1
|
Hørsdal OK, Larsen AM, Wethelund KL, Dalsgaard FF, Seefeldt JM, Helgestad OKL, Moeslund N, Møller JE, Ravn HB, Nielsen RR, Wiggers H, Berg-Hansen K, Gopalasingam N. The ketone body 3-hydroxybutyrate increases cardiac output and cardiac contractility in a porcine model of cardiogenic shock: a randomized, blinded, crossover trial. Basic Res Cardiol 2025:10.1007/s00395-025-01103-2. [PMID: 40220139 DOI: 10.1007/s00395-025-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Cardiogenic shock (CS) is characterized by reduced cardiac output (CO), reduced end-organ perfusion, and high mortality. Medical therapies have failed to improve survival. The ketone body 3-hydroxybutyrate (3-OHB) enhances cardiac function in heart failure and CS. We aimed to elucidate the cardiovascular and cardiometabolic effects of 3-OHB treatment during CS. In a randomized, assessor-blinded crossover design, we studied 16 female pigs (60 kg, 5 months of age). CS was induced by left main coronary artery microsphere injections. Predefined criteria for CS were a 30% reduction in CO or mixed venous saturation (SvO2). Intravenous 3-OHB infusion and a matching control solution were administered for 120 min in random order. Hemodynamic measurements were obtained by pulmonary artery catheterization and a left ventricular (LV) pressure-volume catheter. Myocardial mitochondrial function was assessed using high resolution respirometry. During CS, infusion with 3-OHB increased CO by 0.9 L/min (95%CI 0.4-1.3 L/min) compared with control infusion. SvO2 (P = 0.026) and heart rate (P < 0.001) increased. Stroke volume (P = 0.6) was not altered. LV contractile function as determined by LV end-systolic elastance improved during 3-OHB infusion compared with control infusion (P = 0.004). Systemic and pulmonary vascular resistance decreased, and diuresis increased. LV mitochondrial function was higher after 3-OHB infusion compared with control. We conclude that 3-OHB infusion enhances cardiac function by increasing contractility and reducing vascular resistance, while also preserving myocardial mitochondrial respiratory function in a large animal model of ischemic CS. These novel findings support the therapeutic potential of exogenous ketone supplementation in CS management.
Collapse
Affiliation(s)
- Oskar Kjærgaard Hørsdal
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Alexander Møller Larsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Frederik Flyvholm Dalsgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Marthinsen Seefeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Kristian Lerche Helgestad
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Moeslund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Heart-, Lung-, and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Berg Ravn
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Roni Ranghøj Nielsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristoffer Berg-Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Nigopan Gopalasingam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Cardiology, Gødstrup Hospital, Gødstrup, Denmark
| |
Collapse
|
2
|
Qiu S, Chen H, Jiang Q. Sevoflurane pretreatment alleviates hypoxia-reoxygenation-induced myocardial cell injury by upregulating miR-21-5p. Front Cardiovasc Med 2025; 12:1515160. [PMID: 40236258 PMCID: PMC11998032 DOI: 10.3389/fcvm.2025.1515160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Background This study investigates the preventive benefits of sevoflurane against myocardial ischemia-reperfusion (I/R) injury, focusing on its effect on the modulation of miR-21-5p. Methods In the clinical study, patients with a history of myocardial ischemia or other conditions requiring surgery were enrolled. Before surgery, the patients were anesthetized with either sevoflurane or propofol. The expression levels of IMA, H-FABP, IL-1β, TNF-α, and IL-6 were also examined. Additionally, the expression of miR-21-5p and its relationships with IMA and H-FABP. A cardiomyocyte hypoxia/reoxygenation (H/R) cell model was created for the in vitro tests. The cells were treated with or without sevoflurane and then transfected with inhibitors of miR-21-5p or a negative control (NC). Evaluations were conducted on cell viability, apoptosis ratio, and oxidative stress indicators (MDA, SOD, and ROS). Furthermore, the expression levels of miR-21-5p, apoptotic markers (BCL-2, BAX), myocardial damage markers (IMA, H-FABP), and inflammatory agents (TNF-α, IL-1β, IL-6) were quantified. Results In patients with a history of myocardial ischemia, sevoflurane reduced myocardial I/R injury. These patients also showed upregulation of miR-21-5p, which expression positively linked with levels of IMA. Moreover, in H/R treated cardiac cells, sevoflurane markedly reduced the expression of BAX, MDA, ROS, SOD, inflammatory factor and the apoptotic ratio. Nevertheless, inhibition of miR-21-5p abolished these protective effects. Furthermore, in H/R myocardial cells, sevoflurane increased BCL-2 expression and cell survival; these effects were also countered by blocking miR-21-5p. Conclusion Mechanistically, we demonstrate for the first time that sevoflurane alleviates myocardial cell injury in myocardial I/R by upregulating miR-21-5p, thereby reducing inflammation, apoptosis, and oxidative stress in myocardial cells. This finding provides a potential therapeutic target for improving myocardial I/R.
Collapse
Affiliation(s)
- Saiwen Qiu
- Department of Anesthesiology, Lanxi Traditional Chinese Medicine Hospital, Lanxi, Zhejiang, China
| | - Hui Chen
- Department of Anesthesiology, Lanxi People’s Hospital, Lanxi, Zhejiang, China
| | - Qifang Jiang
- Department of Anesthesiology, Lanxi Traditional Chinese Medicine Hospital, Lanxi, Zhejiang, China
| |
Collapse
|
3
|
de Kok MJC, Schaapherder AFM, Bloeme-Ter Horst JR, Faro MLL, de Vries DK, Ploeg RJ, Bakker JA, Lindeman JHN. Clinical ischemia-reperfusion injury: Driven by reductive rather than oxidative stress? A narrative review. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149539. [PMID: 39828238 DOI: 10.1016/j.bbabio.2025.149539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/12/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Ischemia-reperfusion (IR) injury remains a major contributor to organ dysfunction following transient ischemic insults. Although numerous interventions have been found effective to reduce IR injury in preclinical models, none of these therapies have been successfully translated to the clinical setting. In the context of the persistent translational gap, we systematically investigated the mechanisms implicated in IR injury using kidney donation and transplantation as a clinical model of IR. Whilst our results do not implicate traditional culprits such as reactive oxygen species, complement activation or inflammation as triggers of IR injury, they reveal a clear metabolic signature for renal IR injury. This discriminatory signature of IR injury is consistent with a post-reperfusion metabolic paralysis and involves high-energy phosphate depletion, tricarboxylic acid cycle defects, and a compensatory activation of catabolic routes. Against this background, the picture emerges that clinical IR injury is driven by reductive stress. In this article, we therefore wish to elaborate on the processes contributing to reductive stress in the context of clinical IR injury and provide a better insight in potential clinical therapeutic strategies that might be helpful in restoring the redox balance.
Collapse
Affiliation(s)
- Michèle J C de Kok
- Department of Surgery and Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexander F M Schaapherder
- Department of Surgery and Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Jonna R Bloeme-Ter Horst
- Department of Surgery and Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Letizia Lo Faro
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Dorottya K de Vries
- Department of Surgery and Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Rutger J Ploeg
- Department of Surgery and Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Jaap A Bakker
- Department of Clinical Chemistry & Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan H N Lindeman
- Department of Surgery and Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
de Courtade SMB, Eikenes M, Sheng Y, Nyman TA, Bliksrud YT, Scheffler K, Eide L. Identification of determinants for variability in mitochondrial biochemical complex activities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149553. [PMID: 40068806 DOI: 10.1016/j.bbabio.2025.149553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Diagnostics of mitochondrial disease requires a combination of clinical evaluations and biochemical characterization. However, the large normal variation in mitochondrial complex activity limits the precision of biochemical diagnostics. Thus, identifying factors that contribute to such variations could enhance diagnostic accuracy. In comparison, inbred mice demonstrate much less variations in brain mitochondrial activity, but a clear reduction with age. Interestingly, pretreatment of mouse brain mitochondria with the detergent dodecyl maltoside abolishes the reduction. We therefore postulated that DDM pretreatment could be valuable tool for distinguishing between variations caused by posttranslational modifications and those caused by genetic heterogeneity. In this study, we evaluated the effects of age, DDM sensitivity, oxidative damage and single nucleotide polymorphism on biochemical complex activity and the proteome of human muscle mitochondria, which serve as reference standards for mitochondrial diagnostics. Our results indicate that mtDNA variants are the primary contributors to the diversity in biochemical activity in human muscle mitochondria from healthy individuals.
Collapse
Affiliation(s)
| | - Marte Eikenes
- Department of Medical Biochemistry, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway.
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway.
| | - Tuula A Nyman
- Department of Immunology and transfusion medicine, University of Oslo and University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway.
| | - Yngve Thomas Bliksrud
- Department of Medical Biochemistry, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway.
| | - Katja Scheffler
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), and Department of Neurology and Clinical Neurophysiology, University Hospital Trondheim, Edvard Griegs Gate 8, Trondheim, Norway.
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; Department of Medical Biochemistry, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway.
| |
Collapse
|
5
|
Liu K, Wu L, Ma Y, Chen D, Liu R, Zhang X, Jiang D, Pan R. Highly spatial-temporal electrochemical profiling of molecules trafficking at a single mitochondrion in one living cell. Proc Natl Acad Sci U S A 2025; 122:e2424591122. [PMID: 40112109 PMCID: PMC11962482 DOI: 10.1073/pnas.2424591122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Simultaneous profiling of multiple molecules trafficking at a single organelle and the surrounding cytosol within a living cell is crucial for elucidating their functions, necessitating advanced techniques that provide high spatial-temporal resolution and molecule specificity. In this study, we present an electrochemical nanodevice based on a θ-nanopipette designed to coanalyze calcium ions (Ca2+) and reactive oxygen species (ROS) at a single mitochondrion and its surrounding cytosol, thereby enhancing our understanding of their trafficking within the signaling pathways of cellular autophagy. Two independent nanosensors integrated within the channels of the θ-nanopipette spatially isolate a single target mitochondrion from the cytosol and simultaneously measure the release of Ca2+ and ROS with high spatial-temporal resolution. Dynamic tracking reveals the direct trafficking of lysosomal Ca2+ to the mitochondrion rather than to the cytosol, which triggers ROS-induced ROS release within the mitochondria. Furthermore, highly temporal and concurrent observations revealed a second burst of Ca2+ in both the mitochondrion and the cytosol, which is not consistent with the change in ROS. These dynamic data elucidate the potential role of a beneficial feedback loop between the Ca2+ signaling pathway and the subsequent generation of mitochondrial ROS in ML-SA-induced autophagy. More importantly, this innovative platform facilitates detailed profiling of the molecular interactions between trafficking molecules within the mitochondria and the adjacent cytosolic environment, which is hardly realized using the current superresolution optical microscopy.
Collapse
Affiliation(s)
- Kang Liu
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210093, Jiangsu, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, Jiangsu, China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, Jiangsu, China
| | - Yuanyuan Ma
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210093, Jiangsu, China
| | - Desheng Chen
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210093, Jiangsu, China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing100190, China
| | - Xiaobo Zhang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210093, Jiangsu, China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210093, Jiangsu, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210093, Jiangsu, China
| |
Collapse
|
6
|
Fang H, Rai A, Eslami SS, Huynh K, Liao HC, Salim A, Greening DW. Proteomics and Machine Learning-Based Approach to Decipher Subcellular Proteome of Mouse Heart. Mol Cell Proteomics 2025; 24:100952. [PMID: 40113211 PMCID: PMC12019842 DOI: 10.1016/j.mcpro.2025.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025] Open
Abstract
Protein compartmentalization to distinctive subcellular niches is critical for cardiac function and homeostasis. Here, we employed a rapid and robust workflow based on differential centrifugal-based fractionation with mass spectrometry-based proteomics and bioinformatic analyses for systemic mapping of the subcellular proteome of mouse heart. Using supervised machine learning of 450 hallmark protein markers from 16 subcellular niches, we further refined the subcellular information of 2083 proteins with high confidence. Our data validation focused on specific subcellular niches such as mitochondria, cell surface, cardiac dyad, myofibril, and nuclear, unfolding dominant subcellular localization of proteins in their native environment of mouse heart. We further provide targeted nuclear enrichment and co-immunoprecipitation-based proteomic validation from the heart of nuclear-localizing protein networks. This study provides novel insights into the molecular landscape of different subcellular niches of the heart and serves as a draft map for heart subcellular proteome.
Collapse
Affiliation(s)
- Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - Seyed Sadegh Eslami
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Hsiao-Chi Liao
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
7
|
Hørsdal OK, Ellegaard MS, Larsen AM, Guldbrandsen H, Moeslund N, Møller JE, Helgestad OKL, Ravn HB, Wiggers H, Nielsen R, Gopalasingam N, Berg-Hansen K. Lactate infusion improves cardiac function in a porcine model of ischemic cardiogenic shock. Crit Care 2025; 29:113. [PMID: 40083003 PMCID: PMC11907994 DOI: 10.1186/s13054-025-05346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Cardiogenic shock (CS) is associated with high mortality and medical therapies have failed to improve survival. Treatment with lactate is associated with improved cardiac function which may benefit this condition. Comprehensive hemodynamic assessment of lactate administration in CS is lacking, and the mechanisms underlying the cardiovascular effects of lactate in CS have not yet been elucidated. In this study we aimed to study the cardiovascular and cardiometabolic effects of treatment with lactate in experimental ischemic CS. METHODS In a randomized, blinded design, 20 female pigs (60 kg) were studied. Left main coronary artery microsphere injections were used to cause CS, defined as a 30% reduction in CO or mixed venous saturation (SvO2). Subjects were randomized to receive either intravenous exogenous lactate or euvolemic, equimolar saline (control) for 180 min. Positive inotropic control with dobutamine was administered on top of ongoing treatment after 180 min. Extensive hemodynamic measurements were obtained from pulmonary artery and left ventricular (LV) pressure-volume catheterization. Furthermore, endomyocardial biopsies were analyzed for mitochondrial function and arterial, renal vein, and coronary sinus blood samples were collected. The primary endpoint was change in CO during 180 min of treatment. RESULTS Arterial lactate levels increased from 2.4 ± 1.1 to 7.7 ± 1.1 mmol/L (P < 0.001) during lactate infusion. CO increased by 0.7 L/min (P < 0.001) compared with control, due to increased stroke volume (P = 0.003). Notably, heart rate and mean arterial pressure did not differ significantly between treatments. End-systolic elastance (load independent contractility) was enhanced during lactate infusion (P = 0.048), together with LV ejection fraction (P = 0.009) and dP/dt(max) (P = 0.041). Arterial elastance (afterload) did not differ significantly (P = 0.12). This resulted in improved ventriculo-arterial coupling efficiency (P = 0.012). Cardiac mechanical efficiency (P = 0.003), diuresis (P = 0.016), and SvO2 (P = 0.018) were increased during lactate infusion. Myocardial mitochondrial complex I respiration was enhanced during lactate infusion compared with control (P = 0.04). Concomitant administration of dobutamine on top of lactate resulted in further hemodynamic improvements compared with control. CONCLUSIONS Lactate infusion improved cardiac function and myocardial mitochondrial respiration in a porcine model of CS. The hemodynamic effects included increased CO mediated through stroke volume increase. These favorable cardiovascular effects may benefit patients with CS.
Collapse
Affiliation(s)
- Oskar Kjærgaard Hørsdal
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus, Denmark.
| | - Mark Stoltenberg Ellegaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander Møller Larsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Halvor Guldbrandsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Niels Moeslund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Heart-, Lung-, and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Eifer Møller
- Heart Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Ole Kristian Lerche Helgestad
- Department of Cardiology, Odense University Hospital, Odense, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Berg Ravn
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Henrik Wiggers
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Roni Nielsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Nigopan Gopalasingam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus, Denmark
- Department of Cardiology, Gødstrup Hospital, Gødstrup, Denmark
| | - Kristoffer Berg-Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus, Denmark
| |
Collapse
|
8
|
Gagarinskiy EL, Sharapov MG, Goncharov RG, Gurin AE, Ugraitskaya SV, Fesenko EE. The effectiveness of prolonged hypothermic preservation of isolated rat hearts using oxygen, medical nitrous oxide and carbon monoxide gas mixtures. Arch Biochem Biophys 2025; 765:110295. [PMID: 39798642 DOI: 10.1016/j.abb.2025.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The possibility of using an oxygen-nitrous oxide mixture for prolonged hypothermic preservation of rat heart for 24 h was investigated. A comparative analysis of restoration of functional activity of hearts in the groups of 24-h preservation at +4 °C with different gases (O2, N2) and gas mixtures (CO + O2, N2O + O2, N2+O2, N2O + N2) was carried out. It was shown that the presence of oxygen in the gas mixture was the key factor for heart preservation. No stable heart preservation was observed in oxygen-free mixtures. At the same time, preservation in pure oxygen showed a significantly lower level of cardiac recovery compared to preservation in gas mixtures O2+CO (6.5 atm.) and O2+N2O (6.5 atm.). LVDP (left ventricular developed pressure) values were 30 ± 19 mmHg and 46 ± 9 mmHg, respectively, with no significant differences found. The decrease in LDVP after 24 h of storage was 26-40 % of the intact control. The results obtained indicate the presence of pronounced synergistic effects of both gases during 24-h heart preservation, which is confirmed by data of marker genes Nfe2l2, Nox1, Prdx1, Hif1a, Nos2, Slc2a4, Ucp-1, Jun, Casp3 expression analysis and myocardial infarction damage level data. The more frequent occurrence of arrhythmias was observed in the oxygen-nitrous oxide group compared with the CO group, and the mechanism of this phenomenon is unclear. Nevertheless, the already medically approved N2O + O2 gas mixture could serve as a balanced choice for future improvements, offering a shorter duration of cardiac preservation compared to the CO + O2 mixture, while ensuring safety in its use.
Collapse
Affiliation(s)
- Evgeniy L Gagarinskiy
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Mars G Sharapov
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Ruslan G Goncharov
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Artem E Gurin
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Svetlana V Ugraitskaya
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Eugeny E Fesenko
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| |
Collapse
|
9
|
Theofilis P, Vlachakis PK, Oikonomou E, Drakopoulou M, Karakasis P, Apostolos A, Pamporis K, Tsioufis K, Tousoulis D. Cancer Therapy-Related Cardiac Dysfunction: A Review of Current Trends in Epidemiology, Diagnosis, and Treatment. Biomedicines 2024; 12:2914. [PMID: 39767820 PMCID: PMC11673750 DOI: 10.3390/biomedicines12122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer therapy-related cardiac dysfunction (CTRCD) has emerged as a significant concern with the rise of effective cancer treatments like anthracyclines and targeted therapies such as trastuzumab. While these therapies have improved cancer survival rates, their unintended cardiovascular side effects can lead to heart failure, cardiomyopathy, and arrhythmias. The pathophysiology of CTRCD involves oxidative stress, mitochondrial dysfunction, and calcium dysregulation, resulting in irreversible damage to cardiomyocytes. Inflammatory cytokines, disrupted growth factor signaling, and coronary atherosclerosis further contribute to this dysfunction. Advances in cardio-oncology have led to the early detection of CTRCD using cardiac biomarkers like troponins and imaging techniques such as echocardiography and cardiac magnetic resonance (CMR). These tools help identify asymptomatic patients at risk of cardiac events before the onset of clinical symptoms. Preventive strategies, including the use of cardioprotective agents like beta-blockers, angiotensin-converting enzyme inhibitors, mineralocorticoid receptor antagonists, and sodium-glucose cotransporter-2 inhibitors have shown promise in reducing the incidence of CTRCD. This review summarizes the mechanisms, detection methods, and emerging treatments for CTRCD, emphasizing the importance of interdisciplinary collaboration between oncologists and cardiologists to optimize care and improve both cancer and cardiovascular outcomes.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Panayotis K. Vlachakis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital Sotiria, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Maria Drakopoulou
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Paschalis Karakasis
- 2nd Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Anastasios Apostolos
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Konstantinos Pamporis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| |
Collapse
|
10
|
Xue J, Zhuang J, Wang X, Meng T, Wu J, Zhang X, Zhang G. Mechanisms and Therapeutic Strategies for Myocardial Ischemia-Reperfusion Injury in Diabetic States. ACS Pharmacol Transl Sci 2024; 7:3691-3717. [PMID: 39698288 PMCID: PMC11651189 DOI: 10.1021/acsptsci.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024]
Abstract
In patients with myocardial infarction, one of the complications that may occur after revascularization is myocardial ischemia-reperfusion injury (IRI), characterized by a depleted myocardial oxygen supply and absence of blood flow recovery after reperfusion, leading to expansion of myocardial infarction, poor healing of myocardial infarction and reversal of left ventricular remodeling, and an increase in the risk for major adverse cardiovascular events such as heart failure, arrhythmia, and cardiac cell death. As a risk factor for cardiovascular disease, diabetes mellitus increases myocardial susceptibility to myocardial IRI through various mechanisms, increases acute myocardial infarction and myocardial IRI incidence, decreases myocardial responsiveness to protective strategies and efficacy of myocardial IRI protective methods, and increases diabetes mellitus mortality through myocardial infarction. This Review summarizes the mechanisms, existing therapeutic strategies, and potential therapeutic targets of myocardial IRI in diabetic states, which has very compelling clinical significance.
Collapse
Affiliation(s)
- Jing Xue
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jialu Zhuang
- Department
of Endocrinology, First Affiliated Hospital
of Anhui Medical University, Hefei 230031, China
| | - Xinyue Wang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Wu
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiaoqian Zhang
- Department
of Endocrinology, First Affiliated Hospital
of Anhui Medical University, Hefei 230031, China
| | - Guiyang Zhang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
11
|
Zhou D, Lee SH, Li XH, Kim JD, Lee GH, Sim JM, Cui XS. Decreased in Mitochondrial Complex I Subunit NDUFS2 Is Critical for Oocyte Quality During Postovulatory Aging in Pigs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:953-961. [PMID: 39226079 DOI: 10.1093/mam/ozae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The levels of nicotinamide adenine dinucleotide (NADH) dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2, a subunit of NADH dehydrogenase) decrease in aged tissues, and these reductions may be partly associated with age-related conditions such as Parkinson's disease. Aging leads to many mitochondrial defects, such as biogenesis disruption, dysfunction, defects in the mitochondrial membrane potential, and production of reactive oxygen species, that may be highly related to NDUFS2 expression. The relationship between NDUFS2 and postovulatory oocyte aging in pigs remains unknown. In this study, we investigated changes in NDUFS2 expression during postovulatory aging (POA). Furthermore, NDUFS2 was knocked down via dsRNA microinjection at the MII stage to evaluate the effects on mitochondrial-related processes during POA. The mRNA expression of NDUFS2 decreased significantly after 48-h aging compared with that in fresh oocytes. NDUFS2 knockdown (KD) significantly impaired the maintenance of oocyte morphology and blastocyst development of embryos after POA. The levels of PGC1α (mitochondrial biogenesis-related proteins) decreased significantly after NDUFS2 KD, while the level of GSNOR, a protein denitrosylase, was reduced by NDUFS2 KD after 48 h of aging. These data suggest that NDUFS2 is vital for maintaining the oocyte quality during POA in pigs.
Collapse
Affiliation(s)
- Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
- Centre for Embryology and Healthy Development, Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
12
|
Baumgardt SL, Fang J, Fu X, Liu Y, Xia Z, Zhao M, Chen L, Mishra R, Gunasekaran M, Saha P, Forbess JM, Bosnjak ZJ, Camara AKS, Kersten JR, Thorp EB, Kaushal S, Ge ZD. Genetic deletion or pharmacologic inhibition of histone deacetylase 6 protects the heart against ischaemia/reperfusion injury by limiting tumour necrosis factor alpha-induced mitochondrial injury in experimental diabetes. Cardiovasc Res 2024; 120:1456-1471. [PMID: 39001869 PMCID: PMC11472425 DOI: 10.1093/cvr/cvae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/01/2023] [Accepted: 04/06/2024] [Indexed: 07/15/2024] Open
Abstract
AIMS The histone deacetylase 6 (HDAC6) inhibitor, tubastatin A (TubA), reduces myocardial ischaemia/reperfusion injury (MIRI) in type 1 diabetic rats. It remains unclear whether HDAC6 regulates MIRI in type 2 diabetic animals. Diabetes augments the activity of HDAC6 and the generation of tumour necrosis factor alpha (TNF-α) and impairs mitochondrial complex I (mCI). Here, we examined how HDAC6 regulates TNF-α production, mCI activity, mitochondria, and cardiac function in type 1 and type 2 diabetic mice undergoing MIRI. METHODS AND RESULTS HDAC6 knockout, streptozotocin-induced type 1 diabetic, and obese type 2 diabetic db/db mice underwent MIRI in vivo or ex vivo in a Langendorff-perfused system. We found that MIRI and diabetes additively augmented myocardial HDAC6 activity and generation of TNF-α, along with cardiac mitochondrial fission, low bioactivity of mCI, and low production of adenosine triphosphate. Importantly, genetic disruption of HDAC6 or TubA decreased TNF-α levels, mitochondrial fission, and myocardial mitochondrial nicotinamide adenine dinucleotide levels in ischaemic/reperfused diabetic mice, concomitant with augmented mCI activity, decreased infarct size, and improved cardiac function. Moreover, HDAC6 knockout or TubA treatment decreased left ventricular dilation and improved cardiac systolic function 28 days after MIRI. H9c2 cardiomyocytes with and without HDAC6 knockdown were subjected to hypoxia/reoxygenation injury in the presence of high glucose. Hypoxia/reoxygenation augmented HDAC6 activity and TNF-α levels and decreased mCI activity. These negative effects were blocked by HDAC6 knockdown. CONCLUSION HDAC6 is an essential negative regulator of MIRI in diabetes. Genetic deletion or pharmacologic inhibition of HDAC6 protects the heart from MIRI by limiting TNF-α-induced mitochondrial injury in experimental diabetes.
Collapse
MESH Headings
- Animals
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/genetics
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/drug effects
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/drug therapy
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Histone Deacetylase 6/metabolism
- Histone Deacetylase 6/antagonists & inhibitors
- Histone Deacetylase 6/genetics
- Histone Deacetylase Inhibitors/pharmacology
- Mice, Knockout
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Mice, Inbred C57BL
- Hydroxamic Acids/pharmacology
- Mitochondrial Dynamics/drug effects
- Male
- Electron Transport Complex I/metabolism
- Electron Transport Complex I/genetics
- Isolated Heart Preparation
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Signal Transduction
- Mice
- Myocardial Infarction/enzymology
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Myocardial Infarction/prevention & control
- Myocardial Infarction/genetics
- Myocardial Infarction/physiopathology
- Ventricular Function, Left/drug effects
- Indoles
Collapse
Affiliation(s)
- Shelley L Baumgardt
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Xuebin Fu
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Yanan Liu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, The People’s Republic of China
| | - Ming Zhao
- The Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
| | - Ling Chen
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Rachana Mishra
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Muthukumar Gunasekaran
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Progyaparamita Saha
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Joseph M Forbess
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Judy R Kersten
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
| | - Sunjay Kaushal
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Eisermann J, Liang Y, Wright JJ, Clifford E, Wilton-Ely JDET, Kuimova MK, Roessler MM. The Effect of Reactive Oxygen Species on Respiratory Complex I Activity in Liposomes. Chemistry 2024; 30:e202402035. [PMID: 39058376 DOI: 10.1002/chem.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Respiratory complex I (R-CI) is an essential enzyme in the mitochondrial electron transport chain but also a major source of reactive oxygen species (ROS), which are implicated in neurodegenerative diseases and ageing. While the mechanism of ROS production by R-CI is well-established, the feedback of ROS on R-CI activity is poorly understood. Here, we perform EPR spectroscopy on R-CI incorporated in artificial membrane vesicles to reveal that ROS (particularly hydroxyl radicals) reduce R-CI activity by making the membrane more polar and by increasing its hydrogen bonding capability. Moreover, the mechanism that we have uncovered reveals that the feedback of ROS on R-CI activity via the membrane is transient and not permanent; lipid peroxidation is negligible for the levels of ROS generated under these conditions. Our successful use of modular proteoliposome systems in conjunction with EPR spectroscopy and other biophysical techniques is a powerful approach for investigating ROS effects on other membrane proteins.
Collapse
Affiliation(s)
- Jana Eisermann
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
- Department of Chemistry, University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Yuxin Liang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Eleanor Clifford
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
14
|
Ji YW, Wen XY, Tang HP, Jin ZS, Su WT, Zhou L, Xia ZY, Xia ZY, Lei SQ. DJ-1: Potential target for treatment of myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 179:117383. [PMID: 39232383 DOI: 10.1016/j.biopha.2024.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Ischemic heart disease (IHD) is a significant global health concern, resulting in high rates of mortality and disability among patients. Although coronary blood flow reperfusion is a key treatment for IHD, it often leads to acute myocardial ischemia-reperfusion injury (IRI). Current intervention strategies have limitations in providing adequate protection for the ischemic myocardium. DJ-1, originally known as a Parkinson's disease related protein, is a highly conserved cytoprotective protein. It is involved in enhancing mitochondrial function, scavenging reactive oxygen species (ROS), regulating autophagy, inhibiting apoptosis, modulating anaerobic metabolism, and exerting anti-inflammatory effects. DJ-1 is also required for protective strategies, such as ischemic preconditioning, ischemic postconditioning, remote ischemic preconditioning and pharmacological conditioning. Therefore, DJ-1 emerges as a potential target for the treatment of myocardial IRI. Our comprehensive review delves into its protective mechanisms in myocardial IRI and the structural foundations underlying its functions.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen-Shuai Jin
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Zhou H, Ji Y, Li J, Sun L. The study on the role of O-GlcNAcylation of SIRT3 in regulating mitochondrial oxidative stress during simulate myocardial ischemia-reperfusion. Sci Rep 2024; 14:21201. [PMID: 39261577 PMCID: PMC11390985 DOI: 10.1038/s41598-024-72324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant complication following reperfusion therapy after myocardial infarction. Mitochondrial oxidative stress is a critical factor in MIRI, and Sirtuin 3 (SIRT3), as a major mitochondrial deacetylase, plays a key protective role, with its activity potentially regulated by O-GlcNAcylation. This study used the H9C2 cell line to establish a simulated ischemia/reperfusion (SI/R) model, we utilized co-immunoprecipitated to validate the relationship between O-GlcNAc transferase (OGT) and SIRT3, demonstrated SIRT3 O-GlcNAcylation sites through LC-MS/MS, and performed site mutations using CRISPR/Cas9 technology. The results were validated using immunoblotting. SIRT3 and superoxide dismutase 2 (SOD2) activities were detected using a fluorometric assay, while mitochondrial reactive oxygen species (MROS) levels and cellular apoptosis were assessed using immunofluorescence. We have identified an interaction between SIRT3 and OGT, where SIRT3 undergoes dynamic O-GlcNAcylation at the S190 site, facilitating SIRT3 deacetylase activity. During SI/R, elevated levels of O-GlcNAcylation activate SOD2 by promoting SIRT3 enzyme activity, thereby inhibiting excessive MROS production. This significantly mitigates the occurrence of malignant autophagy in myocardial cells during reperfusion, promoting their survival. Conversely, blocking SIRT3 O-GlcNAcylation at the S190 site exacerbates SI/R injury. We demonstrate that O-GlcNAcylation is a crucial post-translational modification (PTM) of SIRT3 during SI/R, shedding light on a promising mechanism for future therapeutic approaches.
Collapse
Affiliation(s)
- Han Zhou
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingjie Ji
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjie Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Lin Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
16
|
Zhang Y, Jiang M, Wang T. Reactive oxygen species (ROS)-responsive biomaterials for treating myocardial ischemia-reperfusion injury. Front Bioeng Biotechnol 2024; 12:1469393. [PMID: 39286345 PMCID: PMC11402825 DOI: 10.3389/fbioe.2024.1469393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a critical issue that arises when restoring blood flow after an ischemic event in the heart. Excessive reactive oxygen species (ROS) production during this process exacerbates cellular damage and impairs cardiac function. Recent therapeutic strategies have focused on leveraging the ROS microenvironment to design targeted drug delivery systems. ROS-responsive biomaterials have emerged as promising candidates, offering enhanced therapeutic efficacy with reduced systemic adverse effects. This review examines the mechanisms of ROS overproduction during myocardial ischemia-reperfusion and summarizes significant advancements in ROS-responsive biomaterials for MIRI treatment. We discuss various chemical strategies to impart ROS sensitivity to these materials, emphasizing ROS-induced solubility switches and degradation mechanisms. Additionally, we highlight various ROS-responsive therapeutic platforms, such as nanoparticles and hydrogels, and their unique advantages in drug delivery for MIRI. Preclinical studies demonstrating the efficacy of these materials in mitigating MIRI in animal models are reviewed, alongside their mechanisms of action and potential clinical implications. We also address the challenges and future prospects of translating these state of the art biomaterial-based therapeutics into clinical practice to improve MIRI management and cardiac outcomes. This review will provide valuable insights for researchers and clinicians working on novel therapeutic strategies for MIRI intervention.
Collapse
Affiliation(s)
- Ying Zhang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mantang Jiang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Ramos PM, Wohlgemuth SE, Gingerich CA, Hawryluk B, Smith MT, Bell LC, Scheffler TL. Postmortem mitochondria function in longissimus lumborum of Angus and Brahman steers. Meat Sci 2024; 215:109538. [PMID: 38772311 DOI: 10.1016/j.meatsci.2024.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Mitochondria function and integrity may impact postmortem metabolism and meat quality development. Adaptations in heat tolerant Brahman may persist to limit cellular stress postmortem. Our objective was to evaluate glycolysis, pH decline, and mitochondria function in longissimus lumborum (LL) from Angus and Brahman steers (N = 28) early postmortem (1 to 6 h) and after rigor (24 h). We evaluated metabolites of anaerobic glycolysis, ATP, pH, and temperature, and determined mitochondria oxygen consumption rate (OCR) in permeabilized fibers. The main effects of breed (b) and time (t) and the interaction were tested. Brahman LL contained greater ATP during the first 6 h postmortem; Brahman also tended to exhibit a slower pH decline (b × t, P = 0.07) and more rapid temperature decline (b × t, P < 0.001), but metabolites of anaerobic glycolysis were not different. Mitochondria in Brahman and Angus LL were well-coupled and respired at 1 h postmortem. However, outer membrane integrity became increasingly compromised postmortem (t, P < 0.001). Brahman tended to exhibit greater electron transport system capacity (b, P < 0.1) and had greater capacity for oxidative phosphorylation (complex I and II substrates) at 6 h compared with Angus (P < 0.001). In totality, greater ATP, slower pH decline, and enhanced mitochondria capacity indicate that Brahman possess mitochondrial properties or cellular adaptations that help protect the cell during energy stress postmortem. Slower pH and more rapid temperature decline in LL from Brahman may also help preserve mitochondria function postmortem.
Collapse
Affiliation(s)
- Patricia M Ramos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Stephanie E Wohlgemuth
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32603, United States of America
| | - Chloe A Gingerich
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Briana Hawryluk
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Morgan T Smith
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Lindsey C Bell
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America.
| |
Collapse
|
18
|
Feng M, Zhang L, Yin A, Zhang H, Wu X, Qian L. Peptide PDRPS6 attenuates myocardial ischemia injury by improving mitochondrial function. Eur J Pharmacol 2024; 974:176570. [PMID: 38688398 DOI: 10.1016/j.ejphar.2024.176570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
Mitochondrial dynamics play a crucial role in myocardial ischemia-reperfusion (I/R) injury, where an imbalance between fusion and fission processes occurs. However, effective measures to regulate mitochondrial dynamics in this context are currently lacking. Peptide derived from the 40 S ribosomal protein S6 (PDRPS6), a peptide identified via peptidomics, is associated with hypoxic stress. This study aimed to investigate the function and mechanism of action of PDRPS6 in I/R injury. In vivo, PDRPS6 ameliorated myocardial tissue injury and cardiomyocyte apoptosis and decreased cardiac function induced by I/R injury in rats. PDRPS6 supplementation significantly reduced apoptosis in vitro. Mechanistically, PDRPS6 improved mitochondrial function by decreasing reactive oxygen species (ROS) levels, maintaining mitochondrial membrane potential (MMP), and inhibiting mitochondrial fission. Pull-down assay analyses revealed that phosphoglycerate mutase 5 (PGAM5) may be the target of PDRPS6, which can lead to the dephosphorylation of dynamin-related protein1 (Drp1) at ser616 site. Overexpression of PGAM5 partially eliminated the effect of PDRPS6 on improving mitochondrial function. These findings suggest that PDRPS6 supplementation is a novel method for treating myocardial injuries caused by I/R.
Collapse
Affiliation(s)
- Mengwen Feng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China; Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Li Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Anwen Yin
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Han Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Xueping Wu
- Department of Anatomy, Histology and Embryology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, Pudding New District, Shanghai, 201318, China.
| | - Lingmei Qian
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
19
|
Le QA, Trinh TN, Luong PK, Anh VTV, Tran HN, Kim JC, Woo SH. The NADPH oxidase inhibitor diphenyleneiodonium suppresses Ca 2+ signaling and contraction in rat cardiac myocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:335-344. [PMID: 38926841 PMCID: PMC11211754 DOI: 10.4196/kjpp.2024.28.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
Diphenyleneiodonium (DPI) has been widely used as an inhibitor of NADPH oxidase (Nox) to discover its function in cardiac myocytes under various stimuli. However, the effects of DPI itself on Ca2+ signaling and contraction in cardiac myocytes under control conditions have not been understood. We investigated the effects of DPI on contraction and Ca2+ signaling and their underlying mechanisms using video edge detection, confocal imaging, and whole-cell patch clamp technique in isolated rat cardiac myocytes. Application of DPI suppressed cell shortenings in a concentration-dependent manner (IC50 of ≅0.17 µM) with a maximal inhibition of ~70% at ~100 µM. DPI decreased the magnitude of Ca2+ transient and sarcoplasmic reticulum Ca2+ content by 20%-30% at 3 µM that is usually used to remove the Nox activity, with no effect on fractional release. There was no significant change in the half-decay time of Ca2+ transients by DPI. The L-type Ca2+ current (ICa) was decreased concentration-dependently by DPI (IC50 of ≅40.3 µM) with ≅13.1%-inhibition at 3 µM. The frequency of Ca2+ sparks was reduced by 3 µM DPI (by ~25%), which was resistant to a brief removal of external Ca2+ and Na+. Mitochondrial superoxide level was reduced by DPI at 3-100 µM. Our data suggest that DPI may suppress L-type Ca2+ channel and RyR, thereby attenuating Ca2+-induced Ca2+ release and contractility in cardiac myocytes, and that such DPI effects may be related to mitochondrial metabolic suppression.
Collapse
Affiliation(s)
- Qui Anh Le
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Tran Nguyet Trinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Phuong Kim Luong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Vu Thi Van Anh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Ha Nam Tran
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Joon-Chul Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Nexel Co. Ltd., Seoul 07802, Korea
| | - Sun-Hee Woo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
20
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Strazdauskas A, Trumbeckaite S, Jakstas V, Dambrauskiene J, Mieldazyte A, Klimkaitis K, Baniene R. In Vitro Hypoxia/Reoxygenation Induces Mitochondrial Cardiolipin Remodeling in Human Kidney Cells. Int J Mol Sci 2024; 25:6223. [PMID: 38892409 PMCID: PMC11172718 DOI: 10.3390/ijms25116223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Renal ischemia/reperfusion is a serious condition that not only causes acute kidney injury, a severe clinical syndrome with high mortality, but is also an inevitable part of kidney transplantation or other kidney surgeries. Alterations of oxygen levels during ischemia/reperfusion, namely hypoxia/reoxygenation, disrupt mitochondrial metabolism and induce structural changes that lead to cell death. A signature mitochondrial phospholipid, cardiolipin, with many vital roles in mitochondrial homeostasis, is one of the key players in hypoxia/reoxygenation-induced mitochondrial damage. In this study, we analyze the effect of hypoxia/reoxygenation on human renal proximal tubule epithelial cell (RPTEC) cardiolipins, as well as their metabolism and mitochondrial functions. RPTEC cells were placed in a hypoxic chamber with a 2% oxygen atmosphere for 24 h to induce hypoxia; then, they were replaced back into regular growth conditions for 24 h of reoxygenation. Surprisingly, after 24 h, hypoxia cardiolipin levels substantially increased and remained higher than control levels after 24 h of reoxygenation. This was explained by significantly elevated levels of cardiolipin synthase and lysocardiolipin acyltransferase 1 (LCLAT1) gene expression and protein levels. Meanwhile, hypoxia/reoxygenation decreased ADP-dependent mitochondrial respiration rates and oxidative phosphorylation capacity and increased reactive oxygen species generation. Our findings suggest that hypoxia/reoxygenation induces cardiolipin remodeling in response to reduced mitochondrial oxidative phosphorylation in a way that protects mitochondrial function.
Collapse
Affiliation(s)
- Arvydas Strazdauskas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (A.S.); (S.T.)
- Department of Biochemistry, Faculty of Medicine, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50161 Kaunas, Lithuania
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (A.S.); (S.T.)
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| | - Valdas Jakstas
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| | - Justina Dambrauskiene
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Ausra Mieldazyte
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (A.M.); (K.K.)
| | - Kristupas Klimkaitis
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (A.M.); (K.K.)
| | - Rasa Baniene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (A.S.); (S.T.)
- Department of Biochemistry, Faculty of Medicine, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50161 Kaunas, Lithuania
| |
Collapse
|
22
|
Stein CS, Zhang X, Witmer NH, Pennington ER, Shaikh SR, Boudreau RL. Mitoregulin supports mitochondrial membrane integrity and protects against cardiac ischemia-reperfusion injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596875. [PMID: 38853979 PMCID: PMC11160723 DOI: 10.1101/2024.05.31.596875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
We and others discovered a highly-conserved mitochondrial transmembrane microprotein, named Mitoregulin (Mtln), that supports lipid metabolism. We reported that Mtln strongly binds cardiolipin (CL), increases mitochondrial respiration and Ca 2+ retention capacities, and reduces reactive oxygen species (ROS). Here we extend our observation of Mtln-CL binding and examine Mtln influence on cristae structure and mitochondrial membrane integrity during stress. We demonstrate that mitochondria from constitutive- and inducible Mtln-knockout (KO) mice are susceptible to membrane freeze-damage and that this can be rescued by acute Mtln re-expression. In mitochondrial-simulated lipid monolayers, we show that synthetic Mtln decreases lipid packing and monolayer elasticity. Lipidomics revealed that Mtln-KO heart tissues show broad decreases in 22:6-containing lipids and increased cardiolipin damage/remodeling. Lastly, we demonstrate that Mtln-KO mice suffer worse myocardial ischemia-reperfusion injury, hinting at a translationally-relevant role for Mtln in cardioprotection. Our work supports a model in which Mtln binds cardiolipin and stabilizes mitochondrial membranes to broadly influence diverse mitochondrial functions, including lipid metabolism, while also protecting against stress.
Collapse
|
23
|
Hao Y, Fan Y, Feng J, Zhu Z, Luo Z, Hu H, Li W, Yang H, Ding G. ALCAT1-mediated abnormal cardiolipin remodelling promotes mitochondrial injury in podocytes in diabetic kidney disease. Cell Commun Signal 2024; 22:26. [PMID: 38200543 PMCID: PMC10777643 DOI: 10.1186/s12964-023-01399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cardiolipin (CL) plays a critical role in maintaining mitochondrial membrane integrity and overall mitochondrial homeostasis. Recent studies have suggested that mitochondrial damage resulting from abnormal cardiolipin remodelling is associated with the pathogenesis of diabetic kidney disease (DKD). Acyl-coenzyme A:lyso-cardiolipin acyltransferase-1 (ALCAT1) was confirmed to be involved in the progression of Parkinson's disease, diet-induced obesity and other ageing-related diseases by regulating pathological cardiolipin remodelling. Thus, the purpose of this investigation was to determine the role of ALCAT1-mediated CL remodelling in DKD and to explore the potential underlying mechanism. METHODS In vivo study, the mitochondrial structure was examined by transmission electron microscopy (TEM). The colocalization of ALCAT1 and synaptopodin was evaluated by double immunolabelling. Western blotting (WB) was performed to assess ALCAT1 expression in glomeruli. Lipidomics analysis was conducted to evaluate the composition of reconstructed cardiolipins. In vitro study, the lipidomics, TEM and WB analyses were similar to those in vivo. Mitochondrial function was evaluated by measuring the mitochondrial membrane potential (MMP) and the production of ATP and ROS. RESULTS Here, we showed that increased oxidized cardiolipin (ox-CL) and significant mitochondrial damage were accompanied by increased ALCAT1 expression in the glomeruli of patients with DKD. Similar results were found in db/db mouse kidneys and in cultured podocytes stimulated with high glucose (HG). ALCAT1 deficiency effectively prevented HG-induced ox-CL production and mitochondrial damage in podocytes. In contrast, ALCAT1 upregulation enhanced ox-CL levels and podocyte mitochondrial dysfunction. Moreover, treatment with the cardiolipin antioxidant SS-31 markedly inhibited mitochondrial dysfunction and cell injury, and SS-31 treatment partly reversed the damage mediated by ALCAT1 overexpression. We further found that ALCAT1 could mediate the key regulators of mitochondrial dynamics and mitophagy through the AMPK pathway. CONCLUSIONS Collectively, our studies demonstrated that ALCAT1-mediated cardiolipin remodelling played a crucial role in DKD, which might provide new insights for DKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Weiwei Li
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Hongxia Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
| |
Collapse
|
24
|
Li X, Han Y, Meng Y, Yin L. Small RNA-big impact: exosomal miRNAs in mitochondrial dysfunction in various diseases. RNA Biol 2024; 21:1-20. [PMID: 38174992 PMCID: PMC10773649 DOI: 10.1080/15476286.2023.2293343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/21/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondria are multitasking organelles involved in maintaining the cell homoeostasis. Beyond its well-established role in cellular bioenergetics, mitochondria also function as signal organelles to propagate various cellular outcomes. However, mitochondria have a self-destructive arsenal of factors driving the development of diseases caused by mitochondrial dysfunction. Extracellular vesicles (EVs), a heterogeneous group of membranous nano-sized vesicles, are present in a variety of bodily fluids. EVs serve as mediators for intercellular interaction. Exosomes are a class of small EVs (30-100 nm) released by most cells. Exosomes carry various cargo including microRNAs (miRNAs), a class of short noncoding RNAs. Recent studies have closely associated exosomal miRNAs with various human diseases, including diseases caused by mitochondrial dysfunction, which are a group of complex multifactorial diseases and have not been comprehensively described. In this review, we first briefly introduce the characteristics of EVs. Then, we focus on possible mechanisms regarding exosome-mitochondria interaction through integrating signalling networks. Moreover, we summarize recent advances in the knowledge of the role of exosomal miRNAs in various diseases, describing how mitochondria are changed in disease status. Finally, we propose future research directions to provide a novel therapeutic strategy that could slow the disease progress mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaqing Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People’s Hospital), Jinan University, Heyuan, China
| | - Yi Han
- Traditional Chinese Medicine Department, People’s Hospital of Yanjiang District, Ziyang, Sichuan, China
| | - Yu Meng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People’s Hospital), Jinan University, Heyuan, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Haqqani AS, Mianoor Z, Star AT, Detcheverry FE, Delaney CE, Stanimirovic DB, Hamel E, Badhwar A. Proteome Profiling of Brain Vessels in a Mouse Model of Cerebrovascular Pathology. BIOLOGY 2023; 12:1500. [PMID: 38132326 PMCID: PMC10740654 DOI: 10.3390/biology12121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Cerebrovascular pathology that involves altered protein levels (or signaling) of the transforming growth factor beta (TGFβ) family has been associated with various forms of age-related dementias, including Alzheimer disease (AD) and vascular cognitive impairment and dementia (VCID). Transgenic mice overexpressing TGFβ1 in the brain (TGF mice) recapitulate VCID-associated cerebrovascular pathology and develop cognitive deficits in old age or when submitted to comorbid cardiovascular risk factors for dementia. We characterized the cerebrovascular proteome of TGF mice using mass spectrometry (MS)-based quantitative proteomics. Cerebral arteries were surgically removed from 6-month-old-TGF and wild-type mice, and proteins were extracted and analyzed by gel-free nanoLC-MS/MS. We identified 3602 proteins in brain vessels, with 20 demonstrating significantly altered levels in TGF mice. For total and/or differentially expressed proteins (p ≤ 0.01, ≥ 2-fold change), using multiple databases, we (a) performed protein characterization, (b) demonstrated the presence of their RNA transcripts in both mouse and human cerebrovascular cells, and (c) demonstrated that several of these proteins were present in human extracellular vesicles (EVs) circulating in blood. Finally, using human plasma, we demonstrated the presence of several of these proteins in plasma and plasma EVs. Dysregulated proteins point to perturbed brain vessel vasomotricity, remodeling, and inflammation. Given that blood-isolated EVs are novel, attractive, and a minimally invasive biomarker discovery platform for age-related dementias, several proteins identified in this study can potentially serve as VCID markers in humans.
Collapse
Affiliation(s)
- Arsalan S. Haqqani
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada; (A.S.H.); (A.T.S.); (C.E.D.); (D.B.S.)
| | - Zainab Mianoor
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Laboratory, 4545 Chemin Queen Mary, Montreal, QC H3W 1W4, Canada; (Z.M.); (F.E.D.)
- Département de Pharmacologie et Physiologie, Institut de Génie Biomédical, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie (CRIUGM), 4545 Chemin Queen Mary, Montreal, QC H3W 1W4, Canada
| | - Alexandra T. Star
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada; (A.S.H.); (A.T.S.); (C.E.D.); (D.B.S.)
| | - Flavie E. Detcheverry
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Laboratory, 4545 Chemin Queen Mary, Montreal, QC H3W 1W4, Canada; (Z.M.); (F.E.D.)
- Département de Pharmacologie et Physiologie, Institut de Génie Biomédical, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie (CRIUGM), 4545 Chemin Queen Mary, Montreal, QC H3W 1W4, Canada
| | - Christie E. Delaney
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada; (A.S.H.); (A.T.S.); (C.E.D.); (D.B.S.)
| | - Danica B. Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada; (A.S.H.); (A.T.S.); (C.E.D.); (D.B.S.)
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada;
| | - AmanPreet Badhwar
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada; (A.S.H.); (A.T.S.); (C.E.D.); (D.B.S.)
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Laboratory, 4545 Chemin Queen Mary, Montreal, QC H3W 1W4, Canada; (Z.M.); (F.E.D.)
- Département de Pharmacologie et Physiologie, Institut de Génie Biomédical, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie (CRIUGM), 4545 Chemin Queen Mary, Montreal, QC H3W 1W4, Canada
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada;
| |
Collapse
|
26
|
Corradi F, Masini G, Bucciarelli T, De Caterina R. Iron deficiency in myocardial ischaemia: molecular mechanisms and therapeutic perspectives. Cardiovasc Res 2023; 119:2405-2420. [PMID: 37722377 DOI: 10.1093/cvr/cvad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 09/20/2023] Open
Abstract
Systemic iron deficiency (SID), even in the absence of anaemia, worsens the prognosis and increases mortality in heart failure (HF). Recent clinical-epidemiological studies, however, have shown that a myocardial iron deficiency (MID) is frequently present in cases of severe HF, even in the absence of SID and without anaemia. In addition, experimental studies have shown a poor correlation between the state of systemic and myocardial iron. MID in animal models leads to severe mitochondrial dysfunction, alterations of mitophagy, and mitochondrial biogenesis, with profound alterations in cardiac mechanics and the occurrence of a fatal cardiomyopathy, all effects prevented by intravenous administration of iron. This shifts the focus to the myocardial state of iron, in the absence of anaemia, as an important factor in prognostic worsening and mortality in HF. There is now epidemiological evidence that SID worsens prognosis and mortality also in patients with acute and chronic coronary heart disease and experimental evidence that MID aggravates acute myocardial ischaemia as well as post-ischaemic remodelling. Intravenous administration of ferric carboxymaltose (FCM) or ferric dextrane improves post-ischaemic adverse remodelling. We here review such evidence, propose that MID worsens ischaemia/reperfusion injury, and discuss possible molecular mechanisms, such as chronic hyperactivation of HIF1-α, exacerbation of cytosolic and mitochondrial calcium overload, amplified increase of mitochondrial [NADH]/[NAD+] ratio, and depletion of energy status and NAD+ content with inhibition of sirtuin 1-3 activity. Such evidence now portrays iron metabolism as a core factor not only in HF but also in myocardial ischaemia.
Collapse
Affiliation(s)
- Francesco Corradi
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Gabriele Masini
- Chair and Postgraduate School of Cardiology, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Tonino Bucciarelli
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Raffaele De Caterina
- Chair and Postgraduate School of Cardiology, University of Pisa, Via Savi 10, 56126, Pisa, Italy
- Fondazione VillaSerena per la Ricerca, Viale L. Petruzzi 42, 65013, Città Sant'Angelo, Pescara, Italy
| |
Collapse
|
27
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
28
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
29
|
Zhang J, Liu L, Dong Z, Lu X, Hong W, Liu J, Zou X, Gao J, Jiang H, Sun X, Hu K, Yang Y, Ge J, Luo X, Sun A. An ischemic area-targeting, peroxynitrite-responsive, biomimetic carbon monoxide nanogenerator for preventing myocardial ischemia-reperfusion injury. Bioact Mater 2023; 28:480-494. [PMID: 37408796 PMCID: PMC10318466 DOI: 10.1016/j.bioactmat.2023.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
Myocardial ischemia-reperfusion (MI/R) injury is common in patients who undergo revascularization therapy for myocardial infarction, often leading to cardiac dysfunction. Carbon monoxide (CO) has emerged as a therapeutic molecule due to its beneficial properties such as anti-inflammatory, anti-apoptotic, and mitochondrial biogenesis-promoting properties. However, its clinical application is limited due to uncontrolled release, potential toxicity, and poor targeting efficiency. To address these limitations, a peroxynitrite (ONOO-)-triggered CO donor (PCOD585) is utilized to generate a poly (lactic-co-glycolic acid) (PLGA)-based, biomimetic CO nanogenerator (M/PCOD@PLGA) that is coated with the macrophage membrane, which could target to the ischemic area and neutralize proinflammatory cytokines. In the ischemic area, local produced ONOO- triggers the continuous release of CO from M/PCOD@PLGA, which efficiently ameliorates MI/R injury by clearing harmful ONOO-, attenuating the inflammatory response, inhibiting cardiomyocyte apoptosis, and promoting mitochondrial biogenesis. This study provides a novel insight into the safe therapeutic use of CO for MI/R injury by utilizing a novel CO donor combined with biomimetic technology. The M/PCOD@PLGA nanogenerator offers targeted delivery of CO to the ischemic area, minimizing potential toxicity and enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Jinyan Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Liwei Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Xicun Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenxuan Hong
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Jin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Xiaoyi Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Jinfeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| |
Collapse
|
30
|
Sánchez-Pérez P, Mata A, Torp MK, López-Bernardo E, Heiestad CM, Aronsen JM, Molina-Iracheta A, Jiménez-Borreguero LJ, García-Roves P, Costa ASH, Frezza C, Murphy MP, Stenslokken KO, Cadenas S. Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3. Free Radic Biol Med 2023; 205:244-261. [PMID: 37295539 DOI: 10.1016/j.freeradbiomed.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3-KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3-KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3-KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3-KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3-KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury.
Collapse
Affiliation(s)
- Patricia Sánchez-Pérez
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Ana Mata
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - May-Kristin Torp
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Elia López-Bernardo
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Christina M Heiestad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Jan Magnus Aronsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway; Bjørknes College, 0456, Oslo, Norway
| | | | - Luis J Jiménez-Borreguero
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain; Servicio de Cardiología, Hospital Universitario de La Princesa, 28006, Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pablo García-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain; Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Center, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Center, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | - Kåre-Olav Stenslokken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| |
Collapse
|
31
|
Li X, Ou W, Xie M, Yang J, Li Q, Li T. Nanomedicine-Based Therapeutics for Myocardial Ischemic/Reperfusion Injury. Adv Healthc Mater 2023; 12:e2300161. [PMID: 36971662 PMCID: PMC11468948 DOI: 10.1002/adhm.202300161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Indexed: 03/29/2023]
Abstract
Myocardial ischemic/reperfusion (IR) injury is a global cardiovascular disease with high mortality and morbidity. Therapeutic interventions for myocardial ischemia involve restoring the occluded coronary artery. However, reactive oxygen species (ROS) inevitably impair the cardiomyocytes during the ischemic and reperfusion phases. Antioxidant therapy holds great promise against myocardial IR injury. The current therapeutic methodologies for ROS scavenging depend predominantly on administering antioxidants. Nevertheless, the intrinsic drawbacks of antioxidants limit their further clinical transformation. The use of nanoplatforms with versatile characteristics greatly benefits drug delivery in myocardial ischemic therapy. Nanoplatform-mediated drug delivery significantly improves drug bioavailability, increases therapeutic index, and reduces systemic toxicity. Nanoplatforms can be specifically and reasonably designed to enhance molecule accumulation at the myocardial site. The present review initially summarizes the mechanism of ROS generation during the process of myocardial ischemia. The understanding of this phenomenon will facilitate the advancement of innovative therapeutic strategies against myocardial IR injury. The latest developments in nanomedicine for treating myocardial ischemic injury are then discussed. Finally, the current challenges and perspectives in antioxidant therapy for myocardial IR injury are addressed.
Collapse
Affiliation(s)
- Xi Li
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
| | - Wei Ou
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
- Department of AnesthesiologyNanchong Central HospitalNanchong637000P. R. China
| | - Maodi Xie
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
| | - Jing Yang
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
| | - Qian Li
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
| | - Tao Li
- Department of AnesthesiologyLaboratory of Mitochondria and MetabolismNational Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengdu610041P. R. China
| |
Collapse
|
32
|
Li Z, Wang H, Zoungrana LI, James A, Slotabec L, Didik S, Fatmi MK, Krause-Hauch M, Lesnefsky EJ, Li J. Administration of metformin rescues age-related vulnerability to ischemic insults through mitochondrial energy metabolism. Biochem Biophys Res Commun 2023; 659:46-53. [PMID: 37031594 PMCID: PMC10190118 DOI: 10.1016/j.bbrc.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of death on a global scale. Despite significant advances in the reperfusion treatment of acute myocardial infarction, there is still a significant early mortality rate among the elderly, as angioplasty-achieved reperfusion can exacerbate myocardial damage, leading to severe ischemia/reperfusion (I/R) injury and induce fatal arrhythmias. Mitochondria are a key mediator of ischemic insults; a transient blockade of the electron transport chain (ETC) at complex I during reperfusion can reduce myocardial infarct caused by ischemic insults. The reversible, transient modulation of complex I during early reperfusion is limited by the available of clinically tractable agents. We employed the novel use of acute, high dose metformin to modulate complex I activity during early reperfusion to decrease cardiac injury in the high-risk aged heart. Young (3-6 months) and aged (22-24 months) male and female C57BL/6 J mice were subjected to in vivo regional ischemia for 45 min, followed by metformin (2 mM, i. v.) injection 5 min prior to reperfusion for 24 h. The cardiac functions were measured with echocardiography. A Seahorse XF24 Analyzer was used to ascertain mitochondrial function. Cardiomyocyte sarcomere shortening and calcium transients were measured using the IonOptix Calcium and Contractility System. The results demonstrated that administration of acute, high dose metformin at the onset of reperfusion significantly limited cardiac damage and rescued cardiac dysfunction caused by I/R in both young and aged mice. Importantly, metformin treatment improves contractile functions of isolated cardiomyocytes and maintains mitochondrial integrity under I/R stress conditions. Thus, acute metformin administration at the onset of reperfusion has potential as a mitochondrial-based therapeutic to mitigate reperfusion injury and reduce infarct size in the elderly heart attack patient who remains at greater mortality risk despite reperfusion alone.
Collapse
Affiliation(s)
- Zehui Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hao Wang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Linda Ines Zoungrana
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Adewale James
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Lily Slotabec
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Steven Didik
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mohammad Kasim Fatmi
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Meredith Krause-Hauch
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Edward J Lesnefsky
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Cardiology Section, Medical Service, Richmond Department of Veterans Affairs Medical Center, Richmond, VA, USA
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; James A. Haley Veterans' Hospital, Tampa, FL, USA.
| |
Collapse
|
33
|
Sequeira V, Waddingham MT, Tsuchimochi H, Maack C, Pearson JT. Mechano-energetic uncoupling in hypertrophic cardiomyopathy: Pathophysiological mechanisms and therapeutic opportunities. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100036. [PMID: 39801694 PMCID: PMC11708264 DOI: 10.1016/j.jmccpl.2023.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 01/16/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is a frequent inherited form of heart failure. The underlying cause of HCM is generally attributed to mutations in genes that encode for sarcomeric proteins, but the pathogenesis of the disease is also influenced by non-genetic factors, which can contribute to diastolic dysfunction and hypertrophic remodeling. Central to the pathogenesis of HCM is hypercontractility, a state that is an antecedent to several key derangements, including increased mitochondrial workload and oxidative stress. As a result, energy depletion and mechano-energetic uncoupling drive cardiac growth through signaling pathways such as ERK and/or potentially AMPK downregulation. Metabolic remodeling also occurs in HCM, characterized by decreased fatty acid oxidation and increased glucose uptake. In some instances, ketones may also feed the heart with energy and act as signaling molecules to reduce oxidative stress and hypertrophic signaling. In addition, arrhythmias are frequently triggered in HCM, resulting from the high Ca2+-buffering of the myofilaments and changes in the ATP/ADP ratio. Understanding the mechanisms driving the progression of HCM is critical to the development of effective therapeutic strategies. This paper presents evidence from both experimental and clinical studies that support the role of hypercontractility and cellular energy alterations in the progression of HCM towards heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Vasco Sequeira
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Mark T. Waddingham
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Christoph Maack
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
34
|
Zhang Q, Boundjou NB, Jia L, Wang X, Zhou L, Peisker H, Li Q, Guo L, Dörmann P, Lyu D, Zhou Y. Cytidine diphosphate diacylglycerol synthase is essential for mitochondrial structure and energy production in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:338-354. [PMID: 36789486 DOI: 10.1111/tpj.16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 05/10/2023]
Abstract
Cytidine diphosphate diacylglycerol (CDP-DAG), an important intermediate for glycerolipid biosynthesis, is synthesized under the catalytic activity of CDP-DAG synthase (CDS) to produce anionic phosphoglycerolipids such as phosphatidylglycerol (PG) and cardiolipin (CL). Previous studies showed that Arabidopsis CDSs are encoded by a small gene family, termed CDS1-CDS5, the members of which are integral membrane proteins in endoplasmic reticulum (ER) and in plastids. However, the details on how CDP-DAG is provided for mitochondrial membrane-specific phosphoglycerolipids are missing. Here we present the identification of a mitochondrion-specific CDS, designated CDS6. Enzymatic activity of CDS6 was demonstrated by the complementation of CL synthesis in the yeast CDS-deficient tam41Δ mutant. The Arabidopsis cds6 mutant lacking CDS6 activity showed decreased mitochondrial PG and CL biosynthesis capacity, a severe growth deficiency finally leading to plant death. These defects were rescued partly by complementation with CDS6 or supplementation with PG and CL. The ultrastructure of mitochondria in cds6 was abnormal, missing the structures of cristae. The degradation of triacylglycerol (TAG) in lipid droplets and starch in chloroplasts in the cds6 mutant was impaired. The expression of most differentially expressed genes involved in the mitochondrial electron transport chain was upregulated, suggesting an energy-demanding stage in cds6. Furthermore, the contents of polar glycerolipids in cds6 were dramatically altered. In addition, cds6 seedlings lost the capacity for cell proliferation and showed a higher oxidase activity. Thus, CDS6 is indispensable for the biosynthesis of PG and CL in mitochondria, which is critical for establishing mitochondrial structure, TAG degradation, energy production and seedling development.
Collapse
Affiliation(s)
- Qiyue Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| | | | - Lijun Jia
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| | - Xinliang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Ling Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Helga Peisker
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, 53115, Germany
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, 53115, Germany
| | - Dianqiu Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| | - Yonghong Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| |
Collapse
|
35
|
Sokolova IM. Ectotherm mitochondrial economy and responses to global warming. Acta Physiol (Oxf) 2023; 237:e13950. [PMID: 36790303 DOI: 10.1111/apha.13950] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Temperature is a key abiotic factor affecting ecology, biogeography, and evolution of species. Alterations of energy metabolism play an important role in adaptations and plastic responses to temperature shifts on different time scales. Mitochondrial metabolism affects cellular bioenergetics and redox balance making these organelles an important determinant of organismal performances such as growth, locomotion, or development. Here I analyze the impacts of environmental temperature on the mitochondrial functions (including oxidative phosphorylation, proton leak, production of reactive oxygen species(ROS), and ATP synthesis) of ectotherms and discuss the mechanisms underlying negative shifts in the mitochondrial energy economy caused by supraoptimal temperatures. Owing to the differences in the thermal sensitivity of different mitochondrial processes, elevated temperatures (beyond the species- and population-specific optimal range) cause reallocation of the electron flux and the protonmotive force (Δp) in a way that decreases ATP synthesis efficiency, elevates the relative cost of the mitochondrial maintenance, causes excessive production of ROS and raises energy cost for antioxidant defense. These shifts in the mitochondrial energy economy might have negative consequences for the organismal fitness traits such as the thermal tolerance or growth. Correlation between the thermal sensitivity indices of the mitochondria and the whole organism indicate that these traits experience similar selective pressures but further investigations are needed to establish whether there is a cause-effect relationship between the mitochondrial failure and loss of organismal performance during temperature change.
Collapse
Affiliation(s)
- Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
36
|
Abdul-Rahman T, Dunham A, Huang H, Bukhari SMA, Mehta A, Awuah WA, Ede-Imafidon D, Cantu-Herrera E, Talukder S, Joshi A, Sundlof DW, Gupta R. Chemotherapy Induced Cardiotoxicity: A State of the Art Review on General Mechanisms, Prevention, Treatment and Recent Advances in Novel Therapeutics. Curr Probl Cardiol 2023; 48:101591. [PMID: 36621516 DOI: 10.1016/j.cpcardiol.2023.101591] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
As medicine advances to employ sophisticated anticancer agents to treat a vast array of oncological conditions, it is worth considering side effects associated with several chemotherapeutics. One adverse effect observed with several classes of chemotherapy agents is cardiotoxicity which leads to reduced ejection fraction (EF), cardiac arrhythmias, hypertension and Ischemia/myocardial infarction that can significantly impact the quality of life and patient outcomes. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review comprehensively describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring possible mechanisms for cardiotoxicity observed with anticancer agents could provide valuable insight into susceptibility for developing symptoms and management guidelines. Chemotherapeutics are associated with several side effects. Several classes of chemotherapy agents cause cardiotoxicity leading to a reduced ejection fraction (EF), cardiac arrhythmias, hypertension, and Ischemia/myocardial infarction. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload, and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring mechanisms for cardiotoxicity observed with anticancer agents could provide insight that will guide management.
Collapse
Affiliation(s)
| | - Alden Dunham
- University of South Florida Morsani College of Medicine, FL
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | | | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Wireko A Awuah
- Sumy State University, Toufik's World Medical Association, Ukraine
| | | | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, México
| | | | - Amogh Joshi
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Deborah W Sundlof
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA.
| | | |
Collapse
|
37
|
Zhao DC, Zhang HY, Guo Y, Tang H, Li Y, Zhang LY. Effect of SAM junctional tourniquet on respiration when applied in the axilla: A swine model. Chin J Traumatol 2023:S1008-1275(23)00022-6. [PMID: 37055266 DOI: 10.1016/j.cjtee.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 04/15/2023] Open
Abstract
PURPOSE SAM junctional tourniquet (SJT) has been applied to control junctional hemorrhage. However, there is limited information about its safety and efficacy when applied in the axilla. This study aims to investigate the effect of SJT on respiration when used in the axilla in a swine model. METHODS Eighteen male Yorkshire swine, aged 6 month old and weighing 55-72 kg, were randomized into three groups, with 6 in each. An axillary hemorrhage model was established by cutting a 2 mm transverse incision in the axillary artery. Hemorrhagic shock was induced by exsanguinating through the left carotid artery to achieve a controlled volume reduction of 30% of total blood volume. Vascular blocking bands were used to temporarily control axillary hemorrhage before SJT was applied. In Group I, the swine spontaneously breathed, while SJT was applied for 2 h with a pressure of 210 mmHg. In Group II, the swine were mechanically ventilated, and SJT was applied for the same duration and pressure as Group I. In Group III, the swine spontaneously breathed, but the axillary hemorrhage was controlled using vascular blocking bands without SJT compression. The amount of free blood loss was calculated in the axillary wound during the 2 h of hemostasis by SJT application or vascular blocking bands. After then, a temporary vascular shunt was performed in the three groups to achieve resuscitation. Pathophysiologic state of each swine was monitored for 1 h with an infusion of 400 mL of autologous whole blood and 500 mL of lactated ringer solution. Tb and T0 represent the time points before and immediate after the 30% volume-controlled hemorrhagic shock, respectively. T30, T60, T90 and T120, denote 30, 60, 90, and 120 min after T0 (hemostasis period), while T150, and T180 denote 150 and 180 min after T0 (resuscitation period). The mean arterial pressure and heart rate were monitored through the right carotid artery catheter. Blood samples were collected at each time point for the analysis of blood gas, complete cell count, serum chemistry, standard coagulation tests, etc., and thromboelastography was conducted subsequently. Movement of the left hemidiaphragm was measured by ultrasonography at Tb and T0 to assess respiration. Data were presented as mean ± standard deviation and analyzed using repeated measures of two-way analysis of variance with pairwise comparisons adjusted using the Bonferroni method. All statistical analyses were processed using GraphPad Prism software. RESULTS Compared to Tb, a statistically significant increase in the left hemidiaphragm movement at T0 was observed in Groups I and II (both p < 0.001). In Group III, the left hemidiaphragm movement remained unchanged (p = 0.660). Compared to Group I, mechanical ventilation in Group II significantly alleviated the effect of SJT application on the left hemidiaphragm movement (p < 0.001). Blood pressure and heart rate rapidly increased at T0 in all three groups. Respiratory arrest suddenly occurred in Group I after T120, which required immediate manual respiratory assistance. PaO2 in Group I decreased significantly at T120, accompanied by an increase in PaCO2 (both p < 0.001 vs. Groups II and III). Other biochemical metabolic changes were similar among groups. However, in all three groups, lactate and potassium increased immediately after 1 min of resuscitation concurrent with a drop in pH. The swine in Group I exhibited the most severe hyperkalemia and metabolic acidosis. The coagulation function test did not show statistically significant differences among three groups at any time point. However, D-dimer levels showed a more than 16-fold increase from T120 to T180 in all groups. CONCLUSION In the swine model, SJT is effective in controlling axillary hemorrhage during both spontaneous breathing and mechanical ventilation. Mechanical ventilation is found to alleviate the restrictive effect of SJT on thoracic movement without affecting hemostatic efficiency. Therefore, mechanical ventilation could be necessary before SJT removal.
Collapse
Affiliation(s)
- Dong-Chu Zhao
- Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Hua-Yu Zhang
- Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Yong Guo
- Department of Emergency Medicine, Third Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Hao Tang
- Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Yang Li
- Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Lian-Yang Zhang
- Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China.
| |
Collapse
|
38
|
Baumgardt SL, Fang J, Fu X, Liu Y, Xia Z, Zhao M, Chen L, Mishra R, Gunasekaran M, Saha P, Forbess JM, Bosnjak ZJ, Camara AKS, Kersten JR, Thorp E, Kaushal S, Ge ZD. Augmentation of Histone Deacetylase 6 Activity Impairs Mitochondrial Respiratory Complex I in Ischemic/Reperfused Diabetic Hearts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529462. [PMID: 36865233 PMCID: PMC9980088 DOI: 10.1101/2023.02.21.529462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND Diabetes augments activity of histone deacetylase 6 (HDAC6) and generation of tumor necrosis factor α (TNFα) and impairs the physiological function of mitochondrial complex I (mCI) which oxidizes reduced nicotinamide adenine dinucleotide (NADH) to nicotinamide adenine dinucleotide to sustain the tricarboxylic acid cycle and β-oxidation. Here we examined how HDAC6 regulates TNFα production, mCI activity, mitochondrial morphology and NADH levels, and cardiac function in ischemic/reperfused diabetic hearts. METHODS HDAC6 knockout, streptozotocin-induced type 1 diabetic, and obese type 2 diabetic db/db mice underwent myocardial ischemia/reperfusion injury in vivo or ex vivo in a Langendorff-perfused system. H9c2 cardiomyocytes with and without HDAC6 knockdown were subjected to hypoxia/reoxygenation injury in the presence of high glucose. We compared the activities of HDAC6 and mCI, TNFα and mitochondrial NADH levels, mitochondrial morphology, myocardial infarct size, and cardiac function between groups. RESULTS Myocardial ischemia/reperfusion injury and diabetes synergistically augmented myocardial HDCA6 activity, myocardial TNFα levels, and mitochondrial fission and inhibited mCI activity. Interestingly, neutralization of TNFα with an anti-TNFα monoclonal antibody augmented myocardial mCI activity. Importantly, genetic disruption or inhibition of HDAC6 with tubastatin A decreased TNFα levels, mitochondrial fission, and myocardial mitochondrial NADH levels in ischemic/reperfused diabetic mice, concomitant with augmented mCI activity, decreased infarct size, and ameliorated cardiac dysfunction. In H9c2 cardiomyocytes cultured in high glucose, hypoxia/reoxygenation augmented HDAC6 activity and TNFα levels and decreased mCI activity. These negative effects were blocked by HDAC6 knockdown. CONCLUSIONS Augmenting HDAC6 activity inhibits mCI activity by increasing TNFα levels in ischemic/reperfused diabetic hearts. The HDAC6 inhibitor, tubastatin A, has high therapeutic potential for acute myocardial infarction in diabetes.
Collapse
Affiliation(s)
- Shelley L. Baumgardt
- Departments of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Xuebin Fu
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Yanan Liu
- Departments of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, The People’s Republic of China
| | - Ming Zhao
- The Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, Illinois 60611
| | - Ling Chen
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Rachana Mishra
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Muthukumar Gunasekaran
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Progyaparamita Saha
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Joseph M. Forbess
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Zeljko J. Bosnjak
- Departments of Medicine and Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Amadou KS Camara
- Departments of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Judy R. Kersten
- Departments of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Edward Thorp
- Departments of Pathology and Pediatrics, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, Illinois 60611
| | - Sunjay Kaushal
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Zhi-Dong Ge
- Departments of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
- Departments of Pathology and Pediatrics, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, Illinois 60611
| |
Collapse
|
39
|
Pulido M, de Pedro MÁ, Álvarez V, Marchena AM, Blanco-Blázquez V, Báez-Díaz C, Crisóstomo V, Casado JG, Sánchez-Margallo FM, López E. Transcriptome Profile Reveals Differences between Remote and Ischemic Myocardium after Acute Myocardial Infarction in a Swine Model. BIOLOGY 2023; 12:340. [PMID: 36979032 PMCID: PMC10045039 DOI: 10.3390/biology12030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Acute myocardial infarction (AMI) is the consequence of an acute interruption of myocardial blood flow delimiting an area with ischemic necrosis. The loss of cardiomyocytes initiates cardiac remodeling in the myocardium, leading to molecular changes in an attempt to recover myocardial function. The purpose of this study was to unravel the differences in the molecular profile between ischemic and remote myocardium after AMI in an experimental model. To mimic human myocardial infarction, healthy pigs were subjected to occlusion of the mid-left anterior descending coronary artery, and myocardial tissue was collected from ischemic and remote zones for omics techniques. Comparative transcriptome analysis of both areas was accurately validated by proteomic analysis, resulting in mitochondrion-related biological processes being the most impaired mechanisms in the infarcted area. Moreover, Immune system process-related genes were up-regulated in the remote tissue, mainly due to the increase of neutrophil migration in this area. These results provide valuable information regarding differentially expressed genes and their biological functions between ischemic and remote myocardium after AMI, which could be useful for establishing therapeutic targets for the development of new treatments.
Collapse
Affiliation(s)
- María Pulido
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
| | - María Ángeles de Pedro
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
| | - Verónica Álvarez
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
| | - Ana María Marchena
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
| | - Virginia Blanco-Blázquez
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Claudia Báez-Díaz
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Verónica Crisóstomo
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Javier G Casado
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- Immunology Unit, University of Extremadura, Campus Universitario, Av. de la Universidad, s/n, 10003 Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Cáceres, Spain
| | - Francisco Miguel Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Esther López
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
40
|
Choi YJ, Choi YK, Ko SG, Cheon C, Kim TY. Investigation of Molecular Mechanisms Involved in Sensitivity to the Anti-Cancer Activity of Costunolide in Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24044009. [PMID: 36835418 PMCID: PMC9965698 DOI: 10.3390/ijms24044009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Costunolide (CTL), an active compound isolated from Saussurea lappa Clarke and Laurus nobilis L, has been shown to induce apoptosis via reactive oxygen species (ROS) generation in various types of cancer cells. However, details of molecular mechanisms underlying the difference in sensitivity of cancer cells to CTL are still largely unknown. Here, we tested the effect of CTL on the viability of breast cancer cells and found that CTL had a more efficient cytotoxic effect against SK-BR-3 cells than MCF-7 cells. Mechanically, ROS levels were significantly increased upon CTL treatment only in SK-BR-3 cells, which leads to lysosomal membrane permeabilization (LMP) and cathepsin D release, and subsequent activation of the mitochondrial-dependent intrinsic apoptotic pathway by inducing mitochondrial outer membrane permeabilization (MOMP). In contrast, treatment of MCF-7 cells with CTL activated PINK1/Parkin-dependent mitophagy to remove damaged mitochondria, which prevented the elevation of ROS levels, thereby contributing to their reduced sensitivity to CTL. These results suggest that CTL is a potent anti-cancer agent, and its combination with the inhibition of mitophagy could be an effective method for treating breast cancer cells that are less sensitive to CTL.
Collapse
Affiliation(s)
- Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youn Kyung Choi
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chunhoo Cheon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (C.C.); (T.Y.K.); Tel.: +82-2-961-0329 (C.C.); +82-42-878-9155 (T.Y.K.)
| | - Tai Young Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Correspondence: (C.C.); (T.Y.K.); Tel.: +82-2-961-0329 (C.C.); +82-42-878-9155 (T.Y.K.)
| |
Collapse
|
41
|
De Nicolo B, Cataldi-Stagetti E, Diquigiovanni C, Bonora E. Calcium and Reactive Oxygen Species Signaling Interplays in Cardiac Physiology and Pathologies. Antioxidants (Basel) 2023; 12:353. [PMID: 36829912 PMCID: PMC9952851 DOI: 10.3390/antiox12020353] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen. ROS can act as signaling molecules in a number of different pathways by modulating calcium (Ca2+) signaling. Interactions among ROS and calcium signaling can be considered bidirectional, with ROS regulating cellular Ca2+ signaling, whereas Ca2+ signaling is essential for ROS production. In particular, we will discuss how alterations in the crosstalk between ROS and Ca2+ can lead to mitochondrial bioenergetics dysfunctions and the consequent damage to tissues at high energy demand, such as the heart. Changes in Ca2+ can induce mitochondrial alterations associated with reduced ATP production and increased production of ROS. These changes in Ca2+ levels and ROS generation completely paralyze cardiac contractility. Thus, ROS can hinder the excitation-contraction coupling, inducing arrhythmias, hypertrophy, apoptosis, or necrosis of cardiac cells. These interplays in the cardiovascular system are the focus of this review.
Collapse
Affiliation(s)
- Bianca De Nicolo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
42
|
Naemi S, Meshkini A. Phytosynthesis of graphene oxide encapsulated selenium nanoparticles using Crocus Sativus petals’ extract and evaluation of their bioactivity. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
43
|
Waterpipe smoke inhalation potentiates cardiac oxidative stress, inflammation, mitochondrial dysfunction, apoptosis and autophagy in experimental hypertension. Biomed Pharmacother 2023; 158:114144. [PMID: 36916396 DOI: 10.1016/j.biopha.2022.114144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Cigarette smoking worsens the health of hypertensive patients. However, less is known about the actions and underlying mechanisms of waterpipe smoke (WPS) in hypertension. Therefore, we evaluated the effects of WPS inhalation in mice made hypertensive (HT) by infusing angiotensin II for six weeks. On day 14 of the infusion of angiotensin II or vehicle (normotensive; NT), mice were exposed either to air or WPS for four consecutive weeks. Each session was 30 min/day and 5 days/week. In NT mice, WPS increased systolic blood pressure (SBP) compared with NT air-exposed group. SBP increase was elevated in HT+WPS group versus either HT+air or NT+WPS. Similarly, the plasma levels of brain natriuretic peptide, C-reactive protein, 8-isoprostane and superoxide dismutase were increased in HT+WPS compared with either HT+air or NT+WPS. In the heart tissue, several markers of oxidative stress and inflammation were increased in HT+WPS group vs the controls. Furthermore, mitochondrial dysfunction in HT+WPS group was more affected than in the HT+air or HT+WPS groups. WPS inhalation in HT mice significantly increased cardiac DNA damage, cleaved caspase 3, expression of the autophagy proteins beclin 1 and microtubule-associated protein light chain 3B, and phosphorylated nuclear factor κ B, compared with the controls. Compared with HT+air mice, heart histology of WPS-exposed HT mice showed increased cardiomyocyte damage, neutrophilic and lymphocytic infiltration and focal fibrosis. We conclude that, in HT mice, WPS inhalation worsened hypertension, cardiac oxidative stress, inflammation, mitochondrial dysfunction, DNA damage, apoptosis and autophagy. The latter effects were associated with a mechanism involving NF-κB activation.
Collapse
|
44
|
Irina ZV, Natalya KI, Vladimir BI, Elena M, Irina R, Alexander G. Ethoxidol as a Broad-spectrum Adaptogen. Curr Mol Pharmacol 2023; 16:109-115. [PMID: 35260065 DOI: 10.2174/1874467215666220308115514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Stress factors lead to a shift in the antioxidant-prooxidant relationship, allowing an increase in the generation of reactive oxygen species (ROS) by mitochondria, which results in the development of oxidative stress. Consequently, it is possible to put forward an assumption that drugs which reduce the excessive generation of ROS by these organelles should increase the body's resistance to stress factors. Antioxidants can be used as such drugs. In this regard, the aim of this work was to study the bioenergetics characteristic of mitochondria under stress conditions and under the action of 2-ethyl-6-methyl-3-hydroxypyridinium hydroxybutanedioate (ethoxidol). METHODS The antiradical activity of the drug was evaluated by the chemiluminescent method (CL). The functional state of the mitochondria was studied with reference to the level of lipid peroxidation by the spectrofluorimetry and in terms of fatty acid composition of mitochondrial membranes using the chromatography technique. The study of mitochondrial morphology was performed employing the method of atomic force microscopy. RESULTS The injection in mice of ethoxidol at a dose of 10-5 mol/kg for 7 days led to the prevention of the stress-induced increase in the intensity of LPO in the membranes of the mitochondria, and swelling of these organelles; it also prevented a decrease in the content of unsaturated fatty acids, containing 18 and 20 carbon atoms. At the same time, ethoxidol increased the life expectancy of mice by 3.0-4.2 times in conditions of various types of hypoxia. CONCLUSION The adaptogenic properties of ethoxidol can be attributed to its antiradical and antioxidant properties.
Collapse
Affiliation(s)
- Zhigacheva V Irina
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Krikunova I Natalya
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Binyukov I Vladimir
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Mil Elena
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Rusina Irina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, st. Kosygin, Moscow, 119334 Russia
| | - Goloshchapov Alexander
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| |
Collapse
|
45
|
Jiang Z, Shen T, Huynh H, Fang X, Han Z, Ouyang K. Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells. Genes (Basel) 2022; 13:genes13101889. [PMID: 36292774 PMCID: PMC9601307 DOI: 10.3390/genes13101889] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiolipin (CL) is a unique, tetra-acylated diphosphatidylglycerol lipid that mainly localizes in the inner mitochondria membrane (IMM) in mammalian cells and plays a central role in regulating mitochondrial architecture and functioning. A deficiency of CL biosynthesis and remodeling perturbs mitochondrial functioning and ultrastructure. Clinical and experimental studies on human patients and animal models have also provided compelling evidence that an abnormal CL content, acyl chain composition, localization, and level of oxidation may be directly linked to multiple diseases, including cardiomyopathy, neuronal dysfunction, immune cell defects, and metabolic disorders. The central role of CL in regulating the pathogenesis and progression of these diseases has attracted increasing attention in recent years. In this review, we focus on the advances in our understanding of the physiological roles of CL biosynthesis and remodeling from human patients and mouse models, and we provide an overview of the potential mechanism by which CL regulates the mitochondrial architecture and functioning.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Tao Shen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Helen Huynh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| |
Collapse
|
46
|
Zhigacheva IV, Krikunova NI, Generozova IP, Butsanets PA, Gerasimov NY, Nevrova OV, Vasiliev SV, Goloshchapov AN. Sodium μ2-Dithiosulfate-Tetranitrosyl Diferrate Tetrahydrate Increases the Efficiency of Respiratory Chain Activity in Mitochondria of Pea Seedlings. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
Magierowska K, Korbut E, Wójcik-Grzybek D, Bakalarz D, Sliwowski Z, Cieszkowski J, Szetela M, Torregrossa R, Whiteman M, Magierowski M. Mitochondria-targeted hydrogen sulfide donors versus acute oxidative gastric mucosal injury. J Control Release 2022; 348:321-334. [PMID: 35654168 DOI: 10.1016/j.jconrel.2022.05.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H2S) as a gaseous molecule prevents gastrointestinal (GI)-tract against various injuries. This study aimed to evaluate for the first time the detailed molecular mechanism of mitochondria-targeting H2S-prodrugs, AP39 and RT01 in gastroprotection against ischemia/reperfusion (I/R)-induced lesions. Wistar rats exposed to I/R were pretreated i.g. with vehicle, AP39 (0.004-2 mg/kg), RT01 (0.1 mg/kg), or with AP219 (0.1 mg/kg) as structural control without ability to release H2S. AP39 was also administered with mTOR1 inhibitor, rapamycin (1 mg/kg i.g.). Gastric damage area was assessed micro-/macroscopically, gastric blood flow (GBF) by laser flowmetry, mRNA level of HIF-1α, GPx, SOD1, SOD2, annexin-A1, SOCS3, IL-1RA, IL-1β, IL-1R1, IL-1R2, TNFR2, iNOS by real-time PCR. Gastric mucosal and/or serum content of IL-1β, IL-4, IL-5, IL-10, G-CSF, M-CSF, VEGFA, GRO, RANTES, MIP-1α, MCP1, TNF-α, TIMP1, FABP3, GST-α, STAT3/5 and phosphorylation of mTOR, NF-κB, ERK, Akt was evaluated by microbeads-fluorescent assay. Mitochondrial complexes activities were measured biochemically. RNA damage was assessed as 8-OHG by ELISA. AP39 and RT01 reduced micro-/macroscopic gastric I/R-injury increasing GBF. AP39-gastroprotection was accompanied by maintained activity of mitochondrial complexes, prevented RNA oxidation and enhanced mRNA/protein expression of SOCS3, IL-1RA, annexin-A1, GST-α, HIF-1α. Rapamycin reversed AP-39-gastroprotection. AP39-gastroprotection was followed by decreased NF-κB, ERK, IL-1β and enhanced Akt and mTOR proteins phosphorylation. AP39-prevented gastric mucosal damage caused by I/R-injury, partly by mitochondrial complex activity maintenance. AP39-mediated attenuation of gastric mucosal oxidation, hypoxia and inflammation involved mTOR1 and Akt pathways activity and modulation of HIF-1α, GST-α, SOCS3, IL1RA and TIMP1 molecular interplay.
Collapse
Affiliation(s)
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland; Department of Forensic Toxicology, Institute of Forensic Research, Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Jakub Cieszkowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Małgorzata Szetela
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | | | | | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
48
|
Kuzmiak-Glancy S, Glancy B, Kay MW. Ischemic damage to every segment of the oxidative phosphorylation cascade elevates ETC driving force and ROS production in cardiac mitochondria. Am J Physiol Heart Circ Physiol 2022; 323:H499-H512. [PMID: 35867709 PMCID: PMC9448280 DOI: 10.1152/ajpheart.00129.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial ischemia has long-lasting negative impacts on cardiomyocyte mitochondrial ATP production. However, the location(s) of damage to the oxidative phosphorylation pathway responsible for altered mitochondrial function is unclear. Mitochondrial reactive oxygen species (ROS) production increases following ischemia, but the specific factors controlling this increase are unknown. To determine how ischemia affects the mitochondrial energy conversion cascade and ROS production, mitochondrial driving forces [redox potential and membrane potential (ΔΨ)] were measured at resting, intermediate, and maximal respiration rates in mitochondria isolated from rat hearts after 60 min of control flow (control) or no-flow ischemia (ischemia). The effective activities of the dehydrogenase enzymes, the electron transport chain (ETC), and ATP synthesis and transport were computed using the driving forces and flux. Ischemia lowered maximal mitochondrial respiration rates and diminished the responsiveness of respiration to both redox potential and ΔΨ. Ischemia decreased the activities of every component of the oxidative phosphorylation pathway: the dehydrogenase enzymes, the ETC, and ATP synthesis and transport. ROS production was linearly related to driving force down the ETC; however, ischemia mitochondria demonstrated a greater driving force down the ETC and higher ROS production. Overall, results indicate that ischemia ubiquitously damages the oxidative phosphorylation pathway, reduces mitochondrial sensitivity to driving forces, and augments the propensity for electrons to leak from the ETC. These findings underscore that strategies to improve mitochondrial function following ischemia must target the entire mitochondrial energy conversion cascade. NEW & NOTEWORTHY This integrative analysis is the first to assess how myocardial ischemia alters the mitochondrial driving forces and the degree to which individual segments of the mitochondrial energy transduction pathway contribute to diminished function following ischemia. This investigation demonstrates that increased reactive oxygen species production following ischemia is related to a lower effective activity of the electron transport chain and a greater driving force down the electron transport chain.
Collapse
Affiliation(s)
- Sarah Kuzmiak-Glancy
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, United States
| | - Brian Glancy
- Laboratory of Muscle Energetics, National Heart, Lung, and Blood Institute and National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| |
Collapse
|
49
|
Akande O, Chen Q, Cholyway R, Toldo S, Lesnefsky EJ, Quader M. Modulation of Mitochondrial Respiration During Early Reperfusion Reduces Cardiac Injury in Donation After Circulatory Death Hearts. J Cardiovasc Pharmacol 2022; 80:148-157. [PMID: 35579563 PMCID: PMC10441174 DOI: 10.1097/fjc.0000000000001290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Donation after circulatory death (DCD) donors are a potential source for heart transplantation. The DCD process has unavoidable ischemia and reperfusion (I/R) injury, primarily mediated through mitochondria, which limits routine utilization of hearts for transplantation. Amobarbital (AMO), a transient inhibitor of the electron transport chain, is known to decrease cardiac injury following ex vivo I/R. We studied whether AMO treatment during reperfusion can decrease injury in DCD hearts. Sprague Dawley rat hearts subjected to 25 minutes of in vivo ischemia (DCD hearts), or control beating donor hearts, were treated with AMO or vehicle for the first 5 minutes of reperfusion, followed by Krebs-Henseleit buffer reperfusion for 55 minutes (for mitochondrial isolation) or 85 minutes (for infarct size determination). Compared with vehicle, AMO treatment led to decreased infarct size (25.2% ± 1.5% vs. 31.5% ± 1.5%; P ≤ 0.05) and troponin I release (4.5 ± 0.05 ng/mL vs. 9.3 ± 0.24 ng/mL, P ≤ 0.05). AMO treatment decreased H 2 O 2 generation with glutamate as complex I substrate in both subsarcolemmal mitochondria (SSM) (37 ± 3.7 pmol·mg -1 ·min -1 vs. 56.9 ± 4.1 pmol·mg -1 ·min -1 ; P ≤ 0.05), and interfibrillar mitochondria (IFM) (31.8 ± 2.8 pmol·mg -1 ·min -1 vs. 46 ± 4.8 pmol·mg -1 ·min -1 ; P ≤ 0.05) and improved calcium retention capacity in SSM (360 ±17.2 nmol/mg vs. 277 ± 13 nmol/mg; P ≤ 0.05), and IFM (483 ± 20 nmol/mg vs. 377± 19 nmol/mg; P ≤ 0.05) compared with vehicle treatment. SSM and IFM retained more cytochrome c with AMO treatment compared with vehicle. In conclusion, brief inhibition of mitochondrial respiration during reperfusion using amobarbital is a promising approach to decrease injury in DCD hearts.
Collapse
Affiliation(s)
- Oluwatoyin Akande
- Division of Cardio-Thoracic Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
- Pauley Heart Center, Virginia Commonwealth University, Richmond VA
| | - Renee Cholyway
- Division of Cardio-Thoracic Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA
| | - Stefano Toldo
- Division of Cardio-Thoracic Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
- Pauley Heart Center, Virginia Commonwealth University, Richmond VA
| | - Edward J. Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
- Pauley Heart Center, Virginia Commonwealth University, Richmond VA
- McGuire Veterans Administration Medical Center, Richmond VA
| | - Mohammed Quader
- Division of Cardio-Thoracic Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA
- Pauley Heart Center, Virginia Commonwealth University, Richmond VA
- McGuire Veterans Administration Medical Center, Richmond VA
| |
Collapse
|
50
|
Zhang J, Shi Y. In Search of the Holy Grail: Toward a Unified Hypothesis on Mitochondrial Dysfunction in Age-Related Diseases. Cells 2022; 11:cells11121906. [PMID: 35741033 PMCID: PMC9221202 DOI: 10.3390/cells11121906] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiolipin (CL) is a mitochondrial signature phospholipid that plays a pivotal role in mitochondrial dynamics, membrane structure, oxidative phosphorylation, mtDNA bioenergetics, and mitophagy. The depletion or abnormal acyl composition of CL causes mitochondrial dysfunction, which is implicated in the pathogenesis of aging and age-related disorders. However, the molecular mechanisms by which mitochondrial dysfunction causes age-related diseases remain poorly understood. Recent development in the field has identified acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT1), an acyltransferase upregulated by oxidative stress, as a key enzyme that promotes mitochondrial dysfunction in age-related diseases. ALCAT1 catalyzes CL remodeling with very-long-chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA). Enrichment of DHA renders CL highly sensitive to oxidative damage by reactive oxygen species (ROS). Oxidized CL becomes a new source of ROS in the form of lipid peroxides, leading to a vicious cycle of oxidative stress, CL depletion, and mitochondrial dysfunction. Consequently, ablation or the pharmacological inhibition of ALCAT1 have been shown to mitigate obesity, type 2 diabetes, heart failure, cardiomyopathy, fatty liver diseases, neurodegenerative diseases, and cancer. The findings suggest that age-related disorders are one disease (aging) manifested by different mitochondrion-sensitive tissues, and therefore should be treated as one disease. This review will discuss a unified hypothesis on CL remodeling by ALCAT1 as the common denominator of mitochondrial dysfunction, linking mitochondrial dysfunction to the development of age-related diseases.
Collapse
Affiliation(s)
| | - Yuguang Shi
- Correspondence: ; Tel.: +1-210-450-1363; Fax: +1-210-562-6150
| |
Collapse
|