1
|
Qu Z, Hanna P, Ajijola OA, Garfinkel A, Shivkumar K. Ultrastructure and cardiac impulse propagation: scaling up from microscopic to macroscopic conduction. J Physiol 2025; 603:1887-1901. [PMID: 39612369 PMCID: PMC11955865 DOI: 10.1113/jp287632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 12/01/2024] Open
Abstract
The standard conception of cardiac conduction is based on the cable theory of nerve conduction, which treats cardiac tissue as a continuous syncytium described by the Hodgkin-Huxley equations. However, cardiac tissue is composed of discretized cells with microscopic and macroscopic heterogeneities and discontinuities, such as subcellular localizations of sodium channels and connexins. In addition to this, there are heterogeneities in the distribution of sympathetic and parasympathetic nerves, which powerfully regulate impulse propagation. In the continuous models, the ultrastructural details, i.e. the microscopic heterogeneities and discontinuities, are ignored by 'coarse graining' or 'smoothing'. However, these ultrastructural components may play crucial roles in cardiac conduction and arrhythmogenesis, particularly in disease states. We discuss the current progress of modelling the effects of ultrastructural components on electrical conduction, the issues and challenges faced by the cardiac modelling community, and how to scale up conduction properties at the subcellular (microscopic) scale to the tissue and whole-heart (macroscopic) scale in future modelling and experimental studies, i.e. how to link the ultrastructure at different scales to impulse conduction and arrhythmogenesis in the heart.
Collapse
Affiliation(s)
- Zhilin Qu
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Peter Hanna
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Alan Garfinkel
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Morris JA, Bardsley OJ, Salvage SC, Jackson AP, Matthews HR, Huang CLH. Nernst-Planck-Gaussian modelling of electrodiffusional recovery from ephaptic excitation between mammalian cardiomyocytes. Front Physiol 2024; 14:1280151. [PMID: 38235384 PMCID: PMC10791825 DOI: 10.3389/fphys.2023.1280151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction: In addition to gap junction conduction, recent reports implicate possible ephaptic coupling contributions to action potential (AP) propagation between successive adjacent cardiomyocytes. Here, AP generation in an active cell, withdraws Na+ from, creating a negative potential within, ephaptic spaces between the participating membranes, activating the initially quiescent neighbouring cardiomyocyte. However, sustainable ephaptic transmission requires subsequent complete recovery of the ephaptic charge difference. We explore physical contributions of passive electrodiffusive ion exchange with the remaining extracellular space to this recovery for the first time. Materials and Methods: Computational, finite element, analysis examined limiting, temporal and spatial, ephaptic [Na+], [Cl-], and the consequent Gaussian charge differences and membrane potential recovery patterns following a ΔV∼130 mV AP upstroke at physiological (37°C) temperatures. This incorporated Nernst-Planck formalisms into equations for the time-dependent spatial concentration gradient profiles. Results: Mammalian atrial, ventricular and purkinje cardiomyocyte ephaptic junctions were modelled by closely apposed circularly symmetric membranes, specific capacitance 1 μF cm-2, experimentally reported radii a = 8,000, 12,000 and 40,000 nm respectively and ephaptic axial distance w = 20 nm. This enclosed an ephaptic space containing principal ions initially at normal extracellular [Na+] = 153.1 mM and [Cl-] = 145.8 mM, respective diffusion coefficients D Na = 1.3 × 109 and D Cl = 2 × 109 nm2s-1. Stable, concordant computational solutions were confirmed exploring ≤1,600 nm mesh sizes and Δt≤0.08 ms stepsize intervals. The corresponding membrane voltage profile changes across the initially quiescent membrane were obtainable from computed, graphically represented a and w-dependent ionic concentration differences adapting Gauss's flux theorem. Further simulations explored biological variations in ephaptic dimensions, membrane anatomy, and diffusion restrictions within the ephaptic space. Atrial, ventricular and Purkinje cardiomyocytes gave 40, 180 and 2000 ms 99.9% recovery times, with 720 or 360 ms high limits from doubling ventricular radius or halving diffusion coefficient. Varying a, and D Na and D Cl markedly affected recovery time-courses with logarithmic and double-logarithmic relationships, Varying w exerted minimal effects. Conclusion: We thereby characterise the properties of, and through comparing atrial, ventricular and purkinje recovery times with interspecies in vivo background cardiac cycle duration data, (blue whale ∼2000, human∼90, Etruscan shrew, ∼40 ms) can determine physical limits to, electrodiffusive contributions to ephaptic recovery.
Collapse
Affiliation(s)
- Joshua A. Morris
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Oliver J. Bardsley
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Hugh R. Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Aitova A, Scherbina S, Berezhnoy A, Slotvitsky M, Tsvelaya V, Sergeeva T, Turchaninova E, Rybkina E, Bakumenko S, Sidorov I, Popov MA, Dontsov V, Agafonov EG, Efimov AE, Agapov I, Zybin D, Shumakov D, Agladze K. Novel Molecular Vehicle-Based Approach for Cardiac Cell Transplantation Leads to Rapid Electromechanical Graft-Host Coupling. Int J Mol Sci 2023; 24:10406. [PMID: 37373555 DOI: 10.3390/ijms241210406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Myocardial remodeling is an inevitable risk factor for cardiac arrhythmias and can potentially be corrected with cell therapy. Although the generation of cardiac cells ex vivo is possible, specific approaches to cell replacement therapy remain unclear. On the one hand, adhesive myocyte cells must be viable and conjugated with the electromechanical syncytium of the recipient tissue, which is unattainable without an external scaffold substrate. On the other hand, the outer scaffold may hinder cell delivery, for example, making intramyocardial injection difficult. To resolve this contradiction, we developed molecular vehicles that combine a wrapped (rather than outer) polymer scaffold that is enveloped by the cell and provides excitability restoration (lost when cells were harvested) before engraftment. It also provides a coating with human fibronectin, which initiates the process of graft adhesion into the recipient tissue and can carry fluorescent markers for the external control of the non-invasive cell position. In this work, we used a type of scaffold that allowed us to use the advantages of a scaffold-free cell suspension for cell delivery. Fragmented nanofibers (0.85 µm ± 0.18 µm in diameter) with fluorescent labels were used, with solitary cells seeded on them. Cell implantation experiments were performed in vivo. The proposed molecular vehicles made it possible to establish rapid (30 min) electromechanical contact between excitable grafts and the recipient heart. Excitable grafts were visualized with optical mapping on a rat heart with Langendorff perfusion at a 0.72 ± 0.32 Hz heart rate. Thus, the pre-restored grafts' excitability (with the help of a wrapped polymer scaffold) allowed rapid electromechanical coupling with the recipient tissue. This information could provide a basis for the reduction of engraftment arrhythmias in the first days after cell therapy.
Collapse
Affiliation(s)
- Aleria Aitova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Serafima Scherbina
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Andrey Berezhnoy
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 2 Lenina St., 423450 Almetyevsk, Tatarstan, Russia
| | - Mikhail Slotvitsky
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 2 Lenina St., 423450 Almetyevsk, Tatarstan, Russia
| | - Valeriya Tsvelaya
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 2 Lenina St., 423450 Almetyevsk, Tatarstan, Russia
| | - Tatyana Sergeeva
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- Almetyevsk State Oil Institute, 2 Lenina St., 423450 Almetyevsk, Tatarstan, Russia
| | - Elena Turchaninova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Elizaveta Rybkina
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Sergey Bakumenko
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- Almetyevsk State Oil Institute, 2 Lenina St., 423450 Almetyevsk, Tatarstan, Russia
| | - Ilya Sidorov
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Mikhail A Popov
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Vladislav Dontsov
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Evgeniy G Agafonov
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Anton E Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Schukinskaya St., 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Schukinskaya St., 123182 Moscow, Russia
| | - Dmitriy Zybin
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Dmitriy Shumakov
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Konstantin Agladze
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| |
Collapse
|
5
|
Dvinskikh L, Sparks H, Brito L, MacLeod KT, Harding SE, Dunsby C. Remote-refocusing light-sheet fluorescence microscopy enables 3D imaging of electromechanical coupling of hiPSC-derived and adult cardiomyocytes in co-culture. Sci Rep 2023; 13:3342. [PMID: 36849727 PMCID: PMC9970973 DOI: 10.1038/s41598-023-29419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Improving cardiac function through stem-cell regenerative therapy requires functional and structural integration of the transplanted cells with the host tissue. Visualizing the electromechanical interaction between native and graft cells necessitates 3D imaging with high spatio-temporal resolution and low photo-toxicity. A custom light-sheet fluorescence microscope was used for volumetric imaging of calcium dynamics in co-cultures of adult rat left ventricle cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. Aberration-free remote refocus of the detection plane synchronously to the scanning of the light sheet along the detection axis enabled fast dual-channel 3D imaging at subcellular resolution without mechanical sample disturbance at up to 8 Hz over a ∼300 µm × 40 µm × 50 µm volume. The two cell types were found to undergo electrically stimulated and spontaneous synchronized calcium transients and contraction. Electromechanical coupling improved with co-culture duration, with 50% of adult-CM coupled after 24 h of co-culture, compared to 19% after 4 h (p = 0.0305). Immobilization with para-nitroblebbistatin did not prevent calcium transient synchronization, with 35% and 36% adult-CM coupled in control and treated samples respectively (p = 0.91), indicating that electrical coupling can be maintained independently of mechanotransduction.
Collapse
Affiliation(s)
- L Dvinskikh
- Department of Physics, Imperial College London, London, UK. .,National Heart and Lung Institute, Imperial College London, London, UK. .,Department of Chemistry, Imperial College London, London, UK.
| | - H Sparks
- Department of Physics, Imperial College London, London, UK
| | - L Brito
- National Heart and Lung Institute, Imperial College London, London, UK
| | - K T MacLeod
- National Heart and Lung Institute, Imperial College London, London, UK
| | - S E Harding
- National Heart and Lung Institute, Imperial College London, London, UK
| | - C Dunsby
- Department of Physics, Imperial College London, London, UK
| |
Collapse
|
6
|
Slotvitsky M, Berezhnoy A, Scherbina S, Rimskaya B, Tsvelaya V, Balashov V, Efimov AE, Agapov I, Agladze K. Polymer Kernels as Compact Carriers for Suspended Cardiomyocytes. MICROMACHINES 2022; 14:51. [PMID: 36677111 PMCID: PMC9865253 DOI: 10.3390/mi14010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Induced pluripotent stem cells (iPSCs) constitute a potential source of patient-specific human cardiomyocytes for a cardiac cell replacement therapy via intramyocardial injections, providing a major benefit over other cell sources in terms of immune rejection. However, intramyocardial injection of the cardiomyocytes has substantial challenges related to cell survival and electrophysiological coupling with recipient tissue. Current methods of manipulating cell suspensions do not allow one to control the processes of adhesion of injected cells to the tissue and electrophysiological coupling with surrounding cells. In this article, we documented the possibility of influencing these processes using polymer kernels: biocompatible fiber fragments of subcellular size that can be adsorbed to a cell, thereby creating the minimum necessary adhesion foci to shape the cell and provide support for the organization of the cytoskeleton and the contractile apparatus prior to adhesion to the recipient tissue. Using optical excitation markers, the restoration of the excitability of cardiomyocytes in suspension upon adsorption of polymer kernels was shown. It increased the likelihood of the formation of a stable electrophysiological coupling in vitro. The obtained results may be considered as a proof of concept that the stochastic engraftment process of injected suspension cells can be controlled by smart biomaterials.
Collapse
Affiliation(s)
- Mikhail Slotvitsky
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Andrey Berezhnoy
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Serafima Scherbina
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Beatrisa Rimskaya
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Valerya Tsvelaya
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Victor Balashov
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Anton E. Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Schukinskaya St., 1, 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Schukinskaya St., 1, 123182 Moscow, Russia
| | - Konstantin Agladze
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| |
Collapse
|
7
|
Wei N, Tolkacheva EG. Mechanisms of arrhythmia termination during acute myocardial ischemia: Role of ephaptic coupling and complex geometry of border zone. PLoS One 2022; 17:e0264570. [PMID: 35290386 PMCID: PMC8923475 DOI: 10.1371/journal.pone.0264570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial ischemia occurs when blood flow to the heart is reduced, preventing the heart muscle from receiving enough oxygen required for survival. Several anatomical and electrophysiological changes occur at the ischemic core (IC) and border zone (BZ) during myocardial ischemia, for example, gap junctional remodeling, changes in ionic channel kinetics and electrophysiologic changes in cell excitability, which promote the development of cardiac arrhythmia. Ephaptic coupling (EpC), which is an electrical field effect developed in the shared cleft space between adjacent cells, has been suggested to rescue the conduction when gap junctions are impaired, such as myocardial ischemia. In this manuscript, we explored the impact of EpC, electrophysiological and anatomical components of myocardial ischemia on reentry termination during non-ischemic and ischemic condition. Our results indicated that EpC and BZ with complex geometry have opposite effects on the reentry termination. In particular, the presence of homogeneous EpC terminates reentry, whereas BZ with complex geometry alone facilitates reentry by producing wave break-up and alternating conduction block. The reentry is terminated in the presence of homogeneous or heterogeneous EpC despite the presence of complex geometry of the BZ, independent of the location of BZ. The inhibition of reentry can be attributed to a current-to-load mismatch. Our results points to an antiarrhythmic role of EpC and a pro-arrhythmic role of BZ with complex geometry.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
8
|
Computational modeling of aberrant electrical activity following remuscularization with intramyocardially injected pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2022; 162:97-109. [PMID: 34487753 PMCID: PMC8766907 DOI: 10.1016/j.yjmcc.2021.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023]
Abstract
Acute engraftment arrhythmias (EAs) remain a serious complication of remuscularization therapy. Preliminary evidence suggests that a focal source underlies these EAs stemming from the automaticity of immature pluripotent stem cell-derived cardiomyocytes (PSC-CMs) in nascent myocardial grafts. How these EAs arise though during early engraftment remains unclear. In a series of in silico experiments, we probed the origin of EAs-exploring aspects of altered impulse formation and altered impulse propagation within nascent PSC-CM grafts and at the host-graft interface. To account for poor gap junctional coupling during early PSC-CM engraftment, the voltage dependence of gap junctions and the possibility of ephaptic coupling were incorporated. Inspired by cardiac development, we also studied the contributions of another feature of immature PSC-CMs, circumferential sodium channel (NaCh) distribution in PSC-CMs. Ectopic propagations emerged from nascent grafts of immature PSC-CMs at a rate of <96 bpm. Source-sink effects dictated this rate and contributed to intermittent capture between host and graft. Moreover, ectopic beats emerged from dynamically changing sites along the host-graft interface. The latter arose in part because circumferential NaCh distribution in PSC-CMs contributed to preferential conduction slowing and block of electrical impulses from host to graft myocardium. We conclude that additional mechanisms, in addition to focal ones, contribute to EAs and recognize that their relative contributions are dynamic across the engraftment process.
Collapse
|
9
|
Nowak MB, Veeraraghavan R, Poelzing S, Weinberg SH. Cellular Size, Gap Junctions, and Sodium Channel Properties Govern Developmental Changes in Cardiac Conduction. Front Physiol 2021; 12:731025. [PMID: 34759834 PMCID: PMC8573326 DOI: 10.3389/fphys.2021.731025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Electrical conduction in cardiac ventricular tissue is regulated via sodium (Na+) channels and gap junctions (GJs). We and others have recently shown that Na+channels preferentially localize at the site of cell-cell junctions, the intercalated disc (ID), in adult cardiac tissue, facilitating coupling via the formation of intercellular Na+nanodomains, also termed ephaptic coupling (EpC). Several properties governing EpC vary with age, including Na+channel and GJ expression and distribution and cell size. Prior work has shown that neonatal cardiomyocytes have immature IDs with Na+channels and GJs diffusively distributed throughout the sarcolemma, while adult cells have mature IDs with preferentially localized Na+channels and GJs. In this study, we perform an in silico investigation of key age-dependent properties to determine developmental regulation of cardiac conduction. Simulations predict that conduction velocity (CV) biphasically depends on cell size, depending on the strength of GJ coupling. Total cell Na+channel conductance is predictive of CV in cardiac tissue with high GJ coupling, but not correlated with CV for low GJ coupling. We find that ephaptic effects are greatest for larger cells with low GJ coupling typically associated with intermediate developmental stages. Finally, simulations illustrate how variability in cellular properties during different developmental stages can result in a range of possible CV values, with a narrow range for both neonatal and adult myocardium but a much wider range for an intermediate developmental stage. Thus, we find that developmental changes predict associated changes in cardiac conduction.
Collapse
Affiliation(s)
- Madison B. Nowak
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Virginia Polytechnic Institute and State University, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| |
Collapse
|
10
|
Ivanovic E, Kucera JP. Localization of Na + channel clusters in narrowed perinexi of gap junctions enhances cardiac impulse transmission via ephaptic coupling: a model study. J Physiol 2021; 599:4779-4811. [PMID: 34533834 PMCID: PMC9293295 DOI: 10.1113/jp282105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
Abstract It has been proposed that when gap junctional coupling is reduced in cardiac tissue, action potential propagation can be supported via ephaptic coupling, a mechanism mediated by negative electric potentials occurring in narrow intercellular clefts of intercalated discs (IDs). Recent studies showed that sodium (Na+) channels form clusters near gap junction plaques in nanodomains called perinexi, where the ID cleft is even narrower. To examine the electrophysiological relevance of Na+ channel clusters being located in perinexi, we developed a 3D finite element model of two longitudinally abutting cardiomyocytes, with a central Na+ channel cluster on the ID membranes. When this cluster was located in the perinexus of a closely positioned gap junction plaque, varying perinexal width greatly modulated impulse transmission from one cell to the other, with narrow perinexi potentiating ephaptic coupling. This modulation occurred via the interplay of Na+ currents, extracellular potentials in the cleft and patterns of current flow within the cleft. In contrast, when the Na+ channel cluster was located remotely from the gap junction plaque, this modulation by perinexus width largely disappeared. Interestingly, the Na+ current in the ID membrane of the pre‐junctional cell switched from inward to outward during excitation, thus contributing ions to the activating channels on the post‐junctional ID membrane. In conclusion, these results indicate that the localization of Na+ channel clusters in the perinexi of gap junction plaques is crucial for ephaptic coupling, which is furthermore greatly modulated by perinexal width. These findings are relevant for a comprehensive understanding of cardiac excitation. Key points Ephaptic coupling is a cardiac conduction mechanism involving nanoscale‐level interactions between the sodium (Na+) current and the extracellular potential in narrow intercalated disc clefts. When gap junctional coupling is reduced, ephaptic coupling acts in conjunction with the classical cardiac conduction mechanism based on gap junctional current flow. In intercalated discs, Na+ channels form clusters that are preferentially located in the periphery of gap junction plaques, in nanodomains known as perinexi, but the electrophysiological role of these perinexi has never been examined. In our new 3D finite element model of two cardiac cells abutting each other with their intercalated discs, a Na+ channel cluster located inside a narrowed perinexus facilitated impulse transmission via ephaptic coupling. Our simulations demonstrate the role of narrowed perinexi as privileged sites for ephaptic coupling in pathological situations when gap junctional coupling is decreased.
Collapse
Affiliation(s)
- Ena Ivanovic
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Moise N, Struckman HL, Dagher C, Veeraraghavan R, Weinberg SH. Intercalated disk nanoscale structure regulates cardiac conduction. J Gen Physiol 2021; 153:212474. [PMID: 34264306 PMCID: PMC8287520 DOI: 10.1085/jgp.202112897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022] Open
Abstract
The intercalated disk (ID) is a specialized subcellular region that provides electrical and mechanical connections between myocytes in the heart. The ID has a clearly defined passive role in cardiac tissue, transmitting mechanical forces and electrical currents between cells. Recent studies have shown that Na+ channels, the primary current responsible for cardiac excitation, are preferentially localized at the ID, particularly within nanodomains such as the gap junction-adjacent perinexus and mechanical junction-associated adhesion-excitability nodes, and that perturbations of ID structure alter cardiac conduction. This suggests that the ID may play an important, active role in regulating conduction. However, the structures of the ID and intercellular cleft are not well characterized and, to date, no models have incorporated the influence of ID structure on conduction in cardiac tissue. In this study, we developed an approach to generate realistic finite element model (FEM) meshes replicating nanoscale of the ID structure, based on experimental measurements from transmission electron microscopy images. We then integrated measurements of the intercellular cleft electrical conductivity, derived from the FEM meshes, into a novel cardiac tissue model formulation. FEM-based calculations predict that the distribution of cleft conductances is sensitive to regional changes in ID structure, specifically the intermembrane separation and gap junction distribution. Tissue-scale simulations predict that ID structural heterogeneity leads to significant spatial variation in electrical polarization within the intercellular cleft. Importantly, we found that this heterogeneous cleft polarization regulates conduction by desynchronizing the activation of postjunctional Na+ currents. Additionally, these heterogeneities lead to a weaker dependence of conduction velocity on gap junctional coupling, compared with prior modeling formulations that neglect or simplify ID structure. Further, we found that disruption of local ID nanodomains can either slow or enhance conduction, depending on gap junctional coupling strength. Our study therefore suggests that ID nanoscale structure can play a significant role in regulating cardiac conduction.
Collapse
Affiliation(s)
| | | | | | - Rengasayee Veeraraghavan
- The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Seth H Weinberg
- The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
12
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
13
|
Nowak MB, Poelzing S, Weinberg SH. Mechanisms underlying age-associated manifestation of cardiac sodium channel gain-of-function. J Mol Cell Cardiol 2021; 153:60-71. [PMID: 33373643 PMCID: PMC8026540 DOI: 10.1016/j.yjmcc.2020.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Cardiac action potentials are initiated by sodium ion (Na+) influx through voltage-gated Na+ channels. Na+ channel gain-of-function (GOF) can arise in inherited conditions due to mutations in the gene encoding the cardiac Na+ channel, such as Long QT syndrome type 3 (LQT3). LQT3 can be a "concealed" disease, as patients with LQT3-associated mutations can remain asymptomatic until later in life; however, arrhythmias can also arise early in life in LQT3 patients, demonstrating a complex age-associated manifestation. We and others recently demonstrated that cardiac Na+ channels preferentially localize at the intercalated disc (ID) in adult cardiac tissue, which facilitates ephaptic coupling and formation of intercellular Na+ nanodomains that regulate pro-arrhythmic early afterdepolarization (EAD) formation in tissue with Na+ channel GOF. Several properties related to ephaptic coupling vary with age, such as cell size and Na+ channel and gap junction (GJ) expression and distribution: neonatal cells have immature IDs, with Na+ channels and GJs primarily diffusively distributed, while adult myocytes have mature IDs with preferentially localized Na+ channels and GJs. Here, we perform an in silico study varying critical age-dependent parameters to investigate mechanisms underlying age-associated manifestation of Na+ channel GOF in a model of guinea pig cardiac tissue. Simulations predict that total Na+ current conductance is a critical factor in action potential duration (APD) prolongation. We find a complex cell size/ Na+ channel expression relationship: increases in cell size (without concurrent increases in Na+ channel expression) suppress EAD formation, while increases in Na+ channel expression (without concurrent increases in cell size) promotes EAD formation. Finally, simulations with neonatal and early age-associated parameters predict normal APD with minimal dependence on intercellular cleft width; however, variability in cellular properties can lead to EADs presenting in early developmental stages. In contrast, for adult-associated parameters, EAD formation is highly dependent on cleft width, consistent with a mechanism underlying the age-associated manifestation of the Na+ channel GOF.
Collapse
Affiliation(s)
- Madison B Nowak
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America; Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, VA, United States of America
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America.
| |
Collapse
|
14
|
Salvage SC, Huang CLH, Jackson AP. Cell-Adhesion Properties of β-Subunits in the Regulation of Cardiomyocyte Sodium Channels. Biomolecules 2020; 10:biom10070989. [PMID: 32630316 PMCID: PMC7407995 DOI: 10.3390/biom10070989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated sodium (Nav) channels drive the rising phase of the action potential, essential for electrical signalling in nerves and muscles. The Nav channel α-subunit contains the ion-selective pore. In the cardiomyocyte, Nav1.5 is the main Nav channel α-subunit isoform, with a smaller expression of neuronal Nav channels. Four distinct regulatory β-subunits (β1–4) bind to the Nav channel α-subunits. Previous work has emphasised the β-subunits as direct Nav channel gating modulators. However, there is now increasing appreciation of additional roles played by these subunits. In this review, we focus on β-subunits as homophilic and heterophilic cell-adhesion molecules and the implications for cardiomyocyte function. Based on recent cryogenic electron microscopy (cryo-EM) data, we suggest that the β-subunits interact with Nav1.5 in a different way from their binding to other Nav channel isoforms. We believe this feature may facilitate trans-cell-adhesion between β1-associated Nav1.5 subunits on the intercalated disc and promote ephaptic conduction between cardiomyocytes.
Collapse
Affiliation(s)
- Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Correspondence: (S.C.S.); (A.P.J.); Tel.: +44-1223-765950 (S.C.S.); +44-1223-765951 (A.P.J.)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Correspondence: (S.C.S.); (A.P.J.); Tel.: +44-1223-765950 (S.C.S.); +44-1223-765951 (A.P.J.)
| |
Collapse
|
15
|
Nowak MB, Greer-Short A, Wan X, Wu X, Deschênes I, Weinberg SH, Poelzing S. Intercellular Sodium Regulates Repolarization in Cardiac Tissue with Sodium Channel Gain of Function. Biophys J 2020; 118:2829-2843. [PMID: 32402243 DOI: 10.1016/j.bpj.2020.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 11/30/2022] Open
Abstract
In cardiac myocytes, action potentials are initiated by an influx of sodium (Na+) ions via voltage-gated Na+ channels. Na+ channel gain of function (GOF), arising in both inherited conditions associated with mutation in the gene encoding the Na+ channel and acquired conditions associated with heart failure, ischemia, and atrial fibrillation, enhance Na+ influx, generating a late Na+ current that prolongs action potential duration (APD) and triggering proarrhythmic early afterdepolarizations (EADs). Recent studies have shown that Na+ channels are highly clustered at the myocyte intercalated disk, facilitating formation of Na+ nanodomains in the intercellular cleft between cells. Simulations from our group have recently predicted that narrowing the width of the intercellular cleft can suppress APD prolongation and EADs in the presence of Na+ channel mutations because of increased intercellular cleft Na+ ion depletion. In this study, we investigate the effects of modulating multiple extracellular spaces, specifically the intercellular cleft and bulk interstitial space, in a novel computational model and experimentally via osmotic agents albumin, dextran 70, and mannitol. We perform optical mapping and transmission electron microscopy in a drug-induced (sea anemone toxin, ATXII) Na+ channel GOF isolated heart model and modulate extracellular spaces via osmotic agents. Single-cell patch-clamp experiments confirmed that the osmotic agents individually do not enhance late Na+ current. Both experiments and simulations are consistent with the conclusion that intercellular cleft narrowing or expansion regulates APD prolongation; in contrast, modulating the bulk interstitial space has negligible effects on repolarization. Thus, we predict that intercellular cleft Na+ nanodomain formation and collapse critically regulates cardiac repolarization in the setting of Na+ channel GOF.
Collapse
Affiliation(s)
- Madison B Nowak
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Amara Greer-Short
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Xiaoping Wan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| |
Collapse
|
16
|
Wei N, Tolkacheva EG. Interplay between ephaptic coupling and complex geometry of border zone during acute myocardial ischemia: Effect on arrhythmogeneity. CHAOS (WOODBURY, N.Y.) 2020; 30:033111. [PMID: 32237767 DOI: 10.1063/1.5134447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Acute myocardial ischemia is an imbalance between myocardial blood supply and demand, which is caused by the cessation of blood flow within the heart resulting from an obstruction in one of the major coronary arteries. A severe blockage may result in a region of nonperfused tissue known as ischemic core (IC). As a result, a border zone (BZ) between perfused and nonperfused regions is created due to differences in blood and oxygen supplies. Recent experimental findings reveal a complex "finger-like" geometry in BZ; however, its effect on arrhythmogenicity is not clear. Ephaptic coupling, which relies on the intercalated disk between cell ends, has been suggested to play an active role in mediating intercellular electrical communication when gap junctions are impaired. In this paper, we explored the interplay between ephaptic coupling and the geometry of BZ on action potential propagation across the ischemic region. Our study shows that ephaptic coupling can greatly suppress the occurrence of a conduction block, which points to its beneficial effect. The beneficial effect of ephaptic coupling is more evident in BZ with the "finger-like" geometry. In addition, the complex geometry of BZ, i.e., more frequent, deeper, and wider "fingers," promotes the conduction through the ischemic region. In contrast, the larger size of IC impedes the cardiac conduction across the ischemic region. Our results also show that ephaptic coupling promotes the impact of the complex geometry of BZ on signal propagation; however, it inhibits the impact of IC size.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
17
|
Jæger KH, Edwards AG, McCulloch A, Tveito A. Properties of cardiac conduction in a cell-based computational model. PLoS Comput Biol 2019; 15:e1007042. [PMID: 31150383 PMCID: PMC6561587 DOI: 10.1371/journal.pcbi.1007042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 06/12/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
The conduction of electrical signals through cardiac tissue is essential for maintaining the function of the heart, and conduction abnormalities are known to potentially lead to life-threatening arrhythmias. The properties of cardiac conduction have therefore been the topic of intense study for decades, but a number of questions related to the mechanisms of conduction still remain unresolved. In this paper, we demonstrate how the so-called EMI model may be used to study some of these open questions. In the EMI model, the extracellular space, the cell membrane, the intracellular space and the cell connections are all represented as separate parts of the computational domain, and the model therefore allows for study of local properties that are hard to represent in the classical homogenized bidomain or monodomain models commonly used to study cardiac conduction. We conclude that a non-uniform sodium channel distribution increases the conduction velocity and decreases the time delays over gap junctions of reduced coupling in the EMI model simulations. We also present a theoretical optimal cell length with respect to conduction velocity and consider the possibility of ephaptic coupling (i.e. cell-to-cell coupling through the extracellular potential) acting as an alternative or supporting mechanism to gap junction coupling. We conclude that for a non-uniform distribution of sodium channels and a sufficiently small intercellular distance, ephaptic coupling can influence the dynamics of the sodium channels and potentially provide cell-to-cell coupling when the gap junction connection is absent. The electrochemical wave traversing the heart during every beat is essential for cardiac pumping function and supply of blood to the body. Understanding the stability of this wave is crucial to understanding how lethal arrhythmias are generated. Despite this importance, our knowledge of the physical determinants of wave propagation are still evolving. One particular challenge has been the lack of accurate mathematical models of conduction at the cellular level. Because cardiac muscle is an electrical syncytium, in which direct charge transfer between cells drives wave propagation, classical bidomain and monodomain tissue models employ a homogenized approximation of this process. This approximation is not valid at the length scale of single cells, and prevents any analysis of how cellular structures impact cardiac conduction. Instead, so-called microdomain models must be used for these questions. Here we utilize a recently developed modelling framework that is well suited to represent small collections of cells. By applying this framework, we show that concentration of sodium channels at the longitudinal borders of myocytes accelerates cardiac conduction. We also demonstrate that when juxtaposed cells are sufficiently close, this non-uniform distribution induces large ephaptic currents, which contribute to intercellular coupling.
Collapse
Affiliation(s)
| | | | - Andrew McCulloch
- Department of Bioengineering, University of California, San Diego, California, United States of America
| | - Aslak Tveito
- Simula Research Laboratory, Oslo, Norway
- * E-mail:
| |
Collapse
|
18
|
Carmeliet E. Conduction in cardiac tissue. Historical reflections. Physiol Rep 2019; 7:e13860. [PMID: 30604919 PMCID: PMC6316167 DOI: 10.14814/phy2.13860] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/22/2018] [Indexed: 11/24/2022] Open
Abstract
Two hypotheses have been proposed to explain propagation of the action potential in heart. According to the gap junction hypothesis local short-circuit currents pass from the proximal depolarized cell to the distal inactive cell via gap junctions and are responsible for the depolarization of the distal cell. In the ephapse hypothesis the depolarization of the proximal cell generates an electrical field in the narrow cleft between cells resulting in depolarization beyond threshold of the distal cell. Measurements of length constant, free diffusion of 42 K, local currents between cells, existence of high-conductance gap junctions led to the conclusion that heart muscle is a functional syncytium. Propagation of the action potential, however, is not uniform but anisotropic and discontinuous; it can be also unidirectional. These findings are strong arguments in favor of the gap junction thesis. They do not exclude, as predicted by theoretical calculations, that in conditions of an abnormal fall in gap junction conductance ephaptic conduction takes over. In this last case, definitive experimental confirmation is still required. See also: https://doi.org/10.14814/phy2.13861 & https://doi.org/10.14814/phy2.13862.
Collapse
|
19
|
Delmar M, Laird DW, Naus CC, Nielsen MS, Verselis VK, White TW. Connexins and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029348. [PMID: 28778872 DOI: 10.1101/cshperspect.a029348] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inherited or acquired alterations in the structure and function of connexin proteins have long been associated with disease. In the present work, we review current knowledge on the role of connexins in diseases associated with the heart, nervous system, cochlea, and skin, as well as cancer and pleiotropic syndromes such as oculodentodigital dysplasia (ODDD). Although incomplete by virtue of space and the extent of the topic, this review emphasizes the fact that connexin function is not only associated with gap junction channel formation. As such, both canonical and noncanonical functions of connexins are fundamental components in the pathophysiology of multiple connexin related disorders, many of them highly debilitating and life threatening. Improved understanding of connexin biology has the potential to advance our understanding of mechanisms, diagnosis, and treatment of disease.
Collapse
Affiliation(s)
- Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York 10016
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Morten S Nielsen
- Department of Biological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vytautas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11790
| |
Collapse
|
20
|
Veeraraghavan R, Hoeker GS, Alvarez-Laviada A, Hoagland D, Wan X, King DR, Sanchez-Alonso J, Chen C, Jourdan J, Isom LL, Deschenes I, Smyth JW, Gorelik J, Poelzing S, Gourdie RG. The adhesion function of the sodium channel beta subunit (β1) contributes to cardiac action potential propagation. eLife 2018; 7:37610. [PMID: 30106376 PMCID: PMC6122953 DOI: 10.7554/elife.37610] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/06/2018] [Indexed: 12/22/2022] Open
Abstract
Computational modeling indicates that cardiac conduction may involve ephaptic coupling – intercellular communication involving electrochemical signaling across narrow extracellular clefts between cardiomyocytes. We hypothesized that β1(SCN1B) –mediated adhesion scaffolds trans-activating NaV1.5 (SCN5A) channels within narrow (<30 nm) perinexal clefts adjacent to gap junctions (GJs), facilitating ephaptic coupling. Super-resolution imaging indicated preferential β1 localization at the perinexus, where it co-locates with NaV1.5. Smart patch clamp (SPC) indicated greater sodium current density (INa) at perinexi, relative to non-junctional sites. A novel, rationally designed peptide, βadp1, potently and selectively inhibited β1-mediated adhesion, in electric cell-substrate impedance sensing studies. βadp1 significantly widened perinexi in guinea pig ventricles, and selectively reduced perinexal INa, but not whole cell INa, in myocyte monolayers. In optical mapping studies, βadp1 precipitated arrhythmogenic conduction slowing. In summary, β1-mediated adhesion at the perinexus facilitates action potential propagation between cardiomyocytes, and may represent a novel target for anti-arrhythmic therapies.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States
| | - Gregory S Hoeker
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States
| | | | - Daniel Hoagland
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States
| | - Xiaoping Wan
- Heart and Vascular Research Center, MetroHealth Medical Center, Department of Medicine, Case Western Reserve University, Cleveland, United States
| | - D Ryan King
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Virginia, United States
| | - Jose Sanchez-Alonso
- Department of Myocardial Function, Imperial College London, London, United Kingdom
| | - Chunling Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
| | - Jane Jourdan
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States
| | - Lori L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
| | - Isabelle Deschenes
- Heart and Vascular Research Center, MetroHealth Medical Center, Department of Medicine, Case Western Reserve University, Cleveland, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Unites States
| | - James W Smyth
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States.,Department of Biological Sciences, College of Science, Blacksburg, United States
| | - Julia Gorelik
- Department of Myocardial Function, Imperial College London, London, United Kingdom
| | - Steven Poelzing
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, United States
| | - Robert G Gourdie
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, United States
| |
Collapse
|
21
|
Agladze NN, Halaidych OV, Tsvelaya VA, Bruegmann T, Kilgus C, Sasse P, Agladze KI. Synchronization of excitable cardiac cultures of different origin. Biomater Sci 2018. [PMID: 28643840 DOI: 10.1039/c7bm00171a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, we investigated the synchronization of electrical activity in cultured cardiac cells of different origin put in direct contact. In the first set of experiments synchronization was studied in the primary culture cells of neonatal rats taken at different developmental ages, and in the second - in the neonatal rat cardiomyocytes and HL-1 cells. The electrical excitation of cells was recorded using the calcium transient marker Fluor-4. In the confluent cell layers created with the aid of a specially devised mask, the excitation waves and their propagation between areas occupied by cells of different origin were observed. On the level of individual cells, their contact and synchronization was monitored with the aid of scanning fluorescence microscopy. It was found that populations of cultured cells of different origin are able to synchronize, suggesting the formation of electrical coupling between them. The results obtained may be considered as a proof of concept that implanted alien grafted cells are able to create electrical coupling with the host cardiac tissue.
Collapse
Affiliation(s)
- N N Agladze
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hichri E, Abriel H, Kucera JP. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc. J Physiol 2018; 596:563-589. [PMID: 29210458 DOI: 10.1113/jp275351] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na+ ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na+ channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na+ channels, we show that restricting the extracellular space modulates the Na+ current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na+ channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na+ channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. ABSTRACT It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na+ current (INa ) are scarce. Furthermore, Na+ channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Nav 1.5 channels, we examined how restricting the extracellular space modulates INa elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na+ channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak INa at step potentials near the threshold of INa activation and decreased peak INa at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na+ channel distribution. In the intercalated disc computer model, redistributing the Na+ channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na+ channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac INa , and our simulations reveal the functional role of the aggregation of Na+ channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation.
Collapse
Affiliation(s)
- Echrak Hichri
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Appukuttan S, Brain KL, Manchanda R. Modeling extracellular fields for a three-dimensional network of cells using NEURON. J Neurosci Methods 2017; 290:27-38. [DOI: 10.1016/j.jneumeth.2017.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
24
|
Greer-Short A, George SA, Poelzing S, Weinberg SH. Revealing the Concealed Nature of Long-QT Type 3 Syndrome. Circ Arrhythm Electrophysiol 2017; 10:e004400. [PMID: 28213505 DOI: 10.1161/circep.116.004400] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/13/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Gain-of-function mutations in the voltage-gated sodium channel (Nav1.5) are associated with the long-QT-3 (LQT3) syndrome. Nav1.5 is densely expressed at the intercalated disk, and narrow intercellular separation can modulate cell-to-cell coupling via extracellular electric fields and depletion of local sodium ion nanodomains. Models predict that significantly decreasing intercellular cleft widths slows conduction because of reduced sodium current driving force, termed "self-attenuation." We tested the novel hypothesis that self-attenuation can "mask" the LQT3 phenotype by reducing the driving force and late sodium current that produces early afterdepolarizations (EADs). METHODS AND RESULTS Acute interstitial edema was used to increase intercellular cleft width in isolated guinea pig heart experiments. In a drug-induced LQT3 model, acute interstitial edema exacerbated action potential duration prolongation and produced EADs, in particular, at slow pacing rates. In a computational cardiac tissue model incorporating extracellular electric field coupling, intercellular cleft sodium nanodomains, and LQT3-associated mutant channels, myocytes produced EADs for wide intercellular clefts, whereas for narrow clefts, EADs were suppressed. For both wide and narrow clefts, mutant channels were incompletely inactivated. However, for narrow clefts, late sodium current was reduced via self-attenuation, a protective negative feedback mechanism, masking EADs. CONCLUSIONS We demonstrated a novel mechanism leading to the concealing and revealing of EADs in LQT3 models. Simulations predict that this mechanism may operate independent of the specific mutation, suggesting that future therapies could target intercellular cleft separation as a compliment or alternative to sodium channels.
Collapse
Affiliation(s)
- Amara Greer-Short
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.)
| | - Sharon A George
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.)
| | - Steven Poelzing
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.).
| | - Seth H Weinberg
- From the Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke (A.G.-S., S.A.G., S.P.); and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond (S.H.W.).
| |
Collapse
|
25
|
George SA, Bonakdar M, Zeitz M, Davalos RV, Smyth JW, Poelzing S. Extracellular sodium dependence of the conduction velocity-calcium relationship: evidence of ephaptic self-attenuation. Am J Physiol Heart Circ Physiol 2016; 310:H1129-39. [PMID: 26945081 DOI: 10.1152/ajpheart.00857.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/02/2016] [Indexed: 11/22/2022]
Abstract
Our laboratory previously demonstrated that perfusate sodium and potassium concentrations can modulate cardiac conduction velocity (CV) consistent with theoretical predictions of ephaptic coupling (EpC). EpC depends on the ionic currents and intercellular separation in sodium channel rich intercalated disk microdomains like the perinexus. We suggested that perinexal width (WP) correlates with changes in extracellular calcium ([Ca(2+)]o). Here, we test the hypothesis that increasing [Ca(2+)]o reduces WP and increases CV. Mathematical models of EpC also predict that reducing WP can reduce sodium driving force and CV by self-attenuation. Therefore, we further hypothesized that reducing WP and extracellular sodium ([Na(+)]o) will reduce CV consistent with ephaptic self-attenuation. Transmission electron microscopy revealed that increasing [Ca(2+)]o (1 to 3.4 mM) significantly decreased WP Optically mapping wild-type (WT) (100% Cx43) mouse hearts demonstrated that increasing [Ca(2+)]o increases transverse CV during normonatremia (147.3 mM), but slows transverse CV during hyponatremia (120 mM). Additionally, CV in heterozygous (∼50% Cx43) hearts was more sensitive to changes in [Ca(2+)]o relative to WT during normonatremia. During hyponatremia, CV slowed in both WT and heterozygous hearts to the same extent. Importantly, neither [Ca(2+)]o nor [Na(+)]o altered Cx43 expression or phosphorylation determined by Western blotting, or gap junctional resistance determined by electrical impedance spectroscopy. Narrowing WP, by increasing [Ca(2+)]o, increases CV consistent with enhanced EpC between myocytes. Interestingly, during hyponatremia, reducing WP slowed CV, consistent with theoretical predictions of ephaptic self-attenuation. This study suggests that serum ion concentrations may be an important determinant of cardiac disease expression.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Mohammad Bonakdar
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; and
| | - Michael Zeitz
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; and
| | - James W Smyth
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia
| |
Collapse
|
26
|
Leo-Macias A, Agullo-Pascual E, Sanchez-Alonso JL, Keegan S, Lin X, Arcos T, Feng-Xia-Liang, Korchev YE, Gorelik J, Fenyö D, Rothenberg E, Rothenberg E, Delmar M. Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nat Commun 2016; 7:10342. [PMID: 26787348 PMCID: PMC4735805 DOI: 10.1038/ncomms10342] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023] Open
Abstract
Intercellular adhesion and electrical excitability are considered separate cellular properties. Studies of myelinated fibres, however, show that voltage-gated sodium channels (VGSCs) aggregate with cell adhesion molecules at discrete subcellular locations, such as the nodes of Ranvier. Demonstration of similar macromolecular organization in cardiac muscle is missing. Here we combine nanoscale-imaging (single-molecule localization microscopy; electron microscopy; and ‘angle view' scanning patch clamp) with mathematical simulations to demonstrate distinct hubs at the cardiac intercalated disc, populated by clusters of the adhesion molecule N-cadherin and the VGSC NaV1.5. We show that the N-cadherin-NaV1.5 association is not random, that NaV1.5 molecules in these clusters are major contributors to cardiac sodium current, and that loss of NaV1.5 expression reduces intercellular adhesion strength. We speculate that adhesion/excitability nodes are key sites for crosstalk of the contractile and electrical molecular apparatus and may represent the structural substrate of cardiomyopathies in patients with mutations in molecules of the VGSC complex. In myelinated fibres conduction and adhesion proteins aggregate at discrete foci, but it is unclear if this organization is present in other excitable cells. Using nanoscale visualization and in silico techniques, the authors show that adhesion/excitability nodes exist at the intercalated discs of adult cardiac muscle.
Collapse
Affiliation(s)
- Alejandra Leo-Macias
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Esperanza Agullo-Pascual
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Jose L Sanchez-Alonso
- Imperial College, National Heart and Lung Institute, Department of Cardiac Medicine, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Sarah Keegan
- Center for Health Informatics and Bioinformatics, NYU-SoM, Translational Research Building, 227 East 30th Street, New York, New York 10016, USA
| | - Xianming Lin
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Tatiana Arcos
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Feng-Xia-Liang
- Microscopy Core, NYU-SoM, 522 First Avenue, Skirball Institute, 2nd Floor, New York, New York 10016, USA
| | - Yuri E Korchev
- Division of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London, London W12 0NN, UK
| | - Julia Gorelik
- Imperial College, National Heart and Lung Institute, Department of Cardiac Medicine, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, NYU-SoM, Translational Research Building, 227 East 30th Street, New York, New York 10016, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU-SoM, 522 First Avenue, MSB 3rd Floor, New York, New York 10016, USA
| | | | - Mario Delmar
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| |
Collapse
|
27
|
Leo-Macias A, Agullo-Pascual E, Delmar M. The cardiac connexome: Non-canonical functions of connexin43 and their role in cardiac arrhythmias. Semin Cell Dev Biol 2015; 50:13-21. [PMID: 26673388 DOI: 10.1016/j.semcdb.2015.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022]
Abstract
Connexin43 is the major component of gap junctions, an anatomical structure present in the cardiac intercalated disc that provides a low-resistance pathway for direct cell-to-cell passage of electrical charge. Recent studies have shown that in addition to its well-established function as an integral membrane protein that oligomerizes to form gap junctions, Cx43 plays other roles that are independent of channel (or perhaps even hemi-channel) formation. This article discusses non-canonical functions of Cx43. In particular, we focus on the role of Cx43 as a part of a protein interacting network, a connexome, where molecules classically defined as belonging to the mechanical junctions, the gap junctions and the sodium channel complex, multitask and work together to bring about excitability, electrical and mechanical coupling between cardiac cells. Overall, viewing Cx43 as a multi-functional protein, beyond gap junctions, opens a window to better understand the function of the intercalated disc and the pathological consequences that may result from changes in the abundance or localization of Cx43 in the intercalated disc subdomain.
Collapse
Affiliation(s)
- Alejandra Leo-Macias
- The Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Esperanza Agullo-Pascual
- The Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Mario Delmar
- The Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
28
|
Caldwell BJ, Trew ML, Pertsov AM. Cardiac response to low-energy field pacing challenges the standard theory of defibrillation. Circ Arrhythm Electrophysiol 2015; 8:685-93. [PMID: 25772543 DOI: 10.1161/circep.114.002661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/25/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The electric response of myocardial tissue to periodic field stimuli has attracted significant attention as the basis for low-energy antifibrillation pacing, potentially more effective than traditional single high-energy shocks. In conventional models, an electric field produces a highly nonuniform response of the myocardial wall, with discrete excitations, or hot spots (HS), occurring at cathodal tissue surfaces or large coronary vessels. We test this prediction using novel 3-dimensional tomographic optical imaging. METHODS AND RESULTS Experiments were performed in isolated coronary perfused pig ventricular wall preparations stained with near-infrared voltage-sensitive fluorescent dye DI-4-ANBDQBS. The 3-dimensional coordinates of HS were determined using alternating transillumination. To relate HS formation with myocardial structures, we used ultradeep confocal imaging (interrogation depths, >4 mm). The peak HS distribution is located deep inside the heart wall, and the depth is not significantly affected by field polarity. We did not observe the strong colocalization of HS with major coronary vessels anticipated from theory. Yet, we observed considerable lateral displacement of HS with field polarity reversal. Models that de-emphasized lateral intracellular coupling and accounted for resistive heterogeneity in the extracellular space showed similar HS distributions to the experimental observations. CONCLUSIONS The HS distributions within the myocardial wall and the significant lateral displacements with field polarity reversal are inconsistent with standard theories of defibrillation. Extended theories based on enhanced descriptions of cellular scale electric mechanisms may be necessary. The considerable lateral displacement of HS with field polarity reversal supports the hypothesis of biphasic stimuli in low-energy antifibrillation pacing being advantageous.
Collapse
Affiliation(s)
- Bryan J Caldwell
- From the Department of Pharmacology, State University of New York Upstate Medical University, Syracuse (B.J.C., A.M.P.); and Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand (M.L.T.)
| | - Mark L Trew
- From the Department of Pharmacology, State University of New York Upstate Medical University, Syracuse (B.J.C., A.M.P.); and Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand (M.L.T.).
| | - Arkady M Pertsov
- From the Department of Pharmacology, State University of New York Upstate Medical University, Syracuse (B.J.C., A.M.P.); and Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand (M.L.T.)
| |
Collapse
|
29
|
Veeraraghavan R, Lin J, Hoeker GS, Keener JP, Gourdie RG, Poelzing S. Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: an experimental and modeling study. Pflugers Arch 2015; 467:2093-105. [PMID: 25578859 PMCID: PMC4500747 DOI: 10.1007/s00424-014-1675-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 11/30/2022]
Abstract
It has long been held that electrical excitation spreads from cell-to-cell in the heart via low resistance gap junctions (GJ). However, it has also been proposed that myocytes could interact by non-GJ-mediated “ephaptic” mechanisms, facilitating propagation of action potentials in tandem with direct GJ-mediated coupling. We sought evidence that such mechanisms contribute to cardiac conduction. Using super-resolution microscopy, we demonstrate that Nav1.5 is localized within 200 nm of the GJ plaque (a region termed the perinexus). Electron microscopy revealed close apposition of adjacent cell membranes within perinexi suggesting that perinexal sodium channels could function as an ephapse, enabling ephaptic cell-to-cell transfer of electrical excitation. Acute interstitial edema (AIE) increased intermembrane distance at the perinexus and was associated with preferential transverse conduction slowing and increased spontaneous arrhythmia incidence. Inhibiting sodium channels with 0.5 μM flecainide uniformly slowed conduction, but sodium channel inhibition during AIE slowed conduction anisotropically and increased arrhythmia incidence more than AIE alone. Sodium channel inhibition during GJ uncoupling with 25 μM carbenoxolone slowed conduction anisotropically and was also highly proarrhythmic. A computational model of discretized extracellular microdomains (including ephaptic coupling) revealed that conduction trends associated with altered perinexal width, sodium channel conductance, and GJ coupling can be predicted when sodium channel density in the intercalated disk is relatively high. We provide evidence that cardiac conduction depends on a mathematically predicted ephaptic mode of coupling as well as GJ coupling. These data suggest opportunities for novel anti-arrhythmic therapies targeting noncanonical conduction pathways in the heart.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, 24016, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Gregory S Hoeker
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, 24016, USA
| | - James P Keener
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Robert G Gourdie
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, 24016, USA. .,School of Biomedical Engineering and Sciences, Virginia Polytechnic University, Blacksburg, VA, USA.
| | - Steven Poelzing
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, 24016, USA. .,School of Biomedical Engineering and Sciences, Virginia Polytechnic University, Blacksburg, VA, USA.
| |
Collapse
|
30
|
Roth BJ. Does ephaptic coupling contribute to propagation in cardiac tissue? Biophys J 2014; 106:774-5. [PMID: 24559978 DOI: 10.1016/j.bpj.2014.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bradley J Roth
- Department of Physics, Oakland University, Rochester, Michigan.
| |
Collapse
|
31
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014; 20:294-317. [PMID: 24948131 PMCID: PMC4102150 DOI: 10.5056/jnm14060] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| |
Collapse
|
32
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014. [PMID: 24948131 DOI: 10.5056/jnm140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
33
|
Veeraraghavan R, Poelzing S, Gourdie RG. Intercellular electrical communication in the heart: a new, active role for the intercalated disk. ACTA ACUST UNITED AC 2014; 21:161-7. [PMID: 24735129 DOI: 10.3109/15419061.2014.905932] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cardiac conduction is the propagation of electrical excitation through the heart and is responsible for triggering individual myocytes to contract in synchrony. Canonically, this process has been thought to occur electrotonically, by means of direct flow of ions from cell to cell. The intercalated disk (ID), the site of contact between adjacent myocytes, has been viewed as a structure composed of mechanical junctions that stabilize the apposition of cell membranes and gap junctions which constitute low resistance pathways between cells. However, emerging evidence suggests a more active role for structures within the ID in mediating intercellular electrical communication by means of non-canonical ephaptic mechanisms. This review will discuss the role of the ID in the context of the canonical, electrotonic view of conduction and highlight new, emerging possibilities of its playing a more active role in ephaptic coupling between cardiac myocytes.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Center for Cardiovascular and Regenerative Biology, Virginia Tech Carilion Research Institute , Roanoke, VA , USA
| | | | | |
Collapse
|
34
|
Veeraraghavan R, Poelzing S, Gourdie RG. Old cogs, new tricks: a scaffolding role for connexin43 and a junctional role for sodium channels? FEBS Lett 2014; 588:1244-8. [PMID: 24486012 DOI: 10.1016/j.febslet.2014.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/09/2023]
Abstract
Cardiac conduction is the process by which electrical excitation is communicated from cell to cell within the heart, triggering synchronous contraction of the myocardium. The role of conduction defects in precipitating life-threatening arrhythmias in various disease states has spurred scientific interest in the phenomenon. While the understanding of conduction has evolved greatly over the last century, the process has largely been thought to occur via movement of charge between cells via gap junctions. However, it has long been hypothesized that electrical coupling between cardiac myocytes could also occur ephaptically, without direct transfer of ions between cells. This review will focus on recent insights into cardiac myocyte intercalated disk ultrastructure and their implications for conduction research, particularly the ephaptic coupling hypothesis.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Center for Cardiovascular and Regenerative Biology, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA.
| | - Steven Poelzing
- Center for Cardiovascular and Regenerative Biology, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA
| | - Robert G Gourdie
- Center for Cardiovascular and Regenerative Biology, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA
| |
Collapse
|
35
|
Veeraraghavan R, Gourdie RG, Poelzing S. Mechanisms of cardiac conduction: a history of revisions. Am J Physiol Heart Circ Physiol 2014; 306:H619-27. [PMID: 24414064 DOI: 10.1152/ajpheart.00760.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac conduction is the process by which electrical excitation spreads through the heart, triggering individual myocytes to contract in synchrony. Defects in conduction disrupt synchronous activation and are associated with life-threatening arrhythmias in many pathologies. Therefore, it is scarcely surprising that this phenomenon continues to be the subject of active scientific inquiry. Here we provide a brief review of how the conceptual understanding of conduction has evolved over the last century and highlight recent, potentially paradigm-shifting developments.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, Virginia; and
| | | | | |
Collapse
|
36
|
Vroman R, Klaassen LJ, Kamermans M. Ephaptic communication in the vertebrate retina. Front Hum Neurosci 2013; 7:612. [PMID: 24068997 PMCID: PMC3780359 DOI: 10.3389/fnhum.2013.00612] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/07/2013] [Indexed: 11/13/2022] Open
Abstract
In the vertebrate retina, cones project to the horizontal cells (HCs) and bipolar cells (BCs). The communication between cones and HCs uses both chemical and ephaptic mechanisms. Cones release glutamate in a Ca2+-dependent manner, while HCs feed back to cones via an ephaptic mechanism. Hyperpolarization of HCs leads to an increased current through connexin hemichannels located on the tips of HC dendrites invaginating the cone synaptic terminals. Due to the high resistance of the extracellular synaptic space, this current makes the synaptic cleft slightly negative. The result is that the Ca2+-channels in the cone presynaptic membrane experience a slightly depolarized membrane potential and therefore more glutamate is released. This ephaptic mechanism forms a very fast and noise free negative feedback pathway. These characteristics are crucial, since the retina has to perform well in demanding conditions such as low light levels. In this mini-review we will discuss the critical components of such an ephaptic mechanism. Furthermore, we will address the question whether such communication appears in other systems as well and indicate some fundamental features to look for when attempting to identify an ephaptic mechanism.
Collapse
Affiliation(s)
- Rozan Vroman
- 1Retinal Signal Processing, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | | | | |
Collapse
|
37
|
Verheule S, Kaese S. Connexin diversity in the heart: insights from transgenic mouse models. Front Pharmacol 2013; 4:81. [PMID: 23818881 PMCID: PMC3694209 DOI: 10.3389/fphar.2013.00081] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/04/2013] [Indexed: 11/13/2022] Open
Abstract
Cardiac conduction is mediated by gap junction channels that are formed by connexin (Cx) protein subunits. The connexin family of proteins consists of more than 20 members varying in their biophysical properties and ability to combine with other connexins into heteromeric gap junction channels. The mammalian heart shows regional differences both in connexin expression profile and in degree of electrical coupling. The latter reflects functional requirements for conduction velocity which needs to be low in the sinoatrial and atrioventricular nodes and high in the ventricular conduction system. Over the past 20 years knowledge of the biology of gap junction channels and their role in the genesis of cardiac arrhythmias has increased enormously. This review focuses on the insights gained from transgenic mouse models. The mouse heart expresses Cx30, 30.2, 37, 40, 43, 45, and 46. For these connexins a variety of knock-outs, heart-specific knock-outs, conditional knock-outs, double knock-outs, knock-ins and overexpressors has been studied. We discuss the cardiac phenotype in these models and compare Cx expression between mice and men. Mouse models have enhanced our understanding of (patho)-physiological implications of Cx diversity in the heart. In principle connexin-specific modulation of electrical coupling in the heart represents an interesting treatment strategy for cardiac arrhythmias and conduction disorders.
Collapse
Affiliation(s)
- Sander Verheule
- Department of Physiology, Faculty of Medicine, Maastricht University Maastricht, Netherlands
| | | |
Collapse
|
38
|
Agullo-Pascual E, Delmar M. The noncanonical functions of Cx43 in the heart. J Membr Biol 2012; 245:477-82. [PMID: 22825715 DOI: 10.1007/s00232-012-9466-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/20/2012] [Indexed: 11/27/2022]
Abstract
There is abundant evidence showing that connexins form gap junctions. Yet this does not exclude the possibility that connexins can exert other functions, separate from that of gap junction (or even a permeable hemichannel) formation. Here, we focus on these noncanonical functions of connexin43 (Cx43), particularly in the heart. We describe two specific examples: the importance of Cx43 on intercellular adhesion, and the role of Cx43 in the function of the sodium channel. We propose that these two functions of Cx43 have important repercussions on the propagation of electrical activity in the heart, irrespective of the presence of permeable gap junction channels. Overall, the gap junction-independent functions of Cx43 in cardiac electrophysiology emerge as an exciting area of future research.
Collapse
Affiliation(s)
- Esperanza Agullo-Pascual
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, Smilow 805, New York, NY 10016, USA
| | | |
Collapse
|
39
|
Veeraraghavan R, Salama ME, Poelzing S. Interstitial volume modulates the conduction velocity-gap junction relationship. Am J Physiol Heart Circ Physiol 2011; 302:H278-86. [PMID: 22021331 DOI: 10.1152/ajpheart.00868.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac conduction through gap junctions is an important determinant of arrhythmia susceptibility. Yet, the relationship between degrees of G(j) uncoupling and conduction velocity (θ) remains controversial. Conflicting results in similar experiments are normally attributed to experimental differences. We hypothesized that interstitial volume modulates conduction velocity and its dependence on G(j). Interstitial volume (V(IS)) was quantified histologically from guinea pig right ventricle. Optical mapping was used to quantify conduction velocity and anisotropy (AR(θ)). Albumin (4 g/l) decreased histologically assessed V(IS), increased transverse θ by 71 ± 10%, and lowered AR(θ). Furthermore, albumin did not change isolated cell size. Conversely, mannitol increased V(IS), decreased transverse θ by 24 ± 4%, and increased AR(θ). Mannitol also decreased cell width by 12%. Furthermore, mannitol was associated with spontaneous ventricular tachycardias in three of eight animals relative to zero of 15 during control. The θ-G(j) relationship was assessed using the G(j) uncoupler carbenoxolone (CBX). Whereas 13 μM CBX did not significantly affect θ during control, it slowed transverse θ by 38 ± 9% during mannitol (edema). These data suggest changes in V(IS) modulate θ, AR(θ), and the θ-G(j) relationship and thereby alter arrhythmia susceptibility. Therefore, V(IS) may underlie arrhythmia susceptibility, particularly in diseases associated with gap junction remodeling.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, 84112-5000, USA
| | | | | |
Collapse
|
40
|
Mori Y, Fishman GI, Peskin CS. Ephaptic conduction in a cardiac strand model with 3D electrodiffusion. Proc Natl Acad Sci U S A 2008; 105:6463-8. [PMID: 18434544 PMCID: PMC2359793 DOI: 10.1073/pnas.0801089105] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Indexed: 11/18/2022] Open
Abstract
We study cardiac action potential propagation under severe reduction in gap junction conductance. We use a mathematical model of cellular electrical activity that takes into account both three-dimensional geometry and ionic concentration effects. Certain anatomical and biophysical parameters are varied to see their impact on cardiac action potential conduction velocity. This study uncovers quantitative features of ephaptic propagation that differ from previous studies based on one-dimensional models. We also identify a mode of cardiac action potential propagation in which the ephaptic and gap-junction-mediated mechanisms alternate. Our study demonstrates the usefulness of this modeling approach for electrophysiological systems especially when detailed membrane geometry plays an important role.
Collapse
Affiliation(s)
- Yoichiro Mori
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016; and
| | - Charles S. Peskin
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Cardiac rhythm disorders are caused by malfunctions of impulse generation or conduction. Malfunctions of impulse generation, that is, defects in pacemaking, are often life-threatening. Present therapies span a wide array of approaches, but remain largely palliative. Recent progress in understanding of the underlying biology of pacemaking opens up new prospects for better alternatives to the present routine. Specifically, development and use of biological pacemakers could prove to be advantageous to the conventional approaches. RECENT FINDINGS We review the current state of the art in gene and cell-based approaches to correct cardiac rhythm disturbances. These include genetic suppression of an ionic current, embryonic as well as adult stem cell therapies, novel synthetic pacemaker channels, and adult somatic cell-fusion approach. SUMMARY Biological pacemaking can be achieved by modulating ionic currents by gene transfer or by delivering engineered pacemaker cells into normally quiescent myocardium. The present state of development is proof-of-concept; we are now working on reducing to practice a stable, reliable biological product as an alternative to electronic pacemakers.
Collapse
|
42
|
Cardiac cell: a biological laser? Biosystems 2008; 92:49-60. [PMID: 18191016 DOI: 10.1016/j.biosystems.2007.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 10/30/2007] [Accepted: 11/26/2007] [Indexed: 11/23/2022]
Abstract
We present a new concept of cardiac cells based on an analogy with lasers, practical implementations of quantum resonators. In this concept, each cardiac cell comprises a network of independent nodes, characterised by a set of discrete energy levels and certain transition probabilities between them. Interaction between the nodes is given by threshold-limited energy transfer, leading to quantum-like behaviour of the whole network. We propose that in cardiomyocytes, during each excitation-contraction coupling cycle, stochastic calcium release and the unitary properties of ionic channels constitute an analogue to laser active medium prone to "population inversion" and "spontaneous emission" phenomena. This medium, when powered by an incoming threshold-reaching voltage discharge in the form of an action potential, responds to the calcium influx through L-type calcium channels by stimulated emission of Ca2+ ions in a coherent, synchronised and amplified release process known as calcium-induced calcium release. In parallel, phosphorylation-stimulated molecular amplification in protein cascades adds tuneable features to the cells. In this framework, the heart can be viewed as a coherent network of synchronously firing cardiomyocytes behaving as pulsed laser-like amplifiers, coupled to pulse-generating pacemaker master-oscillators. The concept brings a new viewpoint on cardiac diseases as possible alterations of "cell lasing" properties.
Collapse
|
43
|
Bacharova L. Electrical and structural remodeling in left ventricular hypertrophy-a substrate for a decrease in QRS voltage? Ann Noninvasive Electrocardiol 2007; 12:260-73. [PMID: 17617072 PMCID: PMC6932385 DOI: 10.1111/j.1542-474x.2007.00170.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Electrical remodeling in advanced stages of cardiovascular diseases creates a substrate for triggering and maintenance of arrhythmias. The electrical remodeling is a continuous process initiated already in the early stages of cardiological pathology. The aim of this opinion article was to discuss the changes in electrical properties of myocardium in left ventricular hypertrophy (LVH), with special focus on its early stage, as well as their possible reflection in the QRS amplitude of the electrocardiogram. It critically appraises the classical hypothesis related to the QRS voltage changes in LVH. The hypothesis of the relative voltage deficit is discussed in the context of supporting evidence from clinical studies, animal experiments, and simulation studies. The underlying determinants of electrical impulse propagation which may explain discrepancies between "normal" ECG findings and increased left ventricular size/mass in LVH are reviewed.
Collapse
Affiliation(s)
- Ljuba Bacharova
- The International Laser Center, Bratislava, Slovak Republic.
| |
Collapse
|
44
|
Ramasamy L, Sperelakis N. Cable properties and propagation velocity in a long single chain of simulated myocardial cells. Theor Biol Med Model 2007; 4:36. [PMID: 17868460 PMCID: PMC2071913 DOI: 10.1186/1742-4682-4-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 09/14/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Propagation of simulated action potentials (APs) was previously studied in short single chains and in two-dimensional sheets of myocardial cells 123. The present study was undertaken to examine propagation in a long single chain of cells of various lengths, and with varying numbers of gap-junction (g-j) channels, and to compare propagation velocity with the cable properties such as the length constant (lambda). METHODS AND RESULTS Simulations were carried out using the PSpice program as previously described. When the electric field (EF) mechanism was dominant (0, 1, and 10 gj-channels), the longer the chain length, the faster the overall velocity (theta(ov)). There seems to be no simple explanation for this phenomenon. In contrast, when the local-circuit current mechanism was dominant (100 gj-channels or more), theta(ov) was slightly slowed with lengthening of the chain. Increasing the number of gj-channels produced an increase in theta(ov) and caused the firing order to become more uniform. The end-effect was more pronounced at longer chain lengths and at greater number of gj-channels. When there were no or only few gj-channels (namely, 0, 10, or 30), the voltage change (DeltaV(m)) in the two contiguous cells (#50 & #52) to the cell injected with current (#51) was nearly zero, i.e., there was a sharp discontinuity in voltage between the adjacent cells. When there were many gj-channels (e.g., 300, 1000, 3000), there was an exponential decay of voltage on either side of the injected cell, with the length constant (lambda) increasing at higher numbers of gj-channels. The effect of increasing the number of gj-channels on increasing lambda was relatively small compared to the larger effect on theta(ov). theta(ov) became very non-physiological at 300 gj-channels or higher. CONCLUSION Thus, when there were only 0, 1, or 10 gj-channels, theta(ov) increased with increase in chain length, whereas at 100 gj-channels or higher, theta(ov) did not increase with chain length. When there were only 0, 10, or 30 gj-channels, there was a very sharp decrease in DeltaV(m) in the two contiguous cells on either side of the injected cell, whereas at 300, 1000, or 3000 gj-channels, the voltage decay was exponential along the length of the chain. The effect of increasing the number of gj-channels on spread of current was relatively small compared to the large effect on theta(ov).
Collapse
Affiliation(s)
- Lakshminarayanan Ramasamy
- Dept. of Electrical and Computer Engineering, University of Cincinnati College of Engineering, Cincinnati, OH, 45219, USA
| | - Nicholas Sperelakis
- Dept. of Molecular & Cellular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, 45267-0576, USA
| |
Collapse
|
45
|
Klauke N, Smith G, Cooper JM. Microfluidic systems to examine intercellular coupling of pairs of cardiac myocytes. LAB ON A CHIP 2007; 7:731-9. [PMID: 17538715 DOI: 10.1039/b706175g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper we describe a microfluidic environment that enables us to explore cell-to-cell signalling between longitudinally linked primary heart cells. We have chosen to use pairs (or doublets) of cardiac myocyte as a model system, not only because of the importance of cell-cell signalling in the study of heart disease but also because the single cardiomyocytes are both mechanically and electrically active and their synchronous activation due to the intercellular coupling within the doublet can be readily monitored on optical and electrical recordings. Such doublets have specialised intercellular contact structures in the form of the intercalated discs, comprising the adhesive junction (fascia adherens and macula adherens or desmosome) and the connecting junction (known as gap junction). The latter structure enables adjacent heart cells to share ions, second messengers and small metabolites (<1 kDa) between them and thus provides the structural basis for the synchronous (syncytical) behaviour of connected cardiomyocytes. Using the unique environment provided by the microfluidic system, described in this paper, we explore the local ionic conditions that enable the propagation of Ca(2+) waves between two heart cells. We observe that the ability of intracellular Ca(2+) waves to traverse the intercalated discs is dependent on the relative concentrations of diastolic Ca(2+) in the two adjacent cells. These experiments rely upon our ability to independently control both the electrical stimulation of each of the cells (using integrated microelectrodes) and to rapidly change (or switch) the local concentrations of ions and drugs in the extracellular buffer within the microfluidic channel (using a nanopipetting system). Using this platform, it is also possible to make simultaneous optical recordings (including fluorescence and cell contraction) to explore the effect of drugs on one or both cells, within the doublet.
Collapse
Affiliation(s)
- Norbert Klauke
- Department of Electronics, University of Glasgow, Glasgow, UK G12 8LT
| | | | | |
Collapse
|
46
|
Daniel EE, Yazbi AE, Mannarino M, Galante G, Boddy G, Livergant J, Oskouei TE. Do gap junctions play a role in nerve transmissions as well as pacing in mouse intestine? Am J Physiol Gastrointest Liver Physiol 2007; 292:G734-45. [PMID: 17122366 DOI: 10.1152/ajpgi.00428.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Varicosities of nitrergic and other nerves end on deep muscular plexus interstitial cells of Cajal or on CD34-positive, c-kit-negative fibroblast-like cells. Both cell types connect to outer circular muscle by gap junctions, which may transmit nerve messages to muscle. We tested the hypotheses that gap junctions transmit pacing messages from interstitial cells of Cajal of the myenteric plexus. Effects of inhibitors of gap junction conductance were studied on paced contractions and nerve transmissions in small segments of circular muscle of mouse intestine. Using electrical field stimulation parameters (50 V/cm, 5 pps, and 0.5 ms) which evoke near maximal responses to nitrergic, cholinergic, and apamin-sensitive nerve stimulation, we isolated inhibitory responses to nitrergic nerves, inhibitory responses to apamin-sensitive nerves and excitatory responses to cholinergic nerves. 18beta-Glycyrrhetinic acid (10, 30, and 100 microM), octanol (0.1, 0.3, and 1 mM) and gap peptides (300 microM of (40)Gap27, (43)Gap26, (37,43)Gap27) all failed to abolish neurotransmission. 18beta-Glycyrrhetinic acid inhibited frequencies of paced contractions, likely owing to inhibition of l-type Ca(2+) channels in smooth muscle, but octanol or gap peptides did not. 18beta-Glycyrrhetinic acid and octanol, but not gap peptides, reduced the amplitudes of spontaneous and nerve-induced contractions. These reductions paralleled reductions in contractions to exogenous carbachol. Additional experiments with gap peptides in both longitudinal and circular muscle segments after N(G)-nitro-l-arginine and TTX revealed no effects on pacing frequencies. We conclude that gap junction coupling may not be necessary for pacing or nerve transmission to the circular muscle of the mouse intestine.
Collapse
Affiliation(s)
- E E Daniel
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
47
|
Marbán E, Cho HC. Creation of a biological pacemaker by gene- or cell-based approaches. Med Biol Eng Comput 2007; 45:133-44. [PMID: 17262203 DOI: 10.1007/s11517-007-0165-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 01/06/2007] [Indexed: 02/06/2023]
Abstract
Cardiac rhythm-associated disorders are caused by mal-functions of impulse generation and conduction. Present therapies for the impulse generation span a wide array of approaches but remain largely palliative. The progress in the understanding of the biology of the diseases with related biological tools beckons for new approaches to provide better alternatives to the present routine. Here, we review the current state of the art in gene- and cell-based approaches to correct cardiac rhythm disturbances. These include genetic suppression of an ionic current, stem cell therapies, adult somatic cell-fusion approach, novel synthetic pacemaker channel, and creating a self-contained pacemaker activity in non-excitable cells. We then conclude by discussing advantages and disadvantages of the new possibilities.
Collapse
Affiliation(s)
- Eduardo Marbán
- Institute of Molecular Cardiobiology, Division of Cardiology, Johns Hopkins University School of Medicine, 858 Ross Bldg, Baltimore, MD 21205, USA.
| | | |
Collapse
|
48
|
Sperelakis N, Ramasamy L. Propagation velocity profile in a cross-section of a cardiac muscle bundle from PSpice simulation. Theor Biol Med Model 2006; 3:29. [PMID: 16911777 PMCID: PMC1578564 DOI: 10.1186/1742-4682-3-29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/15/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effect of depth on propagation velocity within a bundle of cardiac muscle fibers is likely to be an important factor in the genesis of some heart arrhythmias. MODEL AND METHODS: The velocity profile of simulated action potentials propagated down a bundle of parallel cardiac muscle fibers was examined in a cross-section of the bundle using a PSpice model. The model (20 x 10) consisted of 20 chains in parallel, each chain being 10 cells in length. All 20 chains were stimulated simultaneously at the left end of the bundle using rectangular current pulses (0.25 nA, 0.25 ms duration) applied intracellularly. The simulated bundle was symmetrical at the top and bottom (including two grounds), and voltage markers were placed intracellularly only in cells 1, 5 and 10 of each chain to limit the total number of traces to 60. All electrical parameters were standard values; the variables were (1) the number of longitudinal gap-junction (G-j) channels (0, 1, 10, 100), (2) the longitudinal resistance between the parallel chains (Rol2) (reflecting the closeness of the packing of the chains), and (3) the bundle termination resistance at the two ends of the bundle (RBT). The standard values for Rol2 and RBT were 200 KOmega. RESULTS The velocity profile was bell-shaped when there was 0 or only 1 gj-channel. With standard Rol2 and RBT values, the velocity at the surface of the bundle (theta1 and theta20) was more than double (2.15 x) that at the core of the bundle (theta10, theta11). This surface:core ratio of velocities was dependent on the values of Rol2 and RBT. When Rol2 was lowered 10-fold, theta1 increased slightly and theta2decreased slightly. When there were 100 gj-channels, the velocity profile was flat, i.e. the velocity at the core was about the same as that at the surface. Both velocities were more than 10-fold higher than in the absence of gj-channels. Varying Rol2 and RBT had almost no effect. When there were 10 gj-channels, the cross-sectional velocity profile was bullet-shaped, but with a low surface/core ratio, with standard Rol2 and RBT values. CONCLUSION When there were no or few gj-channels (0 or 1), the profile was bell-shaped with the core velocity less than half that at the surface. In contrast, when there were many gj-channels (100), the profile was flat. Therefore, when some gj-channels close under pathophysiological conditions, this marked velocity profile could contribute to the genesis of arrhythmias.
Collapse
Affiliation(s)
- Nicholas Sperelakis
- Dept. of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| | - Lakshminarayanan Ramasamy
- Dept. of Electrical Computer Engineering and Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH 45219, USA
| |
Collapse
|
49
|
Ramasamy L, Sperelakis N. Transverse propagation in an expanded PSpice model for cardiac muscle with gap-junction ion channels. Biomed Eng Online 2006; 5:46. [PMID: 16875501 PMCID: PMC1559629 DOI: 10.1186/1475-925x-5-46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Accepted: 07/28/2006] [Indexed: 11/17/2022] Open
Abstract
Transverse propagation was previously found to occur in a two-dimensional model of cardiac muscle using the PSpice software program for electronic circuit design and analysis. Longitudinal propagation within each chain, and transverse propagation between parallel chains, occurred even when there were no gap-junction (g-j) channels inserted between the simulated myocardial cells either longitudinally or transversely. In those studies, there were pronounced edge (boundary) effects and end-effects even within single chains. Transverse velocity increased with increase in model size. The present study was performed to examine boundary effects on transverse propagation velocity when the length of the chains was held constant at 10 cells and the number of parallel chains was varied from 3 to 5, to 7, to 10, and to 20. The number of g-j channels was either zero, both longitudinally and transversely (0/0), or 100/100. Some experiments were also made at 100/0, 1/1, and 10/10. Transverse velocity and overall velocity (both longitudinal and transverse components) was calculated from the measured total propagation time (TPT), i.e., the elapsed time between when the first action potential (AP) and the last AP crossed the zero potential level. The transverse g-j channels were placed only at the ends of each chain, such that propagation would occur in a zigzag pattern. Electrical stimulation was applied intracellularly between cells A1 and A2. It was found that, with no g-j channels (0/0), overall velocity increased almost linearly when more and more chains were placed in parallel. In contrast, with many g-j channels (100/100), there was a much flatter relationship between overall velocity and number of parallel chains. The difference in velocities with 0/0 channels and 100/100 channels was reduced as the number of chains was increased. In conclusion, edges have important effects on propagation velocity (overall and transverse) in cardiac muscle simulations.
Collapse
Affiliation(s)
- Lakshminarayanan Ramasamy
- Dept. of Molecular & Cellular Physiology University of Cincinnati College of MedicineCincinnati, OH 45267-0576, USA
- Dept. of Electrical Computer Engineering and Computer ScienceUniversity of Cincinnati College of Engineering Cincinnati, OH 45219, USA
| | - Nicholas Sperelakis
- Dept. of Molecular & Cellular Physiology University of Cincinnati College of MedicineCincinnati, OH 45267-0576, USA
| |
Collapse
|
50
|
Ramasamy L, Sperelakis N. Effect of transverse gap-junction channels on transverse propagation in an enlarged PSpice model of cardiac muscle. Theor Biol Med Model 2006; 3:14. [PMID: 16542447 PMCID: PMC1440307 DOI: 10.1186/1742-4682-3-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 03/16/2006] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND In previous PSpice modeling studies of simulated action potentials (APs) in parallel chains of cardiac muscle, it was found that transverse propagation could occur between adjacent chains in the absence of gap-junction (gj) channels, presumably by the electric field (EF) generated in the narrow interstitial space between the chains. Transverse propagation was sometimes erratic, the more distal chains firing out of order. METHODS In the present study, the propagation of complete APs was studied in a 2-dimensional network of 100 cardiac muscle cells (10 x 10 model). Various numbers of gj-channels (assumed to be 100 pS each) were inserted across the junctions between the longitudinal cells of each chain and between adjacent chains (only at the end cells of each chain). The shunt resistance produced by the gj-channels (Rgj) was varied from 100,000 M omega (0 gj-channels) to 1,000 M omega (10 channels), 100 M omega (100 channels) and 10 M omega (1,000 channels). Total propagation time (TPT) was measured as the difference between the times when the AP rising phase of the first cell (cell # A1) and the last cell (in the J chain) crossed 0 mV. When there were no gj-channels, the excitation was transmitted between cells by the EF, i.e., the negative potential generated in the narrow junctional clefts (e.g., 100 angstroms) when the prejunctional membrane fired an AP. For the EF mechanism to work, the prejunctional membrane must fire a fraction of a millisecond before the adjacent surface membrane. When there were many gj-channels (e.g., 100 or 1,000), the excitation was transmitted by local-circuit current flow from one cell to the next through these channels. RESULTS TPT was measured as a function of four different numbers of transverse gj-channels, namely 0, 10, 100 and 1,000, and four different numbers of longitudinal gj-channels, namely 0, 10, 100 and 1,000. Thus, 16 different measurements were made. It was found that increasing the number of transverse channels had no effect on TPT when the number of longitudinal channels was low (i.e., 0 or 10). In contrast, when the number of longitudinal gj-channels was high (e.g., 100 or 1,000), then increasing the number of transverse channels decreased TPT markedly. CONCLUSION Thus, complete APs could propagate along a network of 100 cardiac muscle cells even when no gj-channels were present between the cells. Insertion of transverse gj-channels greatly speeded propagation through the 10 x 10 network when there were also many longitudinal gj-channels.
Collapse
Affiliation(s)
- Lakshminarayanan Ramasamy
- Dept. of Electrical Computer Engineering and Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH 45219, USA
| | - Nicholas Sperelakis
- Dept. of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| |
Collapse
|