Anal Bioanal Chem 2015; 407:1625-39. [PMID: 25577352 DOI: 10.1007/s00216-014-8412-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 12/22/2022]
Abstract
The ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are the precursors of various bioactive lipid mediators including prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acid, isoprostanes, lipoxins, and resolvins (Rvs). These lipid mediators play important roles in various physiological and pathological processes. The quantitative determination of PUFA metabolites seems necessary for disease research and for developing biomarkers. However, there is a paucity of analytical methods for the quantification of ω-6 and ω-3 PUFA metabolites—the specialized pro-resolving mediators (SPMs) present in the human urine. We developed a method for the quantification of ω-6 and ω-3 PUFA metabolites present in human urine using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS). The developed method shows good linearity, with a correlation coefficient >0.99 for all of the analytes. The validation results indicate that our method is adequately reliable, accurate, and precise. The method was successfully used to examine urine samples obtained from 43 healthy volunteers. We could identify 20 PUFA metabolites, and this is the first report of the quantitative determination of RvD1, 17(R)-RvD1, 11-dehydro thromboxane B3, RvE2, and 5(S)-HETE in human urine. The urinary 8-iso PGF(2α) and PGE2 levels were significantly higher in the men smokers than in the men nonsmokers (p < 0.05). In this study, we developed an accurate, precise, and novel analytical method for estimating the ω-6 and ω-3 PUFA metabolites, and this is the first report that the SPMs derived from EPA and DHA are present in human urine.
Collapse
|
33
|
Kim HY, Cha HJ, Choi JH, Kang YJ, Park SY, Kim HS. CCL5 Inhibits Elevation of Blood Pressure and Expression of Hypertensive Mediators in Developing Hypertension State Spontaneously Hypertensive Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.4167/jbv.2015.45.2.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hye Ju Cha
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Jin Hee Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea
| | - So Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hee Sun Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
34
|
Maskrey BH, Rushworth GF, Law MH, Treweeke AT, Wei J, Leslie SJ, Megson IL, Whitfield PD. 12-hydroxyeicosatetraenoic acid is associated with variability in aspirin-induced platelet inhibition. JOURNAL OF INFLAMMATION-LONDON 2014; 11:33. [PMID: 25349537 PMCID: PMC4209229 DOI: 10.1186/s12950-014-0033-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/08/2014] [Indexed: 02/02/2023]
Abstract
Background Aspirin is one of the most widely used non-steroidal anti-inflammatory drugs (NSAIDs). It is also a commonly used anti-platelet drug, which inhibits the formation of the platelet activator, thromboxane A2 (TxA2) via inhibition of cyclooxygenase-1 (COX-1). However, the presence of a patient subset that fails to respond to aspirin despite reduced TxA2 concentrations suggests that the effect of aspirin might be more complex than exclusive COX-1 inhibition. Methods In this study we evaluated the impact of in vivo oral administration of a standard anti-platelet dose (75 mg) of aspirin in healthy volunteers on the acute impact of in vitro collagen-mediated platelet aggregation and generation of platelet-derived TxA2 and the 12-lipoxygenase (LOX) metabolite 12-hydroxyeicosatetraenoic acid (12-HETE). The eicosanoids were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results Low-dose aspirin administration not only inhibited TxA2 generation but also decreased the production of 12-HETE. Furthermore, a significant correlation was observed between the levels of 12-HETE and collagen-induced platelet aggregation. Pre-treatment of platelets with the 12-LOX inhibitor, baicalein, prior to activation attenuated platelet aggregation. Conclusions These findings support a role for 12-HETE as a pro-aggregatory eicosanoid in platelet function and suggest a role for 12-HETE in variable sensitivity to aspirin. The study also highlights a potentially important mechanism by which aspirin impacts upon eicosanoid generation.
Collapse
Affiliation(s)
- Benjamin H Maskrey
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH UK
| | | | - Matthew H Law
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH UK
| | - Andrew T Treweeke
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH UK
| | - Jun Wei
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH UK
| | | | - Ian L Megson
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH UK
| | - Phillip D Whitfield
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH UK
| |
Collapse
|
35
|
Fernández Peralbo MA, Priego-Capote F, Galache-Osuna JG, Luque de Castro MD. Targeted analysis of omega-6-derived eicosanoids in human serum by SPE-LC-MS/MS for evaluation of coronary artery disease. Electrophoresis 2014; 34:2901-9. [PMID: 24228265 DOI: 10.1002/elps.201200603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A targeted approach has been applied to quantitative analysis of eicosanoids derived from omega-6 fatty acids in serum from individuals diagnosed with coronary artery disease (CAD). The target metabolites were series-2 prostaglandins, thromboxane B2, hydroxyeicosatetraenoic acids, and hydroxyoctadecadienoic acids. The method was based on SPELC-MS/MS in selected reaction monitoring mode for highly selective and sensitive determination of the target eicosanoids. The combination of SPE and LC-MS/MS involved the benefits from both direct analysis of serum without a step for protein precipitation and fully automation of the analysis. The method allowed comparison of omega-6-derived eicosanoids in serum from patients diagnosed with CAD and from control individuals. The effect of treatment with aspirin on the profile of the target compounds was evaluated through its incidence on the different pathways. Finally, the serum levels of the target metabolites in patients diagnosed with CAD were also statistically examined according to the severity of the coronary lesion stratified as stable angina, non-ST-elevation acute coronary syndrome, and acute myocardial infarction.
Collapse
|
36
|
Porro B, Songia P, Squellerio I, Tremoli E, Cavalca V. Analysis, physiological and clinical significance of 12-HETE: a neglected platelet-derived 12-lipoxygenase product. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:26-40. [PMID: 24685839 DOI: 10.1016/j.jchromb.2014.03.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 11/25/2022]
Abstract
While the importance of cyclooxygenase (COX) in platelet function has been amply elucidated, the identification of the role of 12-lipoxygenase (12-LOX) and of its stable metabolite, 12-hydroxyeicosatretraenoic acid (12-HETE), has not been clarified as yet. Many studies have analysed the implications of 12-LOX products in different pathological disorders but the information obtained from these works is controversial. Several analytical methods have been developed over the years to simultaneously detect eicosanoids, and specifically 12-HETE, in different biological matrices, essentially enzyme-linked immunosorbent assays (ELISA), radioimmunoassays (RIA), high performance liquid chromatography (HPLC) and mass spectrometry coupled with both gas and liquid chromatography methods (GC- and LC-MS). This review is aimed at summarizing the up to now known physiological and clinical features of 12-HETE together with the analytical methods used for its determination, focusing on the critical issues regarding its measurement.
Collapse
Affiliation(s)
| | | | | | - Elena Tremoli
- Centro Cardiologico Monzino-IRCCS, Milan, Italy; Università degli Studi di Milano, Dipartimento di Scienze Farmacologiche e Biomolecolari, Milan, Italy
| | - Viviana Cavalca
- Centro Cardiologico Monzino-IRCCS, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Milan, Italy.
| |
Collapse
|
37
|
Burzaco J, Conde M, Parada LA, Zugaza JL, Dehaye JP, Marino A. ATP antagonizes thrombin-induced signal transduction through 12(S)-HETE and cAMP. PLoS One 2013; 8:e67117. [PMID: 23826207 PMCID: PMC3691129 DOI: 10.1371/journal.pone.0067117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022] Open
Abstract
In this study we have investigated the role of extracellular ATP on thrombin induced-platelet aggregation (TIPA) in washed human platelets. ATP inhibited TIPA in a dose-dependent manner and this inhibition was abolished by apyrase but not by adenosine deaminase (ADA) and it was reversed by extracellular magnesium. Antagonists of P2Y1 and P2Y12 receptors had no effect on this inhibition suggesting that a P2X receptor controlled ATP-mediated TIPA inhibition. ATP also blocked inositol phosphates (IP1, IP2, IP3) generation and [Ca(2+)]i mobilization induced by thrombin. Thrombin reduced cAMP levels which were restored in the presence of ATP. SQ-22536, an adenylate cyclase (AC) inhibitor, partially reduced the inhibition exerted by ATP on TIPA. 12-lipoxygenase (12-LO) inhibitors, nordihidroguaretic acid (NDGA) and 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15(S)-HETE), strongly prevented ATP-mediated TIPA inhibition. Additionally, ATP inhibited the increase of 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12(S)-HETE) induced by thrombin. Pretreatment with both SQ-22536 and NDGA almost completely abolished ATP-mediated TIPA inhibition. Our results describe for the first time that ATP implicates both AC and 12-LO pathways in the inhibition of human platelets aggregation in response to agonists.
Collapse
Affiliation(s)
- Jaione Burzaco
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| | - Manuel Conde
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| | - Luis A. Parada
- Instituto de Patología Experimental, Universidad Nacional de Salta, Salta, Argentina
| | - José L. Zugaza
- Department Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jean-Paul Dehaye
- Biochemistry and Cellular Biology Laboratory, Institute of Pharmacy C.P. 205/3, Université Libre de Bruxelles, Brussels, Belgium
| | - Aida Marino
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| |
Collapse
|
38
|
Zhang HJ, Sun CH, Kuang HY, Jiang XY, Liu HL, Hua WF, Liu ZJ, Zhou H, Sui H, Qi R. 12S-hydroxyeicosatetraenoic acid levels link to coronary artery disease in Type 2 diabetic patients. J Endocrinol Invest 2013; 36:385-9. [PMID: 23095287 DOI: 10.3275/8654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND 12(S)-Hydroxyeicosatetraenoic acid (12(S)-HETE) is a metabolite of arachidonic acid. 12(S)-HETE is involved in the pathogenesis of atherosclerosis and diabetes. However, the correlation between 12(S)-HETE and coronary artery disease (CAD) in the diabetic patient is unclear. AIMS The study investigated the relationship between 12(S)-HETE and CAD in Type 2 diabetes (T2D). METHODS Plasma 12(S)- HETE levels were detected by enzyme-linked immunosorbent assay in 103 healthy controls (control), 109 diabetic patients without CAD (diabetic), and 152 diabetic patients with CAD (diabetic-CAD). RESULTS 12(S)-HETE levels were higher in both diabetic and diabetic-CAD groups compared to control and in the diabetic-CAD group compared to the diabetic group. In the multiple linear stepwise regression analysis, 12(S)-HETE levels correlated independently with CAD, systolic blood pressure, and glycated hemoglobin. CONCLUSIONS These results indicate that 12(S)-HETE levels are increased in diabetic patients with CAD, suggesting a role for atherosclerosis in T2D.
Collapse
Affiliation(s)
- H J Zhang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tucker SC, Honn KV. Emerging targets in lipid-based therapy. Biochem Pharmacol 2013; 85:673-688. [PMID: 23261527 PMCID: PMC4106802 DOI: 10.1016/j.bcp.2012.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to "biomarkers" does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
Collapse
Affiliation(s)
- Stephanie C Tucker
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| |
Collapse
|
40
|
Lipoxygenase products in the urine correlate with renal function and body temperature but not with acute transplant rejection. Lipids 2012; 48:167-75. [PMID: 23275077 DOI: 10.1007/s11745-012-3751-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
Abstract
Acute transplant rejection is the leading cause of graft loss in the first months after kidney transplantation. Lipoxygenase products mediate pro- and anti-inflammatory actions and thus we aimed to correlate the histological reports of renal transplant biopsies with urinary lipoxygenase products concentrations to evaluate their role as a diagnostic marker. This study included a total of 34 kidney transplant recipients: 17 with an acute transplant rejection and 17 controls. LTE4, LTB4, 12-HETE and 15-HETE concentrations were measured by enzyme immunoassay. Urinary lipoxygenase product concentrations were not significantly changed during an acute allograft rejection. Nevertheless, LTB4 concentrations correlated significantly with the body temperature (P ≤ 0.05) 3 months after transplantation, and 12- and 15-HETE concentrations correlated significantly with renal function (P ≤ 0.05) 2 weeks after transplantation. In conclusion, our data show a correlation for LTB4 with the body temperature 3 months after transplantation and urinary 12- and 15-HETE concentrations correlate positively with elevated serum creatinine concentrations but do not predict acute allograft rejection.
Collapse
|
41
|
GOHARA AMIRA, ELTAKI NOHA, SABRY DINA, MURTAGH DANIEL, JANKUN JERZY, SELMAN STEVENH, SKRZYPCZAK-JANKUN EWA. Human 5-, 12- and 15-lipoxygenase-1 coexist in kidney but show opposite trends and their balance changes in cancer. Oncol Rep 2012; 28:1275-82. [DOI: 10.3892/or.2012.1924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/21/2012] [Indexed: 11/05/2022] Open
|
42
|
Sterz K, Scherer G, Ecker J. A simple and robust UPLC-SRM/MS method to quantify urinary eicosanoids. J Lipid Res 2012; 53:1026-1036. [PMID: 22338011 PMCID: PMC3329380 DOI: 10.1194/jlr.d023739] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Indexed: 01/09/2023] Open
Abstract
Eicosanoids are key mediators and regulators of inflammation and oxidative stress often used as biomarkers for diseases and pathological conditions such as cardiovascular and pulmonary diseases and cancer. Analytically, comprehensive and robust quantification of different eicosanoid species in a multi-method approach is problematic because most of these compounds are relatively unstable and may differ in their chemical properties. Here we describe a novel ultra-performance liquid chromatography-selected reaction monitoring mass spectroscopy (UPLC-SRM/MS) method for simultaneous quantification of key urinary eicosanoids, including the prostaglandins (PG) tetranor PGE-M, 8-iso-, and 2,3-dinor-8-iso-PGF(2α); the thromboxanes (TXs) 11-dehydro- and 2,3-dinor-TXB₂; leukotriene E₄; and 12-hydroxyeicosatetraenoic acid. In contrast to previous methods, which used time-consuming and complex solid phase extraction, we prepared samples with a simple liquid/liquid extraction procedure. Because collision-induced dissociation produced characteristic product ions for all analytes, no derivatization step for SRM/MS analysis was necessary. Analytes were separated with a short UPLC reversed-phase column (1.7 µm particles), allowing shorter run times than conventional HPLC columns. The method was validated and applied to human urine samples showing excellent precision, accuracy, detection limits, and robustness. In summary, the developed method allows robust and sensitive profiling of urinary eicosanoid species, making it a useful and valuable tool for biomarker profiling in clinical/toxicological studies.
Collapse
Affiliation(s)
- Katharina Sterz
- ABF Analytisch-Biologisches Forschungslabor GmbH, 80336 Munich, Germany
| | - Gerhard Scherer
- ABF Analytisch-Biologisches Forschungslabor GmbH, 80336 Munich, Germany
| | - Josef Ecker
- ABF Analytisch-Biologisches Forschungslabor GmbH, 80336 Munich, Germany.
| |
Collapse
|
43
|
Kriska T, Cepura C, Magier D, Siangjong L, Gauthier KM, Campbell WB. Mice lacking macrophage 12/15-lipoxygenase are resistant to experimental hypertension. Am J Physiol Heart Circ Physiol 2012; 302:H2428-38. [PMID: 22467300 DOI: 10.1152/ajpheart.01120.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mouse arteries, Alox15 [leukocyte-type 12/15-lipoxygenase (LO)] is assumed to regulate vascular function by metabolizing arachidonic acid (AA) to dilator eicosanoids that mediate the endothelium-dependent relaxations to AA and acetylcholine (ACh). We used Alox15(-/-) mice, made by targeted disruption of the Alox15 gene, to characterize its role in the regulation of blood pressure and vascular tone. Systolic blood pressures did not differ between wild-type (WT) and Alox15(-/-) mice between 8-12 wk of age, but Alox15(-/-) mice exhibited resistance toward both N(G)-nitro-L-arginine-methyl ester (L-NAME)- and deoxycorticosterone acetate (DOCA)/high-salt-induced hypertension. ACh relaxed mesenteric arteries and abdominal aortas of WT and Alox15(-/-) mice to an identical extent. The LO inhibitor nordihydroguaiaretic acid attenuated the ACh relaxations by 35% in arteries from both WT and Alox15(-/-) mice. Reverse-phase HPLC analysis of [(14)C]AA metabolites in aorta and peritoneal macrophages (PM) revealed differences. Unlike PM, aorta tissue did not produce detectable amounts of 15-hydroxyeicosatetraenoic acid. Although Alox15 mRNA was detected in aorta, high-resolution gel electrophoresis with immunodetection revealed no Alox15 protein expression. Unlike aorta, Alox15 protein was detected in PM, intestine, fat, lung, spleen, and skin from WT, but not Alox15(-/-), mice. Injection of WT PM, a primary source of Alox15 protein, into Alox15(-/-) mice abolished their resistance toward L-NAME-induced hypertension. On the other hand, WT mice acquired resistance to L-NAME-induced hypertension after depletion of macrophages by clodronate injection. These studies indicate that Alox15 is involved in development of experimental hypertension by altering macrophage functions but not via synthesis of the vasoactive LO metabolites in mouse arteries.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
45
|
Yeung J, Holinstat M. 12-lipoxygenase: a potential target for novel anti-platelet therapeutics. Cardiovasc Hematol Agents Med Chem 2012; 9:154-64. [PMID: 21838667 DOI: 10.2174/187152511797037619] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/07/2011] [Indexed: 01/31/2023]
Abstract
Platelets play an essential role in the regulation of hemostasis and thrombosis and controlling their level of activation is central to prevention of occlusive clot formation and stroke. Although a number of anti-platelet targets have been identified to address this issue including COX-1, the P2Y(12) receptor, the integrin αIIbβ3, and more recently the protease-activated receptor-1, these targets often result in a significant increased risk of bleeding which may lead to pathologies as serious as the thrombosis they were meant to treat including intracranial hemorrhage and gastrointestinal bleeding. Therefore, alternative approaches to treat uncontrolled platelet activation are warranted. Platelet-type 12-lipoxygenase is an enzyme which oxidizes the free fatty acid in the platelet resulting in the production of the stable metabolite 12-hydroxyeicosatetraenoic acid (12-HETE). The role of 12-HETE in the platelet has been controversial with reports associating its function as being both anti- and pro-thrombotic. In this review, the role of 12-lipoxygenase and its bioactive metabolites in regulation of platelet reactivity, clot formation, and hemostasis is described. Understanding the mechanisms by which 12-lipoxygenase and its metabolites modulate platelet function may lead to the development of a novel class of anti-platelet therapies targeting the enzyme in order to attenuate injury-induced clot formation, vessel occlusion and pathophysiological shifts in hemostasis.
Collapse
Affiliation(s)
- Jennifer Yeung
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
46
|
Angiotensin II inhibits chemokine CCL5 expression in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertens Res 2011; 34:1313-20. [DOI: 10.1038/hr.2011.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
|
49
|
Kerjaschki D, Bago-Horvath Z, Rudas M, Sexl V, Schneckenleithner C, Wolbank S, Bartel G, Krieger S, Kalt R, Hantusch B, Keller T, Nagy-Bojarszky K, Huttary N, Raab I, Lackner K, Krautgasser K, Schachner H, Kaserer K, Rezar S, Madlener S, Vonach C, Davidovits A, Nosaka H, Hämmerle M, Viola K, Dolznig H, Schreiber M, Nader A, Mikulits W, Gnant M, Hirakawa S, Detmar M, Alitalo K, Nijman S, Offner F, Maier TJ, Steinhilber D, Krupitza G. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest 2011; 121:2000-12. [PMID: 21540548 DOI: 10.1172/jci44751] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 02/02/2011] [Indexed: 12/20/2022] Open
Abstract
In individuals with mammary carcinoma, the most relevant prognostic predictor of distant organ metastasis and clinical outcome is the status of axillary lymph node metastasis. Metastases form initially in axillary sentinel lymph nodes and progress via connecting lymphatic vessels into postsentinel lymph nodes. However, the mechanisms of consecutive lymph node colonization are unknown. Through the analysis of human mammary carcinomas and their matching axillary lymph nodes, we show here that intrametastatic lymphatic vessels and bulk tumor cell invasion into these vessels highly correlate with formation of postsentinel metastasis. In an in vitro model of tumor bulk invasion, human mammary carcinoma cells caused circular defects in lymphatic endothelial monolayers. These circular defects were highly reminiscent of defects of the lymphovascular walls at sites of tumor invasion in vivo and were primarily generated by the tumor-derived arachidonic acid metabolite 12S-HETE following 15-lipoxygenase-1 (ALOX15) catalysis. Accordingly, pharmacological inhibition and shRNA knockdown of ALOX15 each repressed formation of circular defects in vitro. Importantly, ALOX15 knockdown antagonized formation of lymph node metastasis in xenografted tumors. Furthermore, expression of lipoxygenase in human sentinel lymph node metastases correlated inversely with metastasis-free survival. These results provide evidence that lipoxygenase serves as a mediator of tumor cell invasion into lymphatic vessels and formation of lymph node metastasis in ductal mammary carcinomas.
Collapse
Affiliation(s)
- Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim HY, Choi JH, Kang YJ, Park SY, Choi HC, Kim HS. Reparixin, an Inhibitor of CXCR1 and CXCR2 Receptor Activation, Attenuates Blood Pressure and Hypertension-Related Mediators Expression in Spontaneously Hypertensive Rats. Biol Pharm Bull 2011; 34:120-7. [DOI: 10.1248/bpb.34.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Jin Hee Choi
- Department of Microbiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Young Jin Kang
- Department of Pharmacology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - So Young Park
- Department of Physiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Hyoung Chul Choi
- Department of Pharmacology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Hee Sun Kim
- Department of Microbiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| |
Collapse
|